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Abstract—Multi-level logic synthesis is a problem of immense
practical significance, and is a key to developing circuits that
optimize a number of parameters, such as depth, energy
dissipation, reliability, etc. The problem can be defined as
the task of taking a collection of components from which
one wants to synthesize a circuit that optimizes a particular
objective function. This problem is computationally hard, and
there are very few automated approaches for its solution. To
solve this problem we propose an algorithm, called Circuit-
Decomposition Engine (CDE), that is based on learning decision
trees, and uses a greedy approach for function learning. We
empirically demonstrate that CDE, when given a library of
different component types, can learn the function of Disjunctive
Normal Form (DNF) Boolean representations and synthesize
circuit structure using the input library. We compare the
structure of the synthesized circuits with that of well-known
circuits using a range of circuit similarity metrics.

I. INTRODUCTION

Logic (or Boolean Function) Synthesis is a well-known

problem, and is a key to developing circuits that optimize

a number of parameters, such as depth, energy dissipation,

reliability, etc. The problem can be defined as the task of

taking a collection of components from which one wants

to synthesize a circuit that optimizes a particular objective

function. This problem has been addressed since Roth [1].

More recent work has focused on synthesis of circuits

jointly optimizing a complex objective function [2], [3],

optimization via genetic algorithms [4], [5], and on circuit

re-engineering, e.g., [6].

Circuit synthesis is related to, but strictly more general

than, Boolean minimization, on which there has been signif-

icant work (e.g., using the Quine-McCluskey method [7]).

Rather than being given a function to optimize, we must

jointly create the function and optimize it; in addition, we

may want to address many other tasks in the synthesis pro-

cess; such tasks include (1) optimize properties beyond just

the number of gates that Boolean minimization addresses

(e.g., circuit area, depth), (2) add components not present

in the given function, and (3) design nested hierarchical

structures in the device.

The proposed method in this paper addresses multi-level

logic synthesis with machine learning techniques. While

in electrical engineering, logic synthesis is motivated by

design requirements, our algorithm is motivated by reverse

engineering needs in addition to design and optimization

goals. In reverse engineering, the logic goal function is not

given, like in design problems, but should be learned by

observations. In particular, the input for our problem is a

(portion of a) truth table of a given logic circuit. The output

of our proposed algorithm is a model of the logic circuit

consistent with all the observations.

We aim to automate the process of generating circuits

from component libraries. We propose a machine learning

approach. Prior work has used genetic algorithms, which

do not converge well [8], [5]. We adopt a decision tree

approach, and in particular, an iterative greedy algorithm

that adds the most efficient component in terms of model

size. Our approach is not restricted by a pre-defined library

of component types but uses a library that can dynamically

grow, and thus keeps the model size small.

Our approach has several important applications.

• In reverse engineering, engineers can shorten the pro-

cess of revere-engineering. For instance, automating

this process could significantly reduce the time duration

of unveiling key systems; e.g., it could emulate the

reverse engineering of the ISCAS-85 benchmarks [9].

• In model-based synthesis, automating the process of

Boolean function synthesis is needed for model-based

systems. The existence of a model is a basic require-

ment for model-based systems. Unfortunately, in many

cases such a model does not exist. We believe that au-

tomating the process will facilitate the design of model-

based systems and will able to use techniques from

model-based diagnosis [10], model-based prognostics

[11] and model-based problem solving [12].

• In model-based diagnosis, this approach can take a

system function and optimize its diagnostics properties,

e.g., diagnosability, fault tolerance, failure probability,

etc.

Our contributions are as follows. We propose a novel

machine learning approach for Boolean function decom-

position for the case of multi-level logic synthesis. We

propose reverse engineering of Boolean formulas rather

than addressing designing problems. We cope with multiple

output functions rather than a single output. We implement

a method that uses a library of different component types

which can be dynamically increased with new types of

components. Finally, our algorithm is empirically evaluated

through various of circuits.

