
On the Design of Coordination Diagnosis

Algorithms for Teams of Situated Agents

Meir Kalech ∗, Gal A. Kaminka

The MAVERICK group
Department of Computer Science

Bar Ilan University, Israel

Abstract

Teamwork demands agreement among team-members in order to collaborate and
coordinate effectively. When a disagreement between teammates occurs (due to fail-
ures), team-members should ideally diagnose its causes, to resolve the disagreement.
Such diagnosis of social failures can be expensive in communication and computa-
tion, challenges which previous work has not addressed. We present a novel design
space of diagnosis algorithms, distinguishing several phases in the diagnosis process,
and providing alternative algorithms for each phase. We then combine these algo-
rithms in different ways to empirically explore specific design choices in a complex
domain, on thousands of failure cases. The results show that different phases of di-
agnosis affect communication and computation overhead. In particular, centralizing
the diagnosis disambiguation process is a key factor in reducing communications,
while runtime is affected mainly by the amount of reasoning about other agents.
These results contrast with previous work in disagreement detection (without diag-
nosis), in which distributed algorithms reduce communications.

Key words:
Diagnosis, Multi-Agent Systems, Situated Agents

∗ Corresponding author.
Email addresses: kalechm@cs.biu.ac.il (Meir Kalech), galk@cs.biu.ac.il

(Gal A. Kaminka).
URLs: http://www.cs.biu.ac.il/~kalechm/ (Meir Kalech),

http://www.cs.biu.ac.il/~galk/ (Gal A. Kaminka).

Preprint submitted to Elsevier Science 8 January 2007

1 Introduction

With increasing deployment of robotic and agent teams in complex, dynamic
settings, there is an increasing need to also be able to respond to failures that
occur in teamwork [2,8,34,24]. One type of failure in teamwork is disagreement,
where agents come to disagree on salient aspects of their joint task. There is
thus a particular need to be able to detect and diagnose the causes for dis-
agreements that may occur, in order to facilitate recovery and reestablishment
of collaboration, e.g., by negotiations [20]. This type of diagnosis is called so-
cial diagnosis, since it focuses on finding causes for failures to maintain social
relationships [18], i.e., coordination failures.

For instance, suppose a team of four robotic porters carry a table, when sud-
denly one of the robots puts the table down on the floor, while its teammates
are still holding the table up. Team-members can easily identify a disagree-
ment, but they also need to determine its causes, e.g., that the robot believed
the table reached the goal location, while its teammates did not. Given this
diagnosis, the robots can negotiate in order to resolve the disagreement.

Unfortunately, while the problem of detection has been addressed in the liter-
ature e.g., [17,25,19], social diagnosis remains an open challenge. Naive imple-
mentations of social diagnosis processes can require significant computation
and communications, which prohibits them from being effective as the number
of agents is scaled up, or the number of failures to diagnose increases. Previous
work did not rigorously address this concern: Kaminka and Tambe [18] guaran-
tee disagreement detection without communications, but their heuristic-based
diagnosis often fails. Dellarocas and Klein as well as Horling et al. [5,10] do not
explicitly address communication complexity. Fröhlich et al. and later Roos et
al. [7,28,30,31] assume fixed communication links, an assumption which does
not hold in dynamic teams in which agents may choose their communication
partners dynamically (see Section 2 for details).

We seek to examine in depth the communication and computation require-
ments of social diagnosis. We distinguish two phases of social diagnosis: (i)
selection of the diagnosing agents; and (ii) diagnosis of the team state (by the
selected agents). We provide alternative algorithms for these phases, and com-
bine them in different ways, to present six diagnosis methods, corresponding
to different design decisions. We then examine the runtime and communi-
cation complexity and empirically evaluate these parameters in diagnosing
thousands of systematically-generated failure cases, occurring in a team of
behavior-based agents in two different complex domains.

We draw general lessons about the design of social diagnosis algorithms from
the empirical results. Specifically, the results show that centralizing the disam-

2

biguation process is a key factor in dramatically improving communications
efficiency, but is not a determining factor in runtime efficiency. On the other
hand, explicit reasoning about other agents is a key factor in determining
runtime: Agents that reason explicitly about others incur significant com-
putational costs, though they are sometimes able to reduce the amount of
communications. These results contrast with previous work in disagreement
detection, in which distributed algorithms reduce communications (and to
some extent, runtime) by reasoning about other agents.

The paper is organized as follows: Section 2 motivates the research and dis-
cusses related work. Section 3 presents the architecture of behavior-based
agents. Section 4 presents the disambiguating diagnosis hypotheses phase and
Section 5 presents the diagnosing agent selection phase. Section 6 specifies di-
agnosis methods which combine the algorithms in the previous two sections in
different ways, and Section 7 evaluates them empirically. Section 8 concludes.

2 Motivation and Related Work

Agreement (e.g., on a joint plan or goal) is the key to the establishment and
maintenance of teamwork [2,11,8,34]. The Joint Intentions framework [2] fo-
cuses on agreement (mutual belief) in a team’s joint goal. The SharedPlans
framework [8] relies on an intentional attitude, in which an individual agent’s
intention is directed towards a group’s joint action. This includes mutual be-
lief and agreement among the teammates in a complete recipe including many
actions. Similarly, the Joint Responsibility model [11] establishes the team-
members mutual belief in a specific recipe as a corner-stone for their collabo-
ration.

There exist several architectures for building agents, using ideas from team-
work theories; agreement on specific features of the agents’ internal state plays
a critical role in all. GRATE∗ implements the joint responsibility model [11] in
industrial agent systems. STEAM [34] and TEAMCORE [26] use ideas from
both Joint Intentions and SharedPlans, and add reactive team plans which
are selected or deselected by a team or sub-team. BITE [15,16] follows in this
tradition, and additionally allows for a variety of agreement-synchronization
protocols to be used interchangeably, in controlling physical robots.

However, teamwork sometimes fails, causing disagreements—agreement fail-
ures—among team-members [17,5,18]. This may be due to sensing failures, or
different interpretations of sensor readings. The function of a diagnosis pro-
cess is to go from disagreement detection (where an alarm is raised when a
fault—disagreement—occurs), to fault identification, where the causes for the
disagreement are discovered, in terms of the differences in beliefs between the

3

agents that lead to the disagreement. Such differences in beliefs may be a re-
sult of differences in sensor readings or interpretation, in sensor malfunctions,
or communication difficulties.

While diagnosis of a single-agent system is relatively well understood, and
known to be computationally difficult [9], social diagnosis—diagnosis of coor-
dination failures such as disagreements—remains an open area of research. In
particular, to our best knowledge, there has not been an in-depth exploration
of disagreement diagnosis algorithms. Our work takes first steps to under-
stand disagreement diagnosis algorithms in terms of their design choices, and
the effects of these on computation and communications.

The most closely-related work to ours is reported in [17,18]. This previous
investigation provides guarantees on detection of disagreements, but only pre-
sented a heuristic approach to diagnosis, which indeed does not always suc-
ceed. The algorithms we present here succeed in the same examples where the
previous heuristic approaches have failed.

Dellarocas and Klein [19,5] report on a system of domain-independent ex-
ceptions handling services. The first component contains a knowledge base of
generic exceptions. The second contains a decision tree of diagnoses; the diag-
nosing process is done by traversing down the tree by asking queries about the
relevant problem. The third component is responsible to seek for a solution for
the exception, based on a resolution knowledge base. This approach transfers
the failure-handling responsibility from the agent to an external system, to
alleviate the load on each agent designer (which would now be freed of the
responsibility of implementing an exception-handling system in each agent).
However, in contrast to our work, communication and runtime concerns are
not addressed. In their system sentinel agents monitor the agents in the multi-
agent system and pro-actively query agents about their status. They do not
mention the monitoring method and when a querying is necessary, but both
of those actions have a large influence on communication and computation
complexity.

Similarly, Horling et al. [10] uses a fault-model of failures and diagnoses to
detect and respond to multi-agent failures. In this model, a set of pre-defined
diagnoses are stored in acyclic graph’s nodes. When a fault is detected a suit-
able node is triggered and according to the fault characters the node activates
other nodes along the graph. The advantage of Horling’s fault-model system
over Dellarocas and Klein’s system is the use of learning algorithm that can be
employed to maintain structure as time passes. As with Dellarocas and Klein,
Horling’s work does not explicitly address communication complexity.

Fröhlich et al. [7] have suggested dividing a spatially distributed system into
regions, each under the responsibility of a diagnosing agent. If the fault de-

4

pends on two regions, the agents that are responsible for those regions co-
operate in making the diagnosis. This method is inappropriate for dynamic
team settings, where agents cannot pre-select their communication partners.
Similarly, Roos et al. [29–31] have analyzed a model-based diagnosis method
for spatially distributed knowledge. But, its method assumes that there are no
conflicts between the knowledge of the different agents, i.e., no disagreements.

