
Solving the 24 Puzzle with Instance Dependent Pattern
Databases

Ariel Felner1 and Amir Adler2

1 Dpet. of Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva,
84104, Israel

EMAIL: felner@bgu.ac.il
2 Dept. of Computer Science, Technion, Haifa, 32000, Israel

EMAIL: adlera@cs.technion.ac.il

Abstract. A pattern database(PDB) is a heuristic function in a form of a lookup
table which stores the cost of optimal solutions for instances of subproblems.
These subproblems are generated by abstracting the entire search space into a
smaller space called the pattern space. Traditionally, the entire pattern space is
generated and each distinct pattern has an entry in the pattern database. Recently,
[10] described a method for reducing pattern database memory requirements by
storing only pattern database values for a specific instant of start and goal state
thus enabling larger PDBs to be used and achieving speedup in the search. We
enhance their method by dynamically growing the pattern database until memory
is full, thereby allowing using any size of memory. We also show that memory
could be saved by storing hierarchy of PDBs. Experimental results on the large
24 sliding tile puzzle show improvements of up to a factor of 40 over previous
benchmark results [8].

1 Introduction

Heuristic search algorithms such as A* and IDA* find optimal solutions to state-space
search problems. They visit states in a best-first manner according to the cost function
f(n) = g(n) + h(n), whereg(n) is the actual distance from the initial state to state
n andh(n) is a heuristic function estimating the cost fromn to a goal state. Ifh(s) is
“admissible” (i.e., is always a lower bound) then these algorithms are guaranteed to find
optimal paths.

The domainof a search space is the set of constants used in representing states.
A subproblemis anabstractionof the original problem defined by only considering
some of these constants and mapping the rest to a “don’t care” symbol. Apattern is
a state of the subproblem. The abstractedpattern spacefor a given subproblem is a
state space containing all the different patterns connected to one another using the same
operators that connect states in the original problem. Apattern database(PDB) stores
the distance of each pattern to the goal pattern. These distances are used as admissible
heuristics for states of the original problem by mapping (abstracting) each state to the
relevant pattern in the pattern database.

Typically, a pattern database is built in a preprocessing phase by searching back-
wards, breadth-first, from the goal pattern until the whole abstracted pattern space is

2

spanned. Given a stateS in the original space, an admissible heuristic value for S,
h(S), is computed using a pattern database in two steps. First,S is mapped to a pattern
S′ by ignoring details in the state description that are not preserved in the subproblem.
Then, this pattern is looked up in the PDB and the corresponding distance is returned
as the value forh(S). The value stored in the PDB forS′ is a lower bound (and thus
serves as an admissible heuristic) on the distance ofS to the goal state in the original
space since the pattern space is anabstractionof the original space. PDBs have proven
very useful in optimally solving combinatorial puzzles and other problems [1, 7, 8, 3, 6,
2].

1 2 3 4

5 6 7 8

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

91 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 1. The 15 and 24 Puzzles in their Goal States

The 15 and 24 tile puzzles are common search domains. They consist of 15 (24)
numbered tiles in a4 × 4 (5 × 5) square frame, with one empty position - theblank.
A legal move swaps theblank with an adjacent tile. The number of states in these
domains is around1013 and1024 respectively. Figure 1 shows these puzzles in their
goal configurations.

6

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

66

667

8
7 8

6 6

6

Fig. 2. Partitionings and reflections of the tile puzzles

The best existing optimal solver for the tile puzzles usesdisjoint PDBs[8]. The
tiles are partitioned into disjoint sets (subproblems) and a PDB is built for each set.
Each PDB stores the cost of movingonly the tiles in the given set from any given
arrangement to their goal positions and thus values from different disjoint PDBs can be
addedand are still admissible. Anx − y − z partitioning is a partition of the tiles into
disjoint sets with cardinalities ofx, y andz. [8] used a 7-8 partitioning for the 15 puzzle
and a 6-6-6-6 partitioning for the 24 puzzle. These partitionings were reflected about
the main diagonal (as shown in figure 2) and the maximum between the regular and the
reflected PDB was taken as the heuristic.