II. RELATED WORK

This section compares our work to prior research in a

range of different areas, including Boolean optimization,

function learning, and synthesis.



The task of composing a model from components to

achieve a goal function is known in the electrical and com-

puter engineering literature as logic synthesis. Logic synthe-

sis is a process for converting a high-level specification of

circuit behavior, typically register transfer level (RTL), into

a design implementation, which can be represented in terms

of logic gates.

In general, there are two kinds of logic synthesis: two-

level and multi-level.

In two-level logic synthesis the goal is to represent a

Boolean function by at most two gate levels between a

primary input and a primary output. This can be achieved

by representing the function as a DNF (in terms of the

engineering literature: sum of products). Known methods

for this task are Quine-McCluskey [7] to compute the

exact prime implicants of the goal formula and heuristic

methods like ESPRESSO [13] and MINI [14] which com-

pute near-minimal prime implicants. A major limitation of

this approach is that two-level logic circuits are of limited

importance in a most real-world applications, e.g., in very-

large-scale integration (VLSI) design, since most designs

require multiple levels of logic.

In multi-level logic synthesis there is no restriction on

the number of gates between a primary input and a primary

output. Actually, most circuits in real life are multilevel.

Multiple levels of gates increase the complexity of logic

synthesis dramatically, so exact solutions are not practical.

There are many methods to reduce a logic formula to multi-

level logic. Some of the methods use only primitive gates

as AND, OR and NOT, like algebraic logic optimizations

and Boolean logic optimizations [15]. Others utilize decom-

position of Boolean functions like BDD-based algorithms,

and thus allow richer Boolean gates like XOR [16]. There

are methods that utilize logic synthesis for lookup tables

(LUT), which actually are not restricted by specific type of

gates [17].

Many machine learning techniques propose to solve two-

level logic synthesis by learning a DNF formula from

observed examples. The most fundamental paper by Valiant

[18] formalized the Probably Approximately Correct (PAC)

model of learning from independent random examples.

Bshouty et al. [19] proposed a uniform random walk model.

In this model the learner’s examples are not generated

independently, but are produced sequentially according to

a random walk on the Boolean hypercube. Muzelli et al.

[20] combines the advantages of two efficient techniques,

Logical Analysis of Data (LAD) and Shadow Clustering

(SC). LAD enumerates in a breadth-first search all the prime

implicants whose degree is not greater than a fixed maximum

d. In contrast, SC is a heuristic algorithm that retrieves

the most promising logical products to be included in the

resulting AND-OR expression. All the above methods focus

on learning DNF formulas. We, on the other hand, solve

a more complicated problem of synthesizing a multi-level

logic expression. Obviously, we can reduce our approach

to learn DNF formulae. As mentioned before, multi-level

synthesis may be more efficient than two-level in terms of

the number of gates.

Another attempt to solve the multi-level logic synthesis

is by genetic algorithms. Aguirre et al. [8], [5] propose to

use a multiplexer as the only design unit, defining any logic

function. They first explore a feasible design and then min-

imize the circuit. Gan et al. [21] present the genetic-based

algorithm denoted Gene Expression-based Clonal Selection

Algorithm (GE-CSA), which combines the advantages of

the Clonal Selection Algorithm (CSA) and Gene Expression

Programming (GEP), overcoming some drawbacks of GEP.

These works focus on a single output function, we on the

other hand, show a machine learning approach which solves

multiple logic functions in one circuit. In addition, a known

drawback of genetic algorithm is the long time of conver-

gence. Unfortunately, even the above papers demonstrate

their approach only for a few simple circuits. Although

Gan et al. [21] report on well convergence for two circuits,

generalizing this conclusion to other circuits with more

variables and more output functions is not straightforward.

Zupan et al. [3] present a new machine learning approach

that infers a target function from a set of training examples.