Roos et al. [28] have expanded their own work to address semantically dis-
tributed systems, where the knowledge is distributed among the agents. Each
agent is an expert in a certain problem domain. In this system, if each agent
makes a diagnosis separately, the diagnosis will be incomplete since the de-
pendencies between the agents are not diagnosed. Roos et al. have suggested
to keep the dependencies between the agents. Each agent will diagnose its own
domain and the related dependencies of its domain. The communication links
are fixed, such that each failure is diagnosed strictly by the agents that are
associated with their communication link. However, the interactions among
system entities, in multi-agent teams, are not known in advance since they
depend on the specific conditions of the environment in runtime and the ap-
propriate actions assigned by the agents [22]. We can solve this problem by
keeping all the possible interactions between the agents. However, as Roos et
al. point out, this may cause a large communication complexity, especially in
a large system, since the number of candidate diagnoses is exponential (in the
number of dependencies).

Diagnosis is an essential step beyond the detection of the failures. Mere de-
tection of a failure does not necessarily lead to its resolution. First, because
the agents that caused a disagreement are not necessarily those that detected
it, and may thus be unaware of it. Therefore, they may not be able to re-
plan around it. Second, even if somehow an undiagnosed (though detected)
disagreement manages to temporarily overcome the disagreement–it may still
continue to occur in various forms, if its causes are not resolved, e.g., via ne-
gotiations [20]. In dynamic domains, such as a RoboCup soccer game, it may
indeed be more effective (for a short while) to simply replan rather than en-
gage in diagnosis (if the cost of replanning is cheaper than diagnosis, and if it
is possible without knowing the causes for the disagreement). However, even
in such settings, it often makes sense to use diagnosis post-hoc to discover the
reasons for any failures; for instance, in conducting a post-game analysis.

For instance, Parker [24] reports on ALLIANCE, a behavior-based architec-
ture which is robust to many kinds of failures, and is able to recover from
them by having robots take over tasks from failing teammates, without on ex-
plicit diagnosis process such as those are described in this paper. Similarly to
Parker’s work, the algorithms here are intended for use by situated, behavior-
based agents. However, the focus is on explicit identification of the failures,
rather than on reactive responses to them. Thus, our work complements the

5

work on ALLIANCE: Without diagnosis, robots using ALLIANCE may end
up failing repeatedly and needlessly due to recurring disagreement failures, or
due to lack of agreement on task assignments.

Unfortunately, diagnosis of disagreements can be expensive both in terms of
computation as well as in communications (see Table 2, and Section 7). This
is because while the constraints for agreement are known in advance, the
interactions leading to disagreements are not. They depend on the specific
conditions of the environment in runtime. Moreover, in diagnosing disagree-
ments, the agents are part of the system. And so their inputs and outputs are
subjective to the point of view of each diagnosing agent. In particular, these
inputs and outputs may not be known to all diagnosing agents.

3 Building Blocks for Diagnosis

We start by describing the basic building blocks for social diagnosis of dis-
agreements. We base our approach on model-based diagnosis. In model-based
diagnosis of a single agent, the diagnoser uses a model of the agent to gen-
erate expectations which are compared to the observations, in order to form
diagnoses [3,27,4].

In model-based social diagnosis, the diagnoser models the expected relation-
ships between the agents [13,14]. The goal is to diagnose the failures in these
relationships by analyzing the detected deviation of the observations from the
model’s predictions [17,19,18,25].

We distinguish two phases of social diagnosis: (i) selecting who will carry
out the diagnosis; (ii) having the selected agent(s) generate and disambiguate
the diagnosis hypotheses, where a diagnosis hypothesis is a set of conflicting
beliefs, and the agents that disagree about them (i.e., that hold these beliefs).
These phases can be distinguished for any social diagnosis process.

To explore these phases concretely, we focus on teams of situated (behavior-
based) agents [6,23,21,33]. The control process of such agents is relatively
simple to model, and we can therefore focus on the core communications and
computational requirements of the diagnosis.

Behavior-based agents dynamically switch between alternative behaviors (con-
trol modules, see Definition 1 below). Their selection of a controller is done as
a result of examining their own internal beliefs, which are influenced by the
external world. In such teams we expect to have faults due to the differences
between the beliefs of the agents, e.g. because of their different sensing of the
external world [17,18].

6

Definition 1 A behavior is a tuple BHV = 〈V AL, PRE, TER,ACT 〉, where
V AL is the identifier of the behavior, PRE and TER are sets of logic proposi-
tions respectively representing the pre-conditions (which, when satisfied, allow
the behavior to be selected), and termination conditions (which terminate its
selection if the conditions are satisfied), correspondingly. ACT stands for the
actions associated with the behavior, which are executed (possibly in sequence,
or repeatedly) once the behavior selected.

We model an agent as having a decomposition hierarchy of behavior nodes
organized in an acyclic graph:

Definition 2 A behavior hierarchy is a directed acyclic graph of behaviors
BH = (V, E), where V represents the behavior nodes and E represents de-
composition relations between the behaviors. An edge 〈b1, b2〉 ∈ E denotes that
b2 is a possible decomposition of b1. We then refer to b2 as a child of b1.

At any given time, the agent is controlled by a top-to-bottom path through
the hierarchy, root-to-leaf:

Definition 3 A behavior path is a path of behaviors through the hierarchy,
root-to-leaf, organized in a set BP = {b1...bh}, where bi represents behavior
b in depth (level) i in the hierarchy. Only one behavior in each level of the
hierarchy can be part of a behavior path.

Example 1 This example is taken from ModSAF, an application involving a
virtual battlefield environment with synthetic helicopter pilots. In the example,
a team of synthetic pilot agents is divided into two: scouts and attackers. In
the beginning all teammates fly in formation looking for a specific way-point
(a given position), where the scouts move forward towards the enemy, while
the attackers land and wait for a signal. Once a signal is sent to the attackers,
they take off and fly in formation toward the scouts who await the attackers.

Figures 1 and 2 describe portions of the behavior hierarchies of the attacker
and scout, respectively. A selection of the Wait Point behavior is possible only
if its pre-condition: battle-point scouted=false is satisfied, and the behavior
will be deselected when the termination-condition battle-point scouted=true
will be satisfied.

An agent uses a copy of the behavior hierarchy to track its current selections.
Using its sensors it determines its beliefs and selects the behavior path which
its pre-conditions are satisfied by its beliefs.

Definition 4 The current state of an agent is a pair 〈BP, BL〉 where BP
represents its selected behavior path and BL the set of its beliefs. A belief is a
pair 〈p, v〉, where p is a proposition and v ∈ {true, false} is its truth value.

7

VAL: Join Scout VAL: Wait Point
PRE: battle point scouted=false
TER: battle point scouted=true

VAL: Just Wait
ACT: speed = 0

VAL: Fly Route
ACT: speed = 200

VAL: Execute Mission

VAL: Fly Flight
PRE: way point found=false
TER: way point found=true

Fig. 1. attacker’s behaviors hierarchy (portion).

VAL: Join Scout VAL: Wait Point
PRE: battle point scouted=false
TER: battle point scouted=true

VAL: Just Wait
ACT: speed = 0

VAL: Fly Route
ACT: speed = 200

VAL: Execute Mission

VAL: Fly Flight
PRE: way point found=false
TER: way point found=true

Fig. 2. scout’s behavior hierarchy (portion).

For instance, in Figure 1 the behavior path of an attacker that is waiting after
detecting the way point is: BP={Execute Mission, Wait Point, Just Wait} and
it executes a landing action (speed=0). The beliefs set that lead the attacker
to select this behavior path is BL={battle point scouted=false}.

Definition 5 A team T = {a1...an} is a set of n agents, and B is a set
of agents’ beliefs B = {b1, ..., bn}, where bi is a set of q beliefs of agent ai:
bi = {bi1 , ..., biq}.

We follow the convention of agent teamwork architectures, where agents co-
ordinate through the joint selection and deselection of team behaviors, by
using communications or other means of synchronization [11,34,16]. In other

8

words, while each agent executes its own behavior hierarchy, selection of team
behaviors within the hierarchy is synchronized. Team behaviors, typically at
higher-levels of the hierarchy, serve to synchronize high-level tasks, while at
lower-levels of the hierarchy agents select individual (and often different) be-
haviors which control their execution of their own individual role. Team be-
haviors are represented by boxes in Figures 1 and 2.

Definition 6 A team behavior is a behavior which is to be selected and de-
selected jointly for all the team: ∀i, j ∈ T , Idix = Idjx, where T is a team, and
Idix is the identifier of team behavior node x of behavior hierarchy of agent ai.

Disagreement between team-members is manifested by selection of different
team behaviors, by different agents, at the same time, i.e. by synchronization
failures [18]:

Definition 7 A disagreement exists when the following condition holds: ∃i, j ∈
T , such that tb ∈ BPi ∧ tb /∈ BPj, where T is a team, tb is a team behavior,
and BPi represents the behavior path of agent ai.

For instance, suppose we have a team of one scout and three attackers T =
{S, A1, A2, A3} (see Figures 1 and 2 for their behavior hierarchies). A disagree-
ment (coordination fault) occurs if attacker A1 selects to wait BP={Execute
Mission, Wait Point, Just Wait}, while the scout S selects to fly in forma-
tion BP={Execute Mission, Fly Flight, Fly Route}. The fault occurs due to
the selection of Fly flight by the scout, in contrast with the selection of the
behavior Wait Point by attacker A1.

