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Abstract

A model-based diagnosis problem occurs when an observa-
tion is inconsistent with the assumption that the diagnosed
system is not faulty. The task of a diagnosis engine is to
compute diagnoses, which are assumptions on the health of
components in the diagnosed system that explain the obser-
vation. In this paper, we extend Reiter’s well-known theory
of diagnosis by exploiting the duality of the relation between
conflicts and diagnoses. This duality means that a diagnosis
is a hitting set of conflicts, but a conflict is also a hitting set
of diagnoses. We use this property to interleave the search
for diagnoses and conflicts: a set of conflicts can guide the
search for diagnosis, and the computed diagnoses can guide
the search for more conflicts. We provide the formal basis
for this dual conflict-diagnosis relation, and propose a novel
diagnosis algorithm that exploits this duality. Experimental
results show that the new algorithm is able to find a mini-
mal cardinality diagnosis faster than the well-known Conflict-
Directed A*.

Model-based diagnosis (MBD) is a field that has devel-
oped a well-defined theory and algorithms for computing
multiple sets of faulty components in a malfunctioning sys-
tem. In MBD, a model of the system is first built. A di-
agnoser then observes the system to predict its behavior by
the model. Discrepancies between the observation and the
prediction are used as the input for a diagnosis algorithm
which produces a set of possible faults that can explain the
observation.

The characterization of MBD by Reiter (1987) in terms
of first-order logic has led to significant developments in
the field. Reiter presents a conflict-directed algorithm as
follows. Given an observation that is inconsistent with
the model’s predictions, the diagnosis process first iden-
tifies symptoms that represent inconsistencies (discrepan-
cies) between the system’s model (description) and the sys-
tem’s actual behavior. Each symptom identifies minimal
conflicts, i.e., sets of conflicting components which cannot
all be functioning correctly. Second, the process computes
from the minimal conflicts the minimal diagnoses, which
are the smallest sets of components that intersect all can-
didate sets. Therefore, finding the minimal diagnosis set is
accomplished in two steps: first generating candidate sets
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from symptoms, and then calculating a minimal set of faulty
components.

This approach has several drawbacks. The first concerns
computational tractability: conflict-based diagnosis actually
has to solve two NP-hard problems: (1) computing the min-
imal conflicts, and from these, (2) computing the minimal
hitting sets to generate the minimal diagnoses. It is impor-
tant to compute minimal conflicts and minimal diagnoses,
because the number of possible conflicts and diagnoses is
always exponential in the number of system components.

The second drawback concerns diagnostics completeness:
most conflict-based approaches are incomplete, i.e., cannot
discover all possible conflicts. Instead, they use sound but
incomplete techniques, e.g., (Williams and Ragno 2007).

The General Diagnostic Engine (GDE) (de Kleer and
Williams 1987)) is one of the best-known implementations
of this classical approach. Several approaches have been
used to address the computational problems and to optimize
this approach. First, GDE used an ATMS (de Kleer 1986) to
manage and optimize the conflict generation and minimiza-
tion. Then, several “focusing” methods were introduced
to limit the search; for example, probabilities represent-
ing failure likelihoods for the components were exploited
to focus search on the most likely conflicts (de Kleer and
Williams 1989). A search-based approach, conflict-directed
A* (CDA*) (Williams and Ragno 2007), exploits the proba-
bilities to implement a best first search hitting set algorithm
on a conflict set that is generated incrementally.

In this article, we propose a novel algorithm for MBD
that exploits key properties of the traditional conflict-based
approach to diagnostics inference. We extend Reiter’s the-
ory of diagnosis by showing a dual relation between con-
flicts and diagnoses: not only is a diagnosis a hitting set
of conflicts, but a conflict is also a hitting set of diagnoses.
This duality can then be used to interleave the search for
diagnoses and conflicts, i.e., we can use conflicts to guide
the search for diagnoses, and use the computed diagnoses to
guide the search for more conflicts. This approach is sound
and complete, and does not have the overhead of maintain-
ing all minimal conflicts, as does the ATMS.

Our contributions are as follows:

• We extend the theoretical work on the relation between
conflicts and diagnoses.



• We point out the symmetry between diagnoses and con-
flicts, and focus on the conflict to diagnosis relation in or-
der to design a diagnosis engine that uses both directions
of this symmetry.

• We show that the resulting diagnosis engine is a sound
and complete anytime diagnosis engine that finds all diag-
noses, and can identify minimum-cardinality diagnoses.

