
Online Anomaly Detection in Unmanned Vehicles

Eliahu Khalastchi1, Gal A. Kaminka2, Meir Kalech1, Raz Lin2

1DT Labs, Information Systems Engineering, Ben-Gurion University
Beer Sheva, Israel 84105

eli.kh81@gmail.com, kalech@bgu.ac.il
2The MAVERICK Group, Department of Computer Science, Bar-Ilan University

Ramat-Gan, Israel 52900
{galk,linraz}@cs.biu.ac.il

ABSTRACT
Autonomy requires robustness. The use of unmanned (au-
tonomous) vehicles is appealing for tasks which are dangerous or
dull. However, increased reliance on autonomous robots increases
reliance on their robustness. Even with validated software, phys-
ical faults can cause the controlling software to perceive the envi-
ronment incorrectly, and thus to make decisions that lead to task
failure. We present an online anomaly detection method for robots,
that is light-weight, and is able to take into account a large num-
ber of monitored sensors and internal measurements, with high
precision. We demonstrate a specialization of the familiar Maha-
lanobis Distance for robot use, and also show how it can be used
even with very large dimensions, by online selection of correlated
measurements for its use. We empirically evaluate these contribu-
tions in different domains: commercial Unmanned Aerial Vehicles
(UAVs), a vacuum-cleaning robot, and a high-fidelity flight sim-
ulator. We find that the online Mahalanobis distance technique,
presented here, is superior to previous methods.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Experimentation

Keywords
anomaly detection, Mahalanobis Distance , uncertainty, machine
learning, robotics

1. INTRODUCTION
The use of unmanned vehicles and autonomous robots is appeal-

ing for tasks which are dangerous or dull, such as surveillance and
patrolling [1], aerial search [9], rescue [2] and mapping [19].
However, increased reliance on autonomous robots increases our
reliance on their robustness. Even with validated software, physical
faults in sensors and actuators can cause the controlling software to
perceive the environment incorrectly, and thus to make decisions
that lead to task failure.

This type of fault, where a sensor reading can be valid, but in-
valid given some operational or sensory context, is called contex-
Cite as: Online Anomaly Detection in Unmanned Vehicles, Eliahu Kha-
lastchi, Gal A. Kaminka, Meir Kalech and Raz Lin, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Yolum, Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. XXX–XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tual failure [4]. For instance, a sensor can get physically stuck such
that it no longer reports the true value of its reading, but does report
a value which is in the range of valid readings.

Autonomous robots operate in dynamic environments, where it
is impossible to foresee, and impractical to account, for all possible
faults. Instead, the control systems of the robots must be comple-
mented by anomaly-detection systems, that can detect anomalies in
the robot’s systems, and trigger diagnosis (or alert a human oper-
ator). To be useful, such a system has to be computationally light
(so that it does not create a computational load on the robot, which
itself can cause failures), and detect faults with high degree of both
precision and recall. A too-high rate of false positives will lead
operators to ignoring the system; a too-low rate makes it ineffec-
tive. Moreover, the faults must be detected quickly after their oc-
currence, so that they can be dealt before they become catastrophic.

In this paper, we focus on online anomaly detection methods for
robots. We present methods that are light-weight, and are able to
take into account a large number of monitored sensors and internal
measurements, with high precision. We make two contributions.
First, we argue that in monitoring robots and agents, anomaly de-
tection is improved by considering not the raw sensor readings, but
their differential. This is because robots act in the same environ-
ment in which they sense, and their actions are expected to bring
about changes to the environment (and thus change to their sensor
readings). Second, we demonstrate the online use of the Maha-
lanobis distance—a statistical measure of distance between a sam-
ple point and a multi-dimensional distribution—to detect anoma-
lies. The use of Mahalanobis distance is not new in anomaly de-
tection; however, as previous work has shown [12] its use with the
high-dimensional sensor data produced by robots is not trivial, and
requires determining correlated dimensions. While previous work
relied on offline training, to do this, we introduce the use of the
lightweight Pearson correlation measure to do this. Taken together,
the two contributions lead to an anomaly detection method special-
ized for robots (or agents), and operating completely on-line.

To evaluate these contributions, we conduct experiments in three
different domains: We utilize actual flight-data from commercial
Unmanned Aerial Vehicles (UAVs), in which simulated faults were
injected by the manufacturer; data from the RV-400 vacuum clean-
ing robot; and the Flightgear flight simulator, which is widely used
for research [10, 16, 7]. In all, we experiment with variant algo-
rithms, and demonstrate that the online Mahalanobis distance tech-
nique, presented here, is superior to previous methods. The ex-
periments also show that the use of the differential sensor readings
improve on competing anomaly detection techniques, and is thus
independent of the use of the Mahalanobis distance.

2. RELATED WORK
Anomaly detection has generated substantial research over past

years. Applications include intrusion and fraud detection, medi-
cal applications, robot behavior novelty detection, etc. (see [4]
for a comprehensive survey). We focus on anomaly detection in
Unmanned (Autonomous) Vehicles (UVs). This domain is charac-
terized by a large amount of data from many sensors and measure-
ments, that is typically noisy and streamed online, and requires an
anomaly to be discovered quickly, to prevent threats to the safety of
the robot [4].

