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Abstract. Physical A* (PHA*) and its multi-agent version MAPHA* are algo-
rithms that find the shortest path between two points in an unknown real physical
environment with one or many mobile agents [15, 16]. Previous work assumed
a complete sharing of knowledge between agents. Here we apply this algorithm
to a more restricted model of communication which we calllarge pheromones,
where agents communicate by writing and reading data at nodes of the graph
that constitutes their environment. Previous works on pheromones usually as-
sumed that only a limited amount of data can be written at each node. Thelarge
pheromonesmodel assumes no limitation on the size of the pheromones and thus
each agent can write its entire knowledge at a node. We show that with this model
of communication the behavior of a multi-agent system is almost as good as with
complete knowledge sharing. Under this model we also introduce a new type of
agent, acommunication agent, that is responsible for spreading the knowledge
among other agents by moving around the graph and copying pheromones. Ex-
perimental results show that the contribution of communication agents is rather
limited as data is already spread to other agents very well with large pheromones.

keywords: Mobile agents; A*; Shortest path; Pheromones; Multi-agent com-
munication models

1 Introduction

This paper introduces the notion oflarge pheromonesas a model of communication
and global knowledge sharing in multi-agent systems. Withpheromones, agents com-
municate by writing and reading data at the nodes of the graph that constitutes their
environment [49, 51, 52]. Unlike previous models of pheromones where only a limited
amount of data can be written in each node, in thelarge pheromonesmodel, there is
no restriction on the amount of data that can be written in the nodes and thus each
agent can write its entire knowledge in a node. We apply this model of communication
to the multi-agent physical A* algorithm (MAPHA*) which is the multi agent version
of Physical-A* (PHA*). Both algorithms appeared in [15, 16]. These algorithms mod-
ify the A* algorithm [22] to find a shortest path in physical environments with one or
many mobile agents that move around the environment and explore unknown territories.
These algorithms are designed to minimize the travel effort of the agents.

Previous work on MAPHA* assumed a complete sharing of knowledge between
agents [15]. In this paper, we modify the MAPHA* algorithm to use the pheromones
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communication model and explore the influence of the size of the pheromone on the
performance of the algorithm. We show that increasing the amount of data that can be
stored in each of the pheromones dramatically reduces the travel effort of the agents.
The most important result of this paper is that with maximal usage of this model, i.e.,
with unlimited size of pheromones, the behavior of a multi-agent system is almost as
good as with complete knowledge sharing between the agents. Another way of seeing
this is that we compare between a system with a centralized shared memory to a system
with distributed shared memory.

There are three main contributions in this paper:

– First, we introduce a new model of communication and we show that artificial
pheromones can actually go beyond simple local information (e.g., classical routing
table) as long as enough memory is available at the agent/node level.

– Second, we compare a multi-agent system centrally controlled and using global
communication in a central shared memory with one in which de-centralized agents
decide individually about their action and can exclusively communicate with team-
mates through information stored and retrieved at the nodes and/or edges of the
network. We show that the time performance of the later is almost as good the first
even though it has no direct communication.

– Third, we provide a new version of the PHA* and MAPHA* family for a de-
centralized multi agent system.

The paper is organized as follows. In the next section we first describe the PHA*
and MAPHA* algorithms. Comprehensive discussions and all technical details on these
algorithms are fully covered in the original papers [16, 15]. Section 3 discusses various
communication models and Section 4 presents the paradigm oflarge pheromones. Sec-
tion 5 provides comparison to related work. Section 6 describes the new versions of
MAPHA* with large pheromones. Experiments are then provided in Section 7. Sec-
tion 8 discusses the idea of communication agents. Conclusions and future work are
presented in Section 9. More experimental results and different variations of the algo-
rithms of this paper are presented in the Appendix. A preliminary version of this work
appeared in [17].

2 Physical A*

The A* algorithm [22] is a common method for finding a shortest path in graphs that
have exponential number of nodes (like combinatorial puzzles). A* keeps anopen-list
of generated nodes and expands them in a best-first order according to a cost function of
f(n) = g(n) + h(n), whereg(n) is the distance traveled from the initial state ton, and
h(n) is a heuristic estimate of the cost from noden to the goal.h(n) is admissibleif it
never overestimates the actual cost from noden to the goal. A* was proved to be admis-
sible, complete, and optimally effective [12]. Therefore, any other algorithm claiming
to return the optimal path must expand at least all of the nodes that are expanded by A*
given the same heuristich [12]. Usually, A* (or its variants) are applied to exponen-
tial combinatoric problems. In such domains, an A* expansion cycle is carried out in
constant time as it takes a constant amount of time to retrieve a node from the open-list
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and to generate all its neighbors by applying domain-specific operators to the expanded
node. Thus the time complexity of A* is usually measured in terms of the number of
generated nodes [25, 27].

Physical A* (PHA*) [15] modifies A* to find the shortest path in much smaller
graphs which correspond to a real physical environment. Consider a mobile agent who
needs to find a shortest path between two physical locations and assume that only a very
small portion of the environment graph is known to the agent. Since A* is optimally
effective, the mobile agent needs to activate the A* algorithm on this physical graph.
For this type of graph, however, we cannot assume that expanding a node from the open
list takes constant time. Many of the nodes and edges of this graph are not known in
advance. Therefore, to expand a node that is not known in advance, a mobile agent must
first travel to that node in order to explore it and learn about its neighbors. The cost of
the search in this case is the cost of moving an agent in a physical environment, i.e., it
is proportional to the distance traveled by the agent. PHA* expands all the mandatory
nodes that A* would expand and returns the shortest path between the two points but is
designed to minimize the traveling effort of the agent by intelligently choosing the next
assignment of the traveling agent.

Note that since small graphs are considered here, we can omit the actual computa-
tion time and focus only on the travel time of the agent.

Unlike ordinary navigation tasks [10, 26, 45, 44], the purpose of the agent in PHA*
is not to reach the goal node as soon as possible, but rather to explore the graph in such
a manner that the shortest path will be retrieved for future usage. In a navigation task,
whenever the goal node is reached, the task ends. Most of the times the navigator did
not travel via the shortest path and many times he does not know the shortest path. To
identify a shortest path one must activate the A* algorithm and visit the set of manda-
tory nodes that A* would expand. Of course, our algorithm is designed to return the
optimal (shortest) solution and thus we assume that the heuristics are admissible. For
inadmissible heuristics we are not guaranteed to find the optimal solution so there is no
need to activate a best-first search A*. In this case, any navigation algorithm will suf-
fice to find a path that is not optimal. On the other hand, our problem is not an ordinary
exploration problem [8], where the entire graph should be explored in order for it to be
mapped out.

Another distinction should be made between the problem that we present here of
finding a shortest path between two physical locations and the vast field of routing
problems and algorithms [9, 4, 43]. We address the problem of finding a shortest path
between two physical points in a stable constant physical environment. Routing is usu-
ally the problem of finding paths in dynamic networks where the structure of the en-
vironment is dynamically changing due to load balancing and congestion. See [15] for
more comparison to other algorithms and problems.

An example for a real application can be the following scenario. A division of troops
is ordered to reach a specific location. The coordinates of the location are known. Nav-
igating with the entire division through unknown hostile territory until reaching its des-
tination is unreasonable and inefficient. Instead, one may have a team of scouts search
for the shortest path for the division to pass through. The scouts explore the terrain and
then report the shortest path for the division to move along in order to reach its des-
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tination. PHA* is an algorithm designed to help these scouts. Note that these scouts
can be either human agents or artificial moving robots. In both cases they must explore
the necessary portion of the physical environment in order to retrieve the shortest path
between the two locations.

