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Abstract

Informally, a set of abstractions of a state space S is additive if the distance between
any two states in S is always greater than or equal to the sum of the corresponding dis-
tances in the abstract spaces. The first known additive abstractions, called disjoint pattern
databases, were experimentally demonstrated to produce state of the art performance on
certain state spaces. However, previous applications were restricted to state spaces with
special properties, which precludes disjoint pattern databases from being defined for sev-
eral commonly used testbeds, such as Rubik’s Cube, TopSpin and the Pancake puzzle. In
this paper we give a general definition of additive abstractions that can be applied to any
state space and prove that heuristics based on additive abstractions are consistent as well
as admissible. We use this new definition to create additive abstractions for these testbeds
and show experimentally that well chosen additive abstractions can reduce search time
substantially for the (18,4)-TopSpin puzzle and by three orders of magnitude over state of
the art methods for the 17-Pancake puzzle. We also derive a way of testing if the heuristic
value returned by additive abstractions is provably too low and show that the use of this
test can reduce search time for the 15-puzzle and TopSpin by roughly a factor of two.

1. Introduction

In its purest form, single-agent heuristic search is concerned with the problem of finding a
least-cost path between two states (start and goal) in a state space given a heuristic function
h(t, g) that estimates the cost to reach the goal state g from any state t. Standard algorithms
for single-agent heuristic search such as IDA∗ (Korf, 1985) are guaranteed to find optimal
paths if h(t, g) is admissible, i.e. never overestimates the actual cost to the goal state from
t, and their efficiency is heavily influenced by the accuracy of h(t, g). Considerable research
has therefore investigated methods for defining accurate, admissible heuristics.

A common method for defining admissible heuristics, which has led to major advances
in combinatorial problems (Culberson & Schaeffer, 1998; Hernádvölgyi, 2003; Korf, 1997;
Korf & Taylor, 1996) and planning (Edelkamp, 2001), is to “abstract” the original state
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space to create a new, smaller state space with the key property that for each path ~p in the
original space there is a corresponding abstract path whose cost does not exceed the cost
of ~p. Given an abstraction, h(t, g) can be defined as the cost of the least-cost abstract path
from the abstract state corresponding to t to the abstract state corresponding to g. The
best heuristic functions defined by abstraction are typically based on several abstractions,
and are equal to either the maximum, or the sum, of the costs returned by the abstractions
(Korf & Felner, 2002; Felner, Korf, & Hanan, 2004; Holte, Felner, Newton, Meshulam, &
Furcy, 2006).

The sum of the costs returned by a set of abstractions is not always admissible. If it
is, the set of abstractions is said to be “additive”. The main contribution of this paper is
to identify general conditions for abstractions to be additive. The new conditions subsume
most previous notions of “additive” as special cases. The greater generality allows additive
abstractions to be defined for state spaces that had no additive abstractions according to
previous definitions, such as Rubik’s Cube, TopSpin, the Pancake puzzle, and related real-
world problems such as the genome rearrangement problem described by Erdem and Tillier
(2005). Our definitions are fully formal, enabling rigorous proofs of the admissibility and
consistency of the heuristics defined by our abstractions. Heuristic h(t, g) is consistent if for
all states t, g and u, h(t, g) ≤ cost(t, u)+h(u, g), where cost(t, u) is the cost of the least-cost
path from t to u.

The usefulness of our general definitions is demonstrated experimentally by defining
additive abstractions that substantially reduce the CPU time needed to solve TopSpin and
the Pancake puzzle. For example, the use of additive abstractions allows the 17-Pancake
puzzle to be solved three orders of magnitude faster than previous state-of-the-art methods.

Additional experiments show that additive abstractions are not always the best abstrac-
tion method. The main reason for this is that the solution cost calculated by an individual
additive abstraction can sometimes be very low. In the extreme case, which actually arises
in practice, all problems can have abstract solutions that cost 0. The final contribution of
the paper is to introduce a technique that is sometimes able to identify that the sum of the
costs of the additive abstractions is provably too small (“infeasible”).

The remainder of the paper is organized as follows. An informal introduction to ab-
straction is given in Section 2. Section 3 presents formal general definitions for abstractions
that extend to general additive abstractions. We provide lemmas proving the admissibility
and consistency of both standard and additive heuristics based on these abstractions. This
section also discusses the relation to previous definitions. Section 4 describes successful ap-
plications of additive abstractions to TopSpin and the Pancake puzzle. Section 5 discusses
the negative results. Section 6 introduces “infeasibility” and presents experimental results
showing its effectiveness on the sliding tile puzzle and TopSpin. Conclusions are presented
in Section 7.

2. Heuristics Defined by Abstraction

To illustrate the idea of abstraction and how it is used to define heuristics, consider the
well-known 8-puzzle (the 3 × 3 sliding tile puzzle). In this puzzle there are 9 locations in
the form of a 3 × 3 grid and 8 tiles, numbered 1–8, with the 9th location being empty (or
blank). A tile that is adjacent to the empty location can be moved into the empty location;
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every move has a cost of 1. The most common way of abstracting this state space is to treat
several of the tiles as if they were indistinguishable instead of being distinct (Culberson &
Schaeffer, 1996). An extreme version of this type of abstraction is shown in Figure 1. Here
the tiles are all indistinguishable from each other, so an abstract state is entirely defined by
the position of the blank. There are therefore only 9 abstract states, connected as shown
in Figure 1. The goal state in the original puzzle has the blank in the upper left corner,
so the abstract goal is the state shown at the top of the figure. The number beside each
abstract state is the distance from the abstract state to the abstract goal. For example, in
Figure 1, abstract state e is 2 moves from the abstract goal. A heuristic function h(t, g) for
the distance from state t to g in the original space is computed in two steps: (1) compute
the abstract state corresponding to t (in this example, this is done by determining the
location of the blank in state t); and then (2) determine the distance from that abstract
state to the abstract goal. The calculation of the abstract distance can either be done in a
preprocessing step to create a heuristic lookup table called a pattern database (Culberson
& Schaeffer, 1994, 1996) or at the time it is needed (Holte, Perez, Zimmer, & MacDonald,
1996; Holte, Grajkowski, & Tanner, 2005; Felner & Adler, 2005).

abstract goal

a:0

b: 1 c: 1
e: 2

id: distance to goal

f: 2d: 2

g: 3

h: 4

i: 3

Figure 1: An abstraction of the 8-puzzle. The white square in each state is the blank and
the non-white squares are the tiles, which are all indistinguishable from each other
in this abstraction.

Given several abstractions of a state space, the heuristic hmax(t, g) can be defined as the
maximum of the abstract distances for t given by the abstractions individually. This is the
standard method for defining a heuristic function given multiple abstractions (Holte et al.,
2006). For example, consider state A of the 3 × 3 sliding tile puzzle shown in the top left
of Figure 2 and the goal state shown below it. The middle column shows an abstraction
of these two states (A1 and g1) in which tiles 1, 3, 5, and 7, and the blank, are distinct
while the other tiles are indistinguishable from each other. We refer to the distinct tiles as
“distinguished tiles” and the indistinguishable tiles as “don’t care” tiles. The right column
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shows the complementary abstraction, in which tiles 1, 3, 5, and 7 are the “don’t cares”
and tiles 2, 4, 6, and 8 are distinguished. The arrows in the figure trace out a least-cost
path to reach the abstract goal gi from state Ai in each abstraction. The cost of solving A1

is 16 and the cost of solving A2 is 12. Therefore, hmax(A, g) is 16, the maximum of these
two abstract distances.

1 2

4 8 5

6 7 3

1

5

7 3

2

4 8

6

1 2

3 4 5

6 7 8

1

3 5

7

2

4

6 8

h=max(16,12) 16 moves 12 moves

abstract state A abstract state A1 2

abstract goal g1

state A

abstract goal g 2goal state g

Figure 2: Computation of hmax(A, g), the standard, maximum-based heuristic value for
state A (top left) using the two abstractions shown in the middle and right
columns. Solid arrows denote distinguished moves, dashed arrows denote “don’t
care” moves.

2.1 Additive Abstractions

Figure 3 illustrates how additive abstractions can be defined for the sliding tile puzzle (Korf
& Felner, 2002; Felner et al., 2004; Korf & Taylor, 1996). State A and the abstractions are
the same as in Figure 2, but the costs of the operators in the abstract spaces are defined
differently. Instead of all abstract operators having a cost of 1, as was the case previously,
an operator only has a cost of 1 if it moves a distinguished tile; such moves are called
“distinguished moves” and are shown as solid arrows in Figures 2 and 3. An operator that
moves a “don’t care” tile (a “don’t care” move) has a cost of 0 and is shown as a dashed
arrow in the figures. Least-cost paths in abstract spaces defined this way therefore minimize
the number of distinguished moves without considering how many “don’t care” moves are
made. For example, the least-cost path for A1 in Figure 3 contains fewer distinguished
moves (9 compared to 10) than the least-cost path for A1 in Figure 2—and is therefore
lower cost according to the cost function just described—but contains more moves in total
(18 compared to 16) because it has more “don’t care” moves (9 compared to 6). As Figure
3 shows, 9 distinguished moves are needed to solve A1 and 5 distinguished moves are needed
to solve A2. Because no tile is distinguished in both abstractions, a move that has a cost of
1 in one space has a cost of 0 in the other space, and it is therefore admissible to add the
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two distances. The heuristic calculated using additive abstractions is referred to as hadd; in
this example, hadd(A, g) = 9 + 5 = 14. Note that hadd(A, g) is less than hmax(A, g) in this
example, showing that heuristics based on additive abstractions are not always superior
to the standard, maximum-based method of combining multiple abstractions even though
in general they have proven very effective on the sliding tile puzzles (Korf & Felner, 2002;
Felner et al., 2004; Korf & Taylor, 1996).
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6 8

h=9+5=14 9 distinguished moves

abstract state A abstract state A1 2

abstract goal g1

state A

abstract goal g 2goal state g

5 distinguished moves

Figure 3: Computation of hadd(A, g), the additive heuristic value for state A. Solid arrows
denote distinguished moves, dashed arrows denote “don’t care” moves.