3

The speed of search is inversely related to the size of the PDB used, i.e., the number
of patterns it contains[5]. Larger PDBs take longer to compute but the main problem
is the memory requirements. With a given size of memory only PDBs of up to a fixed
size can be stored. Ordinary PDBs are built such that they are randomly accessed. Thus,
storing larger PDB on the disk is impractical and would significantly increase the access
time for a random PDB entry unless a sophisticated disk storage mechanism is used. For
example a mechanism built on the idea of [11] can be used for storing PDBs on disk.
Note, however, that even if the PDBs are stored on disk, disk space is also limited.

A possible solution for this was suggested by [4]. They showed that instead of hav-
ing a unique PDB entry for each pattern, several adjacent patterns can be mapped to
only one entry. In order to preserve admissibility, the compressed entry stores the mini-
mum value among all these entries. They showed that since values in PDBs are locally
correlated most of the data is preserved. Thus, we can build large PDBs and compress
them into smaller sizes. A significant speedup was achieved using this method for the
15 puzzle and the 4-peg Towers of Hanoi problems.

There are, however, a number limitations to this technique. First, the entire pattern
space needs to be generated. Second, only a limited degree of compressing turned out
to be effective. For the tile puzzles, it was only beneficial to compress pairs of patterns
achieving a memory fold of a factor of two. The largest PDBs that could be built using
this technique for the 24 puzzle with one gigabyte of main memory was a5− 5− 7− 7
partitioning where the 7-tile PDBs were compressed by a factor of two. This did not
gain a speedup over the6− 6− 6− 6 partitioning of figure 2 which is probably the best
4-way partitioning of the 24 puzzle.

The motivation for this paper is to use larger PDBs for the 24 puzzle. We want at
least an8−8−8 partitioning of this domain. A pattern space for 8 tiles has25×24 . . .×
18 = 4.36×1010 different patterns. Storing three different complete 8-tile PDBs would
need 130 gigabytes of memory!!! Using the compressing idea of [4] would not help
much and alternative idea should be used.

Another way of achieving reduction in memory requirements is to build a PDB for a
specific instance of a start and goal states. Some recent works used this idea for solving
the multiple sequence alignment problem, e.g., [9] where the PDB was stored as an
Octree. A general formal way for doing this was developed by [10]. They showed that
for solving a specific problem instance only a small part of the pattern space needs to be
generated. In this paper, we call this ideaInstant dependent pattern databases(IDPDB).
We suggest a number of general enhancements and simplifications to this method and
apply them to the 24 puzzle. Experimental results show a reduction of up to a factor of
40 in the number of generated nodes for random instances of this puzzle.

2 Instant dependent pattern databases

We first want to distinguish between theoriginal search spacewhere the actual search
is performed from thepattern spacewhich is a projection of the original search space
according to the specification of the patterns (see figure 3). Solving a problem involves
two phases. The first phase builds the PDB by performing a breadth-first search back-

4

pattern

A*
patternsnodes

A*
gsgs

space
original search

space

Fig. 3. The projection/abstraction into the pattern space.

wards from the goal pattern until the entire pattern space is spanned. The second phase
performs the actual search in the original search space.

Traditionally, a PDB has a unique entry for each possible pattern. [10] observed
that for a given instance of start and goal states only nodes generated by A* (or IDA*)
require a projected pattern entry in the PDB since only these nodes are queried for a
heuristic value during the search. In this paper we call these nodes theA* nodesand
their projections theA* patterns(see figure 3). Ideally, we would like to identify and
only generate the exact set of the A* patterns but this is impossible. They defined a
focused memory-based heuristicas a memory based-heuristic (PDB) that is computed
only for patterns that are projections of states in the original search space that could be
explored by A* in solving the original search problem.

