
Noname manuscript No.
(will be inserted by the editor)

Diagnosis of Coordination Failures: A Matrix-Based
Approach

Meir Kalech
Department of Information Systems Engineering,
Ben-Gurion University of the Negev
Beer-Sheva, Israel

the date of receipt and acceptance should be inserted later

Abstract One of the key requirements in many multi-agent teams is that agents co-
ordinate specific aspects of their joint task. Unfortunately, this coordination may fail
due to intermittent faults in sensor readings, communication faults, etc. A key chal-
lenge in the model-based diagnosis of coordination failures is to represent a model of
the coordination among the agents in a way that allows efficient detection and diagno-
sis, based on observation of the agents involved. Previously developed mechanisms
are useful only for small groups of agents, since they represent the coordination with
binary constraints. This paper presents a model-based diagnosis (MBD) approach to
coordination failures in which non-binary constraints are allowed. This model has two
inherent advantages: (1) the model enables to address real problems, (2) the model
enables to address large groups by gathering multiple coordinations in one constraint.
To solve the diagnosis problem, we propose a matrix-based approach to represent the
basic building blocks of the MBD formalization. Theoretical and empirical evalua-
tions show that this representation is efficient for large-scale teams.

1 Introduction

With the increasing deployment of robotic and agent teams in complex, dynamic
settings, there is a growing need to find the means to respond to failures that occur
in multi-agent teams [24,12,9]. Agents in a team must be in agreement as to their
goals, plans and at least some of their beliefs. Agents may, however, disagree due
to uncertainty in sensing, communication faults, etc. Once a disagreement occurs,
there is a necessity to diagnose it and to find which of the agents has caused the
coordination failure. This type of diagnosis is known associal diagnosis, since it
focuses on finding the cause(s) of the failure to maintain social relationships, i.e.,
coordination failures.

In this paper we focus on a model-based diagnosis (MBD) approach for coor-
dination failures. Model-based diagnosis [20,2] relies on a model of the diagnosed

Address(es) of author(s) should be given

2

system, which is utilized to simulate the behavior of the system given the operational
context (typically, the system inputs). The resulting simulated behavior (typically,
outputs) are compared to the actual behavior to detect discrepancies indicating fail-
ures. The model can then be used to pinpoint possible failing components within the
system.

Previous work on model-based diagnosis for coordination failures [8,9] has mod-
eled the coordination between each pair of agents as a set of binary constraints be-
tween the agents’ states. This representation does thus not scale well with the group
size and with the number of states. On the contrary, non-binary constraints appear
quite frequently when modeling real problems [1]. Such problems can be naturally
defined by non-binary constraints between multiple agents. In addition, there are do-
mains like RoboCup Rescue [23] or ModSAF [24], in which it may be more efficient
to gather multiple coordinations (joint states) in one constraint rather than just one
coordination per constraint. For instance, in RoboCup Soccer, the players must coor-
dinate the attack and the defense [15]; this situation naturally requires coordination
among multiple attackers, multiple defenders and their goalkeepers with non-binary
constraints. In addition, by a single constraint, we can define the coordination among
part of the actions of a defender with partial set of the attacker’s actions and the
goalkeeper’s actions.

In this paper, we propose a model-based approach to address coordination setting.
We model the desired behavior of a team, i.e., the allowed coordination among the
agents. At run-time, the agents are observed, and by inferring their states we com-
pare them to the pre-defined desired coordination model and thus diagnose the faulty
agents. To solve the diagnosis problem, we propose a matrix-based representation
[11] for the fundamental building blocks of the diagnosis problem. This type of rep-
resentation has several benefits. First, it provides an easy and intuitive way to define
the coordination among teammates. Second, since we do not represent the relations
between teammates explicitly, but rather gather them compactly (joint coordination
in the same matrix structure), this approach is scalable in the number of agents and
states (unlike the approach proposed in [8]). Finally, the matrix-based representation
enables the use of the matrix operations and yields important information about the
agents. To summarize, the matrix representation enables an easy and efficient way to
diagnose coordination failures.

We also present a comprehensive set of experiments in two domains through thou-
sands of tests, to evaluate the matrix-based approach by comparing it to the binary
constraints approach presented in [8,9] (Section 8). We show that while the run-time
and the required space grow polynomially in the matrix-based approach, they grow
exponentially in the binary constraints approach. Also we show that in small teams
and when the number of coordinations constraints is low, the binary constraints is
faster and consumes less space.

The paper is organized as follows. In Section 2, we present the building blocks
of the coordination definition and observation modeling. Section 3 presents a model-
based diagnosis approach to coordination failures. Then, Section 4 presents our new
matrix-based approach representation for the diagnosis problem, and Section 5 uses
this approach to present a failure detection and diagnosis algorithm. An extension of
the coordination model for complex systems is given in Section 6. Section 7 discusses

3

an extension of the matrix-based approach to realistic domains. Section 8 empirically
evaluates the matrix-based approach, and Section 9 presents related work. The paper
concludes with a summary in Section 10.

2 Fundamental Objects

We adopt a model-based diagnosis approach to diagnose coordination failures. In the
model-based diagnosis of a single agent, the diagnoser uses a model of the agent
to generate expectations, which are then compared to the observations with the aim
to form diagnoses [20,2]. In model-based diagnosis of coordination among multi-
agents, the diagnoser models the required coordination among the agents [8] and
by observing the agents’ actions it diagnoses the actual deviation from the expected
coordination.

2.1 The Agent Model

The most fundamental entity is anagent. At any moment, an agent is found in a given
state. This is a logical, internal representation of the agent status, or belief at that very
moment. Throughout the paper, we will refer to the following sets:

(i) Let A be a set ofn agents,{a1, a2, ..., an}.
(ii) Let S be set ofm states,{s1, s2, ..., sm}.

For example, consider a management system for a shop consisting of the follow-
ing six agents (hereinafter this example will be referred as ”the shop ”):ANNY the
manager,BENNY the cashier, two sellers (CANNY and DANNY), ERNY the store-
keeper andFRENNYthe guard:

Ashop={ANNY, BENNY, CANNY , DANNY , ERNY, FRENNY}
Each agent may be in one of eight possible states:

Sshop={BREAK, IDLE, NEGOTIATE, SELL, INNERTALK , WATCH, GUARD,
EQUIP} 1

Having the two setsA andS, we can define the environment for the team:

Definition 1 (environment) LetA be a set of agents, and letS be a set of states. The
pair E = 〈A,S〉 is designated theenvironmentof A overS.

Now we can define the relation between an agent and a state. To define the basic
structures in terms of model-based diagnosis, we will use first-order logic:

Definition 2 (position) A positionfunction over an environment〈A,S〉 is a function
that positionsan agent in a particular state:γ : A → S. In terms of first order logic,
we define the predicateγ′(ai, sj) = true ⇔ γ(ai) = sj . We will use shorthand to
denoteγ′(ai, sj) assi

j .

1 Here we assume homogenous agents, i.e. they can all achieve the same tasks from the same states. We
extend the treatment to non-homogenous agents in Section 7.1.

4

Γ (a) =





{INNERTALK , WATCH} a = ANNY

{BREAK, SELL} a = BENNY{
BREAK, NEGOTIATE,

SELL, EQUIP

}
a ∈ {CANNY , DANNY}

{GUARD} a = ERNY

{BREAK, INNERTALK} a = FRENNY

Fig. 1 A superposition function.

As mentioned in the Introduction, one of the innovative aspects of this work is
the possibility to gather joint coordination in one structure. We can therefore present
a function to set multiple states for an agent. To this end, we define superposition:

Definition 3 (superposition) A superpositionfunction over some environmentE =
〈A, S〉 is a functionΓ : A → ‖S‖\∅, i.e., it positions an agent in asetof possible
states. Logically,Γ (ai) = S′i ⊆ S ⇒ (

∨
sj∈S′i si

j) ∧ (
∧

sj∈S\S′i ¬si
j).

For example, let us refer back to the agents and states presented in
the shop.γ(Erny) = Guard is a position (sErny

Guard), while Γ (Anny) =
{InnerTalk,Watch} is a superposition. In first order logic:

(sAnny
InnerTalk ∨ sAnny

Watch)∧
¬sAnny

Break ∧ ¬sAnny
Idle ∧ ¬sAnny

Negotiate ∧ ¬sAnny
Sell ∧ ¬sAnny

Guard ∧ ¬sAnny
Equip

Figure 1 presents the full superposition function for the shop.

2.2 A Model of Coordination

The multi-agent systems of interest to us are composed of several agents, which (by
design) must satisfy certain coordination constraints. We call this type of system a
teamto distinguish it from general multi-agent systems in which it is possible that no
coordination constraints exist.

The states of agents in a team are coordinated. We utilize a coordination primitive
to define the coordination constraints. The coordination states a non-binary constraint
between agents’ states such that these states must be taken jointly, at the same time.

Definition 4 (coordination (CRD)) A coordination is a constraint between agents’
positions, requiring them to be true concurrently. Logically, we represent this con-
straint as follows:CRD(s1

i , · · · , sn
k) ⇒ (s1

i∧, ...,∧sn
k).

For example, in the shop example above, a permitted coordination could be:

CRD(sANNY
WATCH, sBENNY

SELL , sCANNY
NEGOTIATE, s

DANNY
BREAK , sERNY

GUARD, sFRENNY
INNERTALK)

Unlike [8] who defined a binary constraint to represent a coordination only for
pairs of agents, we define the coordination among multiple agents by non-binary
constraints. In addition, we allow joint coordination concurrently, i.e., an agent can

5

be found in one of multiple states while other agents can be found in multiple states.
Fundamentally, we can represent the joint coordination as a conjunction statement of
coordination constraints, but it is more efficient to define them using superposition
(Definition 3). Joint coordination defines the relationship between the superpositions
of the agents.

Definition 5 (joint coordination) A joint coordination is a constraint between
agents’ superpositions which mandates that they must be true concurrently. We rep-
resent this constraint as follows:CRD(A, S) ⇒ ⋃

ai∈A(Γ (ai) = S′i ⊆ S). Logi-
cally:

CRD(A,S) ⇒
∧

ai∈A

((
∨

sj∈S′i
si

j) ∧ (
∧

sj∈S\S′i
¬si

j))

The corresponding joint coordination for the superposition presented in Figure 1
is (only the true literals for each agent are shown):

CRD(A,S) =(sAnny
InnerTalk ∨ sAnny

Watch)∧
(sBenny

Break ∨ sBenny
Sell)∧

(sCanny
Break ∨ sCanny

Negotiate ∨ sCanny
Sell ∨ sCanny

Equip)∧
(sDanny

Break ∨ sDanny
Negotiate ∨ sDanny

Sell ∨ sDanny
Equip)∧

(sErny
Guard)∧

(sFrenny
Break ∨ sFrenny

InnerTalk)

This representation allows multiple constraints to be defined between the agents
in the same structure. For example, whileANNY selects stateINNERTALK or WATCH,
BENNY must selectBREAK or SELL, and so on for all the agents.

2.3 A Model of Actions

At any given moment, each agent is in a givenstate. As a result of its state, each
agent takes someaction in order to fulfill its goal. An action is visible, i.e., others
can observe it. A state is not necessarily related to one particular action. Rather, it is
possible that one of a few given actions will be executed for the same state. In the
opposite direction, the same action might be taken at service of a few different states.
We will annotate the actions as a setB = {b1, b2, . . . , b`}.