The general method defined by Korf, Felner, and colleagues (Korf & Felner, 2002; Felner
et al., 2004; Korf & Taylor, 1996) creates a set of k additive abstractions by partitioning
the tiles into k disjoint groups and defining one abstraction for each group by making the
tiles in that group distinguished in the abstraction. An important limitation of this and
most other existing methods of defining additive abstractions is that they do not apply to
spaces in which an operator can move more than one tile at a time, unless there is a way
to guarantee that all the tiles that are moved by the operator are in the same group.

An example of a state space that has no additive abstractions according to previous
definitions is the Pancake puzzle. In the N -Pancake puzzle, a state is a permutation of N
tiles (0, 1, ..., N − 1) and has N − 1 successors, with the lth successor formed by reversing
the order of the first l+1 positions of the permutation (1 ≤ l ≤ N −1). For example, in the
4-Pancake puzzle shown in Figure 4, the state at the top of the figure has three successors,
which are formed by reversing the order of the first two tiles, the first three tiles, and all four
tiles, respectively. Because the operators move more than one tile and any tile can appear
in any location there is no non-trivial way to partition the tiles so that all the tiles moved
by an operator are distinguished in just one abstraction. Other common state spaces that
have no additive abstractions according to previous definitions—for similar reasons—are
Rubik’s Cube and TopSpin.
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Figure 4: In the 4-Pancake puzzle each state has three successors.

The general definition of additive abstractions presented in the next section overcomes
the limitations of previous definitions. Intuitively, abstractions will be additive provided
that the cost of each operator is divided among the abstract spaces. Our definition provides
a formal basis for this intuition. There are numerous ways to do this even when operators
move many tiles (or, in other words, make changes to many state variables). For example,
the operator cost might be divided proportionally across the abstractions based on the
percentage of the tiles moved by the operator that are distinguished in each abstraction.
We call this method of defining abstract costs “cost-splitting”. For example, consider two
abstractions of the 4-Pancake puzzle, one in which tiles 0 and 1 are distinguished, the other
in which tiles 2 and 3 are distinguished. Then the middle operator in Figure 4 would have
a cost of 2

3 in the first abstract space and 1
3 in the second abstract space, because of the

three tiles this operator moves, two are distinguished in the first abstraction and one is
distinguished in the second abstraction.

A different method for dividing operator costs among abstractions focuses on a spe-
cific location (or locations) in the puzzle and assigns the full cost of the operator to the
abstraction in which the tile that moves into this location is distinguished. We call this
a “location-based” cost definition. In the Pancake puzzle it is natural to use the leftmost
location as the special location since every operator changes the tile in this location. The
middle operator in Figure 4 would have a cost of 0 in the abstract space in which tiles 0
and 1 are distinguished and a cost of 1 in the abstract space in which tiles 2 and 3 are
distinguished because the operator moves tile 2 into the leftmost location.

Both these methods apply to Rubik’s Cube and TopSpin, and many other state spaces in
addition to the Pancake puzzle, but the hadd heuristics they produce are not always superior
to the hmax heuristics based on the same tile partitions. The theory and experiments in the
remainder of the paper shed some light on the general question of when hadd is preferable
to hmax.

3. Formal Theory of Additive Abstractions

In this section, we give formal definitions and lemmas related to state spaces, abstractions,
and the heuristics defined by them, and discuss their meanings and relation to previous
work. The definitions of state space etc. in Section 3.1 are standard, and the definition of
state space abstraction in Section 3.2 differs from previous definitions only in one important
detail: each state transition in an abstract space has two costs associated with it instead
of just one. The main new contribution is the definition of additive abstractions in Section
3.3.
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The underlying structure of our abstraction definition is a directed graph (digraph)
homomorphism. For easy reference, we quote here standard definitions of digraph and
digraph homomorphism (Hell & Nesetril, 2004).

Definition 3.1 A digraph G is a finite set V = V (G) of vertices, together with a binary
relation E = E(G) on V. The elements (u, v) of E are called the arcs of G.

Definition 3.2 Let G and H be any digraphs. A homomorphism of G to H, written as
f : G → H is a mapping f : V (G) → V (H) such that (f(u), f(v)) ∈ E(H) whenever
(u, v) ∈ E(G).

Note that the digraphs G and H may have self-loops, (u, u), and a homomorphism is
not required to be surjective in either vertices or arcs. We typically refer to arcs as edges,
but it should be kept in mind that, in general, they are directed edges, or ordered pairs.

3.1 State Space

Definition 3.3 A state space is a weighted directed graph S = 〈T,Π, C〉 where T is a finite
set of states, Π ⊆ T ×T is a set of directed edges (ordered pairs of states) representing state
transitions, and C : Π −→ N = {0, 1, 2, 3, . . . } is the edge cost function.

In typical practice, S is defined implicitly. Usually each distinct state in T corresponds to
an assignment of values to a set of state variables. Π and C derive from a successor function,
or a set of planing operators. In some cases, T is restricted to the set of states reachable
from a given state. For example, in the 8-puzzle, the set of edges Π is defined by the rule “a
tile that is adjacent to the empty location can be moved into the empty location”, and the
set of states T is defined in one of two ways: either as the set of states reachable from the
goal state, or as the set of permutations of the tiles and the blank, in which case T consists
of two components that are not connected to one another. The standard cost function C
for the 8-puzzle assigns a cost of 1 to all edges, but it is easy to imagine cost functions for
the 8-puzzle that depend on the tile being moved or the locations involved in the move.

A path from state t to state g is a sequence of edges beginning at t and ending at
g. Formally, ~p is a path from state t to state g if ~p = 〈π1, . . . , πn〉, πj ∈ Π where πj =
(tj−1, tj), j ∈ {1, . . . , n} and t0 = t, tn = g. Note the use of superscripts rather than
subscripts to distinguish states and edges within a state space. The length of ~p is the
number of edges n and its cost is C(~p) =

∑n
j=1C(πj). We use Paths(S, t, g) to denote the

set of all paths from t to g in S.

Definition 3.4 The optimal (minimum) cost of a path from state t to state g in S is defined
by

OPT(t, g) = min
~p∈Paths(S,t,g)

C(~p)

A pathfinding problem is a triple 〈S, t, g〉, where S is a state space and t, g ∈ T , with
the objective of finding the minimum cost of a path from t to g, or in some cases finding a
minimum cost path ~p ∈ Paths(S, t, g) such that C(~p) = OPT(t, g). Having just one goal
state may seem restrictive, but problems having a set of goal states can be accommodated
with this definition by adding a virtual goal state to the state space with zero-cost edges
from the actual goal states to the virtual goal state.
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3.2 State Space Abstraction

Definition 3.5 An Abstraction System is a pair 〈S,ℵ〉 where S = 〈T,Π, C〉 is a state space
and ℵ = {〈Ai, ψi〉 | ψi : S → Ai, 1 ≤ i ≤ k} is a set of abstractions, where each abstraction
is a pair consisting of an abstract state space and an abstraction mapping, where “abstract
state space” and “abstraction mapping” are defined below.

Note that these abstractions are not intended to form a hierarchy and should be con-
sidered a set of independent abstractions.

Definition 3.6 An abstract state space is a directed graph with two weights per edge,
defined by a four-tuple Ai = 〈Ti,Πi, Ci, Ri〉.

Ti is the set of abstract states and Πi is the set of abstract edges, as in the definition of
a state space. In an abstract space there are two costs associated with each πi ∈ Πi, the
primary cost Ci : Πi −→ N and the residual cost Ri : Πi −→ N . The idea of having
two costs per abstract edge, instead of just one, is inspired by the practice, illustrated in
Figure 3, of having two types of edges in the abstract space and counting distinguished
moves differently than “don’t care” moves. In that example, our primary cost is the cost
associated with the distinguished moves, and our residual cost is the cost associated with
the “don’t care” moves. The usefulness of considering the cost of “don’t care” moves arises
when the abstraction system is additive, as suggested by Lemmas 3.6 and 3.10 below. These
indicate when the additive heuristic is infeasible and can be improved, the effectiveness of
which will become apparent in the experiments reported in Section 6.

Like edges, each abstract path ~pi = 〈π1
i , . . . , π

n
i 〉 in Ai has a primary and residual cost:

Ci(~pi) =
∑n

j=1Ci(π
j
i ), and Ri(~pi) =

∑n
j=1Ri(π

j
i ).

Definition 3.7 An abstraction mapping ψi : S −→ Ai between state space S and abstract
state space Ai is defined by a mapping between the states of S and the states of Ai, ψi :
T → Ti, that satisfies the two following conditions.

The first condition is that the mapping is a homomorphism and thus connectivity in the
original space is preserved, i.e.,

(1) ∀(u, v) ∈ Π, (ψi(u), ψi(v)) ∈ Πi

In other words, for each edge in the original space S there is a corresponding edge in the
abstract space Ai. Note that if u 6= v and ψi(u) = ψi(v) then a non-identity edge in S gets
mapped to an identity edge (self-loop) in Ai. We use the shorthand notation tji = ψi(tj)
for the abstract state in Ti corresponding to tj ∈ T , and πji = ψi(πj) = (ψi(uj), ψi(vj)) for
the abstract edge in Πi corresponding to πj = (uj , vj) ∈ Π.

The second condition that the state mapping must satisfy is that abstract edges must
not cost more than any of the edges they correspond to in the original state space, i.e.,

(2) ∀π ∈ Π, Ci(πi) +Ri(πi) ≤ C(π)
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As a consequence, if multiple edges in the original space map to the same abstract edge
ρ ∈ Πi, as is usually the case, Ci(ρ) +Ri(ρ) must be less than or equal to all of them, i.e.,

∀ρ ∈ Πi, Ci(ρ) +Ri(ρ) ≤ min
π∈Π,ψi(π)=ρ

C(π)

Note that if no edge maps to an edge in the abstract space, then no bound on the cost of
that edge is imposed.