For building the PDB they also search backwards from the goal pattern but are
focused on the specific start and goal states. Instead of the usual breadth-first search
which searches in all possible directions they activate A* from the goal pattern to the
start pattern. In this paper, we call it thesecondary A*in order to distinguish this search
from the primary searchin the original problem which could be performed by any
admissible search algorithm (e.g., IDA*). For each pattern expanded by the secondary
A*, its g-cost represents the cost of a shortest path from this pattern to the goal pattern in
the pattern space and can serve as an admissible h-cost for the original search problem.

After the start pattern is reached by the secondary A* search only a small number of
patterns were generated and there is no guarantee that the entire set of the A* patterns
was reached. They noted that we can continue to expand nodes after the secondary A*
finds an optimal path from the goal pattern to the start pattern to determine optimal
g-costs (and thus admissible heuristics) for additional states. We call this theextended
secondary A*phase. We would like to halt the extended secondary A* phase when
all the A* patterns are reached but this is a difficult task. They provide a method for
identifying a special set of patterns which is a superset of the A* patterns set. We call
this set theZH set(after Zhou and Hansen). They halt the extended secondary A* phase
after the complete ZH set is generated and are guaranteed that the entire set of the A*
patterns is generated.

The definition of the ZH set is as follows. LetU be an upper bound on the cost of
the optimal solution to the original problem. The ZH set includes all patternspi which
havef(pi) < U in the secondary A* search. It is obvious that all the A* patterns have
f -value in the secondary search smaller thanU and thus are all included in the ZH

5

set. They also provide a formula for computing and generating the ZH set for a set
of disjoint additive PDBs. LetU again be an upper bound on the solution. LetL =∑

j(hj(S)) be the additive heuristic of the initial stateS. Let ∆ = U − L. They prove
that a disjoint PDB,PDBj only needs to be calculated for projected patternspi having
f(pi) < hj(S) + ∆. See [10] for more details and proofs.

Pattern Space

Start patternGoal pattern

Secondary A*

A* patterns

ZH set

Fig. 4. The different layers of the pattern space.

Figure 4 shows the relations between different sets of patterns. The innermost set
includes the patterns generated during the first stage of secondary A* (until the optimal
path from the goal pattern to the start pattern is found). The next set includes the A*-
patterns, i.e., the patterns queried during the search in the original problem. The next
set includes the ZH set which [10] stored in their PDB. The outmost set is the complete
pattern space.

They recognized that continuing the extended-A* until the complete ZH set is gen-
erated is not always possible due to time/memory limitations. Thus, they introduced
theirγ factor where0 < γ ≤ 1. They stopped the extended-A* when its f-cost exceeds
γ × U . With γ < 1 generating all the A* patterns is not guaranteed. Therefore, when
a state on the original space is reached whose projected pattern is not in the PDB due
to theγ cutoff, they suggest using a simple quickly computed admissible heuristic in-
stead. They implemented their idea with different values forγ on the multiple-sequence
alignment and obtained impressive results.

Note that ordinary PDBs are usually stored in a multi-dimensional array with an
entry for each possible pattern. For IDPDB, we need a more sophisticated data structure
e.g., a hash table, as only a subset of the patterns is stored.

2.1 Weaknesses of the ZH method.

There are a number of weaknesses in the ZH set approach.

6

1) Their method needs a fixed amount of memory. Onceγ is chosen all the nodes
with f ≤ γ × U are stored. This is problematic as it is difficult to determine the exact
value forγ so that the available memory would be fully used and not be exhausted.
Identifying the ZH set and then simplifying it byγ seems not natural and ad hoc.

2) An upper bound,U , for an optimal solution to the original search problem cannot
always be found. Furthermore, we need a strict upper bound so as to reduce the ZH set
as much as possible.

3) [10] tried out their method only on multiple sequence alignment. The search
space of this domain (and also the projected pattern space) has the property that the
number of nodes in a given depthd is polynomial ind. This is because the problem is
formalized as an n-dimensional lattice withln nodes wheren is the number of sequence
to be aligned andl is the length of the sequences. Even with relatively mediocreU
bounds, their ZH set might be significantly smaller than the entire pattern space. This
is not true in domains such as the tile puzzles where the number of nodes at depthd is
exponential ind. Given anyU the ZH set might include the entire domain.