A* keeps global knowledge on the graph and only works properly (i.e., returns the
shortest path) if the graph is stable throughout the search process. Thus, we assume that
the graph is fixed and stable for a large portion of time but is not known in advance.
Also, we assume that the graph has physical characteristics i.e., that traversing an edge
is proportional to the cost of the edge. Thus, our algorithm and communication model
are built to meet these assumptions. Telecom networks such as the Internet may not
have these properties as they are usually not fixed since the load balancing of the graph
is changing dynamically. Also, nodes of the graph might be added and deleted at any
time. In that case, activating the A* algorithm is not relevant as global data in the open
and closed lists are not accurate. Therefore, MAPHA* can not find shortest path in such
environments and one of the routing techniques would be the algorithm of choice (see
Section 5). However, if a network is fixed in its structure and load balancing then it may
also serve as an application for our approach. See [15] for a deeper discussion.

2.1 Description of PHA*

We now turn to the description of the PHA* algorithm, focusing first on the case of a
single mobile agent.

Nodes in the environment can be divided intoexploredandunexplorednodes. Ex-
ploring a node means physically visiting that node by the agent, and learning about
it connecting edges and about the the exact identities and coordinates/locations of all
its neighbors.4 PHA* activates essentially A* on the environment. However, in order
to expand a node by A*, this node must first be explored by the agent so as to obtain
the relevant data associated with it (i.e., incident edges, neighboring nodes and their
exact locations and coordinates). PHA* works in two levels. The high level (which
invokes the low level as a subroutine), acts like a regular A* search algorithm: at
each cycle it chooses the best node from the open-list for expansion. New generated
nodes are evaluated and inserted to the open list of A* according to a cost function of
f(n) = g(n)+(h(n). h(n) in our case, is the Euclidean distance between the new node
n and the goal node. If the node chosen by the high level has not been explored by the
agent, the low level, which is a navigation algorithm, is activated to bring the agent to
that node and explore it. After a node has been explored by the low level it is expand-
able by the high level. If the chosen node has already been explored, or if its neighbors
are already known, then it is readily expandable by the high level without the need to
send the agent to visit that node. When a node is expandable, then the exact locations of
its neighbors are known and thus we can calculate their Euclidean distance to the goal
nodes and use it as theirh value. The pseudo-code for the high level is given below.

4 As in [15] we assume a domain model that when a nodev is visited by a search agent, the
neighboring nodes and their exact locations (coordinates) are discovered, as well as the edges
connecting them tov. See [15] for ways to deal with other models or assumptions.
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high-level(open-list) {
. while(open-list is not empty) {
. target = best node from open-list;
. if target is unexplored then {
. explore(target) by the low level;
. }
. expand(target);
. }
}

2.2 Low-Level Algorithms

The high-level algorithm, A*, chooses to expand the node with the smallestf -value in
the open-list, regardless of whether or not the agent has already visited that node. If
the chosen node has not been visited by the agent, the low level instructs the agent to
visit that node. We call this node thetargetnode for the low level. In order to reach the
target node, we must use some navigation algorithm. In [15] a number of navigation
algorithms are presented. The best ones are called A*DFS and I-A*DFS. Both these
navigation algorithms attempt to navigate to the target via unexplored nodes. Thus,
while navigating through unknown parts of the graph, the agent might visit new nodes
that have not been explored yet and explore them on the fly. This may save the need to
travel back to those nodes at a later time, should they be selected for expansion by the
high-level algorithm.

At each step of the navigation to the target node, the agent should choose a node
among its neighbors to travel to. Suppose the agent is at nodev and is navigating to
target. A*DFS chooses the neighborn that minimizes

A∗DFS(n) = c(v, n) + d(n, target)

wherec(v, n) is the cost of the edge(v, n) andd(n, target) is the straight line distance
from n to target. We call it A*DFS since it uses a cost function which is similar to that
of A*, i.e., f(n) = g(n) + h(n)5.

Improved A*DFS (I-A*DFS) enhances A*DFS as follows. Suppose that the agent
is navigating to a target node. Along the way, it may pass near nodes that have a small
f -value without visiting them, as they are not on the path to the target node according
to the A*DFS navigation algorithm. Visiting such nodes when the agent is nearby, may
save a lot of traveling effort in the future. I-A*DFS incorporates this notion. The basic
concept of I-A*DFS is that while navigating to a target, the low level will select the
next node to visit by considering not only its approximate distance from the target (as
in A*DFS) but also the node’sf -value. In order to achieve that, I-A*DFS chooses the
neighborn that minimize the following heuristic function:

5 Note, however, that this cost function is used here locally to find a path from the current node
to the target node. This is different from the high-level A* which uses this cost function to find
a path from the input initial state to the input goal state.
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c(n) =

{
A∗DFS(n) ·

(
1− c1

(
f(T )
f(n)

)c2
)

if n ∈ OPEN
A∗DFS(n) otherwise.

(1)

A∗DFS(n) was described above.T and n denote, respectively, the target node
and the neighboring node that is being currently evaluated.f(.) is thef -value of a node
provided by the high-level A* andc1, c2 are constants, which, according to simulations,
give the best results atc1 = 0.25, c2 = 2. For a better understating of this formula the
reader is referred to [15].
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Fig. 1. A*DFS vs. I-A*DFS

Consider the graph in figure 1. Suppose that we want to find the path from node
R to nodeG. Numbers inside the nodes correspond to the order in which standard A*
expands these nodes. Assume that the agent activating PHA* traveled to node1. The
best node on the open-list is node2 and it is set to be the target node. With A*DFS, the
agent will navigate to2 via node4. With I-A*DFS, however, the agent will choose to
first visit node3 as it has a lowf -value and it is very close to its current location. This
will save the effort of navigating back to node3 in the near future.

2.3 Improved High-Level: WinA*

The basic idea behind I-A*DFS is that we give high priority to nearby nodes with low
f -value even if they are off track in order to avoid future traveling to these nodes. The
same concept can be used to improve the high level A*. The best-first order in which
A* expands nodes from the open-list is optimal when the complexity of expanding a
node isO(1). However, in a real physical environment, where node expansion requires
an agent to perform costly tasks, it is not always efficient to expand the current best
node. Consider, for example, a nearby node that is not the best node in the open-list,
but whosef -value is sufficiently small, such that with high probability it would be
selected for expansion by A* in the next few iterations. An intelligent agent will choose
to explore such a node first, even though it is not currently the best node in the open-list.

In order to incorporate this capability into PHA*,Window A*(WinA*) which is a
generalized version of A*, was used. WinA* creates a set (window) ofk nodes with the
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smallestf -values and then chooses one node from the set for expansion. The objective is
to minimize the traveling effort of the agent, and not necessarily to reduce the number
of expanded nodes. Thus rather than selecting only those nodes that have a smallf -
value, we choose also nodes that are sufficiently close to the location of the agent. In
[15] it is shown that the best way of capturing these two aspects is by simply taking
their product. Thus we order the nodes of the window by the cost function

c(n) = f(n) · dist(curr, n),

wheren is the node evaluated,f(n) is its f -value, anddist(curr, n) is the distance
betweenn and the current location of the agent. We choose to expand the node with the
smallest costc. 6. In figure 1 if the agent is located in node1, it will choose node3 as its
new high level target since it has a smallf -value and is close to its current location. The
best performance was achieved in [15] by using WinA* for the high level and I-A*DFS
for the low level.