Disagreements can be detected by socially-attentive monitoring [18]. In this
process all the agents monitor certain key agents using a behavior recognition
algorithm. Once a monitor agent cannot find a matching between its own
behavior and the behavior of the monitored key agent, it concludes that there
is a fault. Since team behaviors are to be jointly selected (as discussed above),
such a disagreement can be traced to a difference in the satisfaction of the
relevant pre-conditions and termination conditions, e.g., agent A believes P ,
while agent B believes ¬P , causing them to select different behaviors. In the
diagnosis process we investigate these conflicting beliefs:

Definition 8 Conflicting beliefs are a pair of two equal belief propositions, of
different agents, which have contradictory values. 〈bix , bjy〉 where (i 6= j)∧(p ∈
bix = p ∈ bjy) ∧ (v ∈ bix 6= v ∈ bjy).

It is these conflicting beliefs which the diagnosis process seeks to discover:

Definition 9 A diagnosis for a disagreement is a set of conflicting beliefs
D = {d1...dm} that accounts for the disagreement.

9

In the example of disagreement presented above, the belief of scout S is the
pre-conditions of its behavior (BP={Execute Mission, Fly Flight, Fly Route}),
e.g. 〈way point found, false〉. The beliefs of attacker A1 are the termination
conditions of its previous behavior (BP={Execute Mission, Fly Flight, Fly
Route}) and the pre-conditions of its current behavior (BP={Execute Mis-
sion, Wait Point, Just Wait}), e.g. 〈way point found, true〉 and 〈battle point
scouted, false〉. A diagnosis may be that S believes that the waypoint was
not yet found, while A1 believes that it was. In other words, D={way point
foundS=false, way point foundA1=true}.

4 Disambiguating Diagnosis Hypotheses

The design space of diagnosis algorithm is composed of two dimensions: First,
the selection of one or more team-members to carry out the diagnosis (in
the centralized case, only one, and in the distributed case, all or many); and
second, the process by which the selected diagnosing agents disambiguate
the diagnosis hypotheses to arrive at the correct diagnosis. The algorithms
used for selecting the diagnosing agents may depend on the diagnosis process
selected in the second phase (disambiguation). Thus for clarity of presentation,
this section will first discuss the second phase; The next section (Section 5)
discusses alternatives for agent selection.

Let us assume for now that one or more agents have been selected to carry
out the diagnosis process. The agents must now identify the beliefs of their
peers and then find the disagreements. We present two options: (i) the agents
report their status to the diagnosing agents (Section 4.1); (ii) the diagnosing
agents actively query agents as to the state of their beliefs 4.2. Obviously, these
methods do not exhaust the range of options for the diagnoser selection and
the diagnosis methods. For instance, there may be alternative methods which
selectively utilize queries for the diagnosis process. However, the methods we
we chose highlight the extremes of the design space.

4.1 Reporting

Perhaps the simplest algorithm for detecting the beliefs of team-members is
to have all team-members send their relevant beliefs to the diagnosing agent
(the diagnosing agent can inform the team-members of the detection about a
disagreement that triggers this communication). In order to prevent flooding
the diagnosing agent with irrelevant information, each team-member sends
only beliefs that are potentially relevant to the diagnosis, i.e., only the beliefs
that are associated with its currently selected behavior path.

10

Upon receiving the relevant beliefs from all agents, the generation of the di-
agnosis proceeds simply by comparing all beliefs of team-members to find
conflicting beliefs (e.g., agent A believes P , while agent B believes ¬P). Since
the beliefs of the other agents are known with certainty (based on the commu-
nications), the resulting diagnosis must be the correct one. However, having
all agents send their beliefs may severely impact network load.

The procedure FIND_CONTRADICTION (Algorithm 1), gets a set of agents’ be-
liefs B (Definition 5) and returns a diagnosis D (Definition 9).

Algorithm 1 FIND CONTRADICTION
(input: set of agents’ beliefs B
output: diagnoses set ∆)

1: D ← ∅
2: for all bi ∈ B do
3: for all bj ∈ B where i < j do
4: for all bix ∈ bi do
5: for all bjy ∈ bj do
6: compare between the beliefs bix and bjy

7: if 〈bix , bjy〉 are conflicting beliefs (Definition 8) then
8: D = D ∪ 〈bix , bjy〉
9: return D

In the first line we initialize ∆—a set of diagnosis. In lines 2–3 the diagnosing
agent goes over the belief sets of every pair of agents, in order to compare
between their beliefs (bi is the belief set of agent ai and bj is the belief set
of agent aj). Then in lines 4–5 the diagnosing agent goes over the beliefs in
the set of agent ai, comparing it to the belief set of agent aj. In lines 6–8,
the diagnosing agent compares between every pair of beliefs. If they have the
same proposition but different truth values, it add these conflicting beliefs to
the diagnosis set D, associated with their agents.

Let us analyze the runtime and communications complexity of Algorithm 1.
Since both runtime and communications are affected by the number of beliefs
in the system, we begin by first examining the number of beliefs of a single
agent.

Each behavior has a number of associated beliefs (both the pre-conditions
and termination conditions). We denote the worst case for the number of
beliefs associated with a single behavior by b. At any given moment, a single
agent executes a top-to-bottom path through the hierarchy, root-to-leaf. In
the worst case (a degenerate behavior hierarchy) this top-to-bottom path is of
length O(m), where m is the size of the behavior-hierarchy (i.e., the number of
behaviors in the hierarchy). Thus the total number of beliefs for a single agent
is therefore O(mb) in the worst case. In a best case scenario, the length of the
top-to-bottom path is the height of a perfectly balanced behavior hierarchy,
i.e., O(log m).

11

There are n agents in the team. The agents send their beliefs to the diagnosing
agent. Under the assumption that each belief message is identical in size; the
total number of messages in the worst case is equal to the total number of
beliefs communicated by the n agents, O(nmb) (in the best case, the number of
messages would be O(nb log m)). The worst-case runtime in this case is where
the diagnosing agent compares each agent’s beliefs with all others’. Therefore
the runtime complexity in the worst case is O(n2m2b2).

The complexity of this process can be improved by arranging the beliefs in a
sorted order. Instead of comparing between the beliefs in double loop (lines
3–4 in Algorithm 1), we could first lexicographically sort the beliefs (before
the loop process) according to the propositions, and then compare between
the beliefs, linearly. The sorting process’ runtime for each agent would be
O(mb log(mb)) and for n agents it would be O(nmb log(mb)). Once the beliefs
are sorted the complexity of the comparison process is O(n2mb). So, the total
complexity in the worst case is O(nmb log(mb) + n2mb). In teams where the
number of agents is scaled-up, we expect n À mb so the complexity would be
O(n2bm).

Example 2 Example 1, (Figures 1 and 2) assume the scout was chosen to
make the diagnosis then the attackers send their beliefs after the transference
from {Execute Mission, Fly Flight, Fly Route} to {Execute Mission, Wait
Point, Fly Route}, to the scout. See in Figure 1 that the beliefs of A1 and
A2 are: {way point found=true ∧ battle point scouted=false}, a total of four
beliefs were sent by communication. The belief of the scout is: {way point
found=false}. Once the scout has the beliefs of all the agents, it compares
between them and finds the contradiction. In our example, the diagnosis is
that the attackers’ belief is: {way point found=true}, in contrast to the scout’s
belief: {way point found=false}.

4.2 Querying

In the previous algorithm the agents send all the beliefs that are associated
with their behaviors. However, some of these beliefs may not be necessary
for the diagnosis. We thus propose a novel selective monitoring algorithm, in
which the diagnosing agent controls the communications, by initiating targeted
queries which are intended to minimize the amount of communications. To do
this, the diagnosing agent builds hypotheses as to the possible beliefs held by
each agent, and then queries the agents as necessary to disambiguate these
hypotheses.

Querying proceeds in three stages (Figure 3):

(1) Behavior recognition: the diagnoser observes its peers and uses a be-

12

havior recognition process (see below) to identify their possibly-selected
behavior paths, based on their observed actions.

(2) Belief recognition: based on the hypothesized behavior paths it further
hypothesizes the beliefs held by the teammates (which led them to select
these behavior paths, by enabling sets of preconditions and termination
conditions).

(3) querying: the diagnoser queries the diagnosed agents as needed to dis-
ambiguate between these belief hypotheses.

Once it knows about the relevant beliefs of each agent, it compares these beliefs
to detect contradictory beliefs which explain the disagreement in behavior
selection.

Fig. 3. Querying process for a single agent.

4.2.1 Behavior Recognition

This process begins with RESL, a previously-published behavior recognition
algorithm [18], presented here briefly as a reminder. Under the assumption
that each agent has knowledge of all the possible behavior paths available
to each team-member, i.e., their behavior path library (an assumption com-
monly made in plan recognition), each observing agent creates a copy of the
fully-expanded behavior hierarchy for each of its teammates. It then matches
observed actions with the actions associated with each behavior. If a behav-
ior matches, it is tagged. All tagged behaviors propagate their tags up the
hierarchy to their parents (and down to their children) such as to tag en-
tire matching paths: These signify the behavior recognition (plan recognition)
hypotheses that are consistent with the observed actions of the team-member.