To support these claims experimentally we applied the formula they provide for cre-
ating the ZH set for disjoint PDBs on the 15 puzzle. This formula uses an upper bound
on the optimal solution. We used the best upper bound possible - the exact optimal so-
lution. We calculated the ZH set with this strict upper bound for a 5-5-5 and a 6-6-3
partitionings of the 15 puzzle on the same 1000 random instances from [8]. The entire
5-5-5 PDB includes 1,572,480 entries, half of them were queried during the search. The
average ZH set over the 1000 instances has 1,227,134 pattern - 78% of the entire pat-
tern space. For many difficult instances of this domain, the ZH set actually included the
entire pattern space. On those instances the ZH method is useless. Note again that this
is when we used a strict upper bound of the actual optimal solution length. For more
realistic larger upper bounds the ZH will be even larger. Similar results were obtained
for a 6-6-3 partitioning.

3 Dynamically growing the PDBs

We suggest the following enhancement to Zhou and Hansen’s idea. Our enhancement is
at least as strong as their method but is simpler to implement and easier to understand.
In addition, our idea can fit any size of available memory.

The main point of our idea is to dynamically grow the PDB until main memory
is exhausted. Our idea is much more flexible than the method of [10] as it can work
with any size of memory and we do not need to decide when to halt the secondary A*
extension in advance. Furthermore, we do not need to calculate any upper bounds nor
have to build the ZH set. In the preprocessing phase, we continue generating patterns
in the extended secondary A* until memory is exhausted. We then start the primary
search phase and for each pattern not in the PDB, we use a simple quickly computed
admissible heuristic instead.

The following enhancement can better utilize main memory after it was exhausted.
There are two data structures in memory. The first is the PDB which is identical to the
closed list of the extended secondary A*. The second is the open-list of the extended
secondary A*. However, at this point we can remove the open-list from main memory

7

thus freeing a large amount of memory for other purposes such as other PDBs. In fact,
if x is thef -value of the best node in the open list and is also the value of the last node
expanded, then all nodes in the open-list with values ofx can be added to the PDB
before freeing the memory. This is actually expanding these nodes without actually
generating their children.

Another way of saving memory is to use IDA* for the secondary search. Here, each
new pattern generated is matched against the PDB and if it is missing a new PDB entry
is created. However, in the pattern space of eight tiles presented below there are many
small cycles since all the other tiles can be treated as blanks. This causes IDA* to be
ineffective in this specific pattern space because it cannot prune duplicate nodes due to
its depth-first behavior.

3.1 On Demand pattern databases

A version of the above idea is calledon-demand pattern database. Here, we add pat-
terns to the PDB only when they are required during the search. This prevents us from
generating large PDBs with patterns that will not be queried.

First, we run the secondary A* from the goal pattern to the start pattern until the
start pattern is chosen for expansion. Each pattern expanded by this search is inserted
into the PDB. At this point, the preprocessing phase ends and the primary search can
begin because the start pattern is already in the PDB. We continue the primary search
as long as projected patterns of new nodes are in the PDB (i.e., were expanded by the
secondary A* search). When we reach a patternp not in the PDB and still have free
memory, we continue to extend the secondary A* phase until this patternp is reached
and we can return to the primary A* phase.

When memory is exhausted the PDB has reached its final size and the secondary A*
is terminated. From this point, each time a heuristic is needed and the relevant pattern
is not in the PDB, we consult the quickly computed heuristic.

4 Implementation on the 24 puzzle

While the above idea is a general one we made some domain dependent enhancements
and took special steps to best fit the IDPDB idea to the 24 puzzle.

Generating a PDB consumes time. However, the time overhead of preprocessing the
PDBs is traditionally omitted as it is claimed that it can be amortized over the solving
of many problem instances. For example, it takes a couple of hours to generate the 7-8
disjoint PDB which was used to solve the 15 puzzle [8]. Yet, the authors ignored this
time and only reported the time of the actual search which is a fraction of a second.