2.4 MAPHA*: Multi-agent Physical A*

In [15], PHA* was generalized to the Multi-agent Physical A* (MAPHA*) where a
number of agents cooperate in order to find the shortest path. The task is that these
agents should explore the necessary portion of the graph, i.e., the A* nodes as fast as
possible. The assumption in [15] was that each agent can communicate freely with all
the other agents and share data at any time. Thus any information gathered by one agent
is available and known to all of the other agents. This framework can be obtained by
using a model of a centralized supervisor that moves the agents according to the com-
plete knowledge that was gathered by all of them. Another possible model for complete
knowledge-sharing is that each agent broadcasts any new data about the graph to all the
other agents.

MAPHA* also uses a two level framework. The high level chooses which nodes
to expand, while the low level navigates the agents to these nodes. Since complete
knowledge sharing is assumed there is one central high level which activates A*, (or
actually WinA*). Suppose that we havep available agents andk nodes in the window of
the front of the open list. We would like to distribute thesep agents to thek nodes from
the window as efficiently as possible. In [15] we described a distribution mechanism
with the following attributes:

1. The distribution should favor assigning more agents to nodes in the front of the
window, i.e. with a relatively smallf -value.

2. The distribution should favor assigning an agent to a relatively close-by node.

For example, assume that two agents,A andB, are first located at nodeR of figure
1. Nodes1 and2 are in the open list and the distribution mechanism distributes the

6 Combining this modified high-level variant with the low-level navigation creates some tech-
nical difficulties (like starvation), due to the fact that we no longer expand nodes from the
open-list in a best-first order. See [15] for a comprehensive discussion and solution to this
problem.
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agents to nodes1 and2. Then, node1 is expanded by the high level and nodes3 and4
are added to the open list. Now, nodes3 and4 are in the front of the window and the
distribution mechanism now distributes agentA to target node3 and agentB to node4
so that these nodes can later be expanded by the A* level.

Note that similar to the single agent PHA*, once an agent is assigned to a tar-
get node, it uses the I-A*DFS algorithm to navigate to that node. New nodes that are
reached by the agent on the fly are immediately updated in the centralized databases
obtained by high level. Here also, if such nodes are chosen for expansion, they do not
have to be visited again.

In [15] it was shown that adding more agents is always efficient and reduces the time
to solve the problem. As more agents were added, the search time converged asymptot-
ically to the length of the shortest path. This means that asymptotically all paths from
the initial state are traveled in a breadth-first search manner. This is to say that a suffi-
ciently large team of agents is likely to produce a single agent that will travel along the
actual shortest path with very little deviation from it.

3 Communication Models and Peromones

There are many models for communication in multi agent systems. As described above,
the most trivial model is complete knowledge sharing where any new discovery of an
agent is immediately shared with all the other agents. Other models restrict the level
of communication. Some models allow broadcasting or message exchanging between
agents but restrict the amount of data that can be exchanged in each message or restrict
the frequency or the number of messages that are allowed. Many times, a cost is as-
sociated with each message and the task is to solve the given problem while trying to
minimize the cost of the messages involved.

Another distinction sometimes made (e.g, in the survey in [14]), is between implicit
and explicit communication. Implicit communication occurs as a side effect of other ac-
tions, or ”through the world” whereas explicit communication is a specific act designed
solely to convey information to other agents on the team, e.g., broadcasting or message
sending.

Additionally, it was discovered that in many cases, communication of even a small
amount of information can lead to a great benefit [47]. It is this fact that stands at the
basis of our proposed methods. More recent work in multi robot communication has
focused on representations of languages and the grounding of these representations in
the physical world [28, 13].

3.1 Communication by Pheromones

In nature, ants and other insects communicate and coordinate by leaving trails of odor
on the ground. The “data” placed on the ground is calledpheromones. Studies on ants
(e.g. [2, 20, 23, 21, 7]) show that the pheromone-based search strategies used by ants in
foraging for food in unknown terrains tend to be very efficient. It is believed that ants
build a network of information with vertices represented by points of encounter be-
tween ants and the information is either passed between ants at a vertex with a physical
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encounter with other ants or via pheromone traces that are left on the ground. Inspired
by nature, a famous and interesting model for communicating in multi-agent systems
is that of ant-robotics (e.g. [49, 51, 52]). In this model, information is spread to other
agents viapheromones, i.e., small amounts of data that are written by an agent at vari-
ous places in the environment (e.g. vertices or edges of the graph) and can be later used
or modified by other agents visiting that node.

In our ant-inspired model we assume that the information network is a graph, and
the role of a pheromone is taken by a memory area on each node, that our search a(ge)nts
can read and modify. This model is especially suitable for large networks, like the In-
ternet, in which the nodes are powerful computers and the links have narrow bandwidth
and are heavily loaded. This paradigm suggests a distributed group of one or more
lightweight autonomous agents that traverses the network in a completely autonomous
and parallelized way. Data is spread by the agents via these pheromones, which together
serve as a distributed shared memory.

Note that considering the distinction raised above, a pheromone has both explicit
and implicit attributes. Explicit in the fact that agents perform the action of writing in
the pheromones. implicit in the fact that this is done through the environment.

Sometimes, the term pheromones is used to describe a distributed database that
includes more than just spatially indexed information but also includes some sort of
processing by the environment itself such as evaporation or propagation [4, 43]. Rele-
vant information is reinforced while information that is becoming irrelevant evaporates
or vanishes from the system.

In addition to pheromone based systems there are other behavior based systems
which derives from the behavioristic regulations of insects from nature, e.g., systems
that inspired from flocking and dispersing models [36, 24, 3] or predator-prey approach
[35, 46]). More examples can be found in [41, 39, 40].

3.2 The Size of the Pheromone

What is the memory capacity of each pheromone? Biology scientists believe that pheromones
in nature only include a very small amount of data due to the limited intelligence of in-
sects. Nevertheless, for computerized multi-agent systems we can control the size and
strength of artificial pheromones according to our needs. This is in fact one of the main
purposes of our work as described below.

Although the exact size of the pheromone was not specifically quantified by the au-
thors, many of previous works using pheromones assume that only a very small amount
of data (no more than a few bytes) is written in each pheromone. The reason can be
either because there exists a physical limitation on the amount of memory or because
the intention of the authors was to keep the system as simple as possible and keep the
agents and information passed as light as possible and yet to show the strength of these
systems.

For example, in [52], when trying to explore a physical graph with non-communicating
mobile agents, they assumed that the only fact that is written in a pheromone at a node
of the graph is the outgoing edge that the last agent has chosen to leave that node. Thus,
in that system when entering a node each agent resets the old pheromone and marks
its own outgoing edge. Also, in [50] a team of cooperative cleaning robots are sent to
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clean a large ”dirty” area in a grid which also contains obstacles. Each agent places a
pheromone in each visited location. The phoeromone only contains a stamp that it has
visited that location. In theant colony optimizationsystem described below, when try-
ing to solve the traveling salesman problem [30], also, the pheromone (placed on edges
of the graph) only contained a number which is implicit measurement of the probability
that the edge belongs to the optimal solution. In the AntNet system [9] described below,
where ants randomly move around the network and modify routing tables, only data
about the next hop is stored at each node.

It turns out, however, that despite these severe limitations on pheromone size, and
assuming that only a very small amount of data is written in each pheromone, such
agents are able to cooperate and achieve goals like covering a faulty graph [51], finding
an Euler cycle in a graph [52] and solving various combinatorial optimization problems
[33].