For example, in the shop we define eight possible states of the agents and nine
actions that the agents can act upon. StateSELL, for example, is when an agent is
busy closing a deal with a customer. Positioned at this state, the agent can act in
one of the actionsGET (getting the product off the shelf),CARRY (carrying it to the
customer) orCOUNTER (sitting near the counter). On the other hand, an agent can
alsoCARRY or GET while positioned in stateEQUIP and not only when positioned
in SELL.

6

When designing a multi-agent system, the designer defines the actions that can
be taken by an agent when positioned in each state. This action is called thelatitude
of the agent.

Definition 6 (latitude) LetE = 〈A,S〉 be an environment, andB be a set of actions,
the latitudeof any agenta ∈ A is a functionλa : S → ‖B‖\∅.

This function maps, for any agenta ∈ A (rather than a certain agent as in defini-
tion 2), each state to a subset of actions that the agent is allowed to pick while being
in this state. The straight-forward inverse function ofλa, the functionλ−1

a , maps sub-
sets ofB to elements inS. While this function is not interesting, we do define a kind
of ‘inverse’ to the latitude function:

Definition 7 (interpretation) LetE = 〈A,S〉 be an environment, andB be a set of
actions, theinterpretation∀ai ∈ A is the functionΛai : B → ‖S‖\∅. In terms of first
order logic:

(Λai(bk) = S′ ⊆ S) ⇒ (
∨

sj∈S′
si

j) ∧ (
∧

sj∈S\S′
¬si

j)

Λai
of a given actionbk is the set of all states that have actionbk in their latitude.

Given an action of any agenta′, we interpret its action as one of a few given states,
using this function. Figure 2 presents the latitude and interpretation functions for
the shop example. In this example, the latitude and the interpretation functions are
the same for all the agents. For instance, an actionPhone taken by any agent, say
BENNY, implies that its states areBREAK or NEGOTIATE, meaning:

(sBenny
Break ∨ sBenny

Negotiate)∧
¬sBenny

Idle ∧ ¬sBenny
Sell ∧ ¬sBenny

InnerTalk ∧ ¬sBenny
Watch ∧ ¬sBenny

Guard ∧ ¬sBenny
Equip

This is the first-order representation of the interpretation presented in Figure 2(b):

Λai(Talk) ⇒ sai

Break ∨ sai

Negotiate ∨ sai

InnerTalk ∨ sai

Watch,

Λai(Phone) ⇒ sai

Break ∨ sai

Negotiate,

Λai(Stand) ⇒ sai

Break ∨ sai

Idle ∨ sai

Watch ∨ sai

Guard,

Λai(Walk) ⇒ sai

Watch ∨ sai

Guard ∨ sai

Equip,

Λai(Counter) ⇒ sai

Sell,

Λai(Put) ⇒ sai

Equip,

Λai(Get) ⇒ sai

Sell ∨ sai

Equip,

Λai(Carry) ⇒ sai

Sell ∨ sai

Equip,

Λai(Other) ⇒ sai

Break

Now that we have a definition of the joint coordination (Definition 5) and the
definition of the interpretation function (Definition 7), we can define the multi-agent
system description (MASD). MASD is a set of implications from the normality of

7

λai
(s) =





{ TALK , PHONE, STAND, OTHER} BREAK

{ STAND} IDLE

{ TALK , PHONE} NEGOTIATE

{ GET, CARRY, COUNTER} SELL

{ TALK} INNERTALK

{ STAND, WALK , TALK} WATCH

{ STAND, WALK} GUARD

{WALK , CARRY, PUT, GET} EQUIP

(a) A latitude function

Λai
(b) =





{
BREAK, NEGOTIATE,

INNERTALK , WATCH

}
TALK

{ BREAK, NEGOTIATE} PHONE{
BREAK, IDLE,

WATCH, GUARD

}
STAND

{WATCH, GUARD, EQUIP} WALK

{ SELL} COUNTER

{ EQUIP} PUT

{ SELL, EQUIP} GET

{ SELL, EQUIP} CARRY

{ BREAK} OTHER

(b) An interpretation function

Fig. 2 A latitude function for the example of the shop , and its interpretation function.

the agents to the correctness of the union of their superposition (based on the joint
coordination) and their interpreted states (based on the interpretation). To define the
normality of an agent, we define the predicateAB(ai), which represents the abnor-
mality of agentai (failing).

Definition 8 (multi-agent system description (MASD)) Given a set of agentsA =
{a1, a2, . . . , an}, a set of statesS = {s1, s2, . . . , sm} and a set of actionsB =
{b1, b2, . . . , b`}, MASD is a set:

MASD = {¬AB(ai) ⇒ (Γ (ai)
⋃

Λai(bk))
|ai ∈ A ∧ bk ∈ B}

This definition enforces the dependency between the perfection, or in terms of
model-based diagnosis, the normality of the agents and the correctness of their se-
lected states based on the joint coordination and the interpretation of their states by
their actions. An example for one element in the set MASD is:¬AB(Erny) ⇒
(Γ (Erny)

⋃
ΛErny(Stand)). The meaning is that ifErny is not abnormal then his

position should beGuard and his action should beStand.

2.4 A Model of Observation

Knowing the exact state of each agent at every time requires that the agent reports its
state any time the state is changed. This is usually infeasible, since it involves massive
communication resources. Our model-based diagnosis approach suggests observing
the action of each agent. We assume in this approach a centralized diagnosis process
in which a single agent observes the agents’ actions and computes the diagnosis.
Although this assumption is not feasible in all domains, it does hold true in several
domains like RoboCup Rescue [23] and ModSAF [24] and is well known assumption
in the literature [18,8]. Thus, we define the observation.

Definition 9 (agent-action) Let A = {a1, a2, . . . , an} be a set of agents andB =
{b1, b2, . . . , b`} a set of actions, anagent-actionis a functionω : A → B, that maps
each agent to a particular action.

8

Definition 10 (observation (OBS)) A set of agent-actions2:

OBS = {(ω(ai) = bk) |bk ∈ B ∧ ai ∈ A}

In the the shop example, the observation can be:

OBS = {ω(Anny) = Stand

ω(Benny) = Stand

ω(Canny) = Phone

ω(Danny) = Get

ω(Erny) = Carry

ω(Frenny) = Walk}

Lastly, each agent determines its current state as a result of pre-condition beliefs
[6,24,10]. The pre-condition beliefs are represented as Boolean variables depending
on the state variable. Given a set of Boolean variable beliefsF = {f1, f2, ..., fr}, we
can describe the relation between the beliefs and the selected state by the agent as a
many-to-one function betweenF and the state.

Definition 11 (beliefs to state)LetE = 〈A,S〉 be an environment andF be a set of
beliefs overS, thebeliefs to stateis the functionΥ : ||F || → S. whereΥ (∅) = 0.

We can describe this function in terms of first order logic with a horn clause
includes the true variable beliefs and the implication ofsi. AssumeΥ (F ′ ⊆ F) = si

then: ∧

fj∈F ′
fj ⇒ si

For instance, in the shop the pre-condition beliefs for agentai to take stateSELL

could be: (1) there is a new customer and (2) no other seller serves it and (3)ai is
available, formally:Customer ∧NoSeller ∧Available ⇒ SELL.

The definition of the beliefs to state function will be used to investigate the wrong
beliefs that caused the faulty agents to select the wrong states.

3 Diagnosis of Coordination Failures

A coordination failure may be as (a) result of faulty agent(s). Given aMASD (Def-
inition 8) it is possible to check if a failure exists and to generate the hypothesized
abnormal agents by checking whether the observed actions of the agents satisfy the
MASD.

Let us formalize the coordination diagnosis in terms of model based diagnosis:

2 Here we assume a certain observation. We extend it to uncertain observation in Section 7.3.

9

Definition 12 (Coordination Diagnosis Problem (CDP))Given
{A,MASD,OBS} where A is a team of agents{a1...an}, MASD is a
multi-agent system description defined overA (Definition 8), andOBS is the set of
the actions of the agents (Definition 10), then the coordination diagnosis problem
(CDP) arises when

MASD ∪ {¬AB(ai)|ai ∈ A} ∪OBS ` ⊥
Given aCDP , the goal of the coordination diagnosis process is to determine a

minimal set of abnormal agents whose selection and subsequent setting of theAB(.)
clause would eliminate the inconsistency. To this end, we define the consistency-
based coordination diagnosis:

Definition 13 (consistency-based coordination diagnosis (CBCD))A minimal set
∆ ⊆ A such that:

MASD
⋃
{AB(ai)|ai ∈ ∆}

⋃
{¬AB(ai)|ai ∈ A−∆}

⋃
OBS 0 ⊥

In our shop example, MASD is not consistent with the observation. A diagnosis
for this coordination failure can be:∆ = {Erny, Frenny}.

The goal now is to find∆. Consistency-based minimal diagnosis is an NP-hard
problem [2]. In particular, Kalech and Kaminka have proposed an algorithm to find
consistency-based coordination diagnosis [8]. However, in their paper, the coordina-
tion is represented by binary constraints between pairs of agents’ states. On the other
hand, in this paper, we represent a joint coordination setting (1) by a non-binary con-
straint between multi-agents, and (2) by joint coordination among multiple states of
each agent, rather than single independent state. These two qualities enable an effi-
cient representation of more realistic problems. Also they simplify the representation
so the diagnosis can be found even in linear time, in the best case. In the next section,
we put forward a matrix-based representation presented in [11], which is the basis for
an algorithm for coordination diagnosis in polynomial time.

4 Matrix-Based Representation

We will represent the models of the coordination, the actions and the observations by
matrices.

Let A = {a1, a2, . . . , an} be a set of agents andS = {s1, s2, . . . , sm} be a set of
states. We represent the joint coordination of the agents (Definition 5) by a Boolean
matrix of ordern×m.

Definition 14 (coordination matrix) LetE be the environment〈A, S〉. A coordina-
tion matrixC overE is a Boolean matrix of ordern×m (C ∈ Bn×m) provided:

cij =

{
1 si

j ∈ Γ (ai)

0 otherwise

Given a set of statesS = {s1, s2, . . . , sm} and a set of actionsB =
{b1, b2, . . . , b`}, we can represent the interpretation of the actions to the states (Defi-
nition 7) by a Boolean matrix of order`×m.

10

C6×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 1 1 0 0
BENNY 1 0 0 1 0 0 0 0
CANNY 1 0 1 1 0 0 0 1
DANNY 1 0 1 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 1 0 0 0 1 0 0 0




Fig. 3 Coordination matrix representation of the joint coordination of Figure 1.

I9×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

TALK 1 0 1 0 1 1 0 0
PHONE 1 0 1 0 0 0 0 0
STAND 1 1 0 0 0 1 1 0
WALK 0 0 0 0 0 1 1 1
COUNTER 0 0 0 1 0 0 0 0
PUT 0 0 0 0 0 0 0 1
GET 0 0 0 1 0 0 0 1
CARRY 0 0 0 1 0 0 0 1
OTHER 1 0 0 0 0 0 0 0




Fig. 4 Interpretation-matrix for the interpretation function presented in Figure 2(b).