The large amount of data is produced from a large number of
system components comprising of actuators, internal and external
sensors, odometry and telemetry, that are each monitored at high
frequency. The separated monitored components can be thought
of as dimensions, and thus a collection of monitored readings, at
a given point in time, can be considered a multidimensional point
(e.g., [12, 15]). Therefore, methods that produce an anomaly score
for each given point, can use calculations that consider the points’
density, such as Mahalanobis Distance [12] orK-Nearest Neighbor
(KNN) [15]. We repeat such a method here.

When large amounts of data are available, distributions can be
calculated, hence, statistical approaches for anomaly detection are
considered. These approaches usually assume that the data is gen-
erated from a particular distribution, which is not the case for high
dimensional real data sets [4]. Laurikkala et al. [11] proposed the
use of Mahalanobis Distance to reduce the multivariate observa-
tions to univariate scalars. Brotherton and Mackey [3] use the Ma-
halanobis Distance as the key factor for determining whether sig-
nals measured from an aircraft are of nominal or anomalous behav-
ior. However, they are limited in the number of dimensions across
which they can use the distance, due to run-time issues.

Apart from having to reduce dimensions when using Maha-
lanobis Distance, the dimensions that are left should be correlated.
Recently, Lin et al. [12] demonstrated how using an offline mecha-
nism as the Multi-Stream Dependency Detection (MSDD) [14] can
assist in finding correlated attributes in the given data and enable
use of Mahalanobis Distance as an anomaly detection procedure.
The MSDD algorithm finds correlation between attributes based on
their values. Based on the results of the MSDD process, they man-
ually defined the correlated attributes for their experiments. How-
ever, the main drawback of using the MSDD method is that it con-
sumes many resources and can only be used with offline training.
Thus, we propose using a much simpler algorithm, that groups cor-
related attributes using Pearson correlation coefficient calculation.
This calculation is both light and fast and therefore can be used
online, even on a computationally weak robot.

To distinguish the inherent noisy data from anomalies, Kalman
filters are usually applied (e.g., [8, 18, 5]). Since simple Kalman
filters usually produce a large number of false positives, additional
computation is used to determine an anomaly. For example, Cork
and Walker [5] present a non-linear model, which, together with
Kalman filters, tries to compensate for malfunctioning sensors of
UAVs. We use a much simpler filter that significantly improved
the results of our approach. The filter normalizes values using a Z
score transformation.

3. ONLINE ANOMALY DETECTION FOR
ROBOTS

We begin by describing the problem and outlining our approach.
We describe the online training procedure, and the specialization
for anomaly detection on robots. Finally, we describe when our ap-
proach should flag anomalies and describe our algorithm in detail.

3.1 Problem Description

We deal with the problem of online anomaly detection. Let
A = {a1, . . . , an} be the set of attributes that are monitored. Mon-
itored attributes can be collected by internal or external sensors
(e.g., odometry, telemetry, speed, heading, GPSx, GPSy ,
etc.). The data is sampled every t milliseconds. An input vector
~it = {it,1, . . . , it,n} is given online, where it,j ∈ R denotes the
value of attribute aj at current time t. With each ~it given, a decision
needs to be made instantly whether or not ~it is anomalous.

Past data H (assumed to be nominal) is also accessible. H is an
m×nmatrix where the columns denotes the nmonitored attributes
and the rows maintain the values of these attributes over m time
steps. H can be recorded from a complete operation of the UV that
is known to be nominal (e.g., a flight with no known failures), or it
can be created from the last m inputs that were given online, that
is, H = {~it−m−1, . . . ,~it−1}.

We demonstrate the problem using a running example. Consider
a UAV with its actuators that collects and monitors n attributes,
such as: air-speed, heading, altitude, roll pitch and yaw, and other
telemetry and sensors data. The actuators provides input in a given
frequency (usually with 10Hz frequency), when suddenly a fault
occurs; for instance, the altimeter is stuck on a valid value, while
the GPS’s indicated that the altitude keeps on rising. Another ex-
ample could be that the UAV’s stick is moved left or right but the
UAV is not responsive, due to icy wings. This is expressed in the
unchanging values of the roll and heading. Our goal is to detect
these failures, by flagging them as anomalies.

3.2 Online Detection

Figure 1:
Illustration
of the sliding
window.

We utilize a sliding window technique [4]
to maintain H , the data history, online. The
sliding window (see Figure 1) is a dynamic
window of predefined size m which gov-
erns the size of history taken into account in
our algorithm. Thus, every time a new in-
put ~it is received, H is updated as H ←
{~it−m−1, . . . ,~it−1} the last m online inputs.
The data in H is always assumed to be nomi-
nal and is used in the online training process.
Based onH we evaluate the anomaly score for
the current input ~it using the Mahalanobis Dis-

tance [13].

Figure 2: Eu-
clidean vs. Maha-
lanobis Distance.