Pheromones usually serve as an indirect communication mechanism by using an
evaporate/refresh process. This process typically does not require huge amounts of in-
formation. A small sized pheromone can only include local data and is not very suitable
for problems such as our problem of finding a shortest path in a physical environment
where a version of A* should be activated and thus sharing of global data is needed. In
the sequel we consider the effect of using larger pheromones, i.e., storing more data in
the nodes, on the efficiency of multi-agent search.

4 Large Pheromones

We suggest a new model of communication which we calllarge pheromones. Unlike
conventional pheromones, we cancel the restriction on the amount of data that can be
stored in each node, and consider the effect of this increased storage on the performance
of the search algorithm. At the extreme, we assume that an agent can write its entire
knowledge base (e.g. a complete list of nodes and edges known to that agent) at each
visited node. With today’s hardware capabilities and computer architecture this is a
reasonable assumption. With pheromones, we already assume that each mobile agent
has the necessary hardware devices to allow reading and writing data in the physical
environment. We also assume that there is a storage device at each node. Given that a
storage device is installed at each node it is not reasonable to limit its size, since with
current technology memory is very cheap in both cost and area. For example, it is not
unrealistic to assume, say, one megabyte of memory at a node which can store a graph
of tens of thousands of nodes. We can also assume that the time to read and write data
from the large pheromones can be omitted when considering the traveling time of the
agents. This additional data storage in thelarge pheromonesparadigm can help the
agents in solving the problem faster and much more efficiently.

Large memory is not always available, e.g., in a system of nanorobots within a hos-
tile environment, where only a very limited use of the environment is possible. Hence,
we also consider a more modest memory capacity of the storage devices in the nodes.
In that case, given the limited memory capacities and the entire knowledge base, we
will address the question of selecting the most relevant portion of the knowledge for
storing at the nodes. We will show below that when the size of the pheromone becomes
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larger and more data and knowledge can be written, the performance of the multi-agent
system dramatically increases such that the most powerful large pheromone system is
almost as good as a system with a complete knowledge sharing.

Note that a multi agent system employing the large pheromone paradigm can be
also called asystem with distributed shared memoryas opposed to a system with com-
plete knowledge sharing which can be calleda system with central shared memory. In
both systems agents spread their knowledge by writing information in memory7. The
difference is whether there is one central location for that or whether this knowledge is
distributed in the environment. In this paper we show that a distributed shared memory
is almost as good as a single central shared memory.

4.1 Spreading Data with Large Pheromones

With such large capacities of memory in each node, we present the following communi-
cation paradigm between the agents in general and in exploring unknown environments
in particular. Each agent has a partial knowledge of the entire environment. It maintains
a database with a partial graph that is known to it. Similarly, each node holds a database
with a partial graph that is ’known’ to it, i.e., knowledge that was written to it by the
agents.

Data-merge Operation Whenever an agent reaches a node it unifies (merges) the data
known to it with the data that is written in that node. The agent then updates its own
database as well as the database of that node to reflect the new unified data of view
about the graph8. We call this thedata-mergeoperation. In this way data will be spread
out very fast as long as agents visit many nodes in many areas of the graph and perform
adata-mergeoperation at all the nodes that they visit. For example, assume that agentA
visits noden and writes its knowledge in that node. After a while, agentB visits noden.
AgentB will read the information in the node and will merge it with its own knowledge.
After merging the knowledge, both agentB and noden hold the information gathered
by both agentA and agentB.

If we assume a limited memory capacity of the nodes then simply unifying the data
by data-merge operation described above is not always possible as the new (and thus
larger) data might not fit in the limited amount of memory. If this is the case then the
data merge operation is done in the following stages. First, the agent unifies its own
data with the data that is written in the node and updates it own database to reflect
the unified data. Now, the agent activates a selection algorithm to determine the most
informative portion of the data. Then, the agent replaces the previous pheromone with
the new selected data. The selection algorithm is of course an independent part of the
data merge operation and many variations are possible. As described below, we chose
to select the nodes that are closest to the current node.

7 Of course, there are other methods that can achieve complete knowledge sharing but they are
all logically identical.

8 Note that since both databases hold a valid list of nodes and edges then there are no conflicts
between the two views of the agent and of the pheromone. Thus, the unification is done by
simple adding of the two views and deleting duplicate copies of information.
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For the scouts example that we provided above, the large pheromones might be a
graphical sketch of the known graph which with primitive resources can be drawn with
the help of a piece of paper and a pencil. Of course, the scouts might choose to use
sophisticated encryption techniques and more advanced memory storage devices, but
the principle is the same.

5 Related Work

The termpheromoneis used by many authors in many algorithms and problem solv-
ing in multi-agent systems. Usually, it is used to represent a storage location which is
dynamically modified during the activation of a multi-agent algorithm. The data in the
pheromone is used for exchanging knowledge between the different agents. While this
is similar for all systems, the termpheromoneis used in many environments which can
be fundamentally different. Pheromones might be used during the algorithm in many
different ways and by different modifying protocols. In addition, the termshortest path
in graphsis used by many authors in many different environments. In this section we
try to clearly distinguish our work from others with regards to these aspects.

5.1 The AntNet System

A reminiscent approach to our idea of large pheromones and to the problem of finding
a shortest path are many different solutions to routing in networks. For example, the
heuristics in [4, 43] use ants to find shortest paths in (changing) telecom networks where
the load balancing on the edges of the graph is not stable. Also, there are widely used
Internet routing protocols such as BGP [42], RIP [34] etc, - all of which propagate
shortest path information around the network and cache it at local nodes by storing
routing tables with information about the next hop. Like in our model, in these settings
a considerable amount of data is stored at nodes of the environment for the benefit of
the agents. Another known routing system which uses ”ants” and ”pheromonoes” is the
AntNet system [9]. In AntNet, ants randomly move around the network and modify the
routing tables to be as accurate as possible.

While these approaches seem similar, there is a great difference between these
works on routing and ours in the environments, the data that is stored at each node
and the problem to be solved.

First, they assume that the environment is a telecom network that changes dynam-
ically over time while we assume that the graph is fixed and corresponds to a real
physical environment with Euclidean distances. Our problem is that this graph is not
known in advance.

Second, these algorithms try to help an agent (which could be a phone conversation
for example) tonavigateto a goal location. In other words, given the destination node
(which could be any node of the environment) and the knowledge written in the current
node, these algorithms try to locally decide where should the agent go to next. Usually,
the paths that they find are only suboptimal. Our agents, on the other hand, are sent
to explore the terrain in order to find theshortest pathbetween given two locations
for future usage. We only need to worry about these two locations and not about any
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other possible location of the graph. See Section 1 for a deeper discussion about the
difference between our problem and a navigating problem.

Third, in these works, large routing tables with information about the next hop is
being stored at each node while in our setting the large-pheromones store the entire
knowledge about the structure of the complete graph and help the searching agents to
make better choices of where to search next.

Fourth, since they assume that the graph is dynamically changing, the accuracy of
the data stored by them might degrade over time. Thus, they put a lot of effort in keeping
the data as accurate as possible at all times by having the ants consistently updating the
routing tables. In such paradigm, the accuracy or time stamp of the pheromone needs
to be analyzed by an agent that gets there in order to decide whether that data is still
relevant. We, on the other hand, assume that the data placed at a node stays valid for
a very large portion of time. This is reasonable for a stable unknown real physical
environment.

Therefore, their approach solves a different problem of keeping routing tables as
accurate as possible and will not be as effective as our algorithm for the problem that
we discuss here of physically searching the graph for theshortest pathbetween two
given and fixed points.