Definition 15 (interpretation-matrix) LetS be a set of states andB a set of actions,
an interpretation-matrixI fromB toS is a Boolean matrix of order̀×m (I ∈ B`×m)
providing:

iij =

{
1 sj ∈ Λ(bi)

0 otherwise

Figure 4 presents the corresponding interpretation-matrix to the interpretation
function presented in Figure 2(b). The rows represent the actions, and the columns
represent the states. For example, the second row says that once an agent is observed
operatingPhone action, then its state is one of{BREAK, NEGOTIATE}.

The last building block that we define is the observation-matrix, which is parallel
to the observation Definition (10) in the model-based diagnosis formulation.

Definition 16 (observation-matrix) Let A = {a1, a2, . . . , an} be a set of agents
and B = {b1, b2, . . . , b`} a set of actions, anobservation-matrixΘ stands for the
observation matrix representation:

θij =

{
1 ω(ai) = bj

0 otherwise

Figure 5 presents an example of an observation matrix. The rows represent the
agents, and the columns the actions. Note that in every row there is exactly a single
‘1’, since every agent is observed in one action.

5 Diagnosis Procedure

A coordination failure occurs when the current agents’ positions (Definition 2) do not
match the expected coordination represented by the coordination matrix (Definition

11

Θ6×9 =




TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 0 0 0 0 1 0
FRENNY 0 0 0 1 0 0 0 0 0




Fig. 5 An observation matrix.

Ω6×8 = Θ · I =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 1 0 0 0 1
FRENNY 0 0 0 0 0 1 1 1




Fig. 6 Matrix given by the product between the observation-matrix and the interpretation-matrix.

14). Thus, if we know the current positions of the agents, we can say for certain
whether the system has a failure or not. However, the exact state of each agent is
known only to the agent itself and only its action can be observed by the diagnoser.
By observing its current action, we can hypothesize the states in which the agent may
be found. This may be done by using the formula:

Ω = Θ · I (1)

where,Θ is the observation matrix,I is the interpretation matrix, andΩ is ann×m
Boolean matrix. Each elementj in row i represents whether it is possible that agent
ai is now in statesj (‘1’ entry) or not (‘0’ entry). Note that each elementωi,j is the
sum of the products of thekth elements in rowi of Θ and columnj of I. Every
product is ‘1’ if both of thekth elements are ‘1’. Since each row inΘ has exactly one
element that is ‘1’, the value of each element inΩ will be at most ‘1’.

For example, Figure 6 presents the matrix given by the product between the
observation-matrix (given in Figure 5) and the interpretation-matrix (given in Fig-
ure 4). The results matrix leads us to conclude thatCANNY ’s state is eitherBREAK

or NEGOTIATE.
We can now explain the diagnosis algorithm. A failure is defined as a situation

wherein none of an agent’s possible assigned states (according toΩ) appears on the
‘allowed coordination’, designated asC (the coordination matrix). To examine pos-
sible matches, we operate a logical ‘and’ betweenC andΩ in an element-by-element
process to obtain the results matrix,Rn×m:

ri,j = ci,j ∧ ωi,j (2)

The results matrixR represents all the agents-assigned combinations that satisfy
C according to the interpreted states by the observation. The combinations repre-

12

sented byRi are all those for which agentai is found in one of the statessj . Thus,
if in each rowi in R there is at least one ‘1’ element, then there must be at least one
combination. In this case, we may assume that the agents will be found in one of
those joint states. If, however,R contains an all-zero row, then the assigned agents’
states are definitely forbidden. In this case, a failure alert is warranted, and the diag-
nosis is that the agents that are represented by these all-zero rows are abnormal. This
operation takes onlyO(nm) operations (counting the ‘1’s form elements on each of
R’s n rows).

In Algorithm 1 we present the diagnosis algorithm. First the diagnoser multiplies
the observation and the interpretation matrices intoΩ (line 2). Then it checks if there
is at least one ’1’ by ’and’ing the coordination matrixC and matrixΩ (lines 5–9). If
there is no ’1’ it adds the agent that is represented by that line index, to the diagnosis
set∆ (lines 10–11).

Algorithm 1 CALCULATE DIAGNOSIS
(input : coordination matrixCn×m,

observation-matrixΘn×`,
interpretation-matrixI`×m

output: consistency-based coordination diagnosis∆)

1: ∆ ← ∅
2: Ω = Θ · I
3: for all i ∈ {1, ..., n} do
4: flag ← NOT FOUND
5: for all j ∈ {1, ..., m} do
6: if ci,j ∧ ωi,j then
7: flag ← FOUND
8: end if
9: end for

10: if flag == NOT FOUND then
11: ∆ ← ∆ ∪ {ai}
12: end if
13: end for
14: return∆

Returning to the shop example, matrixR in Figure 7 is the result of an element-
by-element ‘and’ operation betweenC (Figure 3) andΩ (Figure 6). In this coordina-
tion matrix, the two bottom lines, representingERNY andFRENNY, are all-zero. No
desired combination can explain their actions. A failure has been detected, and the
diagnosis is∆ = {Erny, Frenny}.

Up to here we presented a diagnosis process that identifies the faulty agents. A
further step is to identify the wrong beliefs that have caused the agent to select its
states. We can easily infer these beliefs by operating the inverse functionΥ−1 (Def-
inition 11) over the hypothesized states of the abnormal agents appearing in matrix
Ω. In particular,Ω represents the hypothesized states of the agents given the obser-
vation. The inverse functionΥ−1 produces the beliefs on which the state depends.
Therefore, by operating this function on the hypothesized states of the faulty agents,

13

R = Ω ∧ C =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 0
FRENNY 0 0 0 0 0 0 0 0




Fig. 7 Matrix given by the Boolean ‘and’ operation between the coordination matrixC andΩ.

we can infer their hypothesized wrong beliefs. Formally,
⋃

i|ai∈∆ and j∈{1,2,...,m}
Υ−1(δij)

.
In the above example, the hypothesized states ofErny and Frenny are:

{Sell, Equip}, and{Watch, Guard,Equip}, correspondingly. Then, based on the
inverse function overSell: Υ−1(Sell) = {Customer, NoSeller, Available}, we
can infer that¬Customer ∨ ¬NoSeller ∨ ¬Available. We do the same for all the
other hypothesized states and infer the possible wrong beliefs.

To prove that the algorithm finds sound diagnoses, we will prove that an all-
zero row entails the abnormality of the agent represented by that row. To prove this
statement, we should first prove a logical lemma related to the consistency of the sets
given by the superposition and the interpretation functions. To simplify the proof,
we define a set of statesS = {s1, s2, . . . , sm}, and two subsetsS′, S” ⊆ S (S′ 6=
∅, S” 6= ∅), whereS′ represents the set given by the superposition function and
S” represents the set given by the interpretation function. We define the following
statements:

1. ST1 : (
∨

sj∈S′ sj) ∧ (
∧

sj∈S\S′ ¬sj)
2. ST2 : (

∨
sj∈S” sj) ∧ (

∧
sj∈S\S” ¬sj)

Lemma 1 S′
⋂

S” = ∅ ⇒ ST1 ∧ ST2 ` ⊥
Proof: Without loss of generality,ST1 ⇒ ∃sj ∈ S′ = true,
butS′

⋂
S” = ∅ ⇒ sj ∈ S\S”,

ST2 ⇒ sj = false.
Consequently,ST1 ∧ ST2 ` ⊥. 2

Theorem 1 Given a coordination matrix representation:∃i, 1 ≤ i ≤ n :∧m
j=1 rij = 0 ⇒ AB(ai)

Proof:
∃i, 1 ≤ i ≤ n :

∧m
j=1 rij = 0 ⇒ AB(ai) (soundness):

Without loss of generality, assume
∧m

j=1 r1j = 0 and prove thatAB(a1).∧m
j=1 r1j = 0 ⇒ ∀j : c1,j ∧ ω1,j = 0 (equation 2).

1. c1,j :

14

Θ
6×9

=




TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 1 0 0 0 0 0
FRENNY 1 0 0 0 0 0 0 0 0




Fig. 8 An observation matrix.

(a) c1,j = Γ (a1) = S′ ⊆ S (S′ 6= ∅) (Definition 14).
(b) Γ (a1) = S′ ⇒ ST1 = (

∨
sj∈S′ s

1
j) ∧ (

∧
sj∈S\S′ ¬s1

j) (Definition 3).
2. ω1,j :

(a) ω1,j = Λ(ω(a1)) = S” (S” 6= ∅) (equation 1, Definitions 15, 16).
(b) Λ(ω(a1)) = S” ⇒ ST2 = (

∨
sj∈S” s1

j) ∧ (
∧

sj∈S\S” ¬s1
j) (Definition 7).

By (a) and (b):∀j : c1,j ∧ ω1,j = 0 ⇒ S′
⋂

S” = ∅
By Lemma 1:⇒ ST1 ∧ ST2 ` ⊥
Consequently by Definition 8:AB(a1). 2

Although the algorithm finds a sound diagnosis, it does not guarantee com-
pleteness, meaning that it is possible that a row of zeros does not exist in matrixR
(@i, 1 ≤ i ≤ n :

∧m
j=1 rij = 0) but agentai is abnormal. To prove the incomplete-

ness, it suffices to present a counter example. Assume the coordination matrixC
as in Figure 3, but the actual states taken by the agents are{〈ANNY, INNERTALK 〉,
〈BENNY, BREAK〉,〈CANNY , BREAK〉, 〈DANNY , NEGOTIATE〉,〈ERNY, WATCH〉,
〈FRENNY, INNERTALK 〉}. Obviously, this case contains a coordination failure, since
agentERNY takes stateWATCH, thus AB(ERNY). Now, assume the observation
matrix shown in Figure 8, the product matrixΩ is presented in Figure 9 and the
results matrix in Figure 10. There is no row of zeros inR, although we set a case
whereAB(ERNY).

The reason for the incompleteness of the algorithm is the optimistic approach
we use, as explained below. To detect failures solely by observations, we define two
approaches of decision [12]. Theoptimistic approachassumes that as long as the
system is not proven to be faulty, no failure should be reported. Using this approach,
one can never get a false alarm. If it reports a failure, then a failure has certainly
occurred. The other approach is thepessimistic approach. This approach reports a
failure in the system, unless it is completely confident that no failure has occurred.
Using this approach, one can never get to a situation of an unreported failure. We have
adopted here an optimistic approach; thus in matrixΩ we inferall the possibilities of
the states that could be taken by the observed agents. By generating the results matrix
(R) we check whether at least one of the interpreted joint-states of the observed agents
is consistent with the desired coordination.

15

Ω
6×8

= Θ · I =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 1 1 1 1
FRENNY 1 0 1 0 1 1 0 0




Fig. 9 Matrix given by the product between the observation matrix and the interpretation matrix.

R = Ω ∧ C =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 0 0 0 0 0 1 0 0




Fig. 10 Matrix given by the Boolean ‘and’ operation between the desired coordinationC andΩ.