• We empirically compare our dual diagnosis engine with
CDA* to show that it can find minimal cardinality di-
agnoses in substantially more cases and for observations
with larger minimal cardinality than can CDA*, e.g., find-
ing even minimal cardinality diagnoses of size 12.

Related Work
This section briefly reviews related methods for comput-
ing diagnoses. The best-known algorithm for MBD, GDE
and its subsequent improvements, is based on using the
ATMS (de Kleer 1986) to compute and manage conflicts.
This approach is sound and complete with respect to identi-
fying all minimal conflicts and diagnoses; however, it may
face computational challenges, which have been remedied to
some extend by extensions, such as NGDE (de Kleer 2009).
NGDE was developed as a faster version of GDE, especially
since it employs a better hitting set algorithm. Note that im-
proved hitting set algorithms are orthogonal to our approach,
and can used to further optimize our approach as well.

An alternative to this approach is conflict-directed A*
(Williams and Ragno 2007), which uses LTMS, a TMS that
is based on Boolean Constraint Propagation (BCP), to ex-
tract conflicts that will direct the search. This conflict gener-
ation is different from that of GDE in two aspects: 1) Con-
flict generation with LTMS is polynomial, and much faster
than ATMS, 2) LTMS is not complete, meaning that it may
not return all conflicts or even minimal conflicts, and 3)
while GDE generates all conflicts upfront, in CDA* conflicts
are generated one at a time, only when a candidate diagno-
sis is found to be inconsistent. In practice, CDA* has shown
to be much more efficient than GDE on standard diagnosis
benchmarks. Importantly, CDA* is not complete, meaning
that it does not guarantee to return all the subset-minimal
diagnoses. This is discussed in details in this paper.

Another incomplete, but computationally efficient ap-
proach is SAFARI, which uses stochastic local search to
compute diagnoses. SAFARI does not guarantee minimal
cardinality nor completeness, although it has shown to be
able to diagnose far larger models than competing algo-
rithms (Feldman, Provan, and van Gemund 2010).

A quite different approach to diagnostic inference is the
use of compilation, i.e., rewriting the system description
into an alternative representation that speeds inference. Two
popular compilation targets are OBDDs (Torasso and Torta
2003) and DNNF (Darwiche 1998). Compilation is attrac-
tive in that inference is typically linear in the size of the com-
piled representation; however, there is no guarantee that the
compiled representation will not be of size exponential in
the number of system components.

In contrast to the Safari algorithm and the compilation-
based approaches described above, our approach extends

the classical method for identifying diagnoses by comput-
ing conflicts. However, we use the duality of conflicts and
diagnoses to improve the inference. Hence, in comparison
to GDE, diagnoses are returned without maintaining all min-
imal conflicts, but instead we use the computed diagnoses to
guide the inference of minimal conflicts, which is in turn
used to find more diagnoses. In contrast to conflict-directed
A*, our approach is guaranteed to be sound and complete
with respect to both the minimal conflicts and diagnoses.

Concepts and Definitions
Our discussion continues by formalizing some MBD no-
tions. This paper uses the traditional diagnostic definitions
(de Kleer and Williams 1987), except that we use proposi-
tional logic terms (conjunctions of literals) instead of sets of
failing components.

A model of an artifact is represented as a propositional
formula over some set of variables. We discern subsets of
these variables as assumable and observable.
Definition 1 (Diagnostic Problem). A diagnosis problem
DP is defined as the quadruple 〈SD,COMPS,OBS, α〉,
where SD is a propositional formula over a set of variables
V , COMPS∪OBS ⊆ V , COMPS is the set of assumables,
OBS is the set of observables, and α is a (possibly partial)
assignment of the variables in OBS.
We assume that SD 6|=⊥, i.e., SD is not faulty (does not lead
to diagnoses) when there is no observation. We also assume
that COMPS ∩OBS = ∅.

Let COMPS = {hi} for i = 1, 2, . . . , n. We use posi-
tive assignments hi = True, or simply positive literals hi,
to denote healthy components; conversely, we use negative
assignments hi = False, or negative literals ¬hi, to denote
faulty components.
Definition 2 (Health Assignment). Given a diagnosis prob-
lem DP, an assignment h to all variables in COMPS is de-
fined as a health assignment.
A health assignment h is a conjunction of propositional lit-
erals. The set of positive literals in h is denoted as Lit+(h)
and the set of negative literals in h is denoted as Lit−(h).
Definition 3 (Diagnosis and Conflicts). Given a diagnostic
problem DP and health assignments ω and λ. ω is a diag-
nosis iff SD ∧ α ∧ ω is satisfiable, and λ is a conflict iff
SD ∧ α ∧ λ is not satisfiable.