We cannot simply omit the time overhead of generating IDPDBs as a new PDB has
to be built for each new instance. Therefore, it is irrelevant to apply this idea to small
domains such as the 15 puzzle where the running time of the actual search is much
smaller than the time overhead of generating the PDB. We cannot see how this method
will improve previous running times for such domains. The 24 puzzle is a different
story since it is1011 times larger. Generating the 6-6-6-6 PDB also takes a number of
hours. However, a number of weeks were required to solve many of the instances of [8].

8

Here, the time overhead of generating the PDB can also be omitted when compared to
the overall time needed to solve the entire problem.

The above general method is for generating one PDB. When we use disjoint data-
bases, such as the 8-8-8 partitionings for the 24 puzzle (see below), values from the
different PDBs are added and therefore three values for each state of the original search
space are required. Thus, the on-demand version of IDPDB activates three secondary
A* searches in parallel, one for each PDB3. Note, that since each move in the tile puzzle
domain moves only one tile then at each step we only need to consult the one PDB that
includes the tile that has just been moved. Values from the other PDBs can be inherited
from the parent and remain identical.

4.1 On Demand versus preprocessing

The weakness of the on-demand approach for the 24 puzzle is that three open-lists
are maintained at all times but this is wasteful since the open-list can be deleted after
memory is exhausted. In the special case of the tile puzzles an open list might have 10
times more nodes than the closed list.

A better way to utilize memory for this domain is to perform the complete secondary
A* in the preprocessing phase until memory is exhausted. At this point the closed list
which includes all the patterns with valid heuristics is stored in a file on the disk and the
entire memory is released. This mechanism is repeated for each PDB until a relevant
file with heuristic values is stored on the disk. Memory is better utilized as only one
open-list is maintained in memory at any point of time. Furthermore, during the course
of the primary search there are no open lists of the secondary searches in main memory.
Now, we can load values from the disk files into memory and have a PDB for each of
them.

In both the on-demand and the preprocessing variations when an entry was missing
from the PDB we took the Manhattan distance (MD) as an alternative simple heuris-
tic for the tiles of the missing entry. In addition, for most variations reported below
we also stored the benchmark 6-6-6-6 PDBs (which needed 244 megabytes). We then
compared the heuristic obtained from the 8-8-8 PDB to the 6-6-6-6 heuristic and took
the maximum between them.

4.2 Improvement 1: Internally partition the PDB

Note that each of the 8-tile sets of figure 5 can be internally partitioned into a 6-2
partitioning where the 6-tile partition is one of the 6-6-6-6 partitions of figure 2. For
example, the 6-2 partitioning is shaded in gray for partitiona of figure 5. Instead of
taking the MD for the eight tiles of a missing entry, we can use the 6-2 partition of
these tiles. For those eight tiles we added the value of the corresponding 6-tile pattern
from the 6-6-6-6 PDB to a value of the 2 tiles from a new 2-tile PDB which was also
generated.

3 Furthermore, this is true for using other combinations of multiple PDBs such as taking the
maximum over different PDB values

9

 � � � �
 �

�

 �
�

�

 �
�

 � �

�
 �

 � � �
�

�

�

(a)

Fig. 5. Different Partitioning to 8-8-8

4.3 Improvement 2: Hierarchical PDBs

Note that once there is a simple heuristic in hand, the new PDB heuristic only requires
storing entries for patterns which their PDB values are larger than the simple heuristic.
This suggests an hierarchy of PDBs. First, you store a small weak PDB. Then, for the
stronger PDB you store only those entries having values larger than the weaker PDB.
We used this idea as follows. For any 8-tile PDB we only need values which are larger
than the 2-6 partitioning described above. Values of the 8-tile PDB which are not larger
can be omitted and retrieved from the 6-2 PDBs. This was very effective as only 18%
of the values of an 8-tile PDB were larger than the corresponding 6-2 PDB and had to
be stored. The overhead for this was the need to generate and store the relevant 6-tile
and 2-tile PDBs but we stored the 6-6-6-6 PDBs anyway as described above and the
overhead of generating and storing a number of 2-tile PDBs is very low.