In a sense, we can see our approach as generalization of next hop lookup tables
by the fact that we provide partial graph information in each node, rather than just an
instruction where to go next. In a sense, our large pheromones paradigm can be seen as
a distributed blackboard system. In [48] they also use a distributed database which they
also call pheromones.

The PHA* as well as MAPHA* with large pheromones that will be described in
the next section, are deterministic algorithms that are designed to work only in a static
environments where the structure of the graph is stable throughout the search. If the
graph is dynamic and changes during the search then a probabilistic approach or one of
the routing techniques would probably be a better choice.

5.2 Ant Colony Optimization Algorithms

Another direction which uses the termpheromoneis theant colony optimizationsystems
(ACO) which was first applied to the traveling salesman problem (TSP) [30, 29]. An
ACO system include a set of cooperative agents cooperating to find good solutions to
the TSP problem. The agents (also called “ants”) cooperate using an indirect form of
communication mediated by pheromone they place on the edges of the TSP graph while
building solutions. ACO systems were also used to solve other problems such as the
sequential ordering problem [31], quadratic assignment problem [32], vehicle routing
problem [5] and other problems [5, 1, 11, 38, 18, 19].

While ACO also use the termspheromonesandants, again, there is a great differ-
ence between the ACO systems and our model of large pheromones in the environments
and the data that is stored at each node.

First and foremost, the ACO systems are designed to work on environments with
completely different fundamental assumptions. In our environment the ants are physical
mobile agents that travel in a real physical environment which is a priori unknown. The
ACO environment assumes that the complete graph is accepted as input and that a
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special attribute of the graph is needed, e.g., a TSP tour. They describe an algorithm
for solving graph problems based on ants that are traveling along the graph. However,
their ants are completely virtual and they are actually different processing units that can
be implemented as parallel threads or tasks in the same CPU. Our environment and the
platform where our algorithms take place is a real environment while their platform is
a sophisticated data structure inside the computer’s memory representing a graph.

As described above, we assume that thetravel effortacross an edge is proportional
to the length of the edge. The main target of our approach is to minimize the actual
physical travel cost of the different agents while omitting CPU computational complex-
ity. The travel effortconcept has no meaning for the ACO systems as they are virtually
traveling along a virtual graph inside the computer’s memory and they traverse an edge
on a constant time. Therefore, from our point of view (of real physical environments
and real physical mobile agents) the ACO systems are actually advanced distributed
approaches that solve graph problems using sophisticated lookup tables (pheromones)
which are updated by distributed threads or tasks (ants). In this sense the AntNet setting
described above is closer to our settings since ”real” agents traverse ”real” environ-
ment only in AntNet the graph is a network of computers while our graph is a physical
environment.

The ACO systems use anevaporation effectwhere the importance and accuracy
of each pheromone degrades during time. This technically is more suited a for virtual
environment inside the memory of the computer but is hard to be implemented in real
physical environment. Here, we assume that pheromones are changed only by the ac-
tivity of the agents.

Note again that the ACO systems assume that the complete graph is accepted as
input and are designed for exponential time problems such as TSP etc. Therefore, the
problem of finding a shortest path between two nodes is rather trivial in this setting as a
simple algorithm such as Dijkstra’s algorithm can be activated (see [15] for a discussion
about the difference between Dijkstra’s algorithm and A* and the different domains and
assumptions which they are useful for).

6 MAPHA* with Large Pheromones

In this section we present our new version for MAPHA* where the large pheromones
communication model is employed. In order to distinguish between MAPHA* in the
two communication models we will refer to the algorithm from [15] wherefull com-
municationand complete knowledge sharing was allowed asMAPHA∗FC and to our
new version where thelarge pheromonesmodel is employed asMAPHA∗LP .

6.1 High level A* in MAPHA*

MAPHA∗FC was designed for the full knowledge sharing paradigm. Thus, the high
level A* (or WinA*) was centralized and agents were sent to locally navigate to nodes
by this centralized high level. When the large pheromones model is employed there is
no such centralized entity and each agent runs the entire algorithm on its own. Thus,
in MAPHA∗LP each agent activates the high-level A* (or WinA*) on its own, based
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on the partial knowledge of the graph that is known to it at any point of time. In a
sense, each agent actually activates the single-agent version, PHA*. In other words,
each agent keeps its own open-list of nodes and chooses to expand nodes fromthat
open-list. As before, if the chosen target node has already been explored and thus all its
neighbors (and their exact locations) are known to the agent, this node can be expanded
immediately and its neighbors are added to the open-list. If, however, neighbors of the
target node are not known to the agent, then, as with single agent PHA*, the agent
will navigate to that target node with the help of a low-level navigation algorithm. In
MAPHA∗LP , however, the large pheromones paradigm is employed. At each node
that a navigating agent visits, it performs adata-mergeoperation. Its own knowledge
is added to the node and knowledge about nodes that were not known to the agent is
now learned by the agent. This might have a positive effect on the open-list and the
high-level A* that is activated by this agent.

For example, suppose that agentA chose to expand nodet from front of the open-
list, and this node was not yet explored by agentA. Thus, agentA should now navigate
to that node. On its way tot, agentA visits noden. Suppose that another agent,B,
already explored nodet and later wrote that data in noden while visiting it. When
agentA reaches noden and performs a data-merge operation, it learns about nodet.
Therefore, agentA does not need to continue the navigation to nodet and that node can
be expanded by agentA immediately.

In order to deriveMAPHA∗LP , the single agent version, PHA*, is therefore mod-
ified as follows. Whenever a data-merge operation is being performed, the graph that is
known to the agent is modified. At that point, the high level A* is being invoked and the
f -value of nodes is being updated. If the target node is now fully known to the agent,
(i.e. the agent knows the neighbors of the target) then it is expanded immediately. In
that case, a new expansion cycle begins and a new target node is being chosen.

In that sense,MAPHA∗LP and single agent PHA* are very much alike. They both
activate A* (or WinA*) in the high level and send the agent to navigate and explore
nodes in front of the open-list so that these nodes can be expanded. If these nodes are
known then they can be expanded immediately and a new expansion cycle begins. The
difference between them is the different circumstances in which nodes are known in
advance and can be expanded even if the agent is not physically located at these nodes.
For PHA* this happens if the agent has already visited these nodes in the past. For
MAPHA∗LP this also happens if the agent learned about these nodes from data that
was written in the pheromones by other agents.

If we only assume a limited memory capacity of the nodes then after the agent
merges its data with data from the pheromone it will have to decide which are the
most relevant nodes to write back to the pheromone and replace the old data of that
pheromone. We have tried many variants and found out that the best performance was
achieved by writing data about nodes that are closest to the current node. Thus, if for
example the memory capacity allows 20 nodes to be written then the agent chooses the
20 nodes that are closest to the current node among all the nodes that are known to it
(after unifying its own data with the previous data of the pheromone). The agent then
replaces the previous pheromone with these 20 nodes.
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6.2 Initial Distribution of the Agents

When activating more than one agent with this paradigm, the following problem arises.
Since all agents activate the same deterministic algorithm and are initially located at the
same node, they will necessarily make the same decisions and follow the same path.
With MAPHA∗FC [15] we solved this by simultaneously distributing the available
agents to different nodes in the window which contains nodes that are in the front of the
open-list. Therefore, they are located in different locations and later choose to navigate
to different nodes. Note that an important attribute of PHA* in all its versions is that
agents prefer to go to nodes that are physically close to them. If agents are located
in different locations, they will, in general, make different decisions even if they have
exactly the same knowledge about the graph.