A common problem in MBD is that a given diagnosis
problem may have a large amount of diagnoses. To elevate
this, the MBD literature have proposed a range of types of
“preferred” diagnosis. This turns the MBD problem into an
optimization problem. In the following definition we con-
sider the common subset-ordering.
Definition 4 (Subset-Minimality). A diagnosis ω⊆ is de-
fined as subset-minimal, if no other diagnosis ω̃⊆ exists
such that Lit−(ω̃⊆) ⊂ Lit−(ω⊆). A conflict λ⊆ is defined
as subset-minimal, if no other conflict λ̃⊆ exists such that
Lit+(λ̃⊆) ⊂ Lit+(λ⊆).
The cardinality of a diagnosis ω and a conflict λ are de-
noted as |ω| and |λ|, respectively (|Lit−(ω)| = |ω| and



|Lit+(λ)| = |λ|). Diagnosis cardinality gives us another
partial ordering: a diagnosis is defined as minimal cardinal-
ity iff it minimizes the number of negative literals.

Definition 5 (Cardinality-Minimality). A diagnosis ω≤ is
defined as cardinality-minimal if no other diagnosis ω̃≤ ex-
ists such that |ω̃≤| < |ω≤|. A conflict λ≤ is defined as
cardinality-minimal if no other conflict λ̃≤ exists such that
|λ̃≤| < |λ≤|.
A cardinality-minimal diagnosis is a subset-minimal diagno-
sis, but the opposite does not hold. There are subset-minimal
diagnoses that are not cardinality-minimal diagnoses.

Given a diagnosis problem DP we denote the set of all
diagnoses of SD ∧ α as Ω, the set of all subset-minimal di-
agnoses as Ω⊆, the set of all cardinality-minimal diagnoses
as Ω≤, the set of all conflicts as Λ, the set of all subset-min-
imal conflicts as Λ⊆, and the set of all cardinality-minimal
conflicts as Λ≤.

Duality of Diagnoses and Conflicts
A hitting set of a set of conflicts Λ is a set of components C
such that for any λ ∈ Λ there is an element c ∈ C such that
c ∈ Lit+(λ).

Theorem 1 ((Reiter 1987), Theorem 4.5). A health assign-
ment ω⊆ is a subset-minimal diagnosis iff Lit−(ω⊆) is a
subset-minimal hitting set of all the subset-minimal conflicts
(i.e., Λ⊆).

In order to use the above theorem to obtain diagnoses, one
needs to obtain all the subset-minimal conflicts of the given
diagnosis problem. Note that a hitting set of a sub-collection
of all the subset-minimal conflicts is not guaranteed to be a
diagnosis. For example, consider a diagnosis problem with
two minimal conflicts {C1, C2} and {C3, C4}. Clearly the
hitting sets of only {C1, C2}, e.g., {C1} and {C2} are not
hitting sets of all the conflicts, and thus they are not diag-
noses according to Theorem 1. Furthermore, a hitting set
of a set of conflicts that is not minimal (even if every mini-
mal conflict is contained in one of these conflicts) is also not
guaranteed to be a diagnosis. In the example above, a hit-
ting set of the two conflicts {C1, C2, C5} and {C3, C4, C5},
i.e., adding C5 to both conflicts above, will generate {C5}
as a hitting set of these non-minimal conflicts, which is not a
diagnosis. Thus, generating consistent diagnoses with The-
orem 1 requires both finding all conflicts, and making sure
that they are minimal. This is often a challenging task.
While finding all subset-minimal conflicts is potentially in-
tractable, it is often very easy to find a partial set of not nec-
essarily subset-minimal conflicts.

Corollary 1 (Required condition for diagnosis). For every
subset-minimal diagnosis ω⊆ it must hold that Lit−(ω⊆) is
a (not necessarily subset-minimal) hitting set of any set of
conflicts.

Proof. A hitting set of all subset-minimal conflicts (Λ) is
a hitting set of all conflicts, since for every subset-minimal
diagnosis ω⊆ we have that Lit−(ω)⊆ is a hitting set of all
the subset-minimal conflicts (Λ⊆), and thus every subset of
all conflicts as well.

Corollary 1 is useful because it can be used to help find di-
agnoses even if only a partial set of (not necessarily) subset-
minimal conflicts is available. This is done by directing the
search for diagnoses to consider only health assignments
that are hitting sets of the available set of conflicts. This
observation is used by CDA∗ (Williams and Ragno 2007).