For example, the state mapping used to define the abstraction in the middle column
of Figure 3 maps an 8-puzzle state to an abstract state by renaming tiles 2, 4, 6, and 8
to “don’t care”. This mapping satisfies condition (1) because “don’t care” tiles can be
exchanged with the blank whenever regular tiles can. It satisfies condition (2) because each
move is either a distinguished move (Ci(πi) = 1 and Ri(πi) = 0) or a “don’t care” move
(Ci(πi) = 0 and Ri(πi) = 1) and in both cases Ci(πi) + Ri(πi) = 1, the cost of the edge π
in the original space.

The set of abstract states Ti is usually equal to ψi(T ) = {ψi(t) | t ∈ T}, but it can be a
superset, in which case the abstraction is said to be non-surjective (Hernádvölgyi & Holte,
2000). Likewise, the set of abstract edges Πi is usually equal to ψi(Π) = {ψi(π) | π ∈ Π}
but it can be a superset even if Ti = ψi(T ). In some cases, one deliberately chooses an
abstract space that has states or edges that have no counterpart in the original space. For
example, the methods that define abstractions by dropping operator preconditions must, by
their very design, create abstract spaces that have edges that do not correspond to any edge
in the original space (e.g. Pearl, 1984). In other cases, non-surjectivity is an inadvertent
consequence of the abstract space being defined implicitly as the set of states reachable
from the abstract goal state by applying operator inverses. For example, if a tile in the
2 × 2 sliding tile puzzle is mapped to the blank in the abstract space, the puzzle now has
two blanks and states are reachable in the abstract space that have no counterpart in the
original space (Hernádvölgyi & Holte, 2000). For additional examples and an extensive
discussion of non-surjectivity see the previous paper by Holte and Hernádvölgyi (2004).

All the lemmas and definitions that follow assume an abstraction system 〈S,ℵ〉 contain-
ing k abstractions has been given. Conditions (1) and (2) guarantee the following.

Lemma 3.1 For any path ~p ∈ Paths(S, u1, u2) in S, there is a corresponding abstract path
ψi(~p) from u1

i to u2
i in Ai and Ci(ψi(~p)) +Ri(ψi(~p)) ≤ C(~p).

Proof: By definition, ~p ∈ Paths(S, u1, u2) in S is a sequence of edges 〈π1, . . . , πn〉, πj ∈ Π
where πj = (tj−1, tj), j ∈ {1, . . . , n} and t0 = u1, tn = u2. Because Πi ⊇ ψi(Π), each of the
corresponding abstract edges exists (πji ∈ Πi). Because π1

i = (u1
i , t

1
i ) and πni = (tn−1

i , u2
i ),

the sequence ψi(~p) = 〈π1
i , . . . , π

n
i 〉 is a path from u1

i to u2
i .

By definition, C(~p) =
∑n

j=1C(πj). For each πj , Condition (2) ensures that C(πj) ≥
Ci(π

j
i )+Ri(π

j
i ), and therefore C(~p) ≥

∑n
j=1(Ci(π

j
i )+Ri(π

j
i )) =

∑n
j=1Ci(π

j
i )+

∑n
j=1Ri(π

j
i ) =

Ci(ψi(~p)) +Ri(ψi(~p)).

For example, consider state A and goal g in Figure 3. Because of condition (1), any path
from state A to g in the original space is also a path from abstract state A1 to abstract goal
state g1 and from abstract state A2 to g2 in the abstract spaces. Because of condition (2),
the cost of the path in the original space is greater than or equal to the sum of the primary
cost and the residual cost of the corresponding abstract path in each abstract space.
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We use Paths(Ai, u, v) to mean the set of all paths from u to v in space Ai.

Definition 3.8 The optimal abstract cost from abstract state u to abstract state v in Ai

is defined as
OPTi(u, v) = min

~q∈Paths(Ai,u,v)
Ci(~q) +Ri(~q)

Definition 3.9 We define the heuristic obtained from abstract space Ai for the cost from
state t to g as

hi(t, g) = OPTi(ti, gi).

Note that in these definitions, the path minimizing the cost is not required to be the image,
ψi(~p), of a path ~p in S.

The following prove that the heuristic generated by each individual abstraction is ad-
missible (Lemma 3.2) and consistent (Lemma 3.3).

Lemma 3.2 hi(t, g) ≤ OPT(t, g) for all t, g ∈ T and all i ∈ {1, . . . , k}.

Proof: By Lemma 3.1, C(~p) ≥ Ci(ψi(~p)) +Ri(ψi(~p)), and therefore

min
~p∈Paths(S,t,g)

C(~p) ≥ min
~p∈Paths(S,t,g)

Ci(ψi(~p)) +Ri(ψi(~p)).

The left hand side of this inequality is OPT(t, g) by definition, and the right hand side
is proved in the following Claim 3.2.1 to be greater than or equal to hi(t, g). Therefore,
OPT(t, g) ≥ hi(t, g).

Claim 3.2.1 min~p∈Paths(S,t,g)Ci(ψi(~p)) +Ri(ψi(~p)) ≥ hi(t, g) for all t, g ∈ T .
Proof of Claim 3.2.1: By Lemma 3.1 for every path ~p there is a correspond-

ing abstract path. There may also be additional paths in the abstract space, that is,
{ψi(~p) | ~p ∈ Paths(S, t, g)} ⊆ Paths(Ai, ti, gi). It follows that {Ci(ψi(~p)) +Ri(ψi(~p)) | ~p ∈
Paths(S, t, g)} ⊆ {Ci(~q) +Ri(~q) | ~q ∈ Paths(Ai, ti, gi)}. Therefore,

min
~p∈Paths(S,t,g)

Ci(ψi(~p)) +Ri(ψi(~p)) ≥ min
~q∈Paths(Ai,ti,gi)

Ci(~q) +Ri(~q) = OPTi(ti, gi) = hi(t, g)

Lemma 3.3 hi(t1, g) ≤ OPT(t1, t2) + hi(t2, g) for all t1, t2, g ∈ T and all i ∈ {1, . . . , k}.

Proof: By the definition of OPTi as a minimization and the definition of hi(t, g), it follows
that hi(t1, g) = OPTi(t1i , gi) ≤ OPTi(t1i , t

2
i ) + OPTi(t2i , gi) = OPTi(t1i , t

2
i ) + hi(t2, g).

To complete the proof, we observe that by Lemma 3.2, OPT(t1, t2) ≥ hi(t1, t2) =
OPTi(t1i , t

2
i ).

Definition 3.10 The hmax heuristic from state t to state g defined by an abstraction system
〈S,ℵ〉 is

hmax(t, g) =
k

max
i=1

hi(t, g)

From Lemmas 3.2 and 3.3 it immediately follows that hmax is admissible and consistent.
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3.3 Additive Abstractions

In this section, we formalize the notion of “additive abstraction” that was introduced intu-
itively in Section 2.1. The example there showed that hadd(t, g), the sum of the heuristics
for state t defined by multiple abstractions, was admissible provided the cost functions in
the abstract spaces only counted the “distinguished moves”. In our formal framework, the
“cost of distinguished moves” is captured by the notion of primary cost.

Definition 3.11 For any pair of states t, g ∈ T the additive heuristic given an abstraction
system is defined to be

hadd(t, g) =
k∑
i=1

C∗i (ti, gi).

where
C∗i (ti, gi) = min

~q∈Paths(Ai,ti,gi)
Ci(~q)

is the minimum primary cost of a path in the abstract space from ti to gi.

In Figure 3, for example, C∗1 (A1, g1) = 9 and C∗2 (A2, g2) = 5 because the minimum
number of distinguished moves to reach g1 from A1 is 9 and the minimum number of
distinguished moves to reach g2 from A2 is 5.

Intuitively, hadd will be admissible if the cost of edge π in the original space is divided
among the abstract edges πi that correspond to π, as is done by the “cost-splitting” and
“location-based” methods for defining abstract costs that were introduced at the end of
Section 2.1. This leads to the following formal definition.

Definition 3.12 An abstraction system 〈S,ℵ〉 is additive if ∀π ∈ Π,
∑k

i=1Ci(πi) ≤ C(π).

The following prove that hadd is admissible (Lemma 3.4) and consistent (Lemma 3.5)
when the abstraction system 〈S,ℵ〉 is additive.

Lemma 3.4 If 〈S,ℵ〉 is additive then hadd(t, g) ≤ OPT(t, g) for all t, g ∈ T .

Proof: Assume that OPT(t, g) = C(~p), where ~p = 〈π1, . . . , πn〉 ∈ Paths(S, t, g). Therefore,
OPT(t, g) =

∑n
j=1C(πj). Since 〈S,ℵ〉 is additive, it follows by definition that

n∑
j=1

C(πj) ≥
n∑
j=1

k∑
i=1

Ci(π
j
i ) =

k∑
i=1

n∑
j=1

Ci(π
j
i )

≥
k∑
i=1

C∗i (ti, gi) = hadd(t, g)

where the last line follows from the definitions of C∗i and hadd.

Lemma 3.5 If 〈S,ℵ〉 is additive then hadd(t1, g) ≤ OPT(t1, t2)+hadd(t2, g) for all t1, t2, g ∈
T .

641



Yang, Culberson, Holte, Zahavi & Felner

Proof: C∗i (t
1
i , gi) obeys the triangle inequality: C∗i (t

1
i , gi) ≤ C∗i (t

1
i , t

2
i ) + C∗i (t

2
i , gi) for all

t1, t2, g ∈ T . It follows that
∑k

i=1C
∗
i (t

1
i , gi) ≤

∑k
i=1C

∗
i (t

1
i , t

2
i ) +

∑k
i=1C

∗
i (t

2
i , gi).

Because
∑k

i=1C
∗
i (t

1
i , gi) = hadd(t1, g) and

∑k
i=1C

∗
i (t

2
i , gi) = hadd(t2, g), it follows that

hadd(t1, g) ≤
∑k

i=1C
∗
i (t

1
i , t

2
i ) + hadd(t2, g).