Mahalanobis Distance is an n dimen-
sional Z-score. It calculates the dis-
tance between an n dimensional point
to a group of others, in units of stan-
dard deviations [13]. In contrast to the
common n dimensional Euclidean Dis-
tance, Mahalanobis Distance also con-
siders the points’ distribution. There-
fore, if the group of points represents an
observation, then the Mahalanobis Dis-
tance indicates whether a new point is an
outlier compared to the observation. A
point with similar values to the observed
points is located in the multidimensional space, within a dense area
and will have a lower Mahalanobis Distance. However, an outlier
will be located outside the dense area and will have a larger Maha-
lanobis Distance.

An example is depicted in Figure 2. We can see in the figure
that while A and B have the same Euclidean distance from the
centroid µ, A’s Mahalanobis Distance (3.68) is greater than B’s
(1.5), because an instance of B is more probable than an instance
of A with respect to the other points.

Thanks to the nature of the Mahalanobis Distance, we can uti-
lize it for anomaly detection in our environment. Each of the n
attributes of the domain correlates to a dimension. An input vec-
tor ~it is the n dimensional point, that is measured by Mahalanobis
Distance against H . The Mahalanobis Distance is then used to in-
dicate whether each new input point ~it is an outlier with respect to
H .

Using the Mahalanobis Distance, we can easily detect the three
common categories of anomalies [4]:

1. Point anomalies: illegal data instances, corresponding to il-
legal values in ~it.

2. Contextual anomalies, that is, data instances that are only
illegal with respect to specific context but not otherwise. In
our approach, the context is provided by the changing data
of the sliding window.

3. Collective anomalies, which are related data instances that
are legal apart, but illegal when they occur together. This is
met with the multi-dimensionality of the points being mea-
sured by the Mahalanobis Distance .

An anomaly of any type, can cause the representative point to be
apart from the nominal points, in the relating dimension, thus plac-
ing it outside of a dense area, and leading to a large Mahalanobis
Distance and eventually raising an alarm.

Formally, the Mahalanobis Distance is calculated as follows. Re-
call that ~it = (it,1, it,2, . . . , it,n) is the vector of the current input
of the n attributes being monitored, and H = m × n matrix is the
group of these attributes’ nominal values. We define the mean of
H by µ = (µ1, µ2, . . . , µn) , and S is the covariance matrix of H .
The Mahalanobis Distance, Dmahal, from ~it to H is defined as:

Dmahal(~it, H) =

√
(~it − ~µ)S−1(~it

T − ~µT)

Using the Mahalanobis Distance as an anomaly detector is prone
to errors without guidance. Recently, Lin et al. [12] showed that
the success of Mahalanobis Distance as an anomaly detector de-
pends on whether the dimensions inspected are correlated or not.
When the dimensions are indeed correlated, a larger Mahalanobis
Distance can better indicate point, contextual or collective anoma-
lies. However, the same effect occurs when uncorrelated dimen-
sions are selected. When the dimensions are not correlated, it is
more probable that a given nominal input point will differ from the
observed nominal points in those dimensions, exactly as in con-
textual anomaly. This can cause the return of large Mahalanobis
Distance and the generating of false alarms.

Therefore, it is imperative to use a training process prior to the
usage of the Mahalanobis Distance. This process will find and
group correlated attributes, after which Mahalanobis Distance can
be applied per each correlated set of attributes. Instead of regard-
ing ~it as one n dimensional point and use one measurement of Ma-
halanobis Distance againstH , we apply several measurements, one
per each correlated set. In the next subsection we describe the work
of the training process and how it is applied online.

3.3 Online Training
Finding correlated attributes automatically is a difficult task.

Some attributes may be constantly correlated to more than one at-
tribute, while other attribute’s values can be dynamically correlated
to other attributes based on the characteristics of the data. For ex-
ample, the elevation value of an aircraft’s stick is correlated to the
aircraft’s pitch and to the change of height, measured in the differ-
ences of the values of the altitude attribute. However, this is only
true depending on the value of the roll attribute, which is influenced

by the aileron value of the aircraft’s stick. As the aircraft is being
rolled, the pitch axis is getting more vertical. This, in turn, makes
the elevation value to correlate to the heading value, rather than
the height. This example demonstrates how correlation between at-
tributes can change during execution time. Thus, it is apparent that
an online training is needed to find dynamic correlations between
the attributes.

Figure 3 shows a visualization of a correlation matrix, were each
celli,j depicts the correlation strength between attributes ai, aj .
The stronger the correlation, the darker the color of the cell. Figure
3 displays three snapshots taken from different time periods of a
simulated flight, where 71 attributes were monitored. The correla-
tion change is apparent.

Figure 3: Visualization of correlation change during a flight

We use a fast online trainer, denoted as Online_Trainer(H).
Based on the data of the sliding window H , the online trainer
returns n sets of dynamically correlated attributes, denoted as
CS = {CS1, CS2, . . . , CSn}, and a threshold per each set, de-
noted as TS = {threshold1, . . . , thresholdn}.

The online trainer executes two procedures. The first is a corre-
lation detector (see Alg. 1) that is based on Pearson correlation co-
efficient calculation. Formally, the Pearson correlation coefficient
ρ between given two vectors ~X and ~Y with averages x̄ and ȳ, is
defined as:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

(1)

ρ ranges between [−1, 1], where 1 represents a strong positive cor-
relation, and −1 represents a strong negative correlation. Values
closer to 0 indicate no correlation.