6 Complex Coordination

One of the advantages of the matrix representation is the possibility to define complex
coordinations [11]. A single coordination matrix may not suffice to represent a full
desired coordination. For instance, in the shop example, assumeERNY could replace
FRENNY in GUARD duty. However, the coordination matrix in Figure 3 does not
deal with this new relation. Moreover, we cannot add another state toC, simply
by changingc6,7 〈FRENNY, GUARD〉 from ‘0’ to ‘1’. This would allow undesired
combinations, such asERNY andFRENNY guarding simultaneously. In this section,
we will briefly present the complex coordinations and then focus on the diagnosis
aspects.

The operator used to join several coordination-matrices is the ‘or’ operation, no-
tated as ‘t ’. Operating t on two sets of coordinations:C1 t C2, means that the
set of the allowed combinations in the system is the union of the combinations de-
fined byC1 and the combinations defined byC2. This operator may be extended to
expressions of the kindC1 t C2 t · · · t Cq.

The second basic operator, ‘and’, is notated by a ‘u ’. The expressionC1 u C2

represents all the combinations that are found in the intersection of those that are de-
fined byC1 and those defined byC2. In other words, the agents must satisfy the
required coordination both inC1 and in C2. In fact, any expression of the form
C1 u C2, may be reduced to an equivalent coordination matrix that represents ex-
actly the same set of combinations. This is the coordination matrix that is the result
of a logical-and in an element-by-element fashion betweenC1 andC2

3.

3 Complex rules can be easily modeled in terms of model-based diagnosis by defining thet and u
operators with the regular logical operators∨ and∧ respectively.

16

We call this extended structure of combined coordination-matrices using opera-
tors arule. An example for a complex rule is:

C = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)

In [11] we have shown an algorithm that reduces a complex rule to a set of
coordination-matrices that are all combined by an ‘or’ operator. Thus we could detect
and diagnose failures by ‘anding’ each one of the coordination-matrices withΩ, and
checking all-zero rows in the results matrices. We will describe the diagnosis process
below, but first let us describe the process of the reduction of a complex rule to a set
of coordination-matrices.

The algorithm uses atree representationof the rule. The leaves are the rule’s
coordination-matrices, and the inner nodes are the operators. The algorithm traverses
the tree in a bottom-up fashion and unifies coordination-matrices, reducing its depth.
The tree’s depth is incrementally reduced until it consists of a simple ‘or’ expression
that can be easily calculated.

The first phase of the algorithm deals with the logical operators that construct the
rule. The tree reduction is accomplished throughimages. An image represents, for
each node in the tree, the possible combinations that are defined by the sub-tree whose
this node is its root. The image is, in fact, one or more encapsulated coordination-
matrices. However, an image logically represents one node. In this way, we work our
way up from the leaf nodes. The sub-tree of every node is replaced with an equivalent
image.

The translation of a sub-tree is quite simple. It begins, recursively, from the root
and follows depth–first until it reaches a leaf. On its way back, it replaces each node
with an image. The manner in which a node (sub-tree) is translated into an image
depends on the node type. Since the sub-tree replacement is done during the depth–
first backtracking, the node’s offspring are already guaranteed translation into images.
Let us introduce the types of image:

[coordination-matrices:] These are in fact the leaves of the tree; each coordina-
tion matrix node becomes an image which includes only one coordination matrix.

[‘Or’ nodes:] Each ‘or’ node is replaced by an image that includes all the
coordination-matrices from the node’s image offspring.

[‘And’ nodes:] An ‘and’ node that has a few image offspring performs according
to the distribution law. It becomes an image that contains all the ‘and’ combinations
between coordination-matrices from each of the offspring. In other words, if a node
hasb images offspring, each consisting ofcb different coordination-matrices, then
it will be replaced with an image that includes

∏b
i=1 cb coordination-matrices. Each

of those coordination-matrices is built of a different combination ofb coordination-
matrices, which are logically ‘and’ed in an element-by-element fashion.

Algorithm 2 presents the reduction procedure of a complex rule tree to one image
of coordination-matrices. The algorithm obtains the root of the tree and recursively
reduce the tree in a bottom-up manner as described above.

In order to demonstrate Algorithm 2, let us refer to the following rule on some
coordination-matricesC1 to C9:

C = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)

17

Algorithm 2 ReduceTree(nodeN).
1: if N is a leafthen
2: replace coordination matrix inN with an image that contains the coordination matrix
3: else
4: for all nodei in children ofN do
5: ReduceTree(i)
6: end for
7: end if
8: if N is an ‘OR’ nodethen
9: replace all offspring images by one imageI, whereI contains all the coordination-matrices in the

offspring images.
10: else ifN is an ‘AND’ nodethen
11: replace all offspring images by one imageI, whereI contains all the combinations between the

coordination-matrices in the offspring images.
12: end if

Its tree form is represented in Figure 11. The root has four offspring, two of which
(the first and the third) are simple coordination-matrices. The rightmost is an ‘and’
node with three simple, coordination-matrices offspring. The second one, is an ‘and’
node, with two offspring, themselves sub-trees, each consisting of an ‘or’ node and
two coordination-matrices offspring.

C1

C7 C9 C8

C3 C2 C5 C4

C6

Fig. 11 The Rule Tree forC.

We show how the algorithm reduces the tree, step by step. The first node is the
leftmost node. It is, in fact, just a simple coordination matrix. It is therefore replaced
by a simple image node that includes exactly this coordination matrix.

In the next stage, the same thing is done to the next leaf (the coordination matrix
C2) and then to its sibling,C3. Later, their parent node (of type ‘or’) becomes an
image that includes both images. The algorithm then continues the same process on
the next sub-tree, and creates an image consisting of(C4, C5) (Figure 12).

Next, we have an ‘and’ node, with two images offspring, each of which consists
of two coordination-matrices. As we have seen earlier, the ‘and’ node is replaced
by an image that includes all possible combinations of{C2, C3} and {C4, C5}.
These are the combinations(C2 u C4), (C2 u C5), (C3 u C4), (C3 u C5), for short,
C2?4, C2?5, C3?4, C3?5 (Figure 13). As we have already mentioned, ‘and’ing
coordination-matrices (u) is in fact identical to an element-by-element ‘and’.

18

C7 C9 C8

C6 C1

C2 C3 C4 C5

Fig. 12 Rule Tree Reduction – step 1.

C7 C9 C8

C6 C1 C2*4 C2*5 C3*4 C3*5

Fig. 13 Rule Tree Reduction – step 2.

C6 C7*8*9 C1 C2*4 C2*5 C3*4 C3*5

Fig. 14 Rule Tree Reduction – step 3.

Hence, each of the expressionsCx?y is one coordination matrix. During the next
stage, the node ofC6 is replaced by an image with only this coordination matrix. Then
the rightmost ‘and’ node, with three offspring (C7, C8, C9) is replaced with an image
of one coordination matrix, which is the result of ‘and’ing those three coordination-
matrices —C7?8?9 (Figure 14). At this stage, we reach the root ‘or’ node, which has
four images offspring.

After reducing the whole tree, we are left with one image. This image includes
multiple coordination-matrices. Thus, in fact, it may be treated as a collection of
coordination-matrices that are all combined by an ‘or’ (‘t ’) operator.

Returning to the diagnosis problem, to find a diagnosis, we should com-
pare by ‘and’ing operator the product matrix (of the interpretation-matrix and the
observation-matrix (Ω)), with the coordination matrix. TestingΩ against a rule
C = C1 t C2 t · · · t Cq is simple. An agent is diagnosed as abnormal if the
row that represents it in the result matrices is assigned only by zeros. One must per-
form the all-zero row test for each one of theq coordination-matrices and then check
whether everyRk has an all-zero row. Due to the nature of the operator ‘t ’, it is

19

C1 =




s1 s2 s3 s4

a1 1 0 1 0
a2 1 1 0 0
a3 0 0 0 1
a4 0 1 0 0


 C2 =




s1 s2 s3 s4

a1 1 0 0 0
a2 0 1 1 0
a3 1 0 0 1
a4 0 1 0 0


 C3 =




s1 s2 s3 s4

a1 0 1 0 0
a2 0 1 0 1
a3 1 1 0 0
a4 0 1 0 0




Fig. 15 Coordination matrices in a rule ofC = C1 t C2 t C3.

C3 =




s1 s2 s3 s4

a1 1 0 0 1
a2 0 0 0 1
a3 1 0 0 0
a4 0 1 0 0




Fig. 16 Product matrixΩ.

sufficient to verify thatat least onesuchRk hasno all-zero row so as to conclude
that the agents have no coordination failure. If all the result matrices (Rk) contain
all-zero rows, then we can compute the diagnosis by going over the result matrices
and for each of them finding the abnormal agents by recognizing the all-zero rows.
Finally, we prune the non-minimal diagnoses (a diagnosis of which a proper subset
is a diagnosis).

Algorithm 3 presents the diagnosis process. The algorithm goes over the
coordination-matrices inC and for each one it computes the diagnosis inferred by
the comparison ofΩ andCi (lines 4–15). If the diagnosis is empty, then the whole
diagnosis∆ is empty, since one coordination matrix must be satisfied in order to sat-
isfy the coordination rule due to the nature of the ’or’ operator (lines 16–18). If the
diagnosis∆′ is not empty, then we add it to the diagnoses set∆ under the restriction
that it is not a superset of an existing diagnosis (lines 25–31). If it is a subset of an
existing diagnosis, it will be added to∆, and the existing diagnosis will be removed
(lines 22–24).

For instance, assume the ruleC = C1 t C2 t C3, where the coordination ma-
trices are presented in Figure 15. In addition, assume that the product matrixΩ is as
presented in Figure 16. There are three diagnoses, exactly the number of the coordina-
tion matrices. By operatingΩ∧C1 we generateR1. We can infer that∆1 = {a2, a3},
since these agents have all-zero rows. In the same way, we can infer the diagnoses
∆2 = {a2} and∆3 = {a1}. Finally, the minimal diagnoses are∆1 = {a2} and
∆2 = {a1}.

7 Extending the Matrix-Based Model

The model presented so far assumes a homogenous team, a static state model and
a certain observation. In this chapter we propose to generalize the model to address
more realistic cases for which the above assumptions do not necessarily exist.

20

Algorithm 3 CALCULATE DIAGNOSIS WITH RULE
(input : ruleC,

observation-matrixΘn×`,
interpretation-matrixI`×m

output: consistency-based coordination diagnosis∆)

1: ∆ ← ∅
2: Ω = Θ · I
3: for all Cn×m

k ∈ C do
4: ∆′ ← ∅
5: for all i ∈ {1, ..., n} do
6: flag ← NOT FOUND
7: for all j ∈ {1, ..., m} do
8: if ci,j ∧ ωi,j then
9: flag ← FOUND

10: end if
11: end for
12: if flag == NOT FOUND then
13: ∆′ ← ∆′ ∪ {ai}
14: end if
15: end for
16: if ∆′ = ∅ then
17: ∆ ← ∅
18: return∆
19: else
20: superset ← FALSE
21: for ∆i ∈ ∆ do
22: if ∆′ ⊂ ∆i then
23: ∆ ← ∆ ∪ {∆′}
24: ∆ ← ∆ \∆i

25: else if∆′ ⊇ ∆i then
26: superset ← TRUE
27: break
28: end if
29: end for
30: if superset = FALSE then
31: ∆ ← ∆ ∪ {∆′}
32: end if
33: end if
34: end for
35: return∆

7.1 Non-Homogenous Team

In Section 2.1, we presented a model in which the agents all have the same set of
states and the coordination model is given to the whole team. However, in real-world
cases this assumption is not always true. It is possible that the team is divided into
sub-teams (not necessarily disjoint sub-teams) where each sub-team has its own co-
ordination model. Moreover, the agents in the team could have only a sub-set of com-
mon states where the other states differ from one sub-team to another. For instance,
inspired by the ModSAF domain [24], assume a team composed of helicopters, tanks
and soldiers. It is possible that they all have a subset of the same states: ”go in forma-
tion”, ”stay” and ”shoot”, but different other states. Helicopters have the states ”fly”,
”take off” and ”land”, tanks have the states ”get on the ramp” and ”get off the ramp”,

21

C1 =

(s1 s2

a1 1 0
a2 0 1

)
t C2 =

(s3 s4

a1 1 1
a2 1 0

)

Fig. 17 Partial states coordination matrices.