Since 〈S,ℵ〉 is additive, by Lemma 3.4, OPT(t1, t2) ≥
∑k

i=1C
∗
i (t

1
i , t

2
i ).

Hence hadd(t1, g) ≤ OPT(t1, t2) + hadd(t2, g) for all t1, t2, g ∈ T .

We now develop a simple test that has important consequences for additive heuristics.
Define ~Pi(ti, gi) = {~q | ~q ∈ Paths(Ai, ti, gi) and Ci(~q) = C∗i (ti, gi)}, the set of abstract
paths from ti to gi whose primary cost is minimal.

Definition 3.13 The conditional optimal residual cost is the minimum residual cost among
the paths in ~Pi(ti, gi):

R∗i (ti, gi) = min
~q∈~Pi(ti,gi)

Ri(~q)

Note that the value of (C∗i (ti, gi) + R∗i (ti, gi)) is sometimes, but not always, equal to the
optimal abstract cost OPTi(ti, gi). In Figure 3, for example, OPT1(A1, g1) = 16 (a path
with this cost is shown in Figure 2) and C∗1 (A1, g1) + R∗1(A1, g1) = 18, while C∗2 (A2, g2) +
R∗2(A2, g2) = OPT2(A2, g2) = 12. As the following lemmas show, it is possible to draw
important conclusions about hadd by comparing its value to (C∗i (ti, gi) +R∗i (ti, gi)).

Lemma 3.6 Let 〈S,ℵ〉 be any additive abstraction system and let t, g ∈ T be any states. If
hadd(t, g) ≥ C∗j (tj , gj) +R∗j (tj , gj) for all j ∈ {1, . . . , k}, then hadd(t, g) ≥ hmax(t, g).

Proof: By the definition of OPTi(ti, gi), ∀j ∈ {1, . . . , k}, C∗j (tj , gj)+R∗j (tj , gj) ≥ OPTj(tj , gj).
Therefore, ∀j ∈ {1, . . . , k}, hadd(t, g) ≥ C∗j (tj , gj) +R∗j (tj , gj) ≥ OPTj(tj , gj) ⇒ hadd(t, g) ≥
max1≤i≤k OPTi(ti, gi) = hmax(t, g).

Lemma 3.7 For an additive 〈S,ℵ〉 and path ~p ∈ Paths(S, t, g) with C(~p) =
∑k

i=1C
∗
i (ti, gi),

Cj(ψj(~p)) = C∗j (tj , gj) for all j ∈ {1, . . . , k}.

Proof: Suppose for a contradiction that there exists some i1, such that Ci1(ψi1(~p)) >
C∗i1(ti1 , gi1). Then because C(~p) =

∑k
i=1C

∗
i (ti, gi), there must exist some i2, such that

Ci2(ψi2(~p)) < C∗i2(ti2 , gi2), which contradicts the definition of C∗i . Therefore, such an i1
does not exist and Cj(ψj(~p)) = C∗j (tj , gj) for all j ∈ {1, . . . , k}.

Lemma 3.8 For an additive 〈S,ℵ〉 and a path ~p ∈ Paths(S, t, g) with C(~p) =
∑k

i=1C
∗
i (ti, gi),

Ri(ψi(~p)) ≥ R∗i (ti, gi) for all i ∈ {1, . . . , k}.

Proof: Following Lemma 3.7 and the definition of ~Pi(ti, gi), ψi(~p) ∈ ~Pi(ti, gi) for all i ∈
{1, . . . , k}. Because R∗i (ti, gi) is the smallest residual cost of paths in ~Pi(ti, gi), it follows
that Ri(ψi(~p)) ≥ R∗i (ti, gi).

Lemma 3.9 For an additive 〈S,ℵ〉 and a path ~p ∈ Paths(S, t, g) with C(~p) =
∑k

i=1C
∗
i (ti, gi),∑k

i=1C
∗
i (ti, gi) ≥ C∗j (tj , gj) +R∗j (tj , gj) for all j ∈ {1, . . . , k}.
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Proof: By Lemma 3.1, C(~p) ≥ Cj(ψj(~p))+Rj(ψj(~p)) for all j ∈ {1, . . . , k}. By Lemma 3.7
Cj(ψj(~p)) = C∗j (tj , gj), and by Lemma 3.8 Rj(ψj(~p)) ≥ R∗j (tj , gj). Therefore C(~p) ≥
C∗j (tj , gj)+R∗j (tj , gj), and the lemma follows from the premise that C(~p) =

∑k
i=1C

∗
i (ti, gi).

Lemma 3.10 Let 〈S,ℵ〉 be any additive abstraction system and let t, g ∈ T be any states.
If hadd(t, g) < C∗j (tj , gj) +R∗j (tj , gj) for some j ∈ {1, . . . , k}, then hadd(t, g) 6= OPT (t, g).

Proof: This lemma follows directly as the contrapositive of Lemma 3.9.

Lemma 3.6 gives a condition under which hadd is guaranteed to be at least as large as
hmax for a specific states t and g. If this condition holds for a large fraction of the state
space T , one would expect that search using hadd to be at least as fast as, and possibly
faster than, search using hmax. This will be seen in the experiments reported in Section 4.
The opposite is not true in general, i.e., failing this condition does not imply that hmax will
result in faster search than hadd. However, as Lemma 3.10 shows, there is an interesting
consequence when this condition fails for state t: we know that the value returned by hadd
for t is not the true cost to reach the goal from t. Detecting this is useful because it allows
the heuristic value to be increased without risking it becoming inadmissible. Section 6
explores this in detail.

3.4 Relation to Previous Work

The aim of the preceding formal definitions is to identify fundamental properties that guar-
antee that abstractions will give rise to admissible, consistent heuristics. We have shown
that the following two conditions guarantee that the heuristic defined by an abstraction is
admissible and consistent

(P1) ∀(u, v) ∈ Π, (ψi(u), ψi(v)) ∈ Πi

(P2) ∀π ∈ Π, C(π) ≥ Ci(πi) +Ri(πi)

and that a third condition

(P3) ∀π ∈ Π, C(π) ≥
k∑
i=1

Ci(πi)

guarantees that hadd(t, g) is admissible and consistent.
Previous work has focused on defining abstraction and additivity for specific ways of

representing states and transition functions. These are important contributions because
ultimately one needs computationally effective ways of defining the abstract state spaces,
abstraction mappings, and cost functions that our theory takes as given. The importance
of our contribution is that it should make future proofs of admissibility, consistency, and
additivity easier, because one will only need to show that a particular method for defining
abstractions satisfies the three preceding conditions. These are generally very simple con-
ditions to demonstrate, as we will now do for several methods for defining abstractions and
additivity that currently exist in the literature.
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3.4.1 Previous Definitions of Abstraction

The use of abstraction to create heuristics began in the late 1970s and was popularized in
Pearl’s landmark book on heuristics (Pearl, 1984). Two abstraction methods were identi-
fied at that time: “relaxing” a state space definition by dropping operator preconditions
(Gaschnig, 1979; Guida & Somalvico, 1979; Pearl, 1984; Valtorta, 1984), and “homomor-
phic” abstractions (Banerji, 1980; Kibler, 1982). These early notions of abstraction were
unified and extended by Mostow and Prieditis (1989) and Prieditis (1993), producing a
formal definition that is the same as ours in all important respects except for the concept
of “residual cost” that we have introduced.1

Today’s two most commonly used abstraction methods are among the ones implemented
in Prieditis’s Absolver II system (Prieditis, 1993). The first is “domain abstraction”, which
was independently introduced in the seminal work on pattern databases (Culberson &
Schaeffer, 1994, 1998) and then generalized (Hernádvölgyi & Holte, 2000). It assumes a
state is represented by a set of state variables, each of which has a set of possible values
called its domain. An abstraction on states is defined by specifying a mapping from the
original domains to new, smaller domains. For example, an 8-puzzle state is typically
represented by 9 variables, one for each location in the puzzle, each with the same domain
of 9 elements, one for each tile and one more for the blank. A domain abstraction that
maps all the elements representing the tiles to the same new element (“don’t care”) and
the blank to a different element would produce the abstract space shown in Figure 1. The
reason this particular example satisfies property (P1) is explained in Section 3.2. In general,
a domain abstraction will satisfy property (P1) as long as the conditions that define when
state transitions occur (e.g. operator preconditions) are guaranteed to be satisfied by the
“don’t care” symbol whenever they are satisfied by one or more of the domain elements
that map to “don’t care”. Property (P2) follows immediately from the fact that all state
transitions in the original and abstract spaces have a primary cost of 1.

The other major type of abstraction used today, called “drop” by Prieditis (1993), was
independently introduced for abstracting planning domains represented by grounded (or
propositional) STRIPS operators (Edelkamp, 2001). In a STRIPS representation, a state
is represented by the set of logical atoms that are true in that state, and the directed edges
between states are represented by a set of operators, where each operator a is described by
three sets of atoms, P (a), A(a), and D(a). P (a) lists a’s preconditions: a can be applied to
state t only if all the atoms in P (a) are true in t (i.e., P (a) ⊆ t). A(a) and D(a) specify the
effects of operator a, with A(a) listing the atoms that become true when a is applied (the
“add” list) and D(a) listing the atoms that become false when a is applied (the “delete”
list). Hence if operator a is applicable to state t, the state u = a(t) it produces when applied
to t is the set of atoms u = (t−D(a)) ∪A(a).