The first contribution of this paper is to point out the sym-
metry of this relation between conflicts, hitting sets and di-
agnoses. To this end, we define a hitting set of a set of diag-
noses Ω in a similar manner to the way we defined a hitting
set of conflicts, i.e., a hitting set of a set diagnoses Ω is a
set of components C such that for any ω ∈ Ω there is an
element c ∈ C such that c ∈ Lit−(ω).
Theorem 2 (Necessary and Sufficient Condition for a Con-
flict). A health assignment λ⊆ is a subset-minimal conflict
iff Lit+(λ⊆) is a subset-minimal hitting set of all the subset-
minimal diagnoses (i.e., Ω⊆).

This observation is important for two reasons. First, there
are many domains where finding conflicts is important. For
example, in Software Fault Localization (SFL), one can
compute a minimal hitting set (MHS) of a program spec-
tra to compute diagnoses (Abreu and van Gemund 2010). If
we are going to use SFL methods (ranking, etc.) for MBD
we need efficient way to extract conflicts from SD∧α. Fur-
thermore when searching for diagnoses directed by conflicts,
one can use the previously computed diagnoses to help the
search for more conflicts.

However, as explained above, finding conflicts with diag-
noses requires finding all subset-minimal diagnoses to guar-
antee that the hitting set of these diagnoses is a conflict. Ob-
viously, this is often a hard task. The following corollary
extends Theorem 2 to overcome this problem in a similar
manner to the way Corollary 1 extends Theorem 1.
Corollary 2 (Necessary Condition for a Conflict). For ev-
ery subset-minimal conflict λ⊆ we have that Lit+(λ⊆) is
a (not necessarily subset-minimal) hitting set of any set of
diagnoses.

The proof is analogous to the proof of Corollary 1 (the two
corollaries are dual) and we omit it for brevity.
Proposition 1 (Complement of a Diagnosis/Conflict). A
health assignment h is either a diagnosis or a conflict.

While trivial, this proposition is interesting when stated
in common diagnosis and conflict terms (Reiter 1987; de
Kleer and Williams 1987). For a given health assignment
h, if SD ∧ α ∧ h is consistent, then the set of unhealthy
components Lit−(h) is often refereed to as the diagnosis.
Alternatively, if SD ∧ α ∧ h is not consistent, then the set
of healthy components Lit+(h) is often refereed to as the
conflict. We can rephrase Proposition 1 as follows: if a set
of components δ is not a diagnosis, then COMPS \ δ is a
conflict, and vice versa (Reiter 1987). This proposition is
important when searching for diagnoses guided by conflicts.
as is done by CDA* (as described above), or when search-
ing for conflicts guided by diagnoses. If the hitting set of the
available conflicts (diagnoses) is not a diagnosis (conflict), it
can be added to the set of available conflicts (diagnoses) to
further direct the following search for diagnoses (conflicts).



Next, we describe how these theoretical statements can be
used to construct an efficient diagnostic algorithm.

Conflict-Diagnosis Search
The algorithm we propose in this paper can be considered
as a generalization of previous conflict-directed diagnostic
engines. A diagnosis problem is a specialization of a search
problem. A search problem consists of an initial state, a goal
state and a set of state-transition operators. In the diagnosis
problem, a state would be a health assignment. The initial
state is a heath assignment h such that Lit−(ω) = ∅, i.e.,
assuming that all the components are healthy. A goal state is
a diagnosis (a health assignment that is consistent with the
system description SD and the observation α). Applying an
operator to a state h corresponds to setting a health variable
v that is positive in h to be faulty, i.e., we “flip” the sign of
v. The branching factor of a state h is the size of Lit+(h).

A brute-force approach to find diagnoses can be to apply
any exhaustive search on the problem space, e.g., breadth-
first search. To check if a candidate health assignment is a
goal (i.e., it is a diagnosis), a consistency check is needed.
This approach is not feasible for non-trivial systems. To find
the smallest diagnoses (i.e., a cardinality-minimal one), such
an approach would have to visit at least

(|COMPS|
|ω≤|−1)

)
where

|ω≤| is the cardinality of the minimal cardinality diagno-
sis. For instance, in a system of 1000 components, to find
a minimal cardinality diagnosis of size 5, a brute-force di-
agnosis engine must first verify the absence of a diagnosis
consisting of 4 components (there are more than 1011 such
combinations).