Here we only stored two levels using this hierarchical approach. Future work can
take this further by building an hierarchy of PDB heuristics where each PDB is built on
top of the previous one in the hierarchy. Note that the basics of this approach were used
in [8] for the 15 puzzle where the weaker heuristic was MD and only additions above
MD were stored in the PDB. Thus, values for patterns equal to MD were stored as 0.
Here we further improve on this approach and omit values of 0.

4.4 Improvement 3: Multiple partitioning

The bottleneck for the IDPDB method is the memory requirements of the secondary A*
search. This phase terminates when memory is exhausted. The memory requirements
for the primary search phase is much smaller especially after applying all the improve-
ments above. It is well known that PDBs are better utilize by having multiple PDBs
and taking the maximum value among them as the heuristic [6, 7]. Since so much mem-
ory was released we were able to use the extra memory for storing six different 8-8-8
partitionings illustrated in figure 5 and taking their maximum as the heuristic.

10

Method Nodes Entries Mem Hits
1 6-6-6-64,756,891,097255,024,000 244 100
2 6-6-6-61,107,142,063255,024,000 244 100

1 Gigabyte
OD 1,434,852,411 7,178,143 125 27.7
OD+6 938,256,516 7,178,143 369 28.9
PP 856,917,588 25,071,429 656 66.4
Imp1 714,722,200 25,071,429 656 68.5
Imp2 714,722,200 4,538,015 327 16.6
6 8-8-8 198,851,450 15,638,294 505 -
8 9-9-6 175,100,719 31,199,159 754 -

2 Gigabytes
PP 713,536,979 66,690,1521,32280.6
Imp1 613,844,599 66,690,1521,32283.3
Imp2 613,844,599 13,565,100 472 21.2
6 8-8-8 130,890,131 48,907,7201,037 -
8 9-9-6 100,964,443 82,143,8611,569 -

Table 1. ISPDB with 8-8-8 and 9-9-6 partitionings

5 Experimental results

We implemented all the above variations and improvements on the same random in-
stances of the 24 puzzle used by [8]. We experimented with the 8-8-8 partitionings of
figure 5 and also with a set of 9-9-6 partitionings. We used a 1.7 MHz Pentium 4 PC
with one gigabyte of main memory and also with two gigabytes. The primary search
was performed with IDA*.

We sorted the 50 instances from [8] in increasing order of solution length. Table 1
presents the average results on the ten ”easiest” instances. The first column indicates the
variation used and the second column counts the number of generated nodes. The third
column,Entries, is the total number of 8-8-8 (or 9-9-6) PDBs entries that were finally
stored. TheMem, gives the total amount of memory in megabytes used for all the PDBs
consulted by this variation (including the 6-6-6-6 PDB when applicable). Finally, the
last column indicates the percentage of times where the 8-8-8 (9-9-6) PDB had a hit.
We define ahit as a case where a PDB is consulted and actually had an entry for the
specific pattern. This is opposed to amisswhere that entry was not available and the
simpler heuristics were consulted.

Often, a stronger heuristic consumes more time per node. Thus, the overall time
improvement to solve the problem with a stronger heuristic is less than the reduction
in the number of generated nodes. Nevertheless, the actual time is influenced by the
effectiveness and effort devoted to the current implementation. For example, using a
better hash function or sophisticated data structures for storing entries in the PDB might
further improve the running time. A number of methods for reducing the constant time
per node when using multiple PDBs lookups were provided by [6]. Using as many
of these methods further reduces the overall time. The actual time also depends on the
hardware and memory abilities of the machine used. We noted that the number of nodes

11

per second in all our variations was always between one to two Million. Since the nodes
improvement reported below is significantly greater we decided to omit the time reports
and concentrate only on the number of generated nodes. As discussed above, we can
also omit the time of generating the PDBs which took between 30 to 80 minutes for our
different variations. This is negligible when compared to the actual search time which
was a around 18 hours on average for the random 50 instances.