In this setting, Edelkamp defined an abstraction of a given state space by specifying a
subset of the atoms and restricting the abstract state descriptions and operator definitions
to include only atoms in the subset. Suppose Vi is the subset of the atoms underlying
abstraction mapping ψi : S −→ Ai, where S is the original state space and Ai is the abstract
state space based on Vi. Two states in S will be mapped to the same abstract state if and

1. Prieditis’s definition allows an abstraction to expand the set of goals. This can be achieved in our
definition by mapping non-goal states in the original space to the same abstract state as the goal.
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only if they contain the same subset of atoms in Vi, i.e., ψi(t) = ψi(u) iff t ∩ Vi = u ∩ Vi.
This satisfies property (P1) because operator a being applicable to state t (P (a) ⊆ t)
implies abstract operator ai = ψi(a) is applicable to abstract state ti (P (a) ∩ Vi ⊆ t ∩ Vi)
and the resulting state a(t) = (t − D(a)) ∪ A(a) is mapped by ψi to ai(ψi(t)) because
set intersection distributes across set subtraction and union (Vi ∩ ((t − D(a)) ∪ A(a)) =
((Vi ∩ t)− (Vi ∩D(a))) ∪ (Vi ∩ A(a))). Again, property (P2) follows immediately from the
fact that all operators in the original and abstract spaces have a primary cost of 1.

Recently, Helmert et al. (2007) described a more general approach to defining abstrac-
tions for planning based on “transition graph abstractions”. A transition graph is a directed
graph in which the arcs have labels, and a transition graph abstraction is a directed graph
homomorphism that preserves the labels.2 Hence, Helmert et al.’s method is a restricted
version of our definition of abstraction and therefore satisfies properties (P1) and (P2).
Helmert et al. make the following interesting observations that are true of our more general
definition of abstractions:

• the composition of two abstractions is an abstraction. In other words, if ψ : S −→ A
is an abstraction of S and φ : A −→ B is an abstraction of A, then (φ◦ψ) : S −→ B is
an abstraction of S. This property of abstractions was exploited by Prieditis (1993).

• the “product” A1 × A2 of two abstractions, A1 and A2, of S is an abstraction of S,
where the state space of the product is the Cartesian product of the two abstract
state spaces, and there is an edge π1×2 in the product space from state (t1, t2) to state
(u1, u2) if there is an edge π1 from t1 to u1 in A1 and there is an edge π2 from t2 to
u2 in A2. The primary cost of π1×2 is the minimum of C1(π1) and C2(π2) and the
residual cost of π1×2 is taken from the same space as the primary cost. Because they
are working with labelled edges Helmert et al. require the edge connecting t1 to u1

to have the same label as the edge connecting t2 to u2; this is called a “synchronized”
product and is denoted A1⊗A2 (refer to Definition 6 defined by Helmert et al. (2007)
for the exact definition of synchronized product).

Figure 5 shows the synchronized product, B, of two abstractions, A1 and A2, of the
3-state space S in which the edge labels are a and b. A1 is derived from S by mapping
states s1 and s2 to the same state (s1,2), and A2 is derived from S by mapping states s2
and s3 to the same state (s2,3). Note that B contains four states, more than the original
space. It is an abstraction of S because the mapping of original states s1, s2, and s3 to
states (s1,2, s1) (s1,2, s2,3) and (s3, s2,3), respectively, satisfies property (P1), and property
(P2) is satisfied automatically because all edges have a cost of 1. From this point of view
the fourth state in B, (s3, s1), is redundant with state (s1,2, s1). Nevertheless it is a distinct
state in the product space.

Haslum et al. (2005) introduce a family of heuristics, called hm (for any fixed m ∈
{1, 2, ...}), that are based on abstraction, but are not covered by our definition because the
value of the heuristic for state t, hm(t), is not defined as the distance from the abstraction
of t to the abstract goal state. Instead it takes advantage of a special monotonicity property

2. “Homomorphism” here means the standard definition of a digraph homomorphism (Definition 3.2),
which permits non-surjectivity (as discussed in Section 3.2), as opposed to Helmert et al.’s definition of
“homomorphism”, which does not allow non-surjectivity.
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Figure 5: S is the original state space. A1 and A2 are abstractions of S. B = A1 ⊗ A2 is
the synchronized product of A1 and A2.

of costs in planning problems: the cost of achieving a subset of the atoms defining the goal
is a lower bound on the cost of achieving the goal. When searching backwards from the
goal to the start state, as Haslum et al. do, this allows an admissible heuristic to be defined
in the following recursive minimax fashion (|t| denotes the number of atoms in state t):

hm(t) =


0, t ⊆ start
min

(s,t)∈Π
C(s, t) + hm(s), |t| ≤ m

max
s⊂t,|s|≤m

hm(s), |t| > m

The first two lines of this definition are the standard method for calculating the cost of a
least-cost path. It is the third line that uses the fact that the cost of achieving any subset
of the atoms in t is a lower bound on the cost of achieving the entire set of atoms t. The
recursive calculation alternates between the min and max calculation depending on the
number of atoms in the state currently being considered in the recursive calculation, and
is therefore different than a shortest path calculation or taking the maximum of a set of
shortest path calculations.

3.4.2 Previous definitions of additive abstractions

Prieditis (1993) included a method (“Factor”) in his Absolver II system for creating additive
abstractions, but did not present any formal definitions or theory.

The first thorough discussion of additive abstractions is due to Korf and Taylor (1996).
They observed that the sliding tile puzzle’s Manhattan Distance heuristic, and several of
its enhancements, were the sum of the distances in a set of abstract spaces in which a small
number of tiles were “distinguished”. As explained in Section 2.1, what allowed the abstract
distances to be added and still be a lower bound on distances in the original space is that
only the moves of the distinguished tiles counted towards the abstract distance and no tile
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was distinguished in more than one abstraction. This idea was later developed in a series
of papers (Korf & Felner, 2002; Felner et al., 2004), which extended its application to other
domains, such as the 4-peg Towers of Hanoi puzzle.

In the planning literature, the same idea was proposed by Haslum et al. (2005), who
described it as partitioning the operators into disjoint sets B1, ...Bk and counting the cost
of operators in set Bi only in abstract space Ai. The example they give is that in the
Blocks World operators that move block i would all be in set Bi, effectively defining a set
of additive abstractions for the Blocks World exactly analogous to the Korf and Taylor
abstractions that define Manhattan Distance for the sliding tile puzzle.

Edelkamp (2001) took a different approach to defining additive abstractions for STRIPS
planning representations. His method involves partitioning the atoms into disjoint sets
V1, ...Vk such that no operator changes atoms in more than one group. If abstract space
Ai retains only the atoms in set Vi then the operators that do not affect atoms in Vi will
have no effect at all in abstract space Ai and will naturally have a cost of 0 in Ai. Since
no operator affects atoms in more than one group, no operator has a non-zero cost in more
than one abstract space and distances in the abstract spaces can safely be added. Haslum et
al. (2007) extended this idea to representations in which state variables could have multiple
values. In a subsequent paper Edelkamp (2002) remarks that if there is no partitioning of
atoms that induces a partitioning of the operators as just described, additivity could be
“enforced” by assigning an operator a cost of zero in all but one of the abstract spaces—a
return to the Korf and Taylor idea.

All the methods just described might be called “all-or-nothing” methods of defining
abstract costs, because the cost of each edge C(π) is fully assigned as the cost of the
corresponding abstract edge Ci(πi) in one of the abstractions and the corresponding edges
in all the other abstractions are assigned a cost of zero. Any such method obviously satisfies
property (P3) and is therefore additive.

Our theory of additivity does not require abstract methods to be defined in an all-or-
nothing manner, it allows C(π) to be divided in any way whatsoever among the abstractions
as long as property (P3) is satisfied. This possibility has been recognized in one recent pub-
lication (Katz & Domshlak, 2007), which did not report any experimental results. This
generalization is important because it eliminates the requirement that operators must move
only one “tile” or change atoms/variables in one “group”, and the related requirement that
tiles/atoms be distinguished/represented in exactly one of the abstract spaces. This re-
quirement restricted the application of previous methods for defining additive abstractions,
precluding their application to state spaces such as Rubik’s Cube, the Pancake puzzle, and
TopSpin. As the following sections show, with our definition, additive abstractions can be
defined for any state space, including the three just mentioned.

Finally, Helmert et al. (2007) showed that the synchronized product of additive abstrac-
tions produces a heuristic hsprod that dominates hadd, in the sense that hsprod(s) ≥ hadd(s)
for all states s. This happens because the synchronized product forces the same path to be
used in all the abstract spaces, whereas the calculation of each C∗i in hadd can be based on
a different path. The discussion of the negative results and infeasibility below highlight the
problems that can arise because each C∗i is calculated independently.
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4. New Applications of Additive Abstractions

This section and the next section report the results of applying the general definition of
additive abstraction given in the previous section to three benchmark state spaces: TopSpin,
the Pancake puzzle and Rubik’s Cube. A few additional experimental results may be found
in the previous paper by Yang, Culberson, and Holte (2007). In all our experiments all edges
in the original state spaces have a cost of 1 and we define Ri(πi) = 1−Ci(πi), its maximum
permitted value when edges cost 1. We use pattern databases to store the heuristic values.
The pre-processing time required to compute the pattern databases is excluded from the
times reported in the results, because the PDB needs to be calculated only once and this
overhead is amortized over the solving of many problem instances.

4.1 Methods for Defining Costs

We will investigate two general methods for defining the primary cost of an abstract state
transition Ci(πi), which we call “cost-splitting” and “location-based” costs. To illustrate
the generality of these methods we will define them for the two most common ways of
representing states—as a vector of state variables, which is the method we implemented in
our experiments, and as a set of logical atoms as in the STRIPS representation for planning
problems.

In a state variable representation a state t is represented by a vector of m state variables,
each having its own domain of possible values Dj , i.e., t = (t(0), ..., t(m − 1)), where
t(j) ∈ Dj is the value assigned to the jth state variable in state t. For example, in puzzles
such as the Pancake puzzle and the sliding tile puzzles, there is typically one variable for
each physical location in the puzzle, and the value of t(j) indicates which “tile” is in location
j in state t. In this case the domain for all the variables is the same. State space abstractions
are defined by abstracting the domains. In particular, in this setting domain abstraction ψi
will leave specific domain values unchanged (the “distinguished” values according to ψi) and
map all the rest to the same special value, “don’t care”. The abstract state corresponding
to t according to ψi is ti=(ti(0), ..., ti(m− 1)) with ti(j) = ψi(t(j)). As in previous research
with these state spaces a set of abstractions is defined by partitioning the domain values into
disjoint sets E1, ..., Ek with Ei being the set of distinguished values in abstraction i. Note
that the theory developed in the previous section does not require the distinguished values
in different abstractions to be mutually exclusive; it allows a value to be distinguished in
any number of abstract spaces provided abstract costs are defined appropriately.