It is represented in terms of a hierarchy of intermediate,

less-complex concepts and their definitions. The method is

inspired by the Boolean function decomposition approach

to the design of switching circuits by suboptimal heuristic

algorithms. Since this algorithm is not restricted to a given

set of gates, it actually tries to decompose the function to

artificial sub-functions. We adopt the hierarchical approach

but redesign it to solve the multi-level logic synthesis

consistently by a given library of component types.

Bernasconi et al. [6] present a new type of factorization,

based on a “P-circuits” approach, where a function f is

projected onto three overlapping subspaces of the Boolean

space {0, 1}n in order to favor area minimization that avoids

cube fragmentation. An approximation algorithm guarantees

a constant approximation ratio of a circuit, and shows better

results with respect to standard heuristic algorithms and to

the classical Shannon factorization, both in terms of area

and power consumption of the generated circuit.

Finally, Feldman et al. [22] present a new related problem

to ours. They have implemented a General Redesign Engine

(GRE), which uses model-based reasoning techniques and

Boolean functional synthesis from component libraries, to

automate redesign for combinational circuits. For the logic

synthesis they consider fault tolerance optimization which

reduces the probability of catastrophic failures. Feldman et

al. do not implement a machine learning approach but a

brute-force approach.



III. CONCEPTS AND DEFINITIONS

We start by presenting a set of definitions that are designed

to facilitate the exposition of algorithms for automated

reasoning.

Figure 1 shows an implementation of a full-adder, rep-

resented by the function F (i1, i2, ci) = (q ⇔ i1 ∧ i2) ∧
(p⇔ i1 ⊕ i2) ∧ (Σ⇔ p⊕ ci) ∧ (co ⇔ q ∨ (p ∧ ci)).
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Figure 1. This full-adder is used as a running example.

Definition 1 (Component): A component COMP, 〈F ,

IN, OUT〉, is specified using a Boolean function F over a

set of variables Z , and input/output variables, IN, OUT ∈ Z .

Boolean functions that model components are often repre-

sented graphically, by using the same symbols as in a stan-

dard computer arithmetic schoolbook [23]. Figure 2 shows a

component that implements a three-input AND gate by using

two two-input ones. The Boolean function that is shown

in Fig. 2 is F (i1, i2, i3) = (o⇔ z ∧ i3) ∧ (z ⇔ i1 ∧ i2)
where IN = {i1, i2, i3}, OUT = {o}, and z is an internal

variable. We may omit specifying which variables are input

and output, when that is clear from the context or from the

common use (of an AND gate, for example).
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z

Figure 2. A component that implements a three-input AND function by
using two two-input AND gates

Definition 2 (Component Library): A component library

L is defined as a set of components.

Figure 3 shows a component library consisting of a half-

adder, a two-input OR gate and a two-input NAND gate.

In our problem formulation, there are no restriction on the

contents of the component library, i.e., it is a set of arbitrary

multi-output Boolean functions. It is not necessary for a

component library to contain a functionally complete subset

of components (the two-input NAND gate in the component

library shown in Fig. 3, for example, can be used to express

any Boolean function, but that is not a requirement in our

framework).

i1

i2

co

Σ

o
i1

i2

o
i1

i2
(a)

(b)

(c)

Figure 3. A component library consisting of (a) a half-adder (HA), (b) a
two-input OR gate (2-OR), and (c) a two-input NAND gate (2-NAND)

Definition 3 (System Description): A system description

SD, 〈L, G〉 is defined as a vertex-labeled and edge-

labeled direct acyclic graph G = 〈V, E〉 such that V =
{PI ∪ PO ∪ V ′} and if v ∈ V ′, then v ∈ L.

System description graphs contain a set of primary input

vertices (PI), a set of primary output vertices (PO) and a

vertex for each component. The graph edges are labeled with

the names of the Boolean function variable names.

Figure 4 shows a system description of the full-adder

circuit shown in Fig. 1, built from components drawn from

the Fig. 3 library.
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Figure 4. System description of the full-adder circuit shown in Fig. 1

A system description SD is equivalent to exactly one

Boolean function as shown in the following definition.