In MAPHA∗LP , since every agent operates on its own, we have to make sure that
at least at the beginning of the algorithm agents will go to different locations. We have
considered a number of options that artificially distribute the agents at the beginning
of the search. The results provided below use the following technique. All the agents
start the search from the same node, but are dispatched at different times with a delay
t between an agent and its successor. Thus, when an agent reaches a node, it may treat
it differently from previous agents since it might know new data that was not known
to them when they first arrived at that node, as the pheromone at the node has evolved.
Thus, with this technique, agents start at the same node but continue differently due to
the evolving of common knowledge stored in the pheromones.

6.3 Static vs. Dynamic Data

In the description above, pheromones within each node only included data about nodes
and edges of the graph. This type of data can be calledstatic dataas it only includes
topological data about the environment. This data will never change as we assume that
the graph being explored is fixed throughout the search process. With static data, if two
agents arrive to a node (not necessarily at the same time) and they hold exactly the same
information, they will choose to go next to the same node by activating the I-A*DFS
low level algorithm described above.

To better treat this, we have enhanced the capability of the large pheromones to also
include what we calldynamic data. The dynamic data part of the pheromone includes
knowledge about the decisions and intentions of other agents. When an agent visits a
node, then besides the data-merge operation of static data, it also writes facts about its
current task. In particular, an agent writes the following facts in the dynamic data part:

– The neighboring node which it chose to visit next. This information corresponds to
its current low-level navigation task.

– Which is the target node which it is going to. This information corresponds to its
current high-level task.

When an agent visits a node then besides the data-merge operation which increases
its knowledge it can also learn about the tasks of other agents and try to adjust its own
tasks accordingly and try to behave differently. This can be done both in the high-level
algorithm and in the low-level.
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Handling Dynamic Data in the Low Level We have tried many variations for handling
dynamic data in the low level but only discuss the best variation here. Other variations
are presented in Appendix A.1. In the best variation, the agents write their outgoing
edge in the dynamic data part of the pheromone, similar to the EAW heuristic described
in [52]. An agent will read the data about all the other agents and will give high priority
to less traveled edges combined with other factors of I-A*DFS. Thus, an agent may
choose an edge going to the opposite direction of the target node. Since this edge might
have never been explored it may open some new opportunities and hopefully have a
positive effect on the accumulation and spreading of information.

Handling Dynamic Data in the High Level Dynamic data can also improve the deci-
sion at the high level algorithm if each agent writes its current target node in each node
that it visits. When choosing a target node we want the agent to consider knowledge
about targets of other agents and give higher priority to other nodes. Also, until now,
once a target node was chosen for an agent, it did not choose another target until the
target node was expanded by its high-level (either by going there itself or by learning
about that node on the fly). Here we want to add more points where the agent might
consider again which target node it chooses to expand.

We have tried a number variations of using the dynamic data for deciding at different
points which node to target. These variations tried different ways of giving low priorities
to targets of other agents and combining this with the recommendation of the upper
level A*. All these variations produced rather similar results. Thus, we omit the detailed
description of these variations and focus on the best version. Other versions are covered
in Appendix A.2. The most important fact here is that when agentA realizes that some
other agentB is already on its way to the same target, agentA reconsiders its plans
according to the new information. It seems that any version that takes this dynamic data
into consideration performs much better than only using static data as will be shown in
the next section.

Our best version works as follows. Suppose that agentA is navigating to nodet.
On its way, agentA visits noden and finds out in the pheromone that another agent,B,
is navigating to the same target nodet (a special case of this is when an agent is first
choosing a target node, see footnote below). In that case agentA stops executing the
low level algorithm and invokes the high level algorithm. The motivation for that is that
since agentB is already on its way to the same target then it is reasonable to believe
that agentA will gain the information about this target node in the near future and thus
agentA is better off choosing another target node. Thus, once this coincidence happens,
agentA activates the high level window-A* again and reconsiders which node from the
window to choose as its new target. A while ago, nodet was chosen to be the target
of agentA. However, now, agentA is located in another location and might choose a
different node as its new target given that someone else is navigating to nodet. Note,
that agentA might again choose nodet as its new target even if other agents are already
targeting it. In that case it may be assumed that this target is very important for the
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execution of the algorithm and is still the best target given the agent’s new location and
information9.

Note that changing the decision of which node to target has also some disadvan-
tages. If an agent changes its target too often, it might enter a starvation situation in
which it bounces back and forth between a number of targets without actually getting
anywhere. Also, if agents change their minds too often then information from other
agents regarding their targets might not be accurate as there is a chance that these agents
changed their minds. Thus, this decision should be taken with care.

7 Experiments

Fig. 2. Delaunay graph of 20 nodes.

We have implemented the variants described above and performed experiments on
Delaunay graphs [37], which are derived from Delaunay triangulations. The latter are
computed over a set of planar point patterns, randomly generated by aPoisson point
process[37]. Points are distributed at random over a unit square, using a uniform proba-
bility density function. A Delaunay triangulation of a planar point pattern is constructed
by creating a line segment between each pair of points(u, v) for which there exists a
circle passing throughu andv that encloses no other point. Such a triangulation can be
characterized, in a sense, as one where each point is joined by a line segment to each
of its nearest neighbors but not to other points. We have used the Qhull software pack-
age [6] to construct Delaunay triangulations (i.e., Delaunay graphs) over sets of points
that were generated at random in a unit square. Figure 2 illustrates a 20-node Delaunay
graph. The initial and goal nodes are picked at random after the graph is generated.

In principle, the characteristic whereby each node is connected to all its neigh-
bors seems suitable for representing real road maps, which are the main object of our
research. In practice, however, additional characteristics should be accommodated to

9 A special case of this is when the agent is first choosing to targett. If the agent realizes that
other agents are already targetingt, it should reconsider it decision and givet low priority.
However, it turned out in our experiments that the best option is to stick with the recommenda-
tion of the upper level A* and not necessarily change the target at this point. See the Appendix
A.2 for further details
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more adequately capture a real road map. Thus we have also pursuedsparseanddense
Delaunay graphs that can be obtained from regular Delaunay graphs by random deletion
and addition of edges, respectively.
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Figure 3 illustrates the time elapsed as a function of the number of agents that were
used to find the shortest path with different versions of MAPHA* on Delaunay graph
with 500 nodes. Every data point (here and in all the other experiments) corresponds to
an average of 250 different pairs of initial and goal nodes, that were picked at random.
There are 6 curves in the figure. The bottom curve corresponds to the best version of
MAPHA* with full communication,MAPHA∗FC , from [15] and is used as a bench-
mark. Other curves show the overall time cost of different versions ofMAPHA∗LP .
The top two curves show the behavior ofMAPHA∗LP where we only assumed a lim-
ited memory capacity at the nodes. In particular, in the top curve. 10 nodes were allowed
to be written and the second curve allowed 20 nodes to be written at each pheromone.
As explained above, the nodes selected to be memorized are those closest to the current
node.

The rest of the curves assume unlimited data capacity and thus the entire graph can
be written at each node. The third curve, “Full pheromones: static data only” shows the
case where only static data was used. The next curve uses dynamic data for the low
level only. Finally, the fifth curve, “Full pheromone: full dynamic data” uses the most
powerful pheromone available, i.e., unlimited data capacity, static data and dynamic
data at both the low level and the high level.
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Note again that WinA* was used for the high level and I-A*DFS was used for the
low level. Since we assume constant speed, the time is reported as the distance traveled
by the agents until the solution was found.