As mentioned previously, in a STRIPS representation a state is represented by the
set of logical atoms that are true in the state. A state variable representation can be
converted to a STRIPS representation in a variety of ways, the simplest being to define an
atom for each possible variable-value combination. If state variable j has value v in the
state variable representation of state t then the atom variable-j-has-value-v is true in the
STRIPS representation of t. The exact equivalent of domain abstraction can be achieved
by defining Vi, the set of atoms to be used in abstraction i, to be all the atoms variable-j-
has-value-v in which v ∈ Ei, the set of distinguished values for domain abstraction i.
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4.1.1 Cost-splitting

In a state variable representation, the cost-splitting method of defining primary costs works
as follows. A state transition π that changes bπ state variables has its cost, C(π), split
among the corresponding abstract state transitions π1, . . . , πk in proportion to the number
of distinguished values they assign to the variables, i.e., in abstraction i

Ci(πi) =
bπi ∗ C(π)

bπ

if π changes bπ variables and bπi of them are assigned distinguished values by πi.3 For
example, the 3 × 3 × 3 Rubik’s cube is composed of twenty little moveable “cubies” and
each operator moves eight cubies, four corner cubies and four edge cubies. Hence bπ = 8
for all state transitions π. If a particular state transition moves three cubies that are
distinguished according to abstraction ψi, the corresponding abstract state transition, πi,
would cost 3

8 . Strictly speaking, we require abstract edge costs to be integers, so the
fractional edge costs produced by cost-splitting must be scaled appropriately to become
integers. Our implementation of cost-splitting actually does this scaling but it will simplify
our presentation of cost-splitting to talk of the edge costs as if they were fractional.

If each domain value is distinguished in at most one abstraction (e.g. if the abstractions
are defined by partitioning the domain values) cost-splitting produces additive abstractions,
i.e., C(π) ≥

∑k
i=1Ci(πi) for all π ∈ Π. Because C(π) is known to be an integer, hadd can

be defined to be the ceiling of the sum of the abstract distances, d
∑k

i=1Ci(πi)e, instead of
just the sum.

With a STRIPS representation, cost-splitting could be defined identically, with bπ being
the number of atoms changed (added or deleted) by operator π in the original space and bπi
being the number of atoms changed by the corresponding operator in abstraction i.

4.1.2 Location-based Costs

In a location-based cost definition for a state variable representation, a state variable locπ
is associated with state transition π and π’s full cost C(π) is assigned to abstract state
transition πi if πi changes the value of variable locπ to a value that is distinguished according
to ψi.4 Formally:

Ci(πi) =


C(π), if πi = (t1i , t

2
i ), t

1
i (loc

π) 6= t2i (loc
π), and

t2i (loc
π) is a distinguished value according to ψi.

0, otherwise.

Instead of focusing on the value that is assigned to variable locπ, location-based costs
can be defined equally well on the value that variable locπ had before it was changed. In
either case, if each domain value is distinguished in at most one abstraction location-based

3. Because πi might correspond to several edges in the the original space, each with a different cost or
moving a different set of tiles, the technically correct definition is:

Ci(πi) = min
π,ψi(π)=πi

bπi ∗ C(π)

bπ

4. As in footnote 3, the technically correct definition has minπ,ψi(π)=πi
C(π) instead of C(π).
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costs produce additive abstractions. The name “location-based” is based on the typical
representations used for puzzles, in which there is a state variable for each physical location
in the puzzle. For example, in Rubik’s Cube one could choose the reference variables to be
the ones representing the two diagonally opposite corner locations in the puzzle. Note that
each possible Rubik’s cube operator changes exactly one of these locations. An abstract
state transition would have a primary cost of 1 if the cubie it moved into one of these
locations was a distinguished cubie in its abstraction, and a primary cost of 0 otherwise.

For a STRIPS representation of states, location-based costs can be defined by choosing
an atom a in the Add list for each operator π and assigning the full cost C(π) to abstraction
i if a appears in the Add list of πi. If atoms are partitioned so that each atom appears in
at most one abstraction, this method will define additive costs.

Although the cost-splitting and location-based methods for defining costs can be applied
to a wide range of state spaces, they are not guaranteed to define heuristics that are superior
to other heuristics for a given state space. We determined experimentally that heuristics
based on cost-splitting substantially improve performance for sufficiently large versions of
TopSpin and that heuristics based on location-based costs vastly improve the state of the
art for the 17-Pancake puzzle. In our experiments additive heuristics did not improve the
state of the art for Rubik’s Cube. The following subsections describe the positive results in
detail. The negative results are discussed in Section 5.

4.2 TopSpin with Cost-Splitting

In the (N,K)-TopSpin puzzle (see Figure 6) there are N tiles (numbered 1, . . . , N) arranged
on a circular track, and two physical movements are possible: (1) the entire set of tiles may
be rotated around the track, and (2) a segment consisting of K adjacent tiles in the track
may be reversed. As in previous formulations of this puzzle as a state space (Felner, Zahavi,
Schaeffer, & Holte, 2005; Holte et al., 2005; Holte, Newton, Felner, Meshulam, & Furcy,
2004), we do not represent the first physical movement as an operator, but instead designate
one of the tiles (tile 1) as a reference tile with the goal being to get the other tiles in increasing
order starting from this tile (regardless of its position). The state space therefore has N
operators (numbered 1, . . . , N), with operator a reversing the segment of length K starting
at position a relative to the current position of tile 1. For certain combinations of N and K
all possible permutations can be generated from the standard goal state by these operators,
but in general the space consists of connected components and so not all states are reachable
(Chen & Skiena, 1996). In the experiments in this section, K = 4 and N is varied.

The sets of abstractions used in these experiments are described using a tuple written
as a1–a2–. . . –aM , indicating that the set contains M abstractions, with tiles 1 . . . (a1) dis-
tinguished in the first abstraction, tiles (a1 + 1) . . . (a1 + a2) distinguished in the second
abstraction, and so on. For example, 6-6-6 denotes a set of three abstractions in which the
distinguished tiles are (1 . . . 6), (7 . . . 12), and (13 . . . 18) respectively.

The experiments compare hadd, the additive use of a set of abstractions, with hmax, the
standard use of the same abstractions, in which, as described in Section 2, the full cost of
each state transition is counted in each abstraction and the heuristic returns the maximum
distance to goal returned by the different abstractions. Cost-splitting is used to define
operator costs in the abstract spaces for hadd. Because K = 4, each operator moves 4 tiles.
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Figure 6: The TopSpin puzzle.

If bi of these are distinguished tiles when operator op is applied to state si in abstraction i,
applying op to si has a primary cost of bi

4 in abstraction i.

In these experiments the heuristic defined by each abstraction is stored in a pattern
database (PDB). Each abstraction would normally be used to define its own PDB, so that
a set of M abstractions would require M PDBs. However, for TopSpin, if two (or more)
abstractions have the same number of distinguished tiles and the distinguished tiles are all
adjacent, one PDB can be used for all of them by suitably renaming the tiles before doing
the PDB lookup. For the 6-6-6 abstractions, for example, only one PDB is needed, but
three lookups would be done in it, one for each abstraction. Because the position of tile 1
is effectively fixed, this PDB is N times smaller than it would normally be. For example,
with N = 18, the PDB for the 6-6-6 abstractions contains 17 × 16 × . . . × 13 entries. The
memory needed for each entry in the hadd PDBs is twice the memory needed for an entry
in the hmax PDBs because of the need to represent fractional values.

We ran experiments for the values of N and sets of abstractions shown in the first two
columns of Table 1. Start states were generated by a random walk of 150 moves from the
goal state. There were 1000, 50 and 20 start states for N = 12, 16 and 18, respectively.
The average solution length for these start states is shown in the third column of Table 1.
The average number of nodes generated and the average CPU time (in seconds) for IDA∗

to solve the given start states is shown in the Nodes and Time columns for each of hmax
and hadd. The Nodes Ratio column gives the ratio of Nodes using hadd to Nodes using
hmax. A ratio less than one (highlighted in bold) indicates that hadd, the heuristic based on
additive abstractions with cost-splitting, is superior to hmax, the standard heuristic using
the same set of abstractions.

When N = 12 and N = 16 the best performance is achieved by hmax based on a pair
of abstractions each having N

2 distinguished tiles. As N increases the advantage of hmax
decreases and, when N = 18, hadd outperforms hmax for all abstractions used. Moreover,
even for the smaller values of N hadd outperforms hmax when a set of four abstractions
with N

4 distinguished tiles each is used. This is important because as N increases, memory
limitations will preclude using abstractions with N

2 distinguished tiles and the only option
will be to use more abstractions with fewer distinguished tiles each. The results in Table 1
show that hadd will be the method of choice in this situation.
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Average hadd based on
N Abs Solution

hmax cost-splitting Nodes
Length Nodes Time Nodes Time Ratio

12 6-6 9.138 14,821 0.05 53,460 0.16 3.60
12 4-4-4 9.138 269,974 1.10 346,446 1.33 1.28
12 3-3-3-3 9.138 1,762,262 8.16 1,388,183 6.44 0.78
16 8-8 14.040 1,361,042 3.42 2,137,740 4.74 1.57
16 4-4-4-4 14.040 4,494,414,929 13,575.00 251,946,069 851.00 0.056
18 9-9 17.000 38,646,344 165.42 21,285,298 91.76 0.55
18 6-6-6 17.000 18,438,031,512 108,155.00 879,249,695 4,713.00 0.04

Table 1: (N, 4)-TopSpin results using cost-splitting.