C1 =

(s1 s2 s3 s4

a1 1 0 0 0
a2 0 1 0 0

)
t C2 =

(s1 s2 s3 s4

a1 0 0 1 1
a2 0 0 1 0

)

Fig. 18 Complete states coordination matrices.

C1 =

(s1 s2

a1 1 0
a2 0 1

)
u C2 =

(s1 s2

a3 1 1
a4 1 0

)

Fig. 19 Partial agents coordination matrices.

C1 =




s1 s2

a1 1 0
a2 0 1
a3 1 1
a4 1 1


 u C2 =




s1 s2

a1 1 1
a2 1 1
a3 1 1
a4 1 0


 =




s1 s2

a1 1 0
a2 0 1
a3 1 1
a4 1 0




Fig. 20 Complete agents coordination matrices.

and soldiers have ”run” and ”hide”. In this case, it may be possible that the required
coordination states for the whole team include only the common states, in addition to
local sub-teams’ coordination states.

To use our matrix-based model and diagnosis procedure for non-homogenous
teams, we can transform the partial coordination matrices for the sub-teams to a single
global matrix for the whole team. We can do this by using the ‘or’ and ‘and’ operators
that we presented in Section 6.

There are two scenarios for a partial information matrix. In the first one, the co-
ordination matrix represents the whole team but only asub-set of the states. In the
second scenario, the coordination matrix represents the whole states but only asub-
set of the team. In both cases, we can complete the missing state-columns or the
rows of the agents with a column/row vector of ones or zeros. The completion will
be determined on the basis of the relation between the partial matrices. If the rule
between the matrices is ‘or’, then the completion is a column/row vector of zeros,
and if the rule is ‘and’, then the completion is a column/row vector of ones.

For instance, given a teamA = {a1, a2, a3, a4} and a set of global statesS =
{s1, s2, s3, s4}. Figure 18 presents the extended matrices for the partial matrices in
Figure 17 in case that the rule isC1 t C2. In case that the rule isC1 u C2, Figure
20 presents the extended matrices for the partial matrices in Figure 19 and the result
matrix.

So far, we have described how to represent partial information matrices in
global matrices. However, for diagnosis purposes, this conversion is not a neces-
sity. To find a diagnosis, we compare by the ‘and’ing operator the product matrix
of the interpretation-matrix and the observation-matrix (Ω) against the coordination-

22

Ω =

(s1 s2 s3 s4

a1 1 0 0 0
a2 0 0 1 0

)

Fig. 21 A product matrix.

matrices. In Section 3, we assumed that both matrices have the same size (the rows
represent the agents and the columns the states). We can easily extend the ‘and’ op-
eration to partial matrices by operating the ‘and’ only on the rows and columns that
appear in the partial coordination matrix. For instance, by comparing the product ma-
trix presented in Figure 21 to the partial coordination matrices in Figure 17, we can
actually compare the first two columns in Figure 21, which represent the statess1

ands2 with the left partial matrix in Figure 17. This ‘and’ comparison leads to the
diagnosis∆1 = {a2}. In the same way, we compare the last two columns in Figure
21, which represent the statess3 ands4 with the right partial matrix in Figure 17.
This ‘and’ comparison leads to the diagnosis∆2 = {a1}.

7.2 Dynamic States

So far, we have assumed that the joint coordination (Definition 5) completely de-
scribes the required coordination among the agents. However, in many real-world
domains the required coordination changes with time. Here, we propose the basic
definitions for the evolution of the agents’ states along time.

The set of states to which an agent might position itself at timet + 1 depends on
its position at timet. The transition allows the agent the latitude of choosing certain
states to which to move. For example, in the shop system, we may define such rules
as:

– An agent maySELL only afterNEGOTIATE.
– An IDLE state will not take place after aBREAK.

The transition is thus a function that maps each state to a set of states, or in other
words, to a superposition:

Definition 17 (Transition function) Let S = 〈A, S,B, λ, ϕ〉 be some system. A
transitionoverE is a function

τ : S → ‖S‖.
Logically,τ(si) = S′ ⊆ S ⇒ (

∨
sj∈S′ sj) ∧ (

∧
sj∈S\S′ ¬sj)

In fact, each such rule can be broken down into the most fundamental rules: Either
statesj can be chosen aftersi (that is,sj ∈ τ(si)) or it cannot (sj /∈ τ(si)).

We may define as many asm2 binary rules of this kind; from each state to each
state. Algebraically, we represent the transition function using atransition matrix:

23

M
8×8

=




from\to BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

BREAK 1 0 1 0 0 1 1 1
IDLE 1 1 1 0 0 1 1 1
NEGOTIATE 1 1 1 1 1 1 1 1
SELL 1 1 1 1 0 1 1 1
INNERTALK 1 1 1 0 1 1 1 1
WATCH 1 1 1 0 1 1 1 1
GUARD 1 1 1 0 1 1 1 1
EQUIP 1 1 1 0 1 1 1 1




Fig. 22 State transition matrix.

Definition 18 (Transition matrix) Let S = 〈A, S,B, λ, ϕ〉 be some system with a
transition functionτ defined on it. Thetransition matrixis a Boolean matrixM of
orderm×m (wherem = |S|), such that

mij = 1 ⇐⇒ sj ∈ τ(si).

In other words, ifmij is 1, it means that statesj can followsi. If it is 0, thensj

can never be chosen aftersi.

Thus, each rowi in this matrix actually representsτ(i). An example of such atran-
sition matrixis given in Figure 22. This matrix, in the shop system, includes the two
rules presented above, as well as a few others. For instance, in this matrix,m1,2 = 0,
which means thats2 (IDLE) can never be taken afters1 (BREAK).

With the transition matrix in hand, we can predict the states that an agent might
choose. If we know that an agent is currently positioned in statesi, then its next
position must be inτ(si). We do not always know the exact position of the agent.
Instead, we assume it is superpositioned in one of a few possible states. Thus, if the
agent is superpositioned in eithersi or sj , then its next position must be either in
τ(si) or in τ(sj). In other words, it must be inτ(si) ∪ τ(sj). In the general case, if,
at timet, the agent is superpositioned in some set of statesSt ⊆ S, then its position
at timet + 1 must be in ⋃

sk∈St

τ(sk).

Obviously, we can extend the state transition function to consider time; the states
transition will then depend both on the current coordination and the time.

7.3 Uncertain Observations

In Section 2.4, we assumed a certain observation by defining the observation function
ω(ai) = bk (Definition 10). This assumption determines that the diagnoser observes
the agents’ actions with certainty. However, in real-world domains, the diagnoser
could observe the agents with uncertainty. Our model can easily support uncertainty
observations by changing the observation function toω(ai) = B′ ⊆ B whereB
is a set of actions. Thus, the observer could observe an agent with uncertainty and
determine multiple options for its action.

24

Ψ3×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

SELLER 0 0 0 1 1 1 0 0
STOCKKEEPER 1 0 0 0 0 0 0 1
GUARD 0 1 0 0 0 0 1 0




Fig. 23 Coordination roles matrix.

The meaning of this change in the matrix-based representation appears in the
observation matrix (Definition 16). Instead of enabling only a single ’1’ in the ob-
servation matrix in each agent row, with the uncertainty extension multiple ’1’s are
possible. In the diagnosis process, the diagnoser infers the possible states in which
the observed agent is found using the formulaΩ = Θ · I, whereΘ is the observa-
tion matrix andI is the interpretation matrix. Extending the uncertainty observation
increases the possible inferring states. Although in this case we are likely to miss fail-
ures, we still guarantee soundness by keeping the property of the optimistic policy,
i.e., reporting no false-alarms.

7.4 A Model of Roles

The model presented so far represents the coordination among the agents. However,
in many situations the designer is interested in the coordination among the roles in
the team rather than the specific agents. For instance, in the ModSAF domain the co-
ordination is defined between the scouter role and the attacker role: while an attacker
is waiting, a scouter must fly. In the shop example, a designer may want to define the
coordination among the seller, the stockkeeper and the guard.

To address coordination among roles, we define a setR as a set of roles:R =
{r1, ..., ru}, and the coordination roles matrixΨ as a coordination among the roles
rather than among the agents (Definition 14). Figure 23 demonstrates a coordination
roles matrix amongR = {Seller, Stockkeeper,Guard}, representing the allowed
states in each role. ’1’ in cellψij represents the allowed statesj when an agent is
assigned the roleri.

The agents in the team are assigned to roles. Each agent is assigned to one role
but a role could be shared by multiple agents. Following the matrix-based approach,
we represent the role assignments by a Boolean matrix ofn× u.

Definition 19 (roles assignment matrix) Let R be a set of roles andA a set of
agents, aroles assignment matrixΥ fromA to R is a Boolean matrix of ordern× u
(Υ ∈ Bn×u) providing:

υij =

{
1 rj = µ(ai)

0 otherwise

where the functionµ(ai) returns the role assignmentrj of agentai.

We can infer the coordination matrix among the agents by multiplying the matri-
cesΥ andΨ , since every row inΥ points out the role of the agent represented by that

25

Υ6×3 =




SELLER STOCKKEEPER GUARD

ANNY 1 0 0
BENNY 1 0 0
CANNY 0 1 0
DANNY 1 0 0
ERNY 0 0 1
FRENNY 0 1 0




Fig. 24 Roles assignment matrix.

C6×8 = Υ6×3Ψ̇3×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 1 1 1 0 0
BENNY 0 0 0 1 1 1 0 0
CANNY 1 0 0 0 0 0 0 1
DANNY 0 0 1 1 1 0 0 0
ERNY 0 1 0 0 0 0 1 0
FRENNY 1 0 0 0 0 0 0 1




Fig. 25 Coordination matrix as a result of the product ofΥ andΨ .

row, while the allowed states by assigning to that role are revealed by matrixΨ . Given
the roles assignment matrix presented in Figure 24 and the coordination roles matrix
presented in Figure 23, the appropriate coordination matrix is presented in Figure 25.

Once we have inferred the coordination matrix, we can continue the diagnosis
process (Algorithm 1) as presented in Section 3, by observing the actions of the
agents by hypothesizing their states and by comparing the hypothesized states to the
coordination matrix.