Building Blocks
In general, conflict-directed diagnostic algorithms (1) search
for conflicts, (2) generate candidate diagnoses by consider-
ing hitting sets of the generated set of conflicts, and (3) iden-
tify which of these candidates are diagnoses by performing
consistency checks. We briefly describe the basic building
blocks used in the design of this kind of algorithms.
[Conflict generation (CON):] All subset-minimal conflicts
can be generated with ATMS (de Kleer 1986), while not
necessarily minimal conflicts can be generated with LTMS.
Naturally, ATMS is much more computationally intensive
(NP-Hard) than LTMS (polynomial).
[Computation of hitting sets (HS):] Finding the minimal
cardinality hitting set is a well-known NP-complete prob-
lem (Garey and Johnson 1979). On the other hand, finding
subset-minimal hitting set in problems that arise from weak-
fault models (WFMs) can be done in time that is polynomial
in the number of components times the number of sets to hit
(in our case - number of conflicts).
[Consistency checking (SAT):] In its most general form,
preforming a consistency check requires solving a SAT
problem, which is also NP-complete. On the other hand,
there are cases where it is enough to apply Boolean Con-
straint Propagation (BCP) to verify consistency, which is
polynomial (this is equivalent to LTMS).

There are several non-trivial trade-offs in combining those
three building blocks. If CON generates all subset-minimal

conflicts, then any hitting set of these conflicts is guaranteed
to be a diagnosis. Thus, there is no need to execute SAT (see
Theorem 1). This approach is taken by GDE. CDA∗, on the
other hand, searches for hitting sets of conflicts with an A*
search (which in the case where every component has the
same probability of failure turns into a breadth-first search),
grows the conflict set incrementally, does not guarantee min-
imal conflicts, and thus applies a consistency check to ver-
ify that a hitting set of the conflicts is indeed a diagnosis.
Note that computing cardinality-minimal diagnoses is com-
putationally more difficult than computing subset-minimal
diagnoses.

Primal-Dual Diagnostic Search
Similar to CDA*, one can find conflicts even without finding
all diagnoses, and even with diagnoses that are not subset-
minimal. This will require more effort in the hitting set (HS)
and consistency check (SAT) components. Furthermore, in a
weak-fault model (WFM) it is very easy to find non-subset-
minimal diagnoses, as any super set of a diagnosis is also a
diagnoses (de Kleer, Mackworth, and Reiter 1992).

Next, we describe how to construct a diagnosis algorithm
that is built from the previously described building blocks.
By changing the type of HS, SAT and MIN we can exploit
various properties of the search space. We call this algorithm
the Primal-Dual Diagnostic Search algorithm (PDDS). Im-
portantly, PDDS can be used in both directions, either for
computing diagnoses, or for computing conflicts.

Algorithm 1: Primal-Dual Diagnostic Search (PDDS)

Input: DP, a diagnostic problem
Input: Ω, set of consistent hitting sets
Input: Λ, a collection of sets to hit
Input: CONSISTENCYCHECK, a subroutine to

perform consistency checking
Input: K, maximal number of hitting sets

1 for k = 1 . . .K do
2 ω ← compute a new hitting set of Λ
3 if no new hitting sets were found then
4 return True
5 if CONSISTENCYCHECK(SD ∧ α ∧ ω) then
6 Ω← Ω ∪ {ω}
7 else
8 λ← ω
9 Λ← Λ ∪ {MINIMIZE(λ) }

10 return False

Algorithm 1 computes up toK hitting sets, which are con-
sistent (or inconsistent) with some theory SD. When applied
to search for a conflict, PDDS searches for hitting sets of a
given set of diagnoses, and the consistency check verifies
that the found hitting set is indeed a conflict (i.e., a healthy
assignment that is UNSAT with the system description and
observation). When applied to search for a diagnosis, PDDS
searches for a hitting set of a given set of conflicts, and the
consistency check verifies that the resulting hitting set is a



diagnosis (i.e., the assignment is consistent with SD ∧ α).
PDDS accepts as a parameter the set it needs to hit (Ω) and a
method for checking consistency (CONSISTENCYCHECK).
A hitting set algorithm is run and a hitting set ω is returned.
The only assumption we have on the hitting set algorithm
used is that it is complete, i.e., it will return a hitting set that
is not already in Ω if such exists.

If ω is consistent, it is added to the set of consistent hitting
sets Ω. Otherwise, based on Definition 3 and Proposition 1,
it is actually a conflict and is added to the set of conflicts
Λ. Optionally, it is possible to try to minimize the conflict
(line 9 in Algorithm 1). Below we describe methods to mini-
mize a given inconsistent hitting set, such that it still remains
inconsistent. This will ensure that ω will not be returned in
the subsequent iteration as a hitting set of Ω. This process
is repeated until no hitting set of Ω exists, in which case
PDDS returns True as it has computed all subset-minimal
diagnoses, or until a maximum number of K iterations have
been performed, in which case PDDS will return False.Example - Observation 
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Figure 1: An example diagnosis problem.