Definition 4 (Composition): Given a system description

SD = 〈L, G〉, G = 〈V, E〉, a composition C(SD) of SD
is a Boolean function (f1 ◦ · · · ◦ fn)(x1, . . . , xm) such that

n = |V |− |PI|− |PO| and for each fi ∈ {f1, . . . , fn}, there

is an isomorphic function f ′

i ∈ L. The primary inputs and

primary outputs of f1, . . . , fn are the respective edge labels

in G and the internal variables in f1, . . . , fn are unique.

In the above definition the variables {x1, . . . , xm} are all

internal variables, i.e., {x1, . . . , xm} = V \ {PI ∪ PO}.
The composition of the system description in Fig. 4, for

example, is a Boolean function that is composed of two half-

adders, and a two-input OR gate. The i1 and i2 inputs of

the half-adder in the component library shown in Fig. 3 are

renamed to p and ci for one of the instances.

Definition 5 (System Decomposition): Given a compo-

nent library L and a Boolean function S, a system decom-

position S−1 of S is a system description SD = 〈L, G〉 such

that S ≡ C(SD).
By equivalent function we mean that, since S and C(SD)



have the same primary inputs and primary outputs, a valua-

tion φ(S) = 1 iff φ(C(SD)) = 1. Note that the problem

of computing if two Boolean functions are equivalent is

computationally very hard.

Computing decompositions of a given Boolean function is

the main problem discussed in this paper. Certain decompo-

sition are preferable, i.e., these minimizing some optimality

criterion such as number of elementary functions (number

of internal nodes in the resulting system description), a

cost function, etc. In this paper, the optimality criterion

minimizes the number of nodes in G.

IV. DECOMPOSITION METRICS

We are interested in using circuit decomposition for

discovering “structure” in unknown Boolean functions. To

evaluate the performance of our algorithms we introduce

a class of basic similarity metrics. In this case we (1)

use a specified system description SD to obtain a “flat”

representation, e.g., a Disjunctive Normal Form (DNF),

(2) decompose the “flat” representation, obtaining a new

system description SD′ and (3) use SD and SD′ to compare

the metrics described next. We denote the SD graph with

G = 〈V, E〉 and the SD′ graph with G′ = 〈V ′, E′〉.
We can use the graph degree distribution, where the

degree of a node in a graph is the number of edges incident

on that node. Since a circuit graph is directed, nodes have

two different degrees, the in-degree, which is the number of

incoming edges, and the out-degree, which is the number

of outgoing edges. The degree distribution P (k) of a graph

is the fraction of nodes in the graph with degree k (in this

case we do not take into consideration the orientation of the

edges). Thus if there are n nodes in total in a network and

nk of them have degree k, we have P (k) = nk/n.

The mean degree of a graph is given by

P̄ =
1

|V |

∑

v∈V

|v|. (1)

where V is the set of all nodes and |v| is the degree of a

node v.

The graphs that we deal with are attributed graphs, with

the nodes having a component-type attribute, which we

denote as λ(v) for v ∈ V . Given this, we can define a

component-type distribution, which is

Λ(V ) = (Λ1, . . . , Λk) =

(

|λ1(v)|

|V |
, . . . ,

|λk(v)|

|V |

)

, (2)

given component types 1, . . . , k for a fixed ordering of

types. For example, for the full-adder circuit with gate-

type ordering (AND, OR, XOR), we have the distribution

(0.4, 0.2, 0.4).
We denote the SD graph with G = 〈V, E〉 and the SD′

graph with G = 〈V ′, E′〉. We compare a number of graph-

topology ratios, which we define as follows:

• Node Ratio: ≡ V/V ′.

• Component-type distribution ratio:

(

Λ1(v)

Λ1(v′)
, . . . ,

Λk(v)

Λk(v′)

)

,

whenever Λi(v) is not zero.