The results show a clear phenomenon. As the pheromone becomes larger and in-
cludes more knowledge a significant improvement in the overall time is obtained. This
parametric effect is achieved even though no explicit control is forced by a centralized
supervisor. The figure clearly shows that all the versions that use the large pheromones
paradigm with unlimited memory capacity keep most of the potential of the full knowl-
edge sharing paradigm. Their performance is rather close to the performance of the full
communication version. This means that with large pheromones, data is spread to other
agents rather fast and it is almost as good as full communication and full knowledge
sharing. This is true even for the simple version which includes static data only.

Dynamic data, with knowledge about routes, tasks and decisions of other agents
further improves the performance. It seems that using it only in the low level did not
significantly improve the case where only static data was used. However, adding dy-
namic data to the high level adds a lot of strength to this algorithm and this last version
is almost as good as full communication model.

We have experimented with other sizes of graphs and on sparse and dense graphs
and obtained similar results. These results are presented in Appendix B.

7.1 Experiments with No Window
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As described above, the best versions of the high level of bothPHA∗ andMAPHA∗fc

use what we called WinA* for maintaining the open-list. With WinA*, we define awin-
dow of the firstK nodes of the open-list. Each agent chooses a node to expand from
that window. This gives a lot of flexibility in the sense that a node can be chosen to be
expanded even if it is not the best node on the open-list but it is rather close to the agent.
This proved to be beneficial for both a single agent PHA* and forMAPHA∗FC [15].
We have also tried our new formulation of large pheromones without the window idea.
This means that each agent must choose the best node from the whole open-list, as in
pure A*. Figure 4 compares a version ofMAPHA∗LP , when it used a window to a
version when it did not use a window on a Delaunay graph with 1000 nodes.

Surprisingly,MAPHA∗LP without the window enhancement (which is actually
pure A*) was better then using this enhancement. Note the this new version is almost
as good asMAPHA∗FC . The reason for this unexpected phenomenon is as follows.
When the window size was large, agents were distributed by the high level to differ-
ent target nodes in rather different areas of the environment. Thus, knowledge of other
agents were possible only when an agent moved to other areas. With no window (or
window of size 1) all agents were sent to the same target node probably via different
navigating paths. Since all agents are navigating in the same area, knowledge of the
current area was spread between the agents rather fast and then they all moved to an-
other area. The scheme here is that all agents are sent to an area, explore it, share the
knowledge among each other and then move to another area. This scheme of putting all
the effort in one single area at a time seems to outperform a scheme of distributing the
agent to different target nodes in totally different areas. This implies that with the large
pheromones paradigm, data is spread more efficiently when the agents are rather close
to each other.

In the full communication paradigm, a global knowledge-base was used and thus
nodes in the window were identical to all the agents. Agents were spread to different
nodes relying on both the available knowledge of all the known frontier areas of the
graph and on the location of the different agents. Thus, the window approach proved
beneficial as it helped to move agents to nearby nodes knowing that their new discover-
ies will be available to all other agents at once.

For the large pheromones paradigm, each agent holds its own open-list and conse-
quently, its own window. Data is spread to other agents only when they visit the same
nodes. Thus, applying the window approach was marginal. Note, however, that even
with the window approach, the overall performance ofMAPHA∗LP is relatively ef-
ficient, as all the above figures show. Indeed, data was spread among the environment
rather quickly and the speedup over a system with no communication at all (which is
identical to a case where there is only one agent) was impressive for all variants that we
used with this paradigm.

Experimental results for other sizes of graphs were similar and are presented in
Appendix B.
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Algorithm Searching agentscomm. agentsRelative time

- 15 0 1
Random 14 1 1.07
Random 13 2 1.15
Random 10 5 1.31
Frontier 14 1 1.06
Frontier 13 2 1.14
Frontier 10 5 1.28
Constant 14 1 1.08
Constant 13 2 1.16
Constant 10 5 1.45

Table 1.Experiments with communication agents.

8 Communication Agents

In order to further improve the performance of our search algorithm, we also introduce
another type of agents which we callcommunication agents. Similar to thesearch-
ing agentsdescribed above, communication agents use the large pheromones commu-
nication paradigm. In other words, whenever they arrive at a node they perform the
data-mergeoperation in that node. The difference between the two agent types is the
algorithm that they activate in order to determine where to go next. As described above,
the job of the searching agents was to gather new data from the search frontier. Thus,
such an agent chooses to go next to some unexplored node. During its movement, the
searching agent visits nodes and as a side effect performs data-merge operations and
thus data is spread out to other agents. The primary task of the communication agent,
is to spread data and thus perform as many data-merge operations as possible. Thus, a
communication agent chooses to go next to a node where the contribution of the data-
merge operation will be as significant as possible. As a side effect, if it arrives at a new
unexplored node than this node is added to the general knowledge of the system. We
have tried the following variants of decision algorithms which instrcut the communica-
tion agent where to go next.

– Random walk: The simplest variant for the agent was perform a random walk (or
patrol) in the entire environment.

– Frontier walk: In this variant we tried to guide the agent to move across the frontier
border, thus meeting as many searching agents as possible in its travel.

– Constant walk: Here we forced the communication agent to move on a constant
path from the frontier to the initial node knowing that if other communication
agents do the same, data will spread out very efficiently.

We have experimented with many combinations of all variants of communication
agents and different ratios of communication agents versus searching agents. Table 1
presents a sample of these experiments that were done with 15 agents. The first row,
which serves as a benchmark is the case where all the agents were searching agents. The
rest of the rows correspond to different types of communication agents where either 1,
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2 or 5 searching agents where converted to be communication agents. The last column
shows the relative time over the benchmark trial with 15 searching agents.

Our experiments were rather conclusive and show that, surprisingly, given a number
of agents, it is always beneficial to use them all as searching agents. Changing any
number of agents to any variant of communication agents never reduces the overall
cost. Converting more and more searching agents to be communication agents only
increases the overall time.

At a first thought this is rather disappointing as we tend to think that communica-
tion agents can be very helpful. However, a deeper understanding of this phenomenon
reveals the strength of the large pheromones paradigm and the power of this commu-
nication model. It seems that with this model of communication, searching agents are
doing a very good job in spreading their data while searching and there is no need to
invest any additional effort in data spreading by a special type of communication agent.
Thus, any conversion of a searching agent to a communication agents only slows down
the process as it would be better if this agent would explore new region of the environ-
ment and not concentrate on spreading data at the cost of no exploring.

8.1 Communication Agents with Breadth First Search

In order to understand why communication agents do not contribute much, we made the
following geometric observation. The search frontier of A* on a planar environment is
usually formed as an ellipse. With MAPHA* we noticed that agents are exploring this
ellipse in a rather fixed pattern of motion from the initial state to the goal state. There-
fore, the usage of communication agents may not be beneficial here because agents are
rather close to each other anyway. To check this hypothesis we tried to use communi-
cation agents when the high level A* was changed to simple breadth-first search. The
search frontier in this case is a circle around the initial state and thus agents are much
more distributed in the area. We found that even here, communication agents were not
very beneficial. However, in this domain they were more productive than with the do-
main that used A* for the high level. While with A* they were never beneficial, with
breadth-first search, there was one case where we got a solid improvement. This was
when we converted a system with 15 searching agents to a system with 14 searching
agents and a single communication agent. The later case produced a reduction of around
5% in the overall time for all three types of communication agents.

Thus, we can conclude that the usage of communication agents is rather limited but
it is also a domain dependent question of the geometrical structure of the environments
and the paths and locations of the searching agents.