4.3 The Pancake Puzzle with Location-based Costs

In this section, we present the experimental results on the 17-Pancake puzzle using location-
based costs. The same notation as in the previous section is used to denote sets of abstrac-
tions, e.g. 5-6-6 denotes a set of three abstractions, with the first having tiles (0 . . . 4) as
its distinguished tiles, the second having tiles (5 . . . 10) as its distinguished tiles, and the
third having tiles (11 . . . 16) as its distinguished tiles. Also as before, the heuristic for each
abstraction is precomputed and stored in a pattern database (PDB). Unlike TopSpin, there
are no symmetries in the Pancake puzzle that enable different abstractions to make use
of the same PDB, so a set of M abstractions for the Pancake puzzle requires M different
PDBs.

Additive abstractions are defined using the location-based method with just one ref-
erence location, the leftmost position. This position was chosen because the tile in this
position changes whenever any operator is applied to any state in the original state space.
This means that every edge cost in the original space will be fully counted in some abstract
space as long as each tile is a distinguished tile in some abstraction. As before, we use hadd
to denote the heuristic defined by adding the values returned by the individual additive
abstractions.

Our first experiment compares IDA∗ using hadd with the best results known for the
17-Pancake puzzle (Zahavi, Felner, Holte, & Schaeffer, 2006) (shown in Table 2), which
were obtained using a single abstraction having the rightmost seven tiles (10–16) as its
distinguished tiles and an advanced search technique called Dual IDA∗ (DIDA∗).5 DIDA∗

is an extension of IDA∗ that exploits the fact that, when states are permutations of tiles
as in the Pancake puzzle, each state s has an easily computable “dual state” sd with the
special property that inverses of paths from s to the goal are paths from sd to the goal. If
paths and their inverses cost the same, DIDA∗ defines the heuristic value for state s as the
maximum of h(s) and h(sd), and sometimes will decide to search for a least-cost path from
sd to goal when it is looking for a path from s to goal.

5. In particular, DIDA∗ with the “jump if larger” (JIL) policy and the bidirectional pathmax method
(BPMX) to propagate the inconsistent heuristic values that arise during dual search. Zahavi et al.
(2006) provided more details. BPMX was first introduced by Felner et al. (2005).
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The results of this experiment are shown in the top three rows of Table 3. The Algo-
rithm column indicates the heuristic search algorithm. The Abs column shows the set of
abstractions used to generate heuristics. The Nodes column shows the average number of
nodes generated in solving 1000 randomly generated start states. These start states have
an average solution length of 15.77. The Time column gives the average number of CPU
seconds needed to solve these start states on an AMD Athlon(tm) 64 Processor 3700+ with
2.4 GHz clock rate and 1GB memory. The Memory column indicates the total size of each
set of PDBs.

Average h based on
N Algorithm Abs Solution a single large PDB

Length Nodes Time Memory
17 DIDA∗ rightmost-7 15.77 124,198,462 37.713 98,017,920

Table 2: The best results known for the 17-Pancake puzzle (Zahavi et al., 2006), which were
obtained using a single abstraction having the rightmost seven tiles (10−16) as its
distinguished tiles and an advanced search technique called Dual IDA∗ (DIDA∗).

Average hadd based on
N Algorithm Abs Solution Location-based Costs

Length Nodes Time Memory
17 IDA∗ 4-4-4-5 15.77 14,610,039 4.302 913,920
17 IDA∗ 5-6-6 15.77 1,064,108 0.342 18,564,000
17 IDA∗ 3-7-7 15.77 1,061,383 0.383 196,039,920
17 DIDA∗ 4-4-4-5 15.77 368,925 0.195 913,920
17 DIDA∗ 5-6-6 15.77 44,618 0.028 18,564,000
17 DIDA∗ 3-7-7 15.77 37,155 0.026 196,039,920

Table 3: 17-Pancake puzzle results using hadd based on location-based costs.

Clearly, the use of hadd based on location-based costs results in a very significant re-
duction in nodes generated compared to using a single large PDB, even when the latter
has the advantage of being used by a more sophisticated search algorithm. Note that the
total memory needed for the 4-4-4-5 PDBs is only one percent of the memory needed for
the rightmost-7 PDB, and yet IDA∗ with 4-4-4-5 generates 8.5 times fewer nodes than
DIDA∗with the rightmost-7 PDB. Getting excellent search performance from a very small
PDB is especially important in situations where the cost of computing the PDBs must be
taken into account in addition to the cost of problem-solving (Holte et al., 2005).

The memory requirements increase significantly when abstractions contain more distin-
guished tiles, but in this experiment the improvement of the running time does not increase
accordingly. For example, the 3-7-7 PDBs use ten times more memory than the 5-6-6 PDBs,
but the running time is almost the same. This is because the 5-6-6 PDBs are so accurate
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there is little room to improve them. The average heuristic value on the start states using
the 5-6-6 PDBs is 13.594, only 2.2 less than the actual average solution length. The average
heuristic value using the 3-7-7 PDBs is only slightly higher (13.628).

The last three rows in Table 3 show the results when hadd with location-based costs
is used in conjunction with DIDA∗. These results show that combining our additive ab-
stractions with state-of-the-art search techniques results in further significant reductions in
nodes generated and CPU time. For example, the 5-6-6 PDBs use only 1/5 of the memory
of the rightmost-7 PDB but reduce the number of nodes generated by DIDA∗ by a factor
of 2783 and the CPU time by a factor of 1347.

To compare hadd to hmax we ran plain IDA∗ with hmax on the same 1000 start states,
with a time limit for each start state ten times greater than the time needed to solve
the start state using hadd. With this time limit only 63 of the 1000 start states could
be solved with hmax using the 3-7-7 abstraction, only 5 could be solved with hmax using
the 5-6-6 abstraction, and only 3 could be solved with hmax using the 4-4-4-5 abstraction.
To determine if hadd’s superiority over hmax for location-based costs on this puzzle could
have been predicted using Lemma 3.6, we generated 100 million random 17-Pancake puzzle
states and tested how many satisfied the requirements of Lemma 3.6. Over 98% of the
states satisfied those requirements for the 3-7-7 abstraction, and over 99.8% of the states
satisfied its requirements for the 5-6-6 and 4-4-4-5 abstractions.

5. Negative Results

Not all of our experiments yielded positive results. Here we explore some trials where our
additive approaches did not perform as well. By examining some of these cases closely, we
shed light on the conditions which might indicate when these approaches will be useful.

5.1 TopSpin with Location-Based Costs

In this experiment, we used the 6-6-6 abstraction of (18, 4)-TopSpin as in Section 4.2 but
with location-based costs instead of cost-splitting. The primary cost of operator a, the
operator that reverses the segment consisting of locations a to a + 3 (modulo 18), is 1
in abstract space i if the tile in location a before the operator is applied is distinguished
according to abstraction ψi and 0 otherwise.

This definition of costs was disastrous, resulting in C∗i (ti, gi) = 0 for all abstract states
in all abstractions. In other words, in finding a least-cost path it was never necessary to
use operator a when there was a distinguished tile in location a. It was always possible
to move towards the goal by applying another operator, a′, with a primary cost of 0. To
illustrate how this is possible, consider state 0 4 5 6 3 2 1 of (7, 4)-TopSpin.
This state can be transformed into the goal in a single move: the operator that reverses the
four tiles starting with tile 3 produces the state 3 4 5 6 0 1 2 which is equal to
the goal state when it is cyclically shifted to put 0 into the leftmost position. With the 4-3
abstraction this move has a primary cost of 0 in the abstract space based on tiles 4...6, but
it would have a primary cost of 1 in the abstract space based on tiles 0...3 (because tile 3
is in the leftmost location changed by the operator). However the following sequence maps
tiles 0...3 to their goal locations and has a primary cost of 0 in this abstract space (because
a “don’t care” tile is always moved from the reference location):
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0 * * * 3 2 1

0 * * 1 2 3 *

0 * 3 2 1 * *

0 1 2 3 * * *

5.2 Rubik’s Cube

The success of cost-splitting on (18,4)-TopSpin suggested it might also provide an im-
proved heuristic for Rubik’s Cube, which can be viewed as a 3-dimensional version of
(20,8)-TopSpin. We used the standard method of partitioning the cubies to create three
abstractions, one based on the 8 corner cubies, and the others based on 6 edge cubies each.
The standard heuristic based on this partitioning, hmax, expanded approximately three
times fewer nodes than hadd based on this partitioning and primary costs defined by cost-
splitting. The result was similar whether the 24 symmetries of Rubik’s Cube were used to
define multiple heuristic lookups or not.

We believe the reason for cost-splitting working well for (18,4)-TopSpin but not Rubik’s
Cube is that an operator in Rubik’s Cube moves more cubies than the number of tiles
moved by an operator in (18,4)-TopSpin. To test if operators moving more tiles reduces the
effectiveness of cost-splitting we solved 1000 instances of (12,K)-TopSpin for various values
of K, all using the 3-3-3-3 abstraction. The results are shown in Table 4. The Nodes Ratio
column gives the ratio of Nodes using hadd to Nodes using hmax. A ratio less than one
(highlighted in bold) indicates that hadd is superior to hmax. The results clearly show that
hadd based on cost-splitting is superior to hmax for small K and steadily loses its advantage
as K increases. The same phenomenon can also be seen in Table 1, where increasing N
relative to K increases the effectiveness of additive heuristics based on cost-splitting.

hadd based on
K

hmax cost-splitting Nodes
Nodes Time Nodes Time Ratio

3 486,515 2.206 207,479 0.952 0.42
4 1,762,262 8.164 1,388,183 6.437 0.78
5 8,978 0.043 20,096 0.095 2.23
6 193,335,181 901.000 2,459,204,715 11,457.000 12.72

Table 4: (12,K)-TopSpin results using cost-splitting.