• Degree distribution ratio, where well-defined, i.e.,

P (k) 6= 0.

• Average Vertex Degree Ratio = k̄

k̄′
.

We use all of the above metrics to measure the quality of a

decomposition. In this paper we do not supply weights for

the different metrics and we do not combine them. For ex-

ample, if one introduces a component cost function, it should

be taken into consideration when combining the component-

type distribution ratios of the different component types.

V. CIRCUIT DECOMPOSITION

We first discuss some general properties of the Boolean

function decomposition problem and then we give an effi-

cient algorithm for computing decompositions.

A. Relation to Known Decompositions

One question that arises is the type of component library

that is necessary for decomposition. It turns out that we can

use a library L consisting of the well known functionally

complete set of gates (Boolean operators), i.e., L can consist

of the sets { AND, NOT }, {NAND}, or {NOR}.

Certain decompositions are preferable, i.e., these minimiz-

ing some optimality criterion such as number of elementary

functions (number of internal nodes in the resulting system

description), a cost function, etc. We can thus generalize

our notion of system decomposition to include a preferred

system decomposition, which is a system decomposition that

is optimal with respect to an optimality criterion O.

Given these definitions, it is straightforward to reduce the

problem of circuit synthesis to several well-known Boolean

optimization problems. In particular:

• Consider a component library that consists of Boolean

functions of the following kind:

f(x1, x2, . . . , xn) ≡x1 ∧ f(⊤, x2, . . . , xn)∨
¬x1 ∧ f(⊥, x2, . . . , xn)

(3)

for n = 1, 2, . . . , k, where k is an upper-bound for the

number of variables in the functions that we want to de-

compose. One can show that the resulting decomposi-

tion that minimizes the number of component instances

is equivalent to an optimal Shannon decomposition,

i.e., the problem reduces to building a minimal-decision

tree.

• If the component library consists of 2-input NAND

gates only, this particular kind of function decomposi-

tion becomes equivalent to Quine-McCluskey optimiza-

tion.



B. Circuit Decomposition Algorithm

Algorithm 1 shows the main system decomposition

method of this paper. The basic idea of Alg. 1 is to greedily

“carve-out” component instances, starting from some subset

of the primary inputs and moving toward the primary output.

Alg. 1 works on single-output Boolean functions only. The

input function should be given in a Disjunctive Normal Form

(DNF). The core of Alg. 1 is constructing multiple decision

trees, one for each component instantiation candidate added

to a reduced representation of the target Boolean function. A

component instantiation is selected if it minimizes the depth

of the decision tree.

Algorithm 1: Circuit Decomposition Engine (CDE)

Input: S, a Boolean function in DNF

Input: L, a component library

Result: a system description

1 〈T, IN, OUT〉 ← MAKETABLE(S);
2 repeat

3 foreach 〈F, CIN, COUT〉 ∈ L do

4 foreach X ∈ SUBSETSOFSIZE(IN, |CIN|) do

5 Z ← F (X);
6 T ′ ← ADDINTERNAL(T, Z);
7 CT← TREEINDUCER(T ′);
8 f⋆ ← EVALUATE(CT);
9 if f⋆ < f then

10 〈f⋆, Z⋆, CT⋆〉 ← 〈f, Z, CT〉;

11 〈T, IN, OUT〉 ← UPDATETABLE(T, Z⋆);

12 until DEPTH(CT⋆) > 2;

13 return MAKESYSTEMDESCRIPTION(CT⋆)

IN OUT

ci i1 i2 co Σ

False False False False False

True False False False True

False True False False True

True True False True False

False False True False True

True False True True False

False True True True False

True True True True True

Table I
TRUTH TABLE OF THE TARGET FUNCTION FOR THE FULL-ADDER

SHOWN IN FIG. 1

Table I shows the output of MAKETABLE (line 1) for the

full-adder function shown in Fig. 1. Each column in T (in the

running example T is initially constructed from Table I) is an

attribute and this table is a partial specification of the system

description and a full representation of the target Boolean

function. Each attribute (column) represents a primary input,

a primary output, or an internal variable. Note that each

internal variable is also the output of a component and the

name of this component can be specified in the name of the

internal variable.

