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Abstract

With increasing deployment of multi-agent and dis-
tributed systems, there is an increasing need for
failure diagnosis systems. While successfully tack-
ling key challenges in multi-agent settings, model-
based diagnosis has left open the diagnosis of co-
ordination failures, where failures often lie in the
boundaries between agents, and thus the inputs
to the model—with which the diagnoser simulates
the system to detect discrepancies—are not known.
However, it is possible to diagnose such failures
by modelling the coordination between the agents
as constraints. This paper formalizes model-based
coordination diagnosis as a constraints satisfaction
problem, using two coordination constraints (con-
currence and mutual exclusion). The diagnosis pro-
cess is needed, once some of the constrains are not
satisfied. The goal of the diagnosis is to find a min-
imal set of assignments (by the agents) which vi-
olate the satisfiability of the constraints. We de-
fine the consistency-based and abductive diagnosis
problems within this formalization, and show that
both are NP-Hard by mapping them to other known
problems. This modelling offers opportunities for
cross-cutting research.

1 Introduction
Model-based diagnosis (MBD) [Reiter, 1987; de Kleer and
Williams, 1987] relies on a model of the diagnosed system,
which is utilized to simulate the behavior of the system given
the operational context (typically, the system inputs). The re-
sulting simulated behavior (typically, outputs) are compared
to the actual behavior to detect discrepancies indicating fail-
ures. The model can then be used to pinpoint possible failing
components within the system.

MBD is increasingly being applied in distributed and
multi-agent systems (e.g.,[Fröhlich et al., 1997; Rooset
al., 2003; Lamperti and Zanella, 2003]). While success-
fully addressing key challenges, MBD has been difficult to
apply to diagnosing coordination failures[Micalizio et al.,
2004]. This is because many such failures take place at the
boundaries between the agent and their environment, includ-
ing other agents. For instance, in a team, an agent may send

a message that another agent, due to a broken radio, did not
receive. As a result, the two agents come to disagree on an ac-
tion to be taken. Lacking an omniscient diagnoser that knows
of the sending of the message, the receiver has no way to
detect and diagnose its fault, since the context—the message
that can be fed into a model of the radio of both agents—is
unobservable to the diagnoser.

Surprisingly, it is still often possible to detect and diagnose
coordination failures, given the actions of agents, and mod-
elling the coordination between the agents as constraints that
should ideally be satisfied. In the example above, knowing
that the two agents should be under the constraint of agree-
ment as to their actions, and seeing that their actions do not
satisfy the constraint (are not in agreement), is sufficient to
(1) show that a coordination failure has occurred; and (2) to
propose several possible diagnoses for it (e.g., the first agent
did not send a message, the second agent did not receive it,
etc.).

Some previous works frame the model-based diagno-
sis problem of a single system as a constraint satisfaction
problem[Stumptner and Wotawa, 2003; Sachenbacher and
Williams, 2004]. However, they did not address of typ-
ical multi-agent systems’ failures which take place at the
boundaries between the agents and their environment. There
are approaches within diagnosis for diagnosing such fail-
ures, however, they suffer from key limitations. Fault-
based techniques[Horling et al., 2001; Pencoléet al., 2002;
Lamperti and Zanella, 2003] utilize pre-enumerated interac-
tion fault models. When the faults are observed, they trig-
ger possible predicted diagnoses. However, the interactions
among system entities, in multi-agent system, are not known
in advance since they depend on the specific conditions of the
environment in runtime and the appropriate actions assigned
by the agents[Micalizio et al., 2004]. [Kalech and Kaminka,
2003] propose a technique in which the reasoning of the two
agents, leading to their mis-coordinated actions, is re-traced,
to determine the roots for their selection. However, this tech-
nique is specific to disagreements.

This work takes a first step towards addressing the open
challenge of formalizing diagnosis of coordination (inter-
agent) failures using constraints satisfaction in terms of
model-based techniques. We model the coordination between
agents as a graph of concurrence and mutual exclusion con-
straints on agents’ actions. The diagnosis process begins with



an observation of the agents’ actions and inferring, by com-
paring to the coordination model of the constraints, the mini-
mal number of agents that deviate from the expected coordi-
nation (i.e., a minimal set ofabnormal agents).

The formalization allows definition of both consistency-
based and abductive diagnosis problems, and points at several
approaches to their solution. While the formalization does not
commit to centralized or distributed diagnosis settings, the
initial methods we provide are centralized. For consistency-
based diagnosis, we show that computing the coordination
diagnosis can be mapped to the minimal vertex cover prob-
lem. For abductive diagnosis, we take an approach based on
constraint satisfaction problem. Both of these problems are
thus NP-Hard.

2 Related Work
[Stumptner and Wotawa, 2003; Sachenbacher and Williams,
2004] models the diagnosis problem as a constraints satisfac-
tion problem, and try to use CSP algorithms to compute the
diagnosis rapidly. However, they modelled centralized sys-
tems where all the components belongs to the same system
like boolean circuit. On the other hand, in multi-agent sys-
tems beyond the diagnosis to each single agent, the coordi-
nation between the agents should be modelled and diagnosed
too, in this paper we propose to model the coordination by
constraints.

[Pencoléet al., 2002; Lamperti and Zanella, 2003] use a
fault-model approach, where the distributed system is mod-
eled as a discrete event system, and the faults are modeled
in advance. The diagnoser infers unobservable fault events
by computing possible paths in the discrete event system that
match observable events.[Horling et al., 2001] and[Mical-
izio et al., 2004] use causal models of failures and diagnoses
to detect and respond to multi-agent and single-agent fail-
ures. A common theme in all of these is that they require
pre-enumeration of faulty interactions among system entities.
However, in multi-agent systems, these are not necessarily
known in