Algorithm 1 Correlation_Detector(H)
for each ai ∈ A do
CSi ← φ
for each aj ∈ A do

if |ρi,j(HT
i , H

T
j)| > ct then

add aj to CSi
add CSi to CS

return CS

Algorithm 1 returns the n sets of correlated attributes, one per
each attribute ai ∈ A. Each CSi contains the indices of the other
attributes that are correlated to ai. The calculation is done as fol-
lows. The vectors of the last m values of each two attributes ai, aj
are extracted from H and denoted HT

i ,HT
j . We then apply the

Pearson correlation on them denoted as ρi,j . If the absolute result
|ρi,j | is larger than a correlation threshold parameter ct ∈ {0..1},
then the attributes are declared correlated and aj is added to CSi.

The ct parameter governs the size of the correlated attributes set.
On the one hand, the higher it is, less attributes are deemed cor-
related, thereby decreasing the dimensions and the total amount of
calculations. However, this might also prevent attributes from be-
ing deemed correlated and affect the flagging of anomalies. On
the other hand, the smaller the ct more attributes are considered
correlated, thereby increasing the dimensions, and also increasing

the likelihood of false positives, as less correlated attributes are se-
lected.

The second procedure sets a threshold value per each correlated
set. These thresholds are later used by the Anomaly Detector (see
Alg. 2) to declare an anomaly if the anomaly score of a given in-
put crossed a threshold value. Each thresholda ∈ TS is set to
be the highest Mahalanobis Distance of points with dimensions re-
lating the attributes in CSa extracted from H . Since every point
inH is considered nominal, then any higher Mahalanobis Distance
indicates an anomaly.

3.4 Specializing Anomaly Detection for
Robots

Monitoring in the domains of autonomous robots is unique and
have special characteristics. The main difference emerges from the
fact that we are required to monitor using the data obtained from
sensors that are used in the control loop to affect the environment.
In other words, the expectations to see changes in the environment
are a function of the actions selected by the agent.

Therefore, it makes sense to monitor the change in the values
measured by the sensors (which originates from the robot’s ac-
tions), rather than the absolute values. The raw readings of the
sensors usually do not correspond directly to the agent’s actions.
For example, an increase of speed should be correlated to the lose
of height generated by the UAV’s action, rather than correlating
a specific speed value with a specific height value. Formally, we
use the difference between the last two samples of each attribute,
denoted as4(~it) = ~it − ~it−1.

To eliminate false positives caused by the uncertainty inherent in
the sensors’ readings, and also to facilitate the reasoning about the
relative values of attributes, we apply a smoothing function using
a z-transform. This filter measures changes in terms of standard
deviations (based on the sliding window) and normalizes all values
to using the same standard deviation units. A Z-score is calculated
for a value x and a vector ~x using the vector’s mean value x̄ and its
standard deviation σx, that is, Z(x, ~x) = x−x̄

σx
.

We then transform each value it,j to its Z-score based on the last
m values extracted from the sliding window H (HT

j). Formally,
Zraw(~it) = {Z(it,1, H

T
1), . . . , Z(it,n, H

T
n)}. We also define this

transformation on the differential data as Z4(~it) = Zraw(4(~it)).
Two aspects emphasize the need to use filters. First, the live

feed of data is noisy. Had we used only the last two samples, the
noise could have significantly damaged the quality of the differ-
ential data. Second, the data feed is received with high frequency.
When the frequency of the incoming data is grater than the speed of
the change in an attribute, the differential values might equal zero.
Therefore, a filter that slows the change in that data, and takes into
account its continuity, must be applied. In our simulations we ex-
perimented with two types of filters that use the aforementioned
Z-transformations, Zraw and Z4.

When an actuator is idle, its Z-values are all 0s, since each in-
coming raw value is the same as the lastm raw values. However, as
the actuator’s reading changes, the raw values become increasingly
different from one another, increasing the actuator’s Z-values, up
until the actuator is idle again (possibly on a different raw value).
The last m raw values are filled again with constant values, low-
ering the actuator’s Z-values. This way, a change is modeled by
a “ripple effect"", causing other attributes that correspond to the
same changes, also to be affected by that effect.

Figure 4 illustrates the Z-transformation technique. The data is
taken from a segment of a simulated flight. The figure presents
values of attributes (Y Axis) through time (X axis). The aileron at-
tribute stores the left and right movement of the UAV’s stick. These

Figure 4: Illustration of the Z-transformation.

movements controls the UAV’s roll which is sensed using gyros and
stored in the roll attribute. We say that the aileron and roll attributes
are correlated if they share the same effect of change. The aileron’s
raw data is shown in Figure 4 as the square points, which remains
almost constant. Yet, the roll’s raw data, marked as an upside tri-
angle, differs significantly from the aileron’s data. However, they
share a similar ripple effect, illustrated by their Z-transformation
values, shown in the triangle points and the diamond points. Thus,
our Pearson calculation technique can find this correlation quite
easily. Other attributes that otherwise could be mistakenly consid-
ered correlated when using just the raw data or 4 technique, will
not be considered as such when using the Z-transformation tech-
nique, unless they both share a similar ripple effect. This could
explain the fact that the Z4 technique was proven to be the best
one that minimizes the number of false positives as described in
Section 4.2