9 Conclusions and Future Work

We introduced the notion oflarge pheromonesas a communication paradigm in multi-
agent systems. We showed that in current technology this paradigm is reasonable and
cheap to implement. We have used the PHA* algorithm as a test case for this paradigm.
Results are encouraging as data is indeed spread out quite efficiently in all the differ-
ent variations that we checked and the behavior of a multi-agent system is almost as
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good as with full-communication model. We have also showed that adding dynamic
data about behavior of other agents greatly increases the efficiency of this paradigm,
as agents make their decision based on a better knowledge of other agents. This fact is
very important due to the modest memory requirements of writing this data.

The question is in what problem domains small pheromones are not sufficient and
large pheromones are needed. We believe that large pheromones are needed in any
domain where global data from different areas of the environment is critical to the
decision making of all agents at all times. In that case smaller pheromones will not do
the job. Our problem of activating A* in a physical environment is an example for this.
Since A* expands nodes in a global best-first search order local data is not enough for
this as shown in figure 3.

For another example, consider a team of fireman agents that have to extinguish fire.
The general geometrical structure of the fire is very important as it might cause agents
to move to different locations. A counter-example might be a group of agents who are
trying to explore and map unknown territories. Whenever an agent reaches a new node,
it learns new valuable information. Thus, when locally realizing that there is a nearby
unexplored area, moving to that area is always beneficial. Knowledge of other areas of
the environments is not so crucial at every point of time. Similarly, the works in [51, 52,
33] need local data to improve their efficiency and thus very small pheromones were
enough.

This paper is a first work on this new idea. Future work will proceed in the following
directions.

– We have tried this concept on one particular problem. This paradigm should be
applied to other problems. Indeed we are currently implementing these ideas to
multi-agent fire detecting. Preliminary results look promising.

– In our problem, communication agents did not prove to be useful. Future work
should determine whether there are other domains where communication agents
are valuable.

– We provided a solid evidence of the benefits of large pheromones. A mathematical
analysis of spreading data should be figured out, providing a better insights and
bounds on achievable performance.
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A Experimenting with different versions using dynamic data

In this section we describe different methods for handling the dynamic data in the low
and high levels and provide experimental results.

A.1 Low level

As described above, in the low level an agent has to pick an outgoing edge to leave the
current node to the target node. We would prefer to leave the node via an edge that has
not been traveled before by other agents. While we have tried many combinations, here,
we describe three versions for using dynamic data in the low level.

– No dynamic data -Here, no dynamic data is written in the pheromone. The agent
exclusively chooses the outgoing edge according I-A*DFS.

– Last agent - In this version we keep a variable that stores the identity of one edge
in the low-level dynamic data part of the pheromone. Each agent that leaves a node
resets that variable and writes its own outgoing edge in that variable. When a new
agent arrives at that node it will ignore the edge of the last agent and will choose the
outgoing edge according to the recommendation of I-A*DFS among all the other
edges. This will add diversity into the system as two consecutive agents will never
leave via the same edge.

– All agents -Here we keep a counter for each edge counting the number of times an
agent left this node via that edge. An agent will choose the less traveled edge, i.e.,
the edge with the smallest counter. In a case of a tie, I-A*DFS is consulted. This
version has a great potential for saving future work as all edges will be traveled as
time passes.
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Fig. 5. The behavior of different versions of using dynamic data in the low level on a graph with
1000 nodes.

Figure 5 presents the behavior of these different versions on a graph with 1000
nodes. The upper three curves correspond to these three versions when we only used
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the dynamic data in the low level. The lower three curves correspond to these three
versions when we also used dynamic data in the high level. The figure show that all the
three versions behave rather similar with a small advantage to the ”less traveled edge”
version which was therefore used in all our experiments presented in the main text.
Note, that adding dynamic data in the high level gains a significant time reduction for
all three versions.

A.2 High level

As described above, in the high level an agent has to choose a target node from the open
list. In MAPHA∗LP we might know the target nodes picked by other agents. We want
to take that into consideration and give lower priority for such nodes when choosing
target nodes. Also, if new knowledge about other agents is known we want the agent to
reconsider its previous choice. We describe here three variations for doing this:

– Old cost formula, at every node -Here, we do not use the pheromone for dynamic
data of the high level at all and do not consider information from other agents. At
every node that the agent passes during the low level navigation it invokes the high
level A* and chooses a new target. The new target node is the one with the best
cost on the open-list according the the cost formula described in section 2.3, i.e.,
c(n) = f(n) · dist(curr, n). The problem with this version is that it has a potential
for starvation because an agent might bounce back and forth between a number
of targets without actually getting anywhere. Nevertheless, we did not experience
such episodes in our experiments.

– Old cost formula, at key nodes -Here, the high level is invoked only atkey nodes.
Key nodes are nodes where the agent realizes that another agent is also targeting
the same target node.

– New cost formula, at key nodes -In this version, the high level is invoked only
at key nodes. Here, however, we add another factor,a(n), to the cost formula that
chooses the target node and it is now -

(c(n) = f(n) · dist(curr, n) · a(n)

The new factor ,a(n) counts the number of agents (including itself) known to it that
are currently targeting the same node. Every timea(n) increases (in key nodes), the
high level is invoked, i.e., nodes in the window of the open list are order according
to this cost formula and the node with the smallest cost is chosen.

Figure 6 Figure presents the behavior of these different versions on a graph with
1000 nodes. The best version is using the old cost formula at key nodes and it was used
in all our experiments. This version probably has the best balance between keeping the
same target and changing it. Unlike, the new cost formula, if other agents are targeting
the same node, the agent has higher chance for keeping the same target. This means
that in many cases it is not bad to target the same nodes as nearby agents can share
information more easily. This same phenomenon was also valid when using a window
of size 1 in section 7.1.
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Fig. 6.The behavior of different versions of using dynamic data in the high level on a graph with
1000 nodes.

B Additional Experimental Results

Here, we provide additional experimental results for different variants of MAPHA*
with large pheromones on Delaunay graphs of different sizes.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10  12  14  16

S
ea

rc
h 

ti
m

e

Number of agents

Partial pheromone, 10 nodes
Partial pheromone, 20 nodes

Full pheromone: static data only
Dynamic data at the low level

Full pheromone: full dnamic data
Full communication

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10  12  14  16

S
ea

rc
h 

ti
m

e

Number of agents

Partial pheromone, 10 nodes
Partial pheromone, 20 nodes

Full pheromone: static data only
Dynamic data at the low level

Full pheromone: full dnamic data
Full communication

(a) (b)

Fig. 7. Time consumption as a function of the number of agents for the various variants of
MAPHA* on : (a) A Delaunay graph of 1000 nodes, and (b) a Delaunay graph of 2000 nodes.

Figures 7(a),(b) present the time costs of the various variants of the MAPHA* al-
gorithm as a function of the number agents on Delaunay graph of size 1000 and 2000
respectively. The results confirm (similar to figure 3) that as the size of the pheromone
increases the overall travel time decreases. Again, the most powerful version is almost
as good as the version with the full communication paradigm.

Figures 8(a), (b) present the phenomenon thatMAPHA∗LP with a window of size
1 for the high level is better than the variation in which WinA* was activated for the high
level of the algorithm. Here we present experimental evidence of that phenomenon on
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Fig. 8. Time consumption as a function of the number of agents for the various variants of
MAPHA* with and without a window : (a) A Delaunay graph of 500 nodes, and (b) a Delau-
nay graph of 2000 nodes.

Delaunay graphs of sizes 500 and 2000. Here again, we can see that using pheromones
greatly reduce the running time and the most powerful version is almost as good as the
version with the full communication paradigm.
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