Example 3 In Example 1 (Figures 1 and 2), a scout and two attackers are

13

teammates carrying out a mission. They had flown in formation (Fly Flight
behavior) for a while, when the attackers, say A1 and A2, landed (Wait Point
behavior), while the scout continued to fly since it still did not find the way-
point and so continued to execute the Fly Flight behavior.

Suppose A1 monitors A2 and the scout. It recognizes that the scout’s speed is
200, so it can hypothesize (according to the above behavior recognition algo-
rithm) that the scout is executing either: {Execute Mission, Fly Flight, Fly
Route} or {Execute Mission, Wait Point, Fly Route}. In addition, A1 con-
cludes that A2 is executing {Execute Mission, Wait Point, Just Wait} since
its speed is 0. A1 can not detect the fault, since its own behavior matches A2’s
behavior and one of the behavior hypotheses of the scout. On the other hand,
once the scout monitors A1 and A2, it recognizes that their speed is 0, so it
concludes that they are executing {Execute Mission, Wait Point, Just Wait},
in contrast to its own behavior {Execute Mission, Fly Flight, Fly Route}. It
can conclude that there is a fault: A1 and A2 selected {Execute Mission, Wait
Point, Just Wait}, while it selected {Execute Mission, Fly Flight, Fly Route}.

The next phase is to identify the reasons for the difference in the selection of
the behaviors. The diagnosing agent should disambiguate the correct behavior
path of each teammate among its behavior path hypotheses, and the beliefs
that account for its selection. These steps are discussed in the next section
(Section 4.2.2).

4.2.2 Belief Recognition

Once the hypotheses for the selected behavior path of an agent are known to
the observer, it may infer the possible beliefs of the observed agent by exam-
ining the pre-conditions and the termination conditions of each hypothesized
behavior path. To do this, the observer must keep track of the last known
behavior path(s) hypothesized to have been selected by the observed agent.
As long as the behaviors remain the same, the only general conclusion the
observer can make is that the termination conditions for the selected behavior
paths have not been met. Thus it can infer that the observed agent currently
believes the negation of the termination conditions of selected behavior paths.

When the observer recognizes a transition from one behavior path to another,
it may conclude (for the instance in which the transition occurred) that the
termination conditions of the previous behavior path, and the pre-conditions
of the new behavior path are satisfied. In addition, the termination conditions
of the new behavior path must not be satisfied; otherwise this new behavior
path would not have been selected. Therefore, the beliefs of the observed agent
(at the moment of the transition) are: (termination conditions of last behavior
path) ∧ (pre-conditions of current behavior path) ∧¬ (termination conditions

14

of current behavior path).

We use V t
i to denote the set of behavior path hypotheses of agent ai at time

t. We use PRE(V t
ij
) to denote the set of precondition propositions and their

truth value. We use TER(V t
ij
) to denote the set of termination propositions

and their truth value. F t
i denotes a set of belief hypotheses of agent ai at time

t.

The procedure BELIEF_RECOGNITION (Algorithm 2) receives as input the current-
time V t

i (as generated by the behavior recognition process), and the previous
behavior path hypothesis set V t−1

i and returns the belief hypotheses set Fi of
the same agent (ai). As mentioned above, the observer has knowledge of the
behavior-hierarchy of the observed agents, so the procedure could get as input
the behavior path hypotheses of the observed agents.

Algorithm 2 BELIEF RECOGNITION
(input: V t

i , V t−1
i

output: belief hypotheses set Fi)

1: F t
i ← ∅

2: for all v ∈ V t
i do

3: for all r ∈ V t−1
i do

4: Fi ← Fi ∪ TER(r) ∪ PRE(v) ∪ ¬TER(v)
5: return Fi

In the first line the set of the belief hypotheses is initialized as empty set. In line
2–3 the diagnosing agent goes over the current behavior hypotheses against
the previous behavior hypotheses. In line 4 it generates the belief hypothesis
as a result of the union of the termination conditions of the previous behavior
hypothesis and the pre-conditions of the current behavior hypothesis and the
termination conditions of the current behavior hypothesis.

Example 4 Continuing Example 3, agent A1 can infer the beliefs of the other
agents as follows. As shown above, the behavior path hypotheses of the scout
are: V t

scout = {{Execute Mission, Fly Flight, Fly Route},{Execute Mission,
Wait Point, Fly Route}}. As a result of belief recognition process we obtain its
beliefs hypotheses: Fscout = {{way point found=false},{way point found=true,
battle point scouted=false}}. The first belief hypothesis is derived from the
first behavior path hypothesis while the second belief hypothesis is derived from
the second behavior path hypothesis. In reference to agent A2, its behavior path
hypothesis is VA2 = {Execute Mission, Wait Point, Just Wait}, therefore its
belief is: Fscout = {way point found=true, battle point scouted=false}.

Let us analyze the runtime and communication complexity of Algorithm 2.
As mentioned above an observer agent infers the beliefs of the other agents by
a belief recognition process. The runtime complexity of this process depends
on the number of the agents’ beliefs in a single path, the number of behavior

15

path hypotheses, and the number of agents:

(1) The number of agent’s beliefs in a single path. The number of
agent’s beliefs per behavior path in the worst case has already been
shown to be O(bm), where m is the number of behaviors and b is the
number of beliefs per behavior. But through belief recognition we com-
bine the termination conditions of the previous behavior path with the
pre-conditions and termination conditions of the current behavior path
thus the number of beliefs is O(2bm) = O(bm). Each belief proposition
may be true or false, therefore the number of possible belief combinations
per behavior path in the worst case is O(22bm) = O(m2b).

(2) The number of behavior path hypotheses. Suppose r denotes the
number of behavior path hypotheses in the behavior hierarchy k-ary tree,
(where k designates the branching factor, i.e., the number of children of
each behavior). Then the number of possible paths is limited by the
number of leaves. The number of leaves is at most (m − m/k). It is
likely that r ¿ m−m/k since only a few of the path possibilities of the
hierarchy are indeed possible paths for a certain recognized behavior.

(3) The number of agents. This process is repeated for each observed
agent so the runtime complexity in the worst case is: O(nrm2b).

The belief recognition process does not involve any communication, so we do
not present the communication complexity for this process.

4.2.3 Targeting Disambiguation Queries

Once the belief hypotheses are known, the agent can send targeted queries
to specific agents in order to disambiguate the hypotheses. The queries are
selected in a manner that minimizes the expected number of queries. Intu-
itively, the agent prefers to ask first about propositions whose value, when
known with certainty, will approximately split the hypotheses space.

For instance, suppose there are four hypotheses: H1 = {a, b, c,¬h}, H2 =
{a, b, d,¬k}, H3 = {a, e,¬m}, H4 = {f, g,¬p}. a occurs in three of the four
hypotheses, therefore if the value of a is queried and the response is a = true,
then the three hypotheses that contain a are still active. On the other hand, b
appears only in two of the hypotheses, and so it splits the hypotheses space.
If b = true then hypotheses H1 and H2 are active, and if b = false the two
other hypotheses are active. The other beliefs have one occurrence, therefore,
like a, they divide the space to two unequal parts. In the best case only one
hypothesis will be active, but in the worst case three hypotheses will be active.

Let us analyze the minimal number of queries necessary to disambiguate the
hypotheses. A brute-force approach would have us evaluate the consequences
of any sequence of queries to determine the optimal number of queries, but the

16

computational complexity of this procedure is combinatorial in the number of
beliefs.

Instead, we use a greedy one-step look ahead strategy based on entropy, sim-
ilarly to its use in the ”twenty questions” problem. The entropy function is
taken from the information theory [32]:

Entropy(S) ≡
c∑

i=1

−pi log2 pi

Entropy(S) calculates the entropy of belief S. c represents the number of val-
ues of belief S, and pi is the proportion of S belonging to value i. The entropy
function varies between 0 and log2 c. The entropy is close to the minimum (0),
when the distribution of the values of belief S is not uniform. The more the
entropy is close to the maximum, the more the distribution is uniform.

In our case each belief proposition has three possible values: true, false,
don′t care, and the maximal entropy is log2 3 = 1.58 (when the hypothe-
ses space is distributed uniformly by a belief query). In each step we want to
query as to the belief whose value will split the hypotheses space as uniformly
as possible to different classes. Then, every remaining hypothesis is equally
likely, which means that the next query is expected to leave only 1/3 of the
hypotheses. In theory, if all queries equally divide remaining hypotheses to
three groups, there will be only O(log x) queries, where x is the number of be-
lief hypotheses. In the worst case, a total of x− 1 queries would be necessary,
and in the best case, only one.