The main idea of Alg. 1 is to maintain a front of unused

input or internal variables and to try all possible compo-

nents from the component library. This front is initially

constructed from all primary inputs contained in IN and later

maintained in the same set of variables. Line 3 of Alg. 1 tries

to use each component from the component library. Let the

component chosen in line 3 has k = |CIN| inputs. These k
inputs are attempted to be connected to any k-subset of the

variables in the set IN. These subsets are generated by the

SUBSETSOFSIZE auxiliary subroutine invoked in line 4.

Consider decomposing the function of the running exam-

ple whose truth table is given in Table I. CDE first draws an

inverter from the component library (the order is arbitrary).

It will then try to use each of the IN variables of the full-

adder as an input to this inverter. Line 5 of Alg. 1 computes

the values at the output of the inverter. Line 6 of Alg. 1

adds the output of the inverter to the T truth table, storing

the result in the temporary T ′ truth table as the choice of

the inverter is not final. The first T ′ table for our running

example is shown in Table II.

ci ¬ci i1 i2 co Σ

False True False False False False

True False False False False True

False True True False False True

True False True False True False

False True False True False True

True False False True True False

False True True True True False

True False True True True True

Table II
TRUTH TABLE T ′ AFTER CONNECTING AN INVERTER TO THE PRIMARY

INPUT ci

Each time a component is drawn from the component li-

brary and connected to unconnected input/internal variables,

a decision tree is induced by the TREEINDUCER subroutine.

A component is preferred if it leads to a binary decision tree

with a smaller number of leaf nodes. Continuing our running

example, the decision tree induces from the truth table T ′

shown in Table II is shown in Fig. 5.

The tree shown in Fig. 5 has eight leaf-nodes and this

is the value returned by the EVALUATE function in Alg. 1.

After computing the quality of the tree shown in Fig. 5,

CDE, tries all other possible components. For example, after

a few attempts, CDE tries connecting a XOR gate to the

primary inputs ci and i1. The resulting truth table is shown

in Table III.

Clearly, the quality of the second tree, shown in Fig. 6, and

having 6 leaf-nodes is better than the first one (with 8 nodes),
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Figure 5. Binary decision diagram induced from Table II

ci i1 ci ⊕ i1 i2 co Σ

False False False False False False

True False True False False True

False True True False False True

True True False False True False

False False False True False True

True False True True True False

False True True True True False

True True False True True True

Table III
TRUTH TABLE T ′ AFTER CONNECTING AN XOR GATE TO THE PRIMARY

INPUTS ci AND i1

hence the XOR gate is preferred. The process continues until

the resulting decision tree has only a root and leaf nodes, i.e.,

it is a stump tree. The resulting functional decomposition for

our running example is shown in 7. The difference, from

the original design comes from the fact that we run CDE

separately for each primary output and then we combine the

resulting Boolean functions. Despite that the design is very

similar to the original and exhaustive checking verifies that

the implemented Boolean function is equivalent to that of

the original full-adder.

We next extend the results from running CDE on the full-

adder to a benchmark of Boolean functions.

VI. EXPERIMENTAL RESULTS

We have implemented CDE in Python using the Orange

data mining and machine learning software suite [24] for

inducing the binary decision trees. The implementation is

straightforward and is a couple of hundred lines of code.

We have run all our experiments on a recent Linux platform
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Figure 6. Binary decision diagram induced from Table III
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Figure 7. Decomposition of the full-adder shown in Fig. 1

based on a 2.8 GHz Intel i7 CPU and equipped with 4 GB

of RAM.

A. Benchmark

We evaluate the performance of CDE on a benchmark

of combinational circuits that we introduce in this paper.