8 Evaluation

To examine the efficiency of the matrix-based approach, we compare it to the coordi-
nation constraints graph approach presented by Kalech and Kaminka [8,9] (here-
inafter: ”binary constraints”). Other diagnoses of multi-agent systems algorithms
(presented in detail in Section 9) do not focus on coordination among agents and
so they do not address coordination failures but rather failures that occur in plans of
multi-agent systems [22,7,18,19,17]. Other works [14,3,5] present a failure-based
approach, where the failures and their associated diagnoses are modeled in advance.
This approach, in contrast to our approach, is expected to diagnose efficiently all the
failures that are modeled, but those failures that are not modeled in advance will be
not even be detected. Since the goal of the paper is to examine the efficiency of our
new matrix-based approach, in terms of runtime and space, we propose in this sec-
tion, to present theoretical and empirical evaluations of the matrix-based approach
vis-à-vis to the binary constraints approach.

26

8.1 Binary Constraints Approach

In a binary constraints approach, the coordination between every pair of agents is
modeled by a set of binary constraints between the agents’ states. The binary con-
straints are modeled in a coordination graph, where the nodes represent the states of
the agents and the edges represent the coordination constraints between the nodes.
Thus, to diagnose the coordination failures, the diagnoser observes the current states
of the agents and compares them to each one of the solutions of the binary constraints
graph (a vector of assignments that satisfies all constraints). A diagnosis is a set of
agents whose current states’ assignments deviate from a solution (for details see [8,
9]).

For instance, assume the binary constraints graph presented in Figure 27. There
are two solutions:solution1 = {a1 = s5, a2 = s1, a3 = s1, a4 = s4} and
solution2 = {a1 = s5, a2 = s1, a3 = s3, a4 = s4}. Assume that the current
assignments set of the agents arecurrent = {a1 = s5, a2 = s1, a3 = s1, a4 = s3},
then by comparing this set tosolution1 the diagnosis is∆1 = {a4}, and by com-
paring it tosolution2 the diagnosis is∆2 = {a3, a4}, and the minimal diagnosis is
∆1.

8.2 Complexity Analysis

The space complexity of the matrix-based approach depends on the number of agents
(n), the number of states (m) and the number of coordination matrices in the complex
rule(q)4. We model the coordination as a set ofq matrices of a size ofn × m; thus
the space complexity isO(qnm). The run-time complexity is affected by the space
complexity, since in the diagnosis process the diagnoser compares each one of theq
matrices to the product matrix of the interpretation-matrix and the observation-matrix
(Ω). Thus, the run-time complexity isO(qnm). This complexity is the same for the
best case as well as for the worst case.

The worst-case space complexity of the binary constraints approach isO(mn),
which represents the case of a full binary constraint graph. The worst-case complex-
ity of the diagnosis process is the same as finding the whole solutions space in a
constraints satisfaction problem (O(mn)).

To compare these approaches specifically on the same test settings, we propose
a conversion method from a matrix-based setting to a binary constraints graph. A
cell cij in the coordination matrix is represented by a node in the binary constraints
coordination graph. We mark all the nodes that are assigned by ’1’ in the matrix and
add edges between all the marked nodes. For instance, the coordination matrix in
Figure 26 is represented by the binary constraints graph in Figure 27. All the state
nodes assigned by ’1’ in the table are connected in the graph.

To analyze the expected number of binary constraints, assume a uniform distri-
butionp that an arbitrary statesj of agentai is assigned by ’1’. Thenq(pm)n is the
expected number of binary constraints. The size of theq matrices, on the other hand,
is fixed toqnm independent of the probability of the assignment of ’1’ (r).

4 In this analysis we assume a complex rule contains onlyt operator.

27




s1 s2 s3 s4 s5

a1 0 0 0 0 1
a2 1 0 0 0 0
a3 1 0 1 0 0
a4 0 0 0 1 0




Fig. 26 Coordination matrix.

a1

s1 s2 s3 s4 s5
 s1

s2
s3
s4

s5

s1

s2
s3
s4

s4
s1 s2 s3 s4 s5

a4 a2

a3

Fig. 27 Coordination graph.

8.3 Empirical Evaluation

The empirical evaluation will compare the matrix-based to the binary constraints ap-
proaches. Both approaches compare the model of the allowed coordination with the
actual states; also, both approaches infer, by the observation, the hypothesized cur-
rent states in the same way. Therefore, the two approaches actually both compute
the same diagnoses. They differ in the way they represent the allowed coordination
among the agents, and thus the runtime and space of the comparison process between
the allowed coordination and the actual states may be different as a result of the di-
agnosis approach, depending on the size of the input. Thus the goal of the empirical
evaluation is to evaluate the runtime and the space complexity of our matrix-based
approach in comparison with the binary constraints approach.

In the following subsections we will empirically examine the performance of the
methods by means of thousands of tests in two domains (Sections 8.3.1 and 8.3.2).

8.3.1 Simulation of a Real-World Application

Previous works [12,11] have described the use of diagnosis algorithms in a simu-
lation of a real-world application (ModSAF), which is a virtual environment con-
taining teams of synthetic helicopter pilots in two roles (attackers and scouts). We
recreated part of the the coordination rules among the agents in this domain and de-
termined their states by simulating failures in teams much larger than those originally
described.

Tambe [24] presented the STEAM model to represent two agent roles, attacker
and scouter, in the ModSAF domain. Their states and the required coordination
among the states are represented in a hierarchical behavior (in our terms ”state”)
tree (for more details on this representation see [24]). Here we focus only on the co-
ordination among the agents rather than on the way an agent selects its states. Thus,
by converting part of the coordination states to the matrix-based representation, we
represent the coordination states in two matrices (Figure 28). These matrices repre-
sent the following constraints: (1) While an attacker is flying, a scouter can either

28

C1 =

(Fly Wait

Attacker 1 0
Scouter 1 1

)
t C2 =

(Fly Wait

Attacker 0 1
Scouter 1 0

)

Fig. 28 Partial states coordination matrices in the ModSAF domain.

fly or wait. (2) While an attacker is waiting, a scouter must fly. A team composed of
attackers and scouters should satisfy one of these constraints.

We performed experiments in which we varied the number of synthetic pilots
from 2 to 19. For each team size (n agents), we ran three sets of tests: (1) one attacker
andn − 1 scouters; (2)n − 1 attackers and one scouter; (3)n/2 attackers andn/2
scouters. Overall, for each one of the three sets we tested 50 failure cases, varying the
states selected by the agents. For each single test we measured (1) the run-time by
counting the number of atomic instructions and (2) the required space to model the
coordination and to execute the diagnosis process.

�
���
� �
���
� �
���
� �
���

�	

 �
�
 �
�
 �

 �
�
 ��
�

 �
�
�

�
�
�

��
��

��������� �
 �� !"�#�"$

�
�
���
� �
���
� �
���
� �
���

�%�&� �%'%(*)%+ ���,���-�.�-���,� �/� � � ' � (�) � +0 �
�

�	

 �
�
 �
�
 �

 �
�
 ��
�

 �
�
�

�
�
�

��
��

1�2�354�6 7 8

��������� �
 �� !"�#�"$

Fig. 29 ModSAF: Run-time over number of agents.

�����
� �����
� �����
� �����
� �����
� �����
� �����
� �����

� 	

�
�
 �
��

��������� �
��� �������

�
�����
� �����
� �����
� �����
� �����
� �����
� �����
� �����

��� � �"!�#"$"% � � ���&���'���&� �(� � � ! � # � $ � %

� 	

�
�
 �
��

)�*�+-,/. 0 1

��������� �
��� �������

Fig. 30 ModSAF: Space over number of agents.

29

Figures 29 and 30 present the results of the runtime and the space, respectively,
in the ModSAF domain. These results are surprising, since this real-world model
represents a very small setting, containing only two states. In both Figures we can see
that the binary constraints approach grows exponentially with the number of agents,
while the matrix-based algorithm scales moderately. We can explain the fast growth
of the binary constraints algorithm by the amount of constraints required to represent
the coordination in matrixC1. This amount grows exponentially with the number of
scouters in the team.

8.3.2 A Synthetic Domain

The conclusions in the previous section have led us to ask to what degree the results
of the approaches depend on the characteristics of the ModSAF domain, i.e., a low
number states (two) and matrices (two)? In addition, the coordination constraints in
the ModSAF domain are fixed. How does the number of coordination constraints
affect the diagnosis approach?

To address these questions, we created an artificial domain, in which we varied
four parameters:

1. The size of the agent groups (2-11).
2. The number of states (2-11).
3. The density of the coordination matrix. This parameter determines the number of

coordination constraints in the group (number of ’1’s in the matrix). We varied
the density from 4% to 20% (in jumps of 4). A cell in a matrix was randomly
assigned ’0’ or ’1’ from a uniform distribution, where the probability of ’1’ was
determined by the density rate.

4. The number of coordination matrices in the complex rule (|C|=1–6).

We ran all the combinations of these parameters, where in each test we varied one
parameter and fixed the others to give a total sum of 3000 tests. Since the matrices
where assigned randomly, we repeated each combination 30 times.

To compare the matrix-based approach to the binary constraints approach, we
converted each one of the matrix-based test settings to a set ofq binary constraints
coordination graphs.

For all tests of a given matrix size, independently of the density of the coordina-
tion matrix and the number of the coordination matrices, we randomly assigned an
observation matrix, representing the actual actions of the agents. Since the focus of
the experiments was on the runtime and space rather than on the correctness of the
diagnoses (since both approaches find the same diagnoses), we fixed an injective in-
terpretation matrix for all tests, in which every action is interpreted to an exactly one
state (exactly one ’1’ in every row). Thus, there is no ambiguity in the interpretation
of the current state of the agents. In this way, we can guarantee that the diagnosis
is sound and complete (rather than sound and not complete as proved in Theorem
1), and focus on the runtime and the space of the diagnosis approaches. Figure 31
presents an example of inputs to a single test, where the number of agents is five
(rows), the number of states is four (columns), the complex rule isC = C1 tC1 and
the density is 20%. In the figure we can see two coordination matrices (C1, C2), one

30

C1 =




s1 s2 s3 s4

a1 0 1 0 0
a2 1 0 0 0
a3 1 0 0 1
a4 0 1 0 0
a5 0 0 0 1


 C2 =




s1 s2 s3 s4

a1 0 1 0 0
a2 0 1 0 1
a3 0 0 0 1
a4 0 0 1 0
a5 0 0 1 0


 Θ =




b1 b2 b3 b4 b5 b6

a1 1 0 0 0 0 0
a2 1 0 0 0 0 0
a3 0 0 1 0 0 0
a4 0 0 0 0 0 1
a5 1 0 0 0 0 0




I =




s1 s2 s3 s4

b1 0 1 0 0
b2 0 0 1 0
b3 1 0 0 0
b4 0 1 0 0
b5 0 0 1 0
b6 0 0 0 1




Ω =




s1 s2 s3 s4

a1 0 1 0 0
a2 0 1 0 0
a3 1 0 0 0
a4 0 0 0 1
a5 0 1 0 0




Fig. 31 An example of a test.

observation matrix (Θ), one interpretation matrix (I), and the product of the observa-
tion and the interpretation matrices (Ω).