Example 5 In Example 4, when agent A1 models the others it recognizes that
A2 has only a single belief hypothesis, so its beliefs are known to A1 without
any query. The scout has two belief hypotheses, therefore only one query is
required to disambiguate between them. The two hypotheses are: {way point
found=false} and {way point found=true, battle point scouted=false}. The
probability of way point found=false as well as of way point found=true is
0.5 since they occur one time in two hypotheses, the probability of way point
found=don’t care is 0, therefore, E(way point found) = −(−(0.5 log2 0.5) −
(0.5 log2 0.5)− (0 log2 0)) = 1. The probability of battle point scouted=false is
0.5 as well as the probability of battle point scouted=don’t care (since in the
first hypothesis this belief does not appear), and the probability of battle point
scouted=trueis 0. Therefore, E(battle point scouted) = −(−(0.5 log2 0.5) −
(0.5 log2 0.5)− (0 log2 0)) = 1. Both of the belief queries have the same entropy
and therefore one of them is selected as a query to the scout arbitrarily. As-
sume way point found was selected and the response of the scout is way point
found=true, then A1 can conclude that the correct hypothesis of the scout is
{way point found=true ∧ battle point scouted=false}. Now it can find the
diagnosis by comparing between the beliefs.

17

Once the belief hypotheses were disambiguated by querying, the diagnosing
agent should compare between the beliefs of the agents. So we should add
the runtime complexity of the comparisons between the beliefs as computed
in section 4.1: O((nbm)2). Thus overall runtime complexity of the querying
algorithm in the worst case is: O((nrm2b) + ((nbm)2).

The communication complexity is influenced by sending targeted queries to
specific agents in order to disambiguate their hypotheses. As described above
the worst-case complexity of the number of queries to one observed agent is
the number of beliefs, O(bm). The queries are sent to all the observed agents,
so the messages transmission complexity in the worst case is: O(nbm).

This complexity is similar to that of reporting algorithm (Section 4.1) where
each agent sends its beliefs to the diagnosing agent (O(nbm)). But while in
the reporting algorithm this complexity is O(nb log m) in the best case, here
the average case can be expected to have a reduced number of messages, and
in the best case it could be even 1 message.

4.2.4 Precedence Between Behaviors

The analysis above assumes any behavior can potentially be selected at any
point. However, in some domains there may be known temporal orderings
between behaviors. These eliminate hypotheses from being generated, if they
do not agree with the temporal order in which behaviors can be selected.

Example 6 In the ModSAF domain (see Example 1) suppose the permissible
transitions are from Fly Flight to Wait Point and then to Join Scout, as seen
in Figure 4—a and 4—b (the dashed lines represent possible transitions). Let
us examine the following case: An attacker and a scout fly in formation in Fly
Flight behavior, when a fault is detected. Suppose the scout makes the diag-
nosis. The attacker’s speed is 200, so the scout can conclude, according to the
behavior recognition process, that observed behavior paths are either {Execute
Mission, Fly Flight, Fly Route} or {Execute Mission, Join Scout, Fly Route}.
However, the transition from Fly Flight to Join Scout is impossible because
the attacker could not have gone from Fly Flight to Join Scout directly without
passing through Wait Point. So, with certainty it concludes that attacker’s be-
havior path is {Execute Mission, Fly Flight, Fly Route}. Obviously, it is better
to disambiguate the beliefs of the attacker when we have only one behavior path
hypothesis.

To summarize, we presented two algorithms for generating and disambiguating
the social diagnosis hypotheses: reporting, in which all the agents send their
beliefs that are associated with their selected behavior paths to the diagnosing
agent, and querying, in which the diagnosing agent models the others by using
the belief recognition process, and disambiguates their beliefs by querying

18

VAL: Join Scout VAL: Wait Point
PRE: battle point scouted=false
TER: battle point scouted=true

VAL: Just Wait
ACT: speed = 0

VAL: Fly Route
ACT: speed = 200

VAL: Execute Mission

VAL: Fly Flight
PRE: way point found=false
TER: way point found=true

(a) Attacker

VAL: Join Scout VAL: Wait Point
PRE: battle point scouted=false
TER: battle point scouted=true

VAL: Just Wait
ACT: speed = 0

VAL: Fly Route
ACT: speed = 200

VAL: Execute Mission

VAL: Fly Flight
PRE: way point found=false
TER: way point found=true

(b) Scout

Fig. 4. Agent behavior hierarchies, with ordering information.

them about certain beliefs. In the next section we will examine the question
of who makes the diagnosis.

5 Selecting a Diagnosing Agent

Let us now turn to the first phase of social diagnosis, in which the agents that
will carry out the diagnosis are selected. Several techniques are available. First,
a design-time selection of one of the agents is the most trivial approach. Since
the pre-selected agents do not necessarily know when a failure is detected (a
different agent may have detected the failure), a failure state must be declared
by the agents that have detected the failure, and communicated to the pre-
selected agent, such that the pre-selected agents know when to begin their
task. A second technique that circumvents this need is to leave the diagnosis
in the hands of those agents that have detected the failure, and allow them
to proceed with the diagnosis without necessarily alerting the others unless
absolutely necessary.

19

We present a third approach, in which selection of the diagnosing agent is
based on its team-members’ estimate of the number of queries that it will
send out in order to arrive at a diagnosis, i.e., the number of queries that it
will send out in the disambiguation phase of the diagnosis (previous section).
The key to this approach is for each agent to essentially simulate its own
reasoning in the second phase, as well as that of its teammates. Agents can
then jointly select the agent with the best simulated results (i.e., the minimal
number of queries).

Surprisingly, all agents can make the same selection without communicating,
using a recursive modeling technique in which each agent models itself through
its model of its teammates. This proceeds as follows. First, each agent uses
the belief recognition algorithm to generate the belief hypotheses space for
each team-member other than itself. To determine its own hypothesis space
(as it appears to its peers), each agent uses recursive modeling, putting itself
in the position of each one of its teammates and running the belief recognition
process described above with respect to itself.

Under the assumption that all agents utilize the same algorithm, and have
access to the same observations, an agent’s recursive model will yield the same
results as the modeling process of its peers. At this point, each team-member
can determine the agent with the minimal number of expected queries by using
the strategy discussed in Section 4.2. In order to guarantee an agreement on the
selected agent, each team-member has an ID number, which is determined and
known in advance. In case there are two agents or more with the same minimal
number of expected queries, the agent with the minimal ID is selected. This
entire process is carried out strictly based on team-members’ observations
of one another, with no communications other than an announcement of a
disagreement.

Although these assumptions may seem too limiting, they hold in many cases.
The algorithm assumes that all agents have access to the same observations of
each other (i.e., to the actions selected by others). Obviously, such full observ-
ability is more likely in small teams, working closely together. However, this
is really a question of the particular sensors used. For instance, a radar has
a range of some kilometers, which allows determining the altitude and speed
of otherwise unobservable agents. And the results of the radar would not nec-
essarily differ between observers. Indeed, in the ModSAF domain, in which
we evaluated our algorithms, these assumptions hold, and previous works ex-
ploited them [17,18].

The procedure ESTIMATED_OPTIMAL (Algorithm 3) gets the behavior path hy-
potheses of all the agents in a team T : V t = {V t

i } (that is obtained by behav-
ior recognition process), and their previous behavior path V t−1 = {V t−1

i }. For
each observed agent it calls to BELIEF_RECOGNITION algorithm which returns

20

the belief hypotheses set of the observed agent (lines 1–2). For each belief
hypotheses the algorithm calculates its estimated number of queries Ni (line
5), and then returns the agent that has the minimal number of queries.

Algorithm 3 ESTIMATED OPTIMAL
(input: V t, V t−1

output: agent ai)
1: for all Agents i do
2: Fi ← BELIEF RECOGNITION(V t

i ,V t−1
i)

3: F ← F
⋃

Fi

4: for all Fi ∈ F do
5: Ni ← number of queries based on maximal information gain
6: N ← N

⋃
Ni

7: return {ai ∈ T |min(Ni)}

For instance, suppose there are three agents A, B and C. To determine the
diagnosing agent, A models itself from B’s perspective and considers the belief
hypotheses that B has about A and C, given A’s and C’s observable actions.
A also uses the belief recognition process described earlier to determine the
number of belief hypotheses available about B’s beliefs, C’s beliefs, etc. It now
simulates selecting queries by each agent, and selects the agent (say, C) with
the minimal number of expected queries. B, and C also run the same process,
and under the assumption that each agent’s actions are equally observable to
all, will arrive at the same conclusion.

Example 7 In Example 4, the scout models the attackers, and models the
attackers modeling the scout (itself). The belief hypotheses of each one of the
attackers are: {way point found=true ∧ battle point scouted=false}, so no
query is requested. The result of belief recognition (by recursive modeling) of
the scout on itself is: {way point found=false} or {way point found=true ∧
battle point scouted=false}, only a single query is needed. These process is
carried out by the attackers too, and they into the same results. Obviously,
in this case the scout is selected to diagnose, since it is expected to send no
queries, while if one of the attackers would be selected it would send one query.