3.5 The Anomaly Detector
Algorithm 2 lists how the anomaly detector works. Each input

vector that is obtained online, ~it, is transformed to Z4(~it). The
sliding window H is updated. The online trainer process retrieves
the sets of correlated attributes and their thresholds. For each cor-
related set, only the relating dimensions are considered when we
compare the point extracted from ~it to the points with the same
dimensions in H . These points are compared using Mahalanobis
Distance. If the distance is larger than the correlated sets’ thresh-
old, then an anomaly is declared.

Algorithm 2 Anomaly_Detector(~it)
~it ← Z4(~it)

H ← {~it−m−1, . . . ,~it−1}
CS, TS ← Online_Trainer(H)
for each a (0 ≤ a ≤ |CS|) do

Let CSa be the a’th set of correlated attributes in CS
Let thresholda be the a’th threshold, associated with CSa
PH ← points with dimensions relating to CSa’s attributes
extracted from H
pnew ← point with dimensions relating to CSa’s attributes
extracted from ~it
if thresholda < Dmahal(pnew, PH) then

declare “Anomaly”.

4. EVALUATION
First, we describe the experiments setup; the test domains and

anomalies, the different anomaly detectors that emphasize that
need of each of our approach’s features, and how the scoring is
done. Then, we evaluate the influence of each feature of our ap-

proach, and we show how it outperforms other anomaly detection
approaches.

4.1 Experiments Setup
We use three domains to test our approach, described in Table 1.

Domain UAV UGV FlightGear
data real real simulated
anomalies simulated real simulated
scenarios 2 2 15
scenario duration (sec) 2100 96 660
attributes 55 25 23
frequency 4Hz 10Hz 4Hz
anomalies per scenario 1 1 4 to 6
anomaly duration (sec) 64, 100 30 35

Table 1: Tested domains and their characteristics.
The first is a commercial UAV (Unmanned Aerial Vehicles). The

data of two real flights, with simulated faults, was provided by the
manufacture. The fault of the first flight is a gradually decreas-
ing value of one attribute. The fault of the second flight is an at-
tribute that froze on a legal value. This fault is specially challeng-
ing, because it is associated with an attribute that is not correlated
to any others, making it very difficult for our approach to detect the
anomaly.

Figure 5: RV-400
tangled with a
string connected to
a heavy cart.

The second domain is a UGV. We
used a laboratory robot, the RV400 (see
Fig. 5). This robot is equipped with
ten sonars, four bumpers and odom-
etry measures. We tested two sce-
narios. In each scenario the robot
went straight, yet it was tangled with
a string that was connected to a cart
with weight. The extra weight causes
the robot to slow down in the first sce-
nario, and completely stop in the sec-
ond scenario. These scenarios demon-
strate anomalies that are a result of
the physical objects which are not
sensed by the robot. Therefore, the
robot’s operating program is unaware of these objects as well,
leaving the situation unhandled. This domain also presents
the challenge of having little data (only 96 seconds of data).

Figure 6: FlightGear
flight simulator.

To further test our approach,
on more types of faults and
on various conditions, we used
a third domain, the FlightGear
flight simulator (see Fig. 6).
FlightGear models real world
behavior, and provides realistic
noisy data. “Instruments that
lag in real life, lag correctly in
FlightGear, gyro drift is mod-

eled correctly, the magnetic compass is subject to aircraft body
forces.”[6] Furthermore, FlightGear also accurately models many
instrument and system faults, that can be injected into a flight. For
example, “if the vacuum system fails, the HSI gyros spin down
slowly with a corresponding degradation in response as well as a
slowly increasing bias/error."[6]

In the FlightGear simulation, we programmed an autonomous
UAV to fly according to the following behaviors: a take-off, an
altitude maintenance, a turn, and eventually a landing. During a
flight, 4 to 6 faults were injected into three different components;
the airspeed-indicator, altimeter and the magnetic compass. The

faults and their time of injection, were both randomly selected.
Each fault could be a contextual anomaly [4] with respect to the
UAV’s behavior, and a collective anomaly [4] with respect to the
measurements of different instruments such as the GPS airspeed,
altitude indicators and the Horizontal Situation Indicator.

Our approach is based on three key features, compared to previ-
ous work. 1) a comparison to a sliding window, rather than a com-
plete record of past data. 2) the use of an online training process
to find correlated attributes. 3) the use of differential filtered data.
To show the independent contribution of each feature we tested the
following online anomaly detectors that are described by three pa-
rameters (Nominal Data, Training, Filter), as summarized in Table
2. The bold line is our recommended approach when using Z∆ as
the filter.