As an example of PDDS, consider the small electrical cir-
cuit displayed in Figure 1. Assume that we are searching for
diagnoses. Recall that PDDS receives as input a set of sets
to hit (Λ) and a set of previously found consistent hitting sets
(Ω). In our example, assume that a single conflict λ is given,
where the conflict set of the components {A,B,C} is de-
noted by Lit−(λ) = {A,B,C} and Lit+(()λ) = {D,E}.
Also, assume that and no previous diagnoses exists. In other
words, Λ = {λ} and Ω = ∅. First, PDDS finds a hitting set
of Λ. Let A be the hitting set that was found, and thus the
corresponding candidate diagnosis ω has Lit−(ω) = {A}
and Lit+(ω) = {B,C,D,E}. Clearly, ω is not consis-
tent, and thus ω is added as a conflict to Λ. Next, the
hitting set algorithm may find the candidate diagnosis λ
with Lit−(ω) = {B}, which hits both the original conflict
({A,B,C}) and the new conflict ({B,C,D,E}). This time,
ω is consistent, and thus it is added as a diagnosis to Ω. Note
that in this case it is not possible to minimize this diagnosis
(line 9) as ω contains only {B}. We omit the rest of the
execution of PDDS due to space limitations.

Properties of PDDS
We first describe theoretical properties for the case where
PDDS is used to find diagnoses, i.e., where Λ is a set of con-
flicts, and CONSISTENCYCHECK is a SAT solver. However
all results hold for the dual case as well.
Theorem 3 (Soundness and Completeness). Given SD ∈
WFM and any set of initial conflicts Λ, after K iterations,
PDDS is guaranteed to return True for a sufficiently large
K, and returns all subset-minimal diagnoses.

Proof:(sketch) The soundness of all diagnoses is guaran-
teed by the consistency check in line 5. Assume by negation
that PDDS is not complete. This means that there exists a
diagnosis ω that is not found by PDDS when it returns true.
PDDS returns true only if has found all hitting sets of Λ.
This means that ω is not a hitting set of Λ, since PDDS only
halts after all consistent hitting sets have been found. The
set Λ is initialized by a set of conflicts, and more conflicts
may be added to it during the search. Thus, all the sets in
Λ are conflicts. According to Corollary 1 every diagnosis
must hit every set of conflicts, and therefore, ω cannot be a
diagnosis, resulting in a contradiction.�
Note that Theorem 3 holds even if the initial set of conflicts
contain non-minimal conflicts, and only a subset of all the
conflicts. This is an important property since finding non-
minimal conflicts is, in general, easy.

Since the number of minimal subset diagnoses is often
exponentially large, it is common to prefer diagnoses of
smaller cardinality. While it is possible to find all minimal
subset diagnoses and then sort them according to their cardi-
nality, this is clearly inefficient. A more efficient diagnosis
algorithm returns first all the diagnoses with minimal car-
dinality, and in general return all the diagnoses in order of
increasing cardinality. Such a diagnosis algorithm can, for
example, halt when all minimal cardinality diagnosis.

PDDS can be easily converted to return all the diagnoses
in order of increasing cardinality, by using a hitting set algo-
rithm (line 2 in Algorithm 1) that returns hitting sets in order
of increasing cardinality. Examples of such HS algorithms
are breadth-first search and iterative deepening. In the rest of
this paper we assume that PDDS uses such HS algorithms,
and thus returns diagnoses in order of increasing cardinality.
Thus, running PDDS with Ω = ∅ and K = 1 will return
a minimal cardinality diagnosis. Also, it is easy to modify
PDDS to return only minimal cardinality diagnoses: simply
terminate when the HS algorithm returns a HS of size

Having conflicts of small cardinality in Λ will result in
faster HS search and less iterations of PDDS. We perform
the PDDS minimization of conflicts and diagnoses (line 9)
by employing a greedy algorithm similar to the one used in
SAFARI (Feldman, Provan, and van Gemund 2010). First
we flip a random health variable in Lit+(λ), and use a con-
sistency check to see if it is still a conflict. Note that this
consistency check is the opposite of the one used to check if
a hitting set is a diagnosis. If after this flip λ is not a conflict
we try to flip another health variable in Lit+(λ) and so on.
This way we advance greedily from a non-minimal conflict
to a subset-minimal one.