6 Social Diagnosis Methods

We have presented above a space of social diagnosis algorithms: Each algo-
rithm operates in two phases, and we presented alternative techniques for each
phase. For the selection of the diagnosing agent, we have the following meth-
ods: (i) rely on pre-selection by the designer; (ii) let the agents that detected
the fault do the diagnosis; or (iii) choose the agent most likely to reduce com-
munications (using the distributed recursive modeling technique described in

21

Section 5). In terms of computing the diagnosis, two choices are available: Ei-
ther have all agents communicate their beliefs to the selected agents (Section
4.1), or allow the diagnosing agents to actively query agents as to the state
of their beliefs, while minimizing the number of queries as described above
(Section 4.2).

These design alternatives define a space of diagnosis methods, corresponding
to different combinations of the alternative algorithms in each phase. These are
described in detail below. Table 1 summarizes the diagnosis possible methods
in this space. The first column represents the algorithms of the selection of
the diagnosing agent. The first row presents the algorithms of computing the
diagnosis. The other cells in the table present the relevant methods according
to the diagnosis space in the column and the row.

query report

pre-selected method 5 method 1,method 3

detectors method 2 N/A

minimal queries method 4 method 6
Table 1
Summary of the diagnosis methods in the design space.

Method 1. The first design choice corresponds to arguably the most trivial
diagnosis method, in which all agents are pre-selected to carry out the di-
agnosis. When a failure is detected (and is made known to all agents) each
agent communicates all its relevant beliefs to the others so that each and ev-
ery team-member has a copy of all beliefs, and therefore can do the diagnosis
itself.

Method 2. Arguably, only a single agent really needs to have the final di-
agnosis in order to begin a recovery process. Thus in method 2, the agents
that detected the disagreement automatically take it upon themselves to carry
out the diagnosis, unbeknownst to each other, and their teammates (who did
not detect the disagreement). Because their teammates may not know of the
disagreement, the diagnosing agents cannot rely on their teammates to report
their beliefs without being queried (in phase 2). Instead, they use the query-
ing algorithm discussed in the previous section. Thus even other diagnosing
agents will be queried.

Method 3. The next design choice corresponds to a diagnosis method in
which the designer pre-selects one of the agents, arbitrarily. When a failure is
discovered (and is made known to all agents), all team-members immediately
communicate all their relevant beliefs to this pre-selected agent. While in
method 1 all the agents make the diagnosis and report their beliefs to each
other, here only a single pre-defined agent makes the diagnosis.

22

Method 4. The fourth method attempts to reduce the communications. It
uses the recursive modeling technique to have all team-members agree on
which agent is to carry out the diagnosis (this requires the detection of the
disagreement to be made known). Once the agent is selected (with no com-
munications), it queries its teammates as needed.

Method 5. In this method the diagnosing agent is selected in advance by the
designer, in contrast to method 4. It uses the querying method in order to
make the diagnosis.

Method 6. This method uses the selection of the most likely agent to reduce
the communication as basis. However, once this agent is selected, the other
agents do not wait for its queries, and instead report to it.

In principle, there is one more method in which the beliefs of all the agents are
reported to the fault-detecting agents, which make the diagnosis (the empty
box in Table 1). But, we do not experiment with this algorithm, since we al-
ready examine methods where the agents report their beliefs to the diagnosing
agent(s): in method 1 they report to all the other agents (all agents are pre-
selected), and in method 3 they report to a single pre-selected agent. A method
where all agents report to some diagnosing agents (here, fault detecting) will
be bounded from above and from below by methods 1 and 3.

Selection Disambiguation Runtime Communication

1 pre-selected (N) N → N reporting O((nbm)2) O(n2bm)

2 detectors (K ≤ N) K → N querying O(nrm2b + (nbm)2) O(n2bm)

3 pre-selected (1) N → 1 reporting O((nbm)2) O(nbm)

4 minimal queries (1) 1 → N querying O(nrm2b + (nbm)2) O(nbm)

5 pre-selected (1) 1 → N querying O(nrm2b + (nbm)2) O(nbm)

6 minimal queries (1) N → 1 reporting O(nrm2b + (nbm)2) O(nbm)

Table 2
Summary of evaluated diagnosis methods and their runtime and communication
worst-case complexity.

Table 2 summarizes the phases and the worst-case complexity of the different
methods. Each method is presented in a different row. The first column shows
the method (by #). The next two columns correspond to the different phases
of the diagnosis process. The choice of algorithm is presented in each entry,
along with a marking that signifies the number of agents that execute the
selected technique for the phase in question. The last two columns present the
worst-case complexity of the runtime and communication, correspondingly.

For instance row 2 should be read as follows: In method 2, the agents selected
to perform the disambiguation are those who detected the disagreement. K

23

such agents exist (where K is smaller or equal than the total number of agents
in the team, N), and they each execute the querying algorithm, such that K
agents query N agents. In contrast, row 3 indicates that a single pre-selected
agent executes the diagnosis, and it relies on reports from all agents to carry
out the diagnosis, such that N agents report their beliefs to 1 agent.

We can see that the communication complexity of methods 1 and 2 has an n2

factor, in contrast to the other methods, since the diagnosis is carried out by
several agents (up to n).

The runtime complexity divides between methods 1 and 3, and the others.
In methods 1 and 3 the diagnosing agent(s) do not model other agents, but
they obtain their beliefs by reporting, and disambiguate the diagnosis only
by comparing between these beliefs, thus the complexity is polynomial in the
number of agents and beliefs. On the other hand, in methods 2, 4 and 5 the
beliefs of the other agents are not reported to the diagnosing agent, so it infers
them by a belief recognition process, which is exponential in the number of
beliefs, and then diagnoses by querying.

In method 6 the diagnosing agent makes the diagnosis by reporting an algo-
rithm (whose complexity is similar to that of method 1 and 3). The selection
of the diagnosing agent uses the MINIMAL_QUERIES_DIAGNOSING_AGENT algo-
rithm. As shown above, this algorithm uses belief recognition, a process whose
complexity is exponential in the number of beliefs.

7 Empirical Evaluation

We now turn to an empirical evaluation of the diagnosis methods in two do-
mains: One inspired by a real-world application (ModSAF), and one artificial
(TEST).

7.1 Real-World Domain

We examined the diagnosing methods on teams of behavior-based agents in
a simulation of the ModSAF domain. We performed experiments in which
method 1 to method 6 were systematically tested on different failure cases,
while we varied the number of agents, the roles of the agent and the disagree-
ments between the agents.

(1) Number of agents: teams of two to thirty six agents.
(2) Roles of agent: for each n agents (1) one attacker and n-1 scouts; (2) n-1

attackers and one scout; (3) n/2 attackers and n/2 scouts.

24

(3) Disagreements: We systematically checked all possible disagreement cases
for all team behavior paths. Thus overall, each method was tested 33,000
times, or, on average, 950 times for every team size.

We tested methods 1–6 on all failure cases. In each failure case we recorded the
number of messages sent by all the agents, and the runtime of the diagnosis
process.

For example, in Table 3 we present the results of a single failure case, where one
scout and nineteen attackers fly in formation in a Fly Flight behavior, when
eight of the attackers, A1 − A8, transition to the Wait Point behavior while
the other attackers and the scout continue to fly in formation. The diagnosis
is that A1−A8 detected the way-point (their belief is: way point found=true),
while the other agents do not detect it (their belief is: way point found=false).

The first column in Table 3 reports the method used. The second column
presents the number of messages sent reporting on beliefs, or querying about
their truth (one message per belief). The third column reports the number
of messages sent informing agents about the existence of failures (we assume
point-to-point communications). The last columns summarize the runtime of
each agent in milliseconds.

Method Messages Runtime(msec)

Belief Failure A1-A8,A10-A19 A9 Scout

1 912 380 2 2 2

2 608 0 23 23 23

3 46 380 0 2 0

4 30 380 20 25 20

5 31 380 0 25 0

6 46 380 21 21 21
Table 3
Results of diagnosing a specific failure case: one scout and nineteen attackers fly in
formation in Fly Flight behavior, when eight of the attackers, A1 − A8, transition
to the Wait Point behavior while the other attackers and the scout continue to fly
in formation.

For instance, the number of messages reporting on beliefs for method 3 is
46, and 380 failure messages were sent (i.e., all the agents that detected the
failure informed the others). The runtime of all the teammates for method 3 is
0 milliseconds, except for A9, which was selected in advance to disambiguated
the beliefs in this case, and therefore took 2 milliseconds. On the other hand,
the runtime of all the teammates for method 4 was 20 milliseconds, except
for A9, which disambiguated the beliefs in this case, and therefore took an

25

additional 5 milliseconds (for a total of 25 milliseconds). In this example failure
case, in methods 3 and 5 we selected A9 in advance to make the diagnosis, since
it was also the agent selected by the recursive-modeling process in methods 4
and 6. Thus we can show the difference in runtime between these methods.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
number of agents

nu
m

be
r

of
 m

es
sa

ge
s

method1

method2

method3

method4

method5

method6

Fig. 5. ModSAF: Average number of messages per failure case.

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
number of agents

ru
nt

im
e

in
 m

s

method1
method2
method3
method4
method5
method6

Fig. 6. ModSAF: Average runtime in milliseconds per failure case.