Name Nominal Data Training
(CD,none,filter) complete past data none
(SW,none,filter) sliding window none
(CD,Tcd,filter) complete past data offline
(SW,Tcd,filter) sliding window offline
(SW,Tsw,filter) sliding window online

Table 2: Tested Anomaly Detectors.
The filter can be raw, ∆, Zraw, Z∆ as described in Section

3.4. CD denotes the use of a Complete record of past Data. SW
denotes the use of a Sliding Window. (SW,Tsw,Z∆) is our proposed
anomaly detector described in section 3.5. (SW,Tcd,filter) uses
almost the same technique; the thresholds are calculated on the data
of the sliding window. However the training is done first, offline,
on a complete record of past data. With (CD,Tcd,filter), the data
of the sliding window is replaced with the data of the complete past
record. With (SW,none,filter) no training is done, meaning all the
dimensions are used at once to compare ~it to the data of the sliding
window. (CD,none,filter) uses all the dimensions to compare ~it
to the data of a complete past record.

(CD,Tsw,filter) is not displayed in table 2. This anomaly de-
tector executes the training process on the sliding window, thus,
thresholds are calculated online each time different correlated sets
are returned. However, the comparison of the online input is made
against a complete record of past data, thus, thresholds are calcu-
lated on the data of CD, which is considerably larger than the data
of SW . Therefore, the anomaly detection of (CD,Tsw,filter) is
not feasible online, hence, its is not compared to the other anomaly
detectors displayed in table 2.

We evaluated the different anomaly detectors by the detection
rate and false alarm rate. To this aim we define four counters, which
are updated for every input ~it. A “True Positive” (TP) refers to the
flagging of an anomalous input as anomalous. A “False Negative”
(FN) refers to the flagging of an anomalous input as nominal. A
“False Positive” (FP) refers to the flagging of a nominal input as
anomalous. A “True Negative” (TN) refers to the flagging of a
nominal input as nominal. Table 3 summarizes how these counters
are updated.

score description
TP counts 1 if at least one “anomalous” flagging

occurred during a fault time
FN counts 1 if no “anomalous” flagging occurred

during a fault time
FP counts every “anomalous” flagging during nominal time
TN counts every “nominal” flagging during nominal time

Table 3: Scoring an anomaly detector.
For each algorithm, we calculated the detection rate = tp

tp+fn

and the false alarm rate = fp
fp+tn

. An efficient classifier should
maximize the detection rate and minimize the false alarm rate. The
perfect classifier has a detection rate of 1, and a false alarm rate of
0.

4.2 Results
Figures 7 and 8 present the detection rate and the false alarm rate

respectively of 15 flights in the FlightGear simulator. We present
the influence of the different filters on the different algorithms. The
scale ranges from 0 to 1, where 0 is the best possible score for a
false alarm rate and 1 is the best possible score for a detection rate.

Figure 7: Detection rate. (Higher is better)

Figure 8: False alarm Rate. (Lower is better)

We begin with the first anomaly detector, (CD,none). Both Fig-
ures 7 and 8 show a value of 1, indicating a constant declaration
of an anomaly. In this case, no improvement is achieved by any of
the filters. This accounted for the fact that the comparison is made
to a complete record of past data. Since the new point is sampled
from a different flight, it is very unlikely for it be observed in the
past data, resulting with a higher Mahalanobis Distance than the
threshold, and the declaration of an anomaly.

The next anomaly detector we examine is (SW,none). In this de-
tector, the comparison is made to the sliding window. Since data is
collected in a high frequency, the values of ~it and the values of each
vector in H , are very similar. Therefore the Mahalanobis Distance
of ~it is not very different than the Mahalanobis Distance of any vec-
tor in H . Thus the threshold is very rarely crossed. This explains
the very low false alarm rate for this algorithm in Figure 8. How-
ever, the threshold is not crossed even when anomalies occur, re-
sulting in a very low detection rate as Figure 7 shows. The reason is
the absence of training. The Mahalanobis Distance of a contextual
or collective anomaly, is not higher than Mahalanobis Distances of
points with uncorrelated dimensions in H . The anomalies are not
conspicuous enough.

The next two anomaly detectors, introduce the use of offline
training. The first (CD,Tcd), uses a complete record of past data,
while the second (SW,Tcd) uses a sliding window. However in both
anomaly detectors the training is done offline, on a complete record
of past data. When no filter is used, (CD,Tcd) declares an anomaly
most of the times, this is illustrated in the square dot in Figures 7
and 8. When filters are used, more false negatives occur, expressed
in the almost 0 false alarm rates and the decreasing of the detection
rate. However, when a sliding windows is used, even with no filters,
(SW,Tcd) got better results, a detection rate of 1, and less than 0.5
false alarm rate, which is lower than (CD,Tcd)’s false alarm rate.
The filters used with (SW,Tcd) lower the false alarm rate to almost
0, but this time, the detection rate, though decreased, remains high.
Comparing (SW,Tcd) to (CD,Tcd) shows the importance of a slid-
ing window, while comparing (SW,Tcd) to (SW,none) it shows the
crucial need of training.

The final anomaly detector is (SW,Tsw) which differs from
(SW,Tcd) by the training mechanism. (SW,Tsw) applies an online
training on the sliding window. This allows achieving a very high
detection rate. Each filter used allows increasing the detection rate
closer to 1, until Z∆ gets the score of 1. The false alarm rate is
very high when no filter is used. When using filters we are able to
reduce the false alarm rate to nearly 0. (SW,Tsw,Z∆), which is the
approach we described in section 3.5, achieves a detection rate of
1, and a low false alarm rate of 0.064.