The benchmark contains fifteen Boolean functions and is

summarized in Table IV. The function decomposition bench-

mark contains small circuits and several IC designs used

in the 60-s and 70-s of the twentieth century. The various

functions implement common arithmetic functions such as

addition and multiplication, parity checking, multiplexing

and demultiplexing, etc. The 74XXX series functions have

been manually decomposed by Hansen et al. [9].

The first column in Table IV is an identifier. The second

column gives a brief description of the Boolean func-

tion. The remaining columns indicate if certain components

(gates) are included in the Boolean functions. For example,

the 2-bit adder includes an XOR gate, two- and three/input

AND gates, two/input OR gates, etc.

Table V shows the size of the manually created Boolean

functions from the function decomposition benchmark.



name description inverter buffer XOR AND NAND OR NOR half-adder 1-bit adder

HA half-adder 2 2/3
FA1 1-bit adder 2 2/3 2 2
FA2 2-bit adder 2 2/3 2 2
FA4 4-bit adder 2 2 2 2 3
SUB1 1-bit subtractor 1 2 2/3 2 2
MUX4 4-bit multiplexer 1 2/3 2/4
DEMUX4 2-to-4 demultiplexer 1 2/3 2
MUL2 2-bit multiplier 2 2 2 2
MUL3 3-bit multiplier 2 2 2 2 3
PAR4 4-bit parity checker 2
PAR6 6-bit parity checker 2
74182 4-bit CLA 1 2/3/4 4 2/3/4
74L85 4-bit comparator 1 2/3/4/5 5 2
74283 4-bit adder 1 2 2/3/4/5 2/3/4/5
74181 4-bit ALU 1 1 2 2/3/4/5 2/3/4/5 2 2/3/4

Table IV
CIRCUIT DECOMPOSITION BENCHMARK

B. Experimental Results

CDE computed decompositions for 13 out of 15 bench-

mark instances. The algorithm could not compute decom-

positions for MUL3 and 74181 within the preallocated time

quota of 15 min. In all successful cases the returned Boolean

functions were logically equivalent to the target function.

name |V | |E| |PI| |PO|

HA 6 4 2 2

FA1 10 8 3 2

FA2 15 9 5 3

FA4 23 15 9 5

SUB1 12 10 3 2

MUX4 16 15 6 1

DEMUX4 15 11 3 4

MUL2 16 12 4 4

MUL3 32 27 6 6

PAR4 8 7 4 1

PAR6 12 11 6 1

74182 33 28 9 5

74L85 47 44 11 3

74283 50 45 9 5

74181 87 79 14 8

Table V
CIRCUIT DECOMPOSITION BENCHMARK

CDE produces interesting results in generating functions

that do not only result in all metrics equal to 1 but also being

equivalent (having equivalent system descriptions). This is

the case for the instances HA, SUB1, PAR4 and PAR6. The

design of the 1-bit subtractor is shown in Fig. 8.

Figure 9 shows the MUX4 benchmark instance and

Fig. 10 shows the DEMUX4 implementation. Fig. 11 shows

a scalable n-bit adder.

The main results of CDE are summarized in Table VI.

The second and third column of Table VI show the number
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Figure 8. 2-bit subtractor

of nodes and edges, respectively, of the system description

returned by Alg. 1. The ratio of these sizes to the original

graph sizes shown in Table V are given in the forth and

fifth columns of Table VI. We can see that these values are

often close to 1 which means that the graphs are of similar

size. The rightmost column of Table VI shows the time in

seconds it takes for CDE to decompose the target Boolean

function.

Table VII shows the distribution of the components and

the target and synthesized system descriptions. In general

there are many complete functional sets and the choice

of CDE is driven by, e.g., the ordering in the component

library when breaking ties due to equivalent quality of the

Boolean decision tree. Because of this potential equivalence

of component library and gates, CDE may replace, for

example, NAND components with OR components and

inverters. The results in Table VII show that the performance

of CDE decreases with increasing the size of the target

Boolean function. The ratios shown in this table are 1 if there

is a 1:1 equivalence in gate numbers between the original
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Figure 10. 2-to-4 demultiplexer

circuit and the synthesized circuit; ratios less than 1 indicate

that the synthesized circuit has more of that gate type than

the original circuit.