The first row of table 1 uses one 6-6-6-6 partitioning. The second row is the bench-
mark results taken from [8] where the 6-6-6-6 partitioning was also reflected about the
main diagonal and the maximum between the two was used. This reduces the search
effort by a factor of 4.

In the next bunch of rows we had one gigabyte of main memory for the secondary
A*. The first row (OD) is the simple case where only a single 8-8-8 partitioning (of
figure 5.a) was used and the extended secondary A* search was performed on demand.
In a case of a miss in a PDB, we calculated the Manhattan distance (MD) for the tiles in
this particular PDB. Here, only 7,178,143 entries were generated since the open lists of
the different 8-tile PDBs were stored in memory during the primary search. Note that
the hit ratio here is low (27.7) as the size of the PDB is comparably small. Even this
simple variation of one 8-8-8 partitioning reduced the number of generated nodes by
more than a factor of three when compared to the one 6-6-6-6 partitioning.

The second row (OD+6) also generated the PDBs on demand. However, here, (and
in all the successive rows) we took the maximum between the 8-8-8 and the 6-6-6-
6 PDBs. This variation outperformed the one 6-6-6-6 version (line 1) by a factor of
5 and the benchmark two 6-6-6-6 version (line 2) by 18%. The next line (PP) is the
preprocessing variation where the entire secondary search for each 8-tile PDB was per-
formed a priori until memory was exhausted. Here more patterns were expanded by
the secondary A* search and therefore we could load 25,071,429 values to the PDBs.
This reduced the number of generated nodes to 856,917,588. Note that the hit ratio was
increased to 66%. While the total number of patterns for three 8-tile sets is 129 Billion
entries we stored only 25 Million (a fold factor of 4,600) and yet had the relevant value
in 66% of the times.

The fourth line (Improvemnet 1) used the 6-2 partitioning instead of MD when a
miss occurred. The fifth line (Improvement 2) only loaded the 8-tile values that are
larger than the corresponding 6-2 partitioning. Here we can see a reduction of a factor
of four in the number of stored entries. In both variations the number of generated nodes
was reduced to 714,722,200. With improvement 2, the hit ratio dropped to 16.6 since
many of the entries were removed as they were no larger than the 6-2 partitionings.
Note that improvement 2 squeezed the PDB to a small size which enabled us to store
multiple PDBs below.

In the next line full advantage of main memory was taken and six different 8-8-
8 partitionings were stored. This reduced the number of nodes to 198,851,450. In the
last line we used 8 9-9-6 PDBs. Here the number of nodes is 175,100,719, eight times
smaller then benchmark results of two 6-6-6-6 partitionings. Here we did not report the
hit ratio as it was difficult to define it for multiple lookups.

We then report similar experiments performed when we had two gigabytes of main
memory for generating the PDBs. Here, more patterns were generated and the final

12

Method Mem NodesRatio1Ratio2
The 25 easiest instances

2 6-6-6-6 - 16,413,254,279 1 1
8 9-9-6 1GB 3,788,144,197 4.33 7.37
6 8-8-8 1GB 2,897,728,901 5.66 6.59
8 9-9-6 2GB 2,339,671,729 7.01 12.85
6 8-8-8 2GB 2,037,614,978 8.05 10.25

All 50 instances
2 6-6-6-6 - 360,892,479,671 1 1
6 8-8-8 2GB 65,135,068,005 5.54 8.85

Table 2.Results over 25 and 50 instances

PDBs were larger. Note that the hit ratio here increased to 83.3%. The number of gen-
erated nodes here was 130,890,131 for the multiple 8-8-8 PDBs and 100,964,443 for
the 9-9-6 PDBs. This is approximately one order of magnitude better than the previous
benchmark results for these 10 instances.