The results show the main contributions of each feature, sum-
marized in table 4

feature contribution reason
sliding window decreases FP similarity of ~it to H .
training increases TP correlated dimensions→

more conspicuous anomalies.
online training increases TP correspondence to dynamic

correlation changes.
filters decreases FP better correlations are found.

increases TP

Table 4: Feature Contributions

Figure 9: The classifier plane.
Figure 9 describes the entire space of classifiers: the X-axis is

the false alarm rate and the Y -axis is the detection rate. A clas-
sifier is expressed as a 2D point. The perfect anomaly detector is
located at point (0,1), that is, it has no false positives, and detects
all the anomalies. Figure 9 illustrates that when the features of our
approach are applied, they allow the results to approximate the per-
fect classifier.

Figure 10 shows the detection rates and false alarm rates of
(TW,Tsw,Z∆) in the classifier space, when we increase the cor-
relation threshold ct ∈ {0..1} in the online trainer described in

Figure 10: The influence of the correlation threshold.
section 3.3. Note that the X axis scales differently than in Figure 9,
it ranges between [0, 0.2] in order to zoom in on the effect.

When ct equals 0 all the attributes are selected for each corre-
lated set, resulting with false alarms. As ct increases, less uncorre-
lated attributes are selected, reducing the false alarms, until a peak
is reached. The average peak of the 15 FlightGear’s flights was
reached when ct equals 0.5. (TW,Tsw,Z∆) averaged a detection
rate of 1, and a false alarm rate of 0.064. As ct increases above that
peak, less attributes that are crucial for the detection of an anomaly
are selected, thereby increasing the false negatives, which in return
lowers the detection rate. When ct reaches 1, no attributes are se-
lected, resulting a constant false negative.

To further test our approach, we compare it with other methods.

Figure 11: FlightGear Domain
Detection Rate

Support Vector Ma-
chines (SVM) are
considered very suc-
cessful classifiers when
examples of all cat-
egories are provided
[17]. However, the
SVM algorithm clas-
sifies every input as
nominal, including all
anomalies, resulting in
a detection rate of 0 as
Figure 11 shows. Sam-
ples of both categories
are provided to the SVM, and it is an offline process, yet, the
contextual and collective anomalies are undetected. This goes to
show how illusive these anomalies are, which were undetected
by a successful and well-known classifier, even under unrealistic
favoring conditions.

We also examine the quality of (SW,Tsw,Z∆) in the context of
other anomaly detectors. We compared it to the incremental LOF
algorithm [15]. As in our approach, the incremental LOF returns a
density based anomaly score in an online fashion. The incremental
LOF uses K nearest neighbor technique to compare the density
of the input’s “neighborhood” against the average density of the
nominal observations [15]. Figure 11 shows a detection rate of 1
to (SW,Tsw,Z∆) and the incremental LOF algorithm, making it a
better competitive approach to ours than the SVM.

Since the incremental LOF returns an anomaly score rather than
an anomaly label, we compared the two approaches using an offline
optimizer algorithm that gets the anomaly scores returned by an
anomaly detector, and the anomaly times, and returns the optimal
thresholds, which in retrospect, the anomaly detector would have
labeled the anomalies, in a way that all anomalies would have been
detected with a minimum of false positives.

Figures 12 to 15 show for every tested domain the false alarm
rate of

1. (SW,Tsw,Z∆)
2. optimized (SW,Tsw,Z∆) denoted as OPT(SW,Tsw,Z∆)
3. optimized incremental LOF denoted as OPT(LOF)

The results of the detection rate for these anomaly detectors is 1 in
every tested domain, just like the perfect classifier; all anomalies
are detected. Thus, the false alarm rate presented, also expresses
the distance to the perfect classifier, where 0 is perfect.

The comparison between (SW,Tsw,Z∆) to OPT(LOF) does not
indicate which approach is better in anomaly detection, since
the incremental LOF is optimized, meaning, the best theoretical
results it can get are displayed. However the comparison be-
tween OPT(SW,Tsw,Z∆) to OPT(LOF) does indicate which ap-
proach is better, since both are optimized. The comparison be-
tween OPT(SW,Tsw,Z∆) to (SW,Tsw,Z∆) indicates how better
(SW,Tsw,Z∆) can theoretically get.

Figure 12: FlightGear domain.

Figure 13: UAV first flight.

Figure 14: UAV second flight.
In all the domains the OPT(SW,Tsw,Z∆) had the lowest false

alarm rate. Naturally, OPT(SW,Tsw,Z∆) has a lower false alarm
rate than (SW,Tsw,Z∆), But more significantly, it had a lower false
alarm rate than OPT(LOF), making our approach a better anomaly
detector than the incremental LOF algorithm. Of all the tested do-
mains, the highest false alarm rate of (SW,Tsw,Z∆) occurred in the
UAV’s second flight, as Figure 14 show (little above 0.09). In this
flight, the fault occurred in an attribute that is not very correlated

Figure 15: UGV domain.

to any other. Thus, the correlation threshold (ct) had to be low-
ered. This allowed the existence of a correlated set that includes the
faulty attribute as well as other attributes. This led to the detection
of the anomaly. However the addition of uncorrelated attributes
increased the false alarm rate as well.