VII. CONCLUSIONS

In this paper we have formulated the problem of Boolean

logic synthesis (or circuit decomposition) from generic

component libraries. This problem is computationally very

hard and, depending on the functional completeness of

the component library, may have no solution. We have

designed and implemented the CDE algorithm that is based

on machine learning, i.e., it greedily “carves-out” component

instances from the target function (i.e., the function to be

synthesized) until some termination criterion is met. Our

design is based on the idea to use a generic version of

the Shannon decomposition (which is related to building
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Figure 11. n-bit multiplier

name |V ′| |E′| |V |/|V ′| |E|/|E′| time [s]

HA 6 4 1 1 0.59
FA1 11 9 0.91 0 0.64
FA2 23 20 0.65 0 3.17
FA4 49 36 0.47 0 119.09
SUB1 12 10 1 1 0.66
MUX4 19 18 0.84 0 11.91
DEMUX4 17 13 0.88 0 1.23
MUL2 19 15 0.84 0 1.32
MUL3 - - - - -
PAR4 8 7 1 1 0.35
PAR6 12 11 1 1 0.92
74182 52 47 0.63 0 36.36
74L85 90 87 0.52 0 532.20
74283 108 103 0.46 0 135.17
74181 - - - - -

Table VI
DECOMPOSED BOOLEAN FUNCTIONS

decision trees) as a heuristic in solving the more difficult

generalization of decomposing functions in terms of arbi-

trary component (function) libraries. The last feature sets

apart our work from Boolean function minimization such as

minimal covers, optimal decision diagrams, etc.

To verify the validity of our method we propose a

benchmark of combinational circuits. In addition, we have

identified a set of basic graph similarity metrics which

we use for validating our algorithm. In some cases, CDE

reverses a Boolean function that has been constructed man-

ually. In the rest of the cases CDE computes function

decompositions that have number and types of component

similar to the original, manually created Boolean functions.

Our approach is clearly many orders of magnitude faster

than the trivial brute-force approach that terminates only for

Boolean functions of a very few variables.

This work is introductory in a sense that, to the best of

our knowledge, there is no in-depth algorithmic analysis

of the problem of logic synthesis. As a future work we

plan (1) to improve the CDE algorithm, (2) to formulate

more problems related to logic synthesis, (3) to identify and



name inverters XOR AND OR

HA - 1 1 -
FA1 - 1 1 0.5
FA2 - 1 0.67 0.4
FA4 - 0.22 0.27 0.24
SUB1 1 1 1 1
MUX4 2 0 0.8 0.33
DEMUX4 1.33 - 1 0
MUL2 0 2 1 0
MUL3 - - - -
PAR4 - 1 - -
PAR6 - 1 - -
74182 0.06 - 1.18 0.18
74L85 0.29 0 1.27 0.08
74283 0.55 0.29 0.4 0
74181 - - - -

Table VII
COMPONENT DISTRIBUTION METRIC

implement more metrics for evaluating the performance of

algorithms. To improve the CDE algorithm we intend to

implement guided back-jumping, exploration of hierarchy

and active learning of decomposed sub-functions. Problems

related to the problem of circuit synthesis is counting the

number of decompositions and multi-parameter optimiza-

tion of decompositions. Finally, metrics that can improve

our evaluation include identification of maximal isomorphic

subgraphs and similar.

Given the simplicity of our approach, it shows great

promise given that there are many optimizations that can

be introduced. Such optimizations include introducing better

objective functions, applying heuristics to the simple greedy

method, and learning sub-function component models that

can be quickly substituted during the decomposition pro-

cess.
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