Switching Diagnostic Engine (SDE)
The duality of conflicts and diagnoses allows PDDS to
search for conflicts as well as diagnoses. Next, we describe
a diagnostic algorithm, called Switching Diagnostic Engine
(SDE) and outlined in Alg. 2, which finds diagnoses by in-
terleaving two PDDS algorithms, one searching for conflicts
and the other searching for diagnoses. We show that the
combination of these two search directions results in a bet-
ter and more versatile diagnostic algorithm. Throughout
its execution, SDE maintains a set of conflicts and a set of



Algorithm 2: Switching Diagnostic Engine (SDE)
Input: DP, diagnostic problem

1 Λ← initial set of conflicts
2 Ω← initial set of diagnoses (may be empty)
3 while True do
4 PDDS(Λ, Ω, UNSAT solver, 1)
5 if PDDS(Ω, Λ, SAT solver, 1) = True then Halt

Iteration HS Cons. Conflicts Diagnoses
0 {A,B,C,D,E} {A,B,C,D,E}
1 Conf. {A} No {A,B,C,D,E} {B,C,D,E}
1 Diag. {A} No {B,C,D,E} {B,C,D,E}
2 Conf. {B} No {B,C,D,E} {C,D,E}
2 Diag. {B} Yes {B,C,D,E} {B}, {C,D,E}

Table 1: Several iterations of SDE.

diagnoses, denoted as Λ and Ω respectively. The algorithm
begins by finding an initial conflict and an initial diagnosis
(lines 1 – 2). These initial diagnosis and conflict need not be
minimal, and thus it is easy to find them. For example, the
trivial health assignments of all components being faulty is
a diagnosis if SD ∈ WFM, and the trivial health assign-
ment of having all the components healthy can be checked if
it is a conflict or a diagnosis with a single call to SAT solver.
In our experiments we used the same stochastic local search
described above to minimize the initial conflict or diagnosis.

Next, we run a single iteration of PDDS by settingK = 1,
first searching for a new conflict, and then run a single iter-
ation of PDDS to search for a new diagnosis. Recall that
when PDDS searches for a diagnosis, it may also compute
conflicts. Conversely, when PDDS searches for conflicts
it may also compute diagnoses. As the search progresses,
more diagnoses are found, which directs the conflict search
to find consistent conflicts, and this in turn directs the search
for diagnoses. When no new hitting sets of conflicts exist,
the search can halt, as all subset-minimal diagnoses have
been found (line 5).

To demonstrate how SDE works, Table 1 lists a partial
example of how SDE works on the small electrical circuit
shown in Figure 1. The iteration column marks the current
SDE iteration. The search for diagnoses (line 5) and the
search for conflicts (line 4) are given different lines in the
table, denoted by “Diag.” and “Conf.”, respectively. The
values in the HS column are the hitting sets found by PDDS.
When searching for diagnoses, this is a hitting set of the con-
flicts and vise-verca. The values in the consistent column
state if the found hitting set was consistent (i.e., if it was
a conflict/diagnoses). The conflicts and diagnoses columns
show the Lit+() and Lit−() of the conflicts and diagnoses
there were found so far, respectively. Several simplifications
were made to SDE to allow the reader to follow this ex-
ample. First, the hitting set search in PDDS was done in a
breadth-first search manner, tie-breaking according to lexi-
cographical order. Second, we did not apply the stochastic
minimization process in PDDS (line 9 in Algorithm 1). It is
important to emphasize that when implementing SDE, using

these simplifications is not advised and will result in signifi-
cant performance degradation.

SDE has several helpful properties. It is complete and
sound, as it is based on PDDS which is complete and sound.
Furthermore, SDE is in fact an diagnostic anytime algo-
rithm. It starts with an initial diagnosis, and it continues
to returns diagnoses very quickly, either by PDDS when
searching for diagnoses or by PDDS when searching for
conflicts. As the search progresses, more diagnoses will be
returned, returning a sequence of diagnosis as required by
an anytime diagnosis algorithm.

Like PDDS, SDE can also be modified to return diagnoses
in order of increasing cardinality. In particular, SDE can re-
turn the minimal cardinality diagnosis. This is done by us-
ing a variant of PDDS that returns only minimal cardinality
diagnosis, when SDE searches for diagnoses (line 5 in Al-
gorithm 2). Such a variant of PDDS was described in the
PDDS properties section above. In the experimental results
that are described next, we used this version of SDE, that is
modified to return first the minimal cardinality diagnosis.