We ran the diagnosis process in each one of the approaches and measured (1) the
run-time by counting the number of atomic instructions and (2) the required space
to model the coordination and to execute the diagnosis process. We generated 1700
graphs representing the combinations between all the parameters. Due to the huge
volume of results, we present here only a small representative sub-set of the results.

�������
�������
�������
� �����
�������
� �����
	������

 �
�
�
���
��

 �
�� �
� ��

 ���

� �
�� ��������� �

 � !��"�$#

�
% �����
�������
�������
�������
� �����
�������
� �����
	������

�&�'� � � � 	&()% �*%�%

 �
�
�
���
��

 �
�� �
� ��

 ���

� �
��

+�,�-�.�/ 0 1

��������� �

 � !��"�$#

Fig. 32 Run-time over number of agents (number of
states = 8, the probability of coordination =16%,
number of matrices = 6).

� �

� �

���

���

���

���

� ��
�	

� �

�

��������� �

��� �������

�

�

� �

� �

���

���

���

���

��� �!��"�# $�%&� �'���

� ��
�	

� �

�

(�)�*�+�, - .

��������� �

��� �������

Fig. 33 Space over number of agents (number of
states = 8, the probability of coordination =16%,
number of matrices = 6).

There is a tight correlation between the space and the time. The reason is that
both algorithms have two processes: in the first process, we compared the required
coordination to the observation to find the diagnosis, and in the second process we
guaranteed a minimal diagnosis. The space complexity of the matrix-based algorithm
is bounded by the size of the input matrices and the number of matrices. The run-
time is bounded by the space, since it includes traveling over the matrices to find
the diagnoses and to guarantee minimality. In the binary constraints algorithm, the
space is bounded by the size of the coordination graph and the number of diagnoses
is bounded by the number of solutions, which is equal to the number of paths of size
n (wheren is the number of agents). The run-time is bounded by the size of the
graph, since we run through the whole graph. To guarantee minimality, we go over

31

all the possible diagnoses. Thus, we expect to obtain equal results both for the time
and the space. For instance, we can see the correlation between the time and space in
the following test: the number of states is 8, the probability of coordination is16%
and number of matrices is 6. Figures 32 and 33 present the run-time and the space
over the number of agents. In the subsequent analysis, we will show only the results
for the run-time. The results for the space are similar.

� ���
� ���
�����
�����
�����
�����
�����

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

� ��������� �

� � � ����!

�
���
� ���
� ���
�����
�����
�����
�����
�����

�"�#�"�"$"%#&#'(� �)���

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

�

*�+�,�-�. / 0

��������� �

� � � ����!

Fig. 34 Run-time over number of agents (number of
states = 4, probability of coordination =8%, number
of matrices = 6).

�����
�����
�����
� �����
� �����
� �����
� �����
� �����
�������

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

� ��������� �

� � ��� ��!

�
�����
�����
�����
�����
� �����
� �����
� �����
� �����
� �����
�������

�#"$�&%#�('#�#)*� �+���

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

�

,�-�.�/�0 1 2

��������� �

� � ��� ��!

Fig. 35 Run-time over number of agents (number of
states = 4, probability of coordination =20%, num-
ber of matrices = 6).

� �����
� �����
�������
�������
�������
�������

� ��
	
 �
�
 �

	 ��

 �

��	 �
��
	
 �
�� ��������� �

� � �������

�
��� �
� �����
� �����
�������
�������
�������
�������

� �"! �$# %"& '(� �)���

� ��
	
 �
�
 �

	 ��

 �

��	 �
��
	
 �
��

*�+�,�-�. / 0

��������� �

� � �������

Fig. 36 Run-time over number of agents (number of
states = 11, probability of coordination =8%, number
of matrices = 6).

����� �����
����� �����
����� �����
� �����������
� �����������
� �����������
� �����������
� �����������
� �����������

� 	

��

��
�
� �

� ��

�� �
	�
�� �

� ��������� �

� � ������

�
����� �����
����� �����
����� �����
����� �����
� �����������
� �����������
� �����������
� �����������
� �����������
� �����������

�"!#�"$"�"%#�#&'� �(���

� 	

��

��
�
� �

� ��

�� �
	�
�� �

�

)�*�+�,�- . /

��������� �

� � ������

Fig. 37 Run-time over number of agents (number of
states = 11, probability of coordination =20%, num-
ber of matrices = 6).

In the first set of experiments, we evaluate the impact of the number of agents.
In Figure 34, the number of matrices is fixed to 6, the probability of a coordination
in the matrix is8%, and the number of states is fixed to4. The x-axis represents
the number of agents, and the y-axis represents the time. We can see that the matrix-
based algorithm grows linearly with the number of agents, since the diagnosis process
depends on the size of the matrices, which in this case grows linearly with the number
of agents. The binary constraints algorithm also grows approximately linearly, since
the number of states and the probability are low, so the exponential factor of the
number of agents is not seen. This also explains the fact that the binary constraints
approach is faster than the matrix-based approach.

By increasing the probability to20%, we can see in Figure 35 that the binary
constraints approach grows exponentially and crosses the matrix-based algorithm in

32

a group size of 4 agents. We can see the same behavior if we fix the probability to
8% and increase the number of states to 11 (Figure 36). Obviously, by increasing
further the probability to20% and the number of states to 11 (Figure 37), the binary
constraints algorithm grows much faster than the matrix-based algorithm, even for a
small size of matrices.

���

���

���

� ���

� ���

� ���

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

��������� �
��� �����!

�

���

���

���

���

� ���

� ���

� ���

�#" ��" � ��" � ��" ����"

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

$&%�%�' (�) * + ,) %�*-(.�* /) , 0

��������� �
��� �����!

Fig. 38 Run-time over coordination density (number
of agents = 4, number of states = 4, number of matri-
ces = 6).

��� � � � �
� � � � � �
� � � � � �
� � � � � � �
� � � � � � �
� ��� � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� �
	
� �

�
	�

 ��
� �
� 	�

 � ��

� �
	�

��������� �

��� ��� ��!

�
� � � � � �
��� � � � �
� � � � � �
� � � � � �
� � � � � � �
� � � � � � �
� ��� � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�#" � " � �#" � ��" � ��"

� �
	
� �

�
	�

 ��
� �
� 	�

 � ��

� �
	�

$�% %�& '�() * + (%�) '�,) - (+ .

��������� �

��� ��� ��!

Fig. 39 Run-time over coordination density (number
of agents = 11, number of states = 11, number of ma-
trices = 6).

�����
�����
�����
� �����
� �����
� �����
� �����
� �����
� �����

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

��������� �
��� ������

�
�����
�����
�����
�����
� �����
� �����
� �����
� �����
� �����
� �����

��! ��! � ��! � ��! ����!

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

"$#�#�% &�' () * ' #�(+& ,�(- ' * .

��������� �
��� ������

Fig. 40 Run-time over coordination density (number
of agents = 11, number of states = 4, number of ma-
trices = 6).

�����

� � ���

� � ���

��� ���

��� ���

� �
��	

�	
��
�

	 �
	 ��
� � ��
�	

��

��������� �
��� �������

�

�����

� � ���

� � ���

��� ���

��� ���

�! "! � �� � #! ���!

� �
��	

�	
��
�

	 �
	 ��
� � ��
�	

��

$�%�%!& '!() * + (%!),'�-!) . (+ /

��������� �
��� �������

Fig. 41 Run-time over coordination density (number
of agents = 4, number of states = 11, number of ma-
trices = 6).

The second set of experiments examines the influence of the density of the coor-
dination constraints in the matrix. Figure 38 presents the results for a test in which
the number of states and the number of agents are fixed to4 and the number of ma-
trices is fixed to 6. The x-axis represents the density of the matrix by the probability
to have ’1’ in the matrix (4% − 20%), and the y-axis represents the run-time. The
matrix-based algorithm is almost not affected by the probability, since it compares
the wholecells in the matrices against the observation independently of the coordi-
nation probability. On the other hand, the binary constraints algorithm grows with
the probability. We can see the exponentially growth of this algorithm in Figure 39,
where the number of agents and states are fixed to11. This Figure shows the growth
of the binary constraints algorithm in the number of potential states (assigned by ’1’
in the matrix) in contrast to the constant complexity of the matrix-based algorithm.
Although, as Figures 40 and 41 prove, when the number of agents or the number of

33

states is small, the binary constraints algorithm is faster than the matrix-based algo-
rithm in settings of low probabilities for coordination.

��� � � ���
� � � � ���
� � � � ���
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

�

��������� �

��� !����"

�
� � � � ���
��� � � ���
� � � � ���
� � � � ���
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �
� ��� � � � �

�$#%�'&$�$($�$)*� �+� �

� 	

��

��

�
� �

� �
�
�
� �	�
�� �

�

,�- . / . 0 -

��������� �

��� !����"

Fig. 42 Run-time over number of states (number of
agents = 11, probability of coordination =20%, num-
ber of matrices = 6).

���

� ���

� ���

�����

�����

�����

� �
�	
 �
�

�

	 ��

 �

 ��
	 � ��
	
 �
��

��������� �
��� ������

�

���

� ���

� ���

�����

�����

�����

�!�!"#�%$#&('%)*� �+���

� �
�	
 �
�

�

	 ��

 �

 ��
	 � ��
	
 �
��

,�- . / . 0�-

��������� �
��� ������

Fig. 43 Run-time over number of states (number of
agents = 4, probability of coordination =4%, number
of matrices = 6).

� ���

�����

�����

�����

� ���

�����

	

��

��

 ��
� �
�
 �

 ��
� �
�
�
 �
��

��������� �

� � !"�#��$

�

� ���

�����

�����

�����

� ���

�����

�%�&� � �('&)&*+� �,���

	

��

��

 ��
� �
�
 �

 ��
� �
�
�
 �
��

-�. / 0 / 1�.

��������� �

� � !"�#��$

Fig. 44 Run-time over number of states (number of
agents = 7, probability of coordination =8%, number
of matrices = 6).

The third set of experiments measures the influence of the number of states. When
the number of agents and the probability of coordination are high (number of agents
= 11, probability =20%), we can see the exponential growth of the binary constraints
algorithm (Figure 42). On the other hand, in the case that both these factors are low
(number of agents = 4, probability =4%), the binary constraints algorithm is even
faster than the matrix-based algorithm (Figure 43). In the mid-group size (7 agents)
and probability of8%, both algorithms grow at approximately the same speed (Figure
44).

The last set of tests measures the influence of the number of matrices on the
algorithms. As may be seen in Figures 45 and 46, in all settings of the size of the
group, the number of states and the probability of coordination, both algorithms grow
approximately polynomially in the number of matrices, since the number of matrices
is only a product factor in the complexity of both of them.

To summarize, the number of agents, the number of states and the density of
the coordination constraints are key factors determining the efficiency of the matrix-
based algorithm vis-a-vis the binary constraints algorithm. The binary constraints

34

� �
� �
���
� �
� �
� �
� �
	 �

 ���

� �

�� �
��

�
� ��
� �
�
�
� � ��
�� �

�

���������
!�� "#���#$

�

 �
� �
� �
���
� �
� �
� �
� �
	 �

 ���

 � � � �

� �

�� �
��

�
� ��
� �
�
�
� � ��
�� �

�

%'&)(* + , - .�/

���������
!�� "#���#$

Fig. 45 Run-time over number of states (number of
agents = 4, number of states = 4, probability of coor-
dination =4%).