We also investigated location-based costs for Rubik’s Cube. The cubies were partitioned
into four groups, each containing three edge cubies and two corner cubies, and an abstraction
was defined using each group. Two diagonally opposite corner positions were used as the
reference locations (as noted above, each Rubik’s Cube operator changes exactly one of these
locations). The resulting hadd heuristic was so weak we could not solve random instances
of the puzzle with it.
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5.3 The Pancake Puzzle with Cost-Splitting

Table 5 compares hadd and hmax on the 13-Pancake puzzle when costs are defined using
cost-splitting. The memory is greater for hadd than hmax because the fractional entries that
cost-splitting produces require more bits per entry than the small integer values stored in
the hmax PDB. In terms of both run-time and number of nodes generated, hadd is inferior
to hmax for these costs, the opposite of what was seen in Section 4.3 using location-based
costs.

Average hadd based on
N Abs Solution

hmax costing-splitting
Length Nodes Time Nodes Time

13 6-7 11.791 166,479 0.0466 1,218,903 0.3622

Table 5: hadd vs. hmax on the 13-Pancake puzzle.

Cost-splitting, as we have defined it for the Pancake puzzle, adversely affects hadd be-
cause it enables each individual abstraction to get artificially low estimates of the cost of
solving its distinguished tiles by increasing the number of “don’t care” tiles that are moved.
For example, with cost-splitting the least-cost sequence of operators to get tile “0” into
its goal position from abstract state * 0 * * * is not the obvious single move of
reversing the first two positions. That move costs 1

2 , whereas the 2-move sequence that
reverses the entire state and then reverses the first four positions costs only 1

5 + 1
4 .

As a specific example, consider state 7 4 5 6 3 8 0 10 9 2 1 11 of
the 12-Pancake puzzle. Using the 6-6 abstractions, the minimum number of moves to get
tiles 0–5 into their goal positions is 8, and for 6–11 it is 7, where in each case we ignore the
final locations of the other tiles. Thus, hmax is 8. By contrast, hadd is 6.918, which is less
than even the smaller of the two numbers used to define hmax. The two move sequences
whose costs are added to compute hadd for this state each have slightly more moves than
the corresponding sequences on which hmax is based (10 and 9 compared to 8 and 7), but
involve more than twice as many “don’t care” tiles (45 and 44 compared to 11 and 17) and
so are less costly.

There is hope that this pathological situation can be detected, at least sometimes, by
inspecting the residual costs. If the residual costs are defined to be complementary to the
primary costs (i.e. Ri(πi) = C(π)− Ci(πi)), as we have done, then decreasing the primary
cost increases the residual cost. If the residual cost is sufficiently large in one of the abstract
spaces the conditions of Lemma 3.10 will be satisfied, signalling that the value returned by
hadd is provably too low. This is the subject of the next section, on “infeasibility”.

6. Infeasible Heuristic Values

This section describes a way to increase the heuristic values defined by additive abstractions
in some circumstances. The key to the approach is to identify “infeasible” values—ones that
cannot possibly be the optimal solution cost. Once identified the infeasible values can be
increased to give a better estimate of the solution cost. An example of infeasibility occurs
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with the Manhattan Distance (MD) heuristic for the sliding tile puzzle. It is well-known
that the parity of MD(t) is the same as the parity of the optimal solution cost for state t. If
some other heuristic for the sliding tile puzzle returns a value of the opposite parity, it can
safely be increased until it has the correct parity. This example relies on specific properties
of the MD heuristic and the puzzle. Lemma 3.10 gives a problem-independent method for
testing infeasibility, and that is what we will use.

To illustrate how infeasibility can be detected using Lemma 3.10 consider the example
in Figure 3. The solution to the abstract problem shown in the middle part of the figure
requires 9 distinguished moves, so C∗1 (A1) = 9. The abstract paths that solve the problem
with 9 distinguished moves require, at a minimum, 9 “don’t care” moves, so R∗1(A1) = 9.
A similar calculation for the abstract space on the right of the figure yields C∗2 (A2) = 5
and R∗2(A2) = 7. The value of hadd(A, g) is therefore C∗1 (A1) + C∗2 (A2) = 9 + 5 = 14.
This value is based on the assumption that there is a path in the original space that makes
C∗1 (A1) = 9 moves of tiles 1, 3, 5, and 7, and C∗2 (A2) = 5 moves of the other tiles. However,
the value of R∗1(A1) tells us that any path that uses only 9 moves of tiles 1, 3, 5, and 7 to
put them into their goal locations must make at least 9 moves of the other tiles, it cannot
possibly make just 5 moves. Therefore there does not exist a solution costing as little as
C∗1 (A1) + C∗2 (A2) = 14.

To illustrate the potential of this method for improving additive heuristics, Table 6
shows the average results of IDA∗ solving 1000 test instances of the 15-puzzle using two
different tile partitionings (shown in Figure 7) and costs defined by the method described
in Section 2.1. These additive heuristics have the same parity property as Manhattan
Distance, so when infeasibility is detected 2 can be added to the value. The hadd columns
show the average heuristic value of the 1000 start states. As can be seen infeasibility
checking increases the initial heuristic value by over 0.5 and reduces the number of nodes
generated and the CPU time by over a factor of 2. However, there is a space penalty for
this improvement, because the R∗ values must be stored in the pattern database in addition
to the normal C∗ values. This doubles the amount of memory required, and it is not clear
if storing R∗ is the best way to use this extra memory. This experiment merely shows that
infeasibility checking is one way to use extra memory to speed up search for some problems.

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 7: Different tile partitionings for the 15-puzzle (left: 5-5-5; right: 6-6-3).

Slightly stronger results were obtained for the (N, 4)-TopSpin puzzle with costs defined
by cost-splitting, as described in Section 4.2. The “No Infeasibility Check” columns in Table
7 are the same as the “hadd based on cost-splitting” columns of the corresponding rows in
Table 1. Comparing these to the “Infeasibility Check” columns shows that in most cases
infeasibility checking reduces the number of nodes generated and the CPU time by roughly
a factor of 2.
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Average hadd based on zero-one cost-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length hadd Nodes Time hadd Nodes Time
15 5-5-5 52.522 41.56 3,186,654 0.642 42.10 1,453,358 0.312
15 6-6-3 52.522 42.13 1,858,899 0.379 42.78 784,145 0.171

Table 6: The effect of infeasibility checking on the 15-puzzle.

When location-based costs are used with TopSpin infeasibility checking adds one to the
heuristic value of almost every state. However, this simply means that most states have a
heuristic value of 1 instead of 0 (recall the discussion in Section 5.1), which is still a very
poor heuristic.

Average hadd based on costing-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length Nodes Time Nodes Time
12 6-6 9.138 53,460 0.16 20,229 0.07
12 4-4-4 9.138 346,446 1.33 174,293 0.62
12 3-3-3-3 9.138 1,388,183 6.44 1,078,853 4.90
16 8-8 14.040 2,137,740 4.74 705,790 1.80
16 4-4-4-4 14.040 251,946,069 851.00 203,213,736 772.04
18 6-6-6 17.000 879,249,695 4,713.00 508,851,444 2,846.52

Table 7: The effect of infeasibility checking on (N, 4)-TopSpin using cost-splitting.

Infeasibility checking produces almost no benefit for the 17-Pancake puzzle with location-
based costs because the conditions of Lemma 3.10 are almost never satisfied. The exper-
iment discussed at the end of Section 4.3 showed that fewer than 2% of the states satisfy
the conditions of Lemma 3.10 for the 3-7-7 abstraction, and fewer than 0.2% of the states
satisfy the conditions of Lemma 3.10 for the 5-6-6 and 4-4-4-5 abstractions.

Infeasibility checking for the 13-Pancake puzzle with cost-splitting also produces very
little benefit, but for a different reason. For example, Table 8 shows the effect of infeasibility
checking on the 13-Pancake puzzle; the results shown are averages over 1000 start states.
Cost-splitting in this state space produces fractional edge costs that are multiples of 1

360360
(360360 is the Least Common Multiple of the integers from 1 to 13), and therefore if
infeasibility is detected the amount added is 1

360360 . But recall that hadd, with cost-splitting,
is defined as the ceiling of

∑k
i=1Ci(πi). The value of hadd will therefore be the same, whether

1
360360 is added or not, unless the sum of the Ci(πi) is exactly an integer. As Table 8 shows,
this does happen but only rarely.
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Average hadd based on costing-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length Nodes Time Nodes Time
13 6-7 11.791 1,218,903 0.3622 1,218,789 0.4453

Table 8: The effect of infeasibility checking on the 13-Pancake puzzle using cost-splitting.

7. Conclusions

In this paper we have presented a formal, general definition of additive abstractions that
removes the restrictions of most previous definitions, thereby enabling additive abstrac-
tions to be defined for any state space. We have proven that heuristics based on additive
abstractions are consistent as well as admissible. Our definition formalizes the intuitive
idea that abstractions will be additive provided the cost of each operator is divided among
the abstract spaces, and we have presented two specific, practical methods for defining ab-
stract costs, cost-splitting and location-based costs. These methods were applied to three
standard state spaces that did not have additive abstractions according to previous def-
initions: TopSpin, Rubik’s Cube, and the Pancake puzzle. Additive abstractions using
cost-splitting reduce search time substantially for (18,4)-TopSpin and additive abstractions
using location-based costs reduce search time for the 17-Pancake puzzle by three orders of
magnitude over the state of the art. We also report negative results, for example on Rubik’s
Cube, demonstrating that additive abstractions are not always superior to the standard,
maximum-based method for combining multiple abstractions.

A distinctive feature of our definition is that each edge in an abstract space has two costs
instead of just one. This was inspired by previous definitions treating “distinguished” moves
differently than “don’t care” moves in calculating least-cost abstract paths. Formalizing this
idea with two costs per edge has enabled us to develop a way of testing if the heuristic value
returned by additive abstractions is provably too low (“infeasible”). This test produced no
speedup when applied to the Pancake puzzle, but roughly halved the search time for the
15-puzzle and in most of our experiments with TopSpin.
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