Experimental Results

Alg. 74283 74182 74181 c432 c499 c880 c1355
#Obs 202 250 350 76 208 284 210
Minc. 5 5 7 8 22 26 21
CDA* 100% 100% 47% 33% 9% 5% 0%
SDE 99% 100% 79% 88% 30% 14% 9%

Table 2: Instances solved under under 30 sec.

Next, we provide experimental results, comparing the
dual search approach with the conflict-directed approach.
Specifically, we have implemented the dual search inside
the Lydia framework (Feldman, Provan, and van Gemund
2009), and compared it against CDA* which is also imple-
mented in the same framework. As a diagnosis task, we
chose the task of returning a single minimal cardinality di-
agnosis, and bounded the run time by 30 seconds.

Recently, several techniques have been introduces to im-
prove the performance of diagnosis algorithms. This include
an efficient hitting set algorithm (de Kleer 2011) and the
use of a type of abstraction called cones (Siddiqi and Huang
2007; Siddiqi 2011). Both technique are orthogonal to SDE
and CDA*, and can be applied to SDE and CDA* in a sim-
ilar manner to improve their performance. Additionally, we
did not compare against the SAFARI diagnosis engine (Feld-
man, Provan, and van Gemund 2010), since the task in these
experiments was to find a minimal cardinality diagnosis, and
SAFARI is not guaranteed to return such diagnoses.

Experiments where performed on the standard 74XXX
benchmark and on the small circuits from the ISCAS85
benchmark. On larger circuits CDA* was not able to solve
any instance. We used a partial set of the observations used
by (Feldman, Provan, and van Gemund 2010).

Table 2 shows the percentage of instances where the min-
imal cardinality was found under the 30 second time-limit.
The first row (marked “#Obs”) in the table shows the num-
ber of observations that were used in the experiments. The



second line (marked “Minc.”) gives the largest minimal car-
dinality diagnosis found in the observations of every sys-
tem. As can clearly be seen, SDE is able to find a mini-
mal cardinality in substantially more instance. For example,
SDE found a minimal cardinality diagnosis in 88% of the
instances for the c432 system while CDA* was able to do
the same for only 33% of the instances.

Figure 2: # instances solved, grouped by cardinality.

To identify the instances where SDE gains its advantage,
consider the results in Figure 2. The y-axis shows the num-
ber of instances (over all the systems) where a minimal car-
dinality diagnosis is found under 30 seconds. The x-axis
groups instances with the same minimal cardinality. These
results show that while CDA* is limited to solving low min-
imal cardinality instances, SDE is able to solve instances
with larger minimal cardinality.

This can be explained as follows. CDA* and SDE both
generate conflicts when a candidate diagnosis was found to
be inconsistent. In addition, SDE searches for conflicts (us-
ing PDDS) to find more conflicts to direct the search for
diagnoses. Thus, the results in Figure 2 demonstrates the
trade off between the overhead of searching for more con-
flicts, and the expected gain of having more conflicts to di-
rect the search for diagnoses. That explains the performance
of CDA* in finding diagnoses with very low cardinality. It
does not need the redundant conflicts to direct the search to
the low minimal cardinality diagnosis. On the other hand,
when the cardinality of the diagnosis is high, the additional
conflicts found by SDE are helpful for directing the diagno-
sis search towards these high cardinality.

Conclusion and Future Work
In this paper we presented the symmetry between diag-
noses and conflicts. We showed that just as diagnosis is
a hitting set of conflicts, a conflict is a hitting set of diag-
noses. As such, conflict-directed diagnosis algorithms can
be converted into diagnosis-directed conflict search algo-
rithms. This enables creating a single algorithm, named
PDDS, that can find either diagnoses or conflicts. PDDS
is shown to be complete, sound and can return diagnoses in
order of increasing cardinality. Furthermore, we introduce
the SDE diagnosis algorithm, which interleaves two PDDS
searches: one for diagnoses and the other for conflicts. SDE
uses conflicts to guide the search for diagnoses, and uses

the computed diagnoses to guide the search for more con-
flicts. We empirically compared SDE with CDA* on well
known benchmarks. Results showed that SDE outperforms
CDA* in searching for the first minimal cardinality diag-
nosis. The performance difference between our algorithm,
SDE, and CDA* increased with diagnosis cardinality. This
is an important result since the diagnosis problem becomes
harder as cardinality grows, and in this paper we presented
an algorithm that can cope with diagnoses with high cardi-
nality better than previous algorithms.
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