��� �������
��� �������
��� �������
� ����� �����
� ����� �����
� ����� �����
� ����� �����
� ����� �����

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

��������� �
��� ������

�
��� �������
��� �������
��� �������
��� �������
� ����� �����
� ����� �����
� ����� �����
� ����� �����
� ����� �����

� � ! � "

� 	

��

��

�
� �

� �
�
�
� � 	�
�� �

�

#�$&% ' () * +�,

��������� �
��� ������

Fig. 46 Run-time over number of states (number of
agents = 11, number of states = 11, probability of co-
ordination =20%).

algorithm does not scale well with the size of the group, with the number of states, or
with the probability of coordination. On the other hand, the matrix-based algorithm
grows polynomially with the number of agents and states and is not affected by the
probability of the coordination. However, when one of these factors is small, the
binary constraints algorithm gives better results (size and run-time) than the matrix-
based approach.

9 Related Work

The work closest to the present study is that of Kalech and Kaminka [8]. They pre-
sented a model-based diagnosis for a general framework of coordination failures. In
particular, they presented consistency- and adductive-based approaches to this prob-
lem and proposed distributed constraint satisfaction algorithms to solve the diagnosis
problem [9]. However, since they modeled the coordination among the agents in pairs
by a binary constraints coordination graph, their model grows exponentially in the
group size and in the number of states. In this paper, we compared the matrix-based
approach to their approach and showed that the matrix-based approach scales much
better than the binary constraints approach.

Horling et al. [5] used a fault-model of failures and diagnoses to detect and re-
spond to multi-agent failures. In this model, a set of pre-defined diagnoses is stored
in acyclic graph nodes. When a failure is detected, a suitable node is triggered and ac-
cording to the failure characters the node activates other nodes along the graph. Sim-
ilarly, Dellarocas and Klein [14,3] reported on a system of domain-independent ex-
ceptions handling services. The first component contains a knowledge base of generic
exceptions. The second contains a decision tree of diagnoses; the diagnosing process
is done by traversing down the tree by asking queries about the relevant problem.
The third component is responsible to seek for a solution for the exception, based on
a resolution knowledge base. Both of these works, did not address the scale-up issues.
In addition, the fault-model approach, in contrast to model-based approach, dictates
that all possible failures be analyzed in advance.

Fröhlich et al. [4] suggested dividing a spatially distributed system into regions,
each under the responsibility of a diagnosing agent. If the failure depends on two

35

regions, the agents that are responsible for those regions cooperate in making the
diagnosis. This method is not appropriate for dynamic team settings, in which agents
cannot pre-select their communication partners. Similarly, Roos et al. [21] analyzed
a model-based diagnosis method for spatially distributed knowledge. However, their
method assumed that there are no conflicts between the knowledge of the different
agents, i.e., that no coordination failure occurs.

Micalizio et al. [16] used causal models of failures and diagnoses to detect and
respond to multi-robot and single-robot failures. A common theme in all of these
models is that they require pre-enumeration of faulty interactions among system en-
tities. However, in multi-agent systems, these interactions are not necessarily known
in advance, since they depend on the specific run-time conditions of the environment
and the actions taken by the agents. Even if we could specify all the failure interac-
tions, with a large number of agents the possible number of interactions is too great
to enumerate.

In recent works, Roos and Witteveen [22] and de Jonge et al. [7] investigated
the diagnosis problem in multi-agent systems plan. In particular, they developed a
distributed architecture to model and maintenance MAS plans and to identify faulty
agents that violate the execution of the plan. Similarly, Micalizio and Torasso devel-
oped different framework and methods for diagnosis of MAS plans, and particulary
focused on recovery [18,19] and partial observation [17]. In contrast to diagnosis of
MAS plans, where the plans are defined in advance, in our model there is no plan
but allowed coordination among agents. Thus, our goal is to diagnose coordination
failures while the above works’ goal is to identify failures in planning.

Williams et al. [25,13] provided a model for cooperation of unmanned vehicles.
They coordinated these vehicles by introducing a reactive model-based programming
language (RMPL). This model is robust and can detect failures and recover. However,
their model-based language focused on the planning and recovery tasks but not on the
diagnosis of coordination failures.

In previous work [11] we proposed an approach to represent multi-agent coor-
dination and observations by using matrix structures. This approach facilitates easy
representation of coordination requirements, modularity, flexibility and reuse of ex-
isting systems. We demonstrated how, in principle, this representation can support
detection of coordination failures. In this paper, we build on that previous work and
utilize the matrix-based representation in model-based coordination diagnosis. We
show that we can compactly represent joint states using matrix structures and thus
reduce (in part) the exponential complexity of the diagnosis to linear in the number
of agents and states.

10 Discussion and Future Work

In this paper, we presented a formalization for a model-based diagnosis of coordi-
nation failures in multi agent systems. To solve the diagnosis problem, we defined
a matrix-based notation for the fundamental parts of the diagnosis representation,
which serves as a general framework for coordination design and definition in multi-
agent systems. Using this representation, we showed an efficient failure detection and

36

diagnosis algorithm in terms of space and time complexity that grows polynomially
with the number of agents and states.

We ran diverse sets of experiments by varying the number of agents, the number
of states, the density of the coordination constraints between the agents and the num-
ber of matrices that represent the coordination. We showed that the number of agents,
the number of states and the density of the coordination constraints are key factors
in determining the efficiency of the matrix-based algorithm comparing to the binary
constraints algorithm. The binary constraints algorithm does not scale well while the
matrix-based algorithm grows polynomially with the number of agents and states and
is not affected by the probability of the coordination.

Although the efficiency of the matrix-based approach, it is not always feasible to
model a real-world domain by coordination matrices. In such cases, it is possible to
convert the binary constraints to a set of matrices in order to reduce the exponential
number of constraints to a polynomially model. One possibility to convert the binary
constraints to matrices may use a cliques search in the coordination graph. We plan
to address this direction in the future.

In addition, we plan to add partial observations capabilities, which will find the
minimum set of agents that together may provide full information, or at least the
best possible information. Combining partial observations capabilities with explicit
communication among agents may result a system that is cheap in terms of resources,
yet very reliable.

Another important topic for future research is using probabilistic values for ob-
servations rather than binaries. In this way, rather than defining the policy as ‘pes-
simistic’ or ‘optimistic’, we will be able to define the probability that a failure has
occurred.

References

1. F. Bacchus and P. van Beek. On the conversion between non-binary and binary constraint satisfaction
problems. InProceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), pages
311–318, 1998.

2. J. de Kleer and B. C. Williams. Diagnosing multiple faults.Artificial Intelligence, 32(1):97–130,
1987.

3. Chrysanthos Dellarocas and Mark Klein. An experimental evaluation of domain-independent fault-
handling services in open multi-agent systems. InProceedings of the Fourth International Conference
on Multiagent Systems (ICMAS-00), pages 95–102, 2000.

4. Peter Fr̈ohlich, Iara de Almeida Mora, Wolfgang Nejdl, and Michael Schröder. Diagnostic agents for
distributed systems. InModelAge Workshop, pages 173–186, 1997.

5. Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan, and Ping Xuan. Diagnosis as an integral
part of multi-agent adaptability. Technical Report CMPSCI Technical Report 1999-03, University of
Massachusetts/Amherst, January 1999.

6. Nicholas R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions.Artificial Intelligence Journal, 75(2):195–240, 1995.

7. Femke Jonge, Nico Roos, and Cees Witteveen. Primary and secondary diagnosis of multi-agent plan
execution.Autonomous Agents and Multi-Agent Systems, 18(2):267–294, 2009.

8. Meir Kalech and Gal A. Kaminka. Towards model-based diagnosis of coordination failures. In
National Conference of the Association for the Advancement of Artificial Intelligence (AAAI) (AAAI-
05), 2005.

9. Meir Kalech and Gal A. Kaminka. Diagnosis of multi-robot coordination failures using distributed csp
algorithms. InNational Conference of the Association for the Advancement of Artificial Intelligence
(AAAI-06), 2006.

37

10. Meir Kalech and Gal A. Kaminka. On the design of coordinated diagnosis algorithms for teams of
situated agents.Artificial Intelligence, 171:491–513, 2007.

11. Meir Kalech, Michael Lindner, and Gal A. Kaminka. Matrix-based representation for coordination
fault detection: A formal approach. InProceedings of the sixth international joint conference on
autonomous agents and multiagent systems (AAMAS), 2007.

12. Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-attentive monitoring.
Journal of Artificial Intelligence Research, 12:105–147, 2000.

13. Phil Kim, Brian C. Williams, and Mark Abramson. Executing reactive, model-based programs
through graph-based temporal planning. InProceedings of the International Joint Conference on
Artificial Intelligence, 2001.

14. Mark Klein and Chris Dellarocas. Exception handling in agent systems. InProceeding of the Third
International Conference on Autonomous Agents, pages 62–68, May 1999.

15. Hitoshi Matsubara, Ian Frank, kumiko Tanaka-Ishii, Ituski Noda, Hideyuki Nakashima, and Koiti
Hasida. Automatic soccer commentary and robocup. In Minoru Asada, editor,the Second RoboCup
Workshop (RoboCup-98), pages 7–22, Paris, France, 1998.

16. R. Micalizio, P. Torasso, and G. Torta. On-line monitoring and diagnosis of multi-agent systems: a
model based approach. InProceeding of European Conference on Artificial Intelligence (ECAI 2004),
volume 16, pages 848–852, 2004.

17. Roberto Micalizio. A distributed control loop for autonomous recovery in a multi-agent plan. In
IJCAI, pages 1760–1765, 2009.

18. Roberto Micalizio and Pietro Torasso. Diagnosis of multi-agent plans under partial observability.
pages 346–353, 2007.

19. Roberto Micalizio and Pietro Torasso. Monitoring the execution of a multi-agent plan: Dealing with
partial observability. InECAI, pages 408–412, 2008.

20. R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32(1):57–96, 1987.
21. Nico Roos, Annette ten Teije, and Cees Witteveen. Reaching diagnostic agreement in multi-agent

diagnosis. InProceedings of Autonomous Agents and Multi Agent Systems (AAMAS-04), pages 1254–
1255, 2004.

22. Nico Roos and Cees Witteveen. Models and methods for plan diagnosis.Autonomous Agents and
Multi-Agent Systems, 19(1):30–52, 2009.

23. M. Tambe, E. Bowring, H. Jung, G. Kaminka, R. Maheswaran, J. Marecki, P. J. Modi, R. Nair,
S. Okamoto, J. P. Pearce, P. Paruchuri, D. Pynadath, P. Scerri, N. Schurr, and P. Varakantham. Con-
flicts in teamwork: hybrids to the rescue. InProceedings of the fourth international joint conference
on Autonomous agents and multiagent systems (AAMAS–05), pages 3–10, 2005.

24. Milind Tambe. Towards flexible teamwork.Journal of Artificial Intelligence Research, 7:83–124,
1997.

25. B.C. Williams, P. Kim, M. Hofbaur, J. How, J. Kennell, J. Loy, R. Ragnoand J. Stedl, and A. Walcott.
Model-based reactive programming of cooperative vehicles for mars exploration. June 2001.