Figure 15 show a surprising result. Even though the results of
the incremental LOF are optimized, (SW,Tsw,Z∆), which is not
optimized, had a lower false alarm rate. This is explained by the
fact that in the UGV domain, there was very little data. KNN ap-
proaches usually fail when nominal or anomalous instances do not
have enough close neighbors [4]. This domain simply did not pro-
vide the LOF calculation enough data to accurately detect anoma-
lies. However, the Mahalanobis Distance uses all the points in the
distribution, enough data to properly detect the anomalies.

Figure 16: Sliding Window’s changing size.
Figure 16 shows the false alarm rate influenced by the increase

of the sliding window’s size. While Mahalanobis Distance uses the
distribution of all the points in the sliding window, the KNN uses
only a neighborhood within the window, thus unaffected by its size.
Therefore, there exists a size upon which our approach’s real false
alarm rate, meets the incremental LOF’s optimized false alarm rate.

5. SUMMARY AND FUTURE WORK
We showed an unsupervised, model free, online anomaly detec-

tor for robots, that shows a great potential in detecting anomalies
while minimizing false alarms. Moreover, the features of the slid-
ing window, the online training and the filtered differential data,
made the difference between having an unusable anomaly detector,
and an anomaly detector that is better than current existing meth-
ods, when applied to robots. However we also showed that with dif-
ferent thresholds, even better results could be obtained. Therefore,
in our future work we shall try to select thresholds in a more clever
way. Raising an alarm is just the first step towards autonomous
self-correcting robots. The next step before diagnosing the cause
of the fault, is isolating it. By process of eliminating dimensions,
the anomaly, or fault, could be isolated, thus helping a diagnosis
process.

Acknowledgments. This research was supported in part by ISF
grant #1357/07. As always, thanks to K. Ushi and K. Raviti.

6. REFERENCES
[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In ICRA, pages
2339–2345, 2008.

[2] A. Birk and S. Carpin. Rescue robotics - a crucial milestone
on the road to autonomous systems. Advanced Robotics
Journal, 20(5), 2006.

[3] T. Brotherton and R. Mackey. Anomaly detector fusion
processing for advanced military aircraft. In IEEE
Proceedings on Aerospace Conference, pages 3125–3137,
2001.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Comput. Surv., 41(3):1–58, 2009.

[5] L. Cork and R. Walker. Sensor fault detection for UAVs
using a nonlinear dynamic model and the IMM-UKF
algorithm. IDC, pages 230–235, 2007.

[6] FlightGear. Website, 2010.
http://www.flightgear.org/introduction.html.

[7] FlightGear in Research. Website, 2010.
http://www.flightgear.org/Projects/.

[8] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme.
Fault-detection and identification in a mobile robot using
multiple model estimateion and neural network. In ICRA,
2000.

[9] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper,
M. Quigley, J. A. Adams, and C. Humphrey. Supporting
wilderness search and rescue using a camera-equipped mini
UAV. Journal of Field Robotics, pages 89–110, 2008.

[10] R. M. J. Craighead and B. G. J. Burke. A survey of
commercial open source unmanned vehicle simulators. In
ICRA, pages 852–857, 2007.

[11] J. Laurikkala, M. Juhola, and E. Kentala. Informal
identification of outliers in medical data. In Fifth
International Workshop on Intelligent Data Analysis in
Medicine and Pharmacology. 2000.

[12] R. Lin, E. Khalastchi, and G. A. Kaminka. Detecting
anomalies in unmanned vehicles using the mahalanobis
distance. In ICRA, pages 3038–3044, 2010.

[13] P. C. Mahalanobis. On the generalized distance in statistics.
In Proceedings of the National Institute of Science, pages
49–55, 1936.

[14] T. Oates, M. D. Schmill, D. E. Gregory, and P. R. Cohen.
Learning from Data: Artificial Intelligence and Statistics,
chapter Detecting Complex Dependencies in Categorical
Data, pages 185–195. Springer Verlag, 1995.

[15] D. Pokrajac. Incremental local outlier detection for data
streams. In IEEE Symposium on Computational Intelligence
and Data Mining., 2007.

[16] E. F. Sorton and S. Hammaker. Simulated flight testing of an
autonomous unmanned aerial vehicle using flight-gear.
AIAA 2005-7083, Institute for Scientific Research,
Fairmont, West Virginia, USA, 2005.

[17] I. Steinwart and A. Christmann. Support Vector Machines.
Springer-Verlag, 2008.

[18] P. Sundvall and P. Jensfelt. Fault detection for mobile robots
using redundant positioning systems. In ICRA, pages
3781–3786, 2006.

[19] S. Thrun. Robotic mapping: A survey. In Exploring Artificial
Intelligence in the New Millenium, pages 1–35. Morgan
Kaufmann, 2003.