Figures 5 and 6 summarize the results of the experiments. In both figures, the
horizontal axis shows the number of agents in the diagnosed team. Figure 5
presents the average number of belief messages Each data point (team size)
is an average over 950 runs (failure messages were ignored in the figure, since
their effect is negligible). Figure 6 presents the average runtime (in millisec-
onds) of those same tests. The runtime of each test was taken as the maximum
of any of the agents in the test.

Both figures show grouping of the evaluated techniques. In Figure 5 (number of
messages), methods 3 to 6 show a slow, approximately-linear growth (methods

26

3 and 6 cover each other), while methods 1 and 2 show a much faster non-
linear growth. In Figure 6 (runtime), the grouping is different: Methods 1 and
3 grow significantly slower than the other methods (they overlap).

According to Figure 5 the graphs of method 4 and 5 grow slower than the
graphs of method 3 and 6, in contrast to their runtime performance (shown
in Table 2). The reason for this is that method 4 and 5 use the querying
algorithm, while method 3 and 6 use reporting algorithm. The communication
complexity of the reporting algorithm in the best case is equal to the worst
case: O(nbm), since each agent always sends its own beliefs. On the other hand,
while the complexity of the worst-case of the querying algorithm is O(nbm),
but in the best case it is O(1). Averaged over thousands of tests the results
of the querying algorithm are better than the reporting algorithm.There are
very small differences in Figure 5 between method 4 and method 5, as well as
between method 3 and method 6, despite the fact that in methods 4 and 6
the minimal queries agent makes the diagnosis. The reason for this is that the
number of messages is almost the same (when the pre-defined agent, or the
minimal queries agent makes the diagnosis) is that in the ModSAF domain all
the agents have almost the same behavior hierarchy. As a result, the number of
belief hypotheses of the minimal queries diagnosing agent is almost the same
as the other agents, and so the benefits of the minimal queries diagnosing
agent are not recognizable. In section 7.3, we will examine the benefit of the
minimal queries diagnosing agent in more depth.

The first conclusion we draw from these figures is that runtime is mainly af-
fected by the choice of a belief recognition process (Figure 6, Table 2). Methods
(here, methods 1 and 3) that rely on the agents to report their relevant be-
liefs do not reason about the hypothesized beliefs of others. Therefore, their
runtime is much smaller than methods (here, methods 2, 4 to 6) which hy-
pothesize about the beliefs of others (methods 2, 4 and 5 use belief recognition
in querying algorithm and method 6 uses belief recognition in selecting the
minimal-queries diagnosing agent). However, as Figure 5 shows, the goal of
reducing communications is actually achieved, as methods 4 to 6 do indeed
result in less communications then method 3. The question of whether the
cost in runtime is worth the reduction in communications is dependent on the
domain.

We draw a second conclusion from Figure 5. Despite the additional savings
provided by the minimal queries diagnosing agent algorithm, the choice of a
centralized diagnosing agent is the main factor in qualitatively reducing the
number of messages sent, as well as in shaping the growth curve as the number
of agents is scaled up. These results contrast sharply with previous work in dis-
agreement detection, in which distributed algorithms reduce communications
[18].

27

7.2 Evaluation in Controlled Settings

The experiments above were constrained to the parameters of the original
ModSAF domain, and thus limit the variance in the complexity of the agents
to that found in the original application. In contrast, this section examines
the diagnosis methods in settings where the number of beliefs (b, in Table 2),
and the number of behavior path hypotheses (r) are controlled directly.

We created an artificial domain, TEST, in which we directly controlled the
parameters influencing the diagnosis. Like ModSAF, this domain simulates
teamwork in which the agents should agree on the selection of some pre-
defined behaviors, concurrently. During the teamwork task the agents transi-
tion between the behaviors. The application simulates faults by controlling the
selection of the behaviors by the agents, and causing disagreement in regard
to the selected behavior. However, unlike the experiments in the MODSAF
domain, here we control the number of beliefs and the number of behavior
path hypotheses.

In the first set of experiments, we examine the influence of the number of
beliefs (b in Table 2) on the runtime and the communication, of the diagnosis
methods. For this goal, we performed experiments with a fixed number of
agents (fifteen) and behavior path hypotheses (two), while the number of
beliefs per behavior is varied from two to eight. The experiments tested with
representative failure cases in a total number of 42.

The results of the communications in these experiments are presented in Fig-
ure 7 and that of the runtime are presented in Figure 8. Each data point is
an average over six trials. The results in the graphs agree with the presented
complexity analysis in Table 2. The communication complexity of all methods
is approximately linear in the number of beliefs as shown in Figure 7. How-
ever, the growth of methods 4 and 5 is the slowest, since the agent selected
to carry out the diagnosis sends a minimal number of queries (querying algo-
rithm), while the graph of method 1 grows much faster, since all the agents
communicate with each other. On the other hand, Figure 8 shows that the
runtime of methods 1 and 3 grows slowly and linearly (their runtime is closed
to zero) while the other methods grow exponentially, in the number of beliefs,
as predicted in Table 2.

In a second set of experiments, we examine the influence of the number of be-
havior path hypotheses (r in Table 2) on the runtime and the communication.
In these tests the number of agents is fixed (thirty) as well as the number of
beliefs per behavior (three), while the number of behavior path hypotheses
is varied from two to ten. The experiments tested with representative failure
cases in a total number of 315.

28

Fig. 7. TEST domain: Average number of messages per failure case when varying
number of beliefs. The number of agents is fixed at fifteen, and the number of
behavior paths hypotheses is fixed at two.

Fig. 8. TEST domain: Average runtime per failure case when varying number of
beliefs. The number of agents is fixed at fifteen, and the number of behavior paths
hypotheses is fixed at two.

The results of the communications in the first tests are presented in Figure
9. Each data point is an average over approximately 35 trials. Here again,
the results in the graphs agree with the complexity analysis in Table 2. The
number of behavior path hypotheses have no influence on methods 1, 3 and

29

6, since in these methods the agents do not use behavior recognition (The
graph of method 1 is out of the scope of the y axis and it is constant at 3132
messages). However, methods 2, 4 and 5 are affected by the number of behavior
path hypotheses. According to the complexity in Table 2 we expect to obtain
a linear curve in the number of messages (Figure 9), and indeed in practice
the graphs’ growth is linear. The reason is that the graphs’ growth depends
on the partition of the belief hypotheses space. As discussed in Section 4.2,
the selected query by the diagnosing agent divides this space. It is bounded
from above with the number of beliefs which influences on the graph to be
linear with the number of beliefs. On the other hand, it is bounded from
below with the constant one which influences on the graph to be constant
with the number of beliefs. Therefore, the graphs of methods 2, 4 and 5 involve
constant, linearly and logarithmic growths.

Fig. 9. TEST domain: Average number of messages per failure case when varying
number of behavior path hypotheses. The number of agents is fixed at thirty, and
the number of beliefs is fixed at three.

Figure 10 shows the runtime results in these experiments. As expected, the
runtime complexity of methods 2 and 4 to 6 grow quickly as the number of
the behavior path hypotheses grows since they use the querying algorithm
where the runtime is affected by the number of hypotheses, while the graphs
of method 1 and 3 are approximately fixed at close to 0 milliseconds, since
they use the reporting algorithm which does not depend on the number of
behavior path hypotheses.

30

Fig. 10. TEST domain: Average runtime per failure case when varying number of
behavior path hypotheses. The number of agents is fixed at thirty, and the number
of beliefs is fixed at three.

7.3 Minimal-Queries Diagnosing Agent

In a final set of experiments, we examine the efficiency of the selection of the
minimal queries diagnosing agent, by comparing between methods 4 and 5.
Both of these methods use the querying algorithm to make the diagnosis, but
while the diagnosing agent in method 4 is expected to ask the minimal queries,
in method 5 it is selected in advance.

The comparison of these methods in the ModSAF domain yields very little
difference, since the number of the involved beliefs in all behavior path hy-
potheses of the agents is almost the same. As a result, any difference between
the number of queries of the minimal queries diagnosing agent and the other
agents is very small.

In contrast, in the following experiments, we control the number of beliefs of
the behaviors of each agent separately. The number of agents is fixed (four)
as well as the number of behavior path hypotheses (two), while the number of
beliefs per behavior is varied from two to ten only for a single random agent
while it is fixed (three) for the other agents. We expect that in method 4, this
agent will be selected to make the diagnosis according to the selection of the
MINIMAL_QUERIES_DIAGNOSING_AGENT algorithm (Algorithm 3).

Figure 11 summarizes the communication results in the experiments. Each
data point is an average over six trials. The graph of method 4 shows a fixed

31

number of messages, independently of the growth of the number of beliefs.
The reason is that in this method the agent with the most number of beliefs
is selected to make the diagnosis, while the other agents are queried for their
beliefs (they have the same number of beliefs in all trials). On the other hand,
the graph of method 5 is dependent on the number of beliefs of the random
agent, since the diagnosing agent is selected randomly and it may be not
the minimal queries diagnosing agent, so the number of sent messages grows.
We can see that although the general tendency of the graph of method 5 is
growing up, it decreases in the points of four and eight beliefs. The reason
is that incidentally the diagnosing agent who was randomly selected has the
most number of beliefs so it is predicted to query the minimal number of
queries similarly to the minimal queries diagnosing agent in method 4.