Our most successful method used six 8-8-8 and eight 9-9-6 partitionings. With this
method we solved the ”easiest” 25 instances (the first 25 from the sorted list of in-
stances) with 1GB and 2GB of memory. Results are presented in Table 2. Since the
number of generated nodes in the tile puzzle is exponentially distributed it is prob-
lematic to report average results. Therefore, we report two different numbers for the
improvement factor over the 6-6-6-6 benchmark. The first number (Ratio1) is the ra-
tio of the total number of nodes for the 25 instances. For the second number (Ratio 2)
we calculated the improvement factor for each instance alone and report the average
over all the 25 factors. When considering the total number of generated nodes over all
instances, the 8-8-8 partitioning improved the benchmark results by a factor of 8 and
when considering each instance alone the 9-9-6 reduced the number of nodes by a factor
of almost 13.

Finally, we solved the entire set of 50 instances from [8] with 6 8-8-8 PDBs. It seems
that the effectiveness of IDPDB drops a little for the more difficult instances. This is
because there are more A* patterns but the PDB has the same size and therefore the
chance formissinga pattern from the PDB increases. Still, even in difficult instances,
IDPDB managed to focus on the relevant patterns and the total number of nodes over
all 50 instances was 65,135,068,005 - 5.54 smaller than pervious benchmark results.
On a single instance basis the improvement factor ranged from 3.5 to 40 and averaged
8.85. It took us about a month to solve all 50 instances. To the best of our knowledge
we have the best published optimal solver for this problem.

6 Summary and conclusions

.
We presented simplifications and enhancements to the instance dependent PDB

method suggested by [10]. We showed that instead of the fixed mathematical set they
computed, we can dynamically grow the PDB until memory is exhausted. With our

13

method we optimally solved random instances of the 24 puzzle by using 8-8-8 (9-9-6)
disjoint partitionings. A single complete 8-tile PDB needs 43 Billion entries. We re-
duced the number of entries by a factor of 1000 and yet produced the state of the art
performance for this problem.

For future work we intend to combine partitionings of different sizes e.g. an 8-8-8
with a 9-9-6 etc. We would also intend to build a larger hierarchy of different pattern
databases each adds only relevant values to its predecessor. For example, given a 5-tile
pattern database, we can use it for adding a sixth tile by only storing the contribution of
this new tile to the 5-tile pattern databases. Also, a deeper mathematical analysis and a
theory that unifies this work with the work of [10] should be introduced.

References

1. J. C. Cullberson and J. Schaeffer. Pattern databases.Computational Intelligence, 14(3):318–
334, 1998.

2. S. Edelkamp. Planning with pattern databases.Proceedings of the 6th European Conference
on Planning (ECP-01), 2001.

3. A. Felner, R. E. Korf, and Sarit Hanan. Addtive pattern database heuristics.Journal of
Artificial Intelligence Research (JAIR), 22:279–318, 2004.

4. A. Felner, R. Meshulam, R. Holte, and R. Korf. Compressing pattern databases. InProc.
AAAI-04, pages 638–643, 2004.

5. I. Hernádv̈olgyi and R. C. Holte. Experiments with automatically created memory-based
heuristics.Proc. SARA-2000, Lecture Notes in Artificial Intelligence, 1864:281–290, 2000.

6. R Holte, J. Newton, A. Felner, and D. Furcy. Multiple pattern databases.Proc. ICAPS-04,
pages 122–131, 2004.

7. R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases.Proc.AAAI-
97, pages 700–705, 1997.

8. R. E. Korf and A. Felner. Disjoint pattern database heuristics.Artificial Intelligence, 134:9–
22, 2002.

9. M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron. Memory efficient A* heuristics for
multiple sequence alignment. InProc. AAAI-02, pages 737–743, 2002.

10. R. Zhou and E. Hansen. Space-efficient memory-based heuristics. InProc. AAAI-04, pages
677–682, 2004.

11. R. Zhou and E. Hansen. Structured duplicate detection in external-memory graph search. In
Proc. AAAI-04, pages 683–689, 2004.