Fig. 11. TEST domain: Average number of messages per failure case when varying
number of beliefs per behavior for a single random agent. The number of agents is
fixed at four, and the number of behavior path hypotheses is fixed at two.

Figure 12 summarizes the runtime results. We can see, as predicted, that both
the runtime of method 4 as well as of method 5 grow exponentially, since both
of them use belief recognition algorithm in the querying algorithm.

8 Summary and Future Work

In this paper we presented a novel design space for methods of social diagnosis.
Each such method operates in two phases, and we have presented alternative
techniques for each phase. For the selection of the diagnosing agent, we have
the following methods: (i) pre-selected agent(s), relying on pre-selection by

32

Fig. 12. TEST domain: Average runtime per failure case when varying number of
beliefs per behavior for a single random agent. The number of agents is fixed at
four, and the number of behavior path hypotheses is fixed at two.

the designer; (ii) fault detecting agent(s), letting the agents that detected the
fault do the diagnosis; or (iii) minimal queries diagnosing agent, choosing
the agent most likely to reduce communications (using distributed recursive
modeling). In terms of computing the diagnosis, two choices are available: (i)
Reporting: Have all agents communicate their beliefs to the selected agents,
(ii) Querying: Allow the diagnosing agents to actively query agents as to the
state of their beliefs, while minimizing the number of queries. For each one of
the methods we evaluated the complexity in terms of their communications
and computation overheads.

The combination between these methods defines a space of six algorithms of
diagnosing a team of behavior-based agents. We empirically and systematically
evaluate the different combinations to draw general conclusions about the
design of diagnosis algorithms.

A first conclusion is that centralizing the diagnosis disambiguation task is
critical in reducing communications. The second conclusion is that techniques
where agents reason explicitly about the beliefs of their peers are computa-
tionally inferior (in runtime) to techniques where agents do not reason about
others. However, such computation does result in a slight reduction in com-
munications.

Much work remains for future research. All methods find only the contradic-
tions between agent beliefs, where the beliefs are derived directly from the
hypothesized behavior paths. But in complex behavior-based control systems,

33

chains of inference may lead from one belief to the next. Our system is cur-
rently not able to back chain through such inference pathways, and thus is
unable to draw conclusions beyond the beliefs that are immediately tied to
pre-conditions and termination conditions. We plan to tackle this challenge in
the future.

Another challenge for the future is finding a diagnosis algorithm that combines
between the most effective computation algorithm and the algorithm which
uses minimal communication. In this paper, we have

analyzed the selection of the minimal queries diagnosing agent and the query-
ing algorithm in disambiguating the agent’s hypotheses as contributed in re-
ducing communications, however, they use a belief recognition process whose
runtime is very high (method 4). In the future we plan to improve the runtime
of the belief-recognition process, and to achieve an efficient method both in
terms of communication and computation.

Acknowledgments

This paper extends and builds on an IJCAI-2003 paper by the authors, titled
”On the Design of Social Diagnosis Algorithms for Multi-Agent Teams” [12].
We thank Shmuel Tomi Klein and Moshe Koppel for helping with the min-
imal queries algorithm. We thank the anonymous reviewers for their useful
suggestions on how to improve the paper. As always, thanks to K. Ushi and
K. Ravit.

References

[1] R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. F. Mar, and A. Z.
Ceranowicz. Modsaf behavior simulation and control. In Proceedings of the
Third Conference on Computer Generated Forces and Behavioral Reresentation,
Orlando, Florida, March 1993. Institute for Simulation and Training, University
of Central Florida.

[2] P.R. Cohen and H.J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[3] R. Davis and W. C. Hamscher. Model-based reasoning: Troubleshooting. In
A. E. Shrobe, editor, Exploring Artificial Intelligence: Survey Talks from the
National Conferences on Artificial Intelligence, pages 297–346, 1988.

[4] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97–130, 1987.

34

[5] Chrysanthos Dellarocas and Mark Klein. An experimental evaluation of
domain-independent fault-handling services in open multi-agent systems. In
Proceedings of the Fourth International Conference on Multiagent Systems
(ICMAS-00), pages 95–102, 2000.

[6] R. James Firby. An investigation into reactive planning in complex domains.
In American Association for Artificial Intelligence (AAAI-87), pages 196–201,
1987.

[7] Peter Fröhlich, Iara de Almeida Mora, Wolfgang Nejdl, and Michael Schröder.
Diagnostic agents for distributed systems. In ModelAge Workshop, pages 173–
186, 1997.

[8] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group
actions. Journal of Artificial Intelligence Research, 86:269–358, 1996.

[9] Walter Hamscher, Luca Console, and Johan de Kleer, editors. Readings in
Model-Based Diagnosis. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[10] Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan, and Ping Xuan.
Diagnosis as an integral part of multi-agent adaptability. Technical Report
CMPSCI Technical Report 1999-03, University of Massachusetts/Amherst,
January 1999.

[11] Nicholas R. Jennings. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artificial Intelligence Journal,
75(2):195–240, 1995.

[12] Meir Kalech and Gal A. Kaminka. On the design of social diagnosis algorithms
for multi-agent teams. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-03), pages 370–375, 2003.

[13] Meir Kalech and Gal A. Kaminka. Towards model-based diagnosis of
coordination failures. In American Association for Artificial Intelligence
(AAAI-05), 2005.

[14] Meir Kalech and Gal A. Kaminka. Diagnosis of multi-robot coordination
failures using distributed csp algorithms. In American Association for Artificial
Intelligence (AAAI-06), 2006.

[15] Gal A. Kaminka, Yehuda Elmaliach, Inna Frenkel, Ruti Glick, Meir Kalech,
and Tom Shpigelman. Towards a comprehensive framework for teamwork in
behavior-based robots. In IAS-8. 2004.

[16] Gal A. Kaminka and Inna Frenkel. Flexible teamwork in behavior-based robots.
In American Association for Artificial Intelligence (AAAI-05), pages 1355–
1356, 2005.

[17] Gal A. Kaminka and Milind Tambe. What’s wrong with us? Improving
robustness through social diagnosis. In American Association for Artificial
Intelligence (AAAI-98), pages 97–104, Madison, WI, 1998.

35

[18] Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Research, 12:105–147,
2000.

[19] Mark Klein and Chris Dellarocas. Exception handling in agent systems. In
Proceeding of the Third International Conference on Autonomous Agents, pages
62–68, May 1999.

[20] Sarit Kraus, Sycara Katia, and Amir Evenchik. Reaching agreements through
argumentation: a logical model and implementation. Artificial Intelligence,
104(1–2):1–69, 1998.

[21] M. Mataric. Behavior-based robotics as a tool for synthesis of artificial behavior
and analysis of natural behaviorbehavior-based robotics as a tool for synthesis
of artificial behavior and analysis of natural behavior. Trends in Cognitive
Science, 2(3):82–87, 1998.

[22] R. Micalizio, P. Torasso, and G. Torta. On-line monitoring and diagnosis
of multi-agent systems: a model based approach. In Proceeding of European
Conference on Artificial Intelligence (ECAI 2004), volume 16, pages 848–852,
2004.

[23] Allen Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, Massachusetts, 1990.

[24] Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot
cooperation. IEEE Transactions on Robotics and Automation, 14(2):220–240,
April 1998.

[25] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems
using design artifacts: The case of interaction protocols. In Proceedings of
Autonomous Agents and Multi Agent Systems (AAMAS-02), pages 960–967,
2002.

[26] David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon.
Toward team-oriented programming. In Proceedings of the Agents, Theories,
Architectures and Languages (ATAL’99) Workshop (to be published in Springer
Verlag ”Intelligent Agents V”), pages 77–91, 1999.

[27] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–96, 1987.

[28] N. Roos, A. ten Teije, A. Bos, and C. Witteveen. Multi-agent diagnosis:
an analysis. In Proceedings of the Belgium-Dutch Conference on Artificial
Intelligence (BNAIC-01), pages 221–228, 2001.

[29] Nico Roos, Annette ten Teije, André Bos, and Cees Witteveen. Multi-agent
diagnosis with spatially distributed knowlege. In Proceedings of the Belgium-
Dutch Conference on Artificial Intelligence (BNAIC-02), pages 275–282, 2002.

[30] Nico Roos, Annette ten Teije, and Cees Witteveen. A protocol for multi-agent
diagnosis with spatially distributed knowledge. In Proceedings of Autonomous
Agents and Multi Agent Systems (AAMAS-03), pages 655–661, July 2003.

36

[31] Nico Roos, Annette ten Teije, and Cees Witteveen. Reaching diagnostic
agreement in multi-agent diagnosis. In Proceedings of Autonomous Agents and
Multi Agent Systems (AAMAS-04), pages 1254–1255, 2004.

[32] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–693, 1948.

[33] M. Tambe. Implementing agent teams in dynamic multi-agent environments.
Applied Artificial Intelligence, 12(2-3):189–210, 1998.

[34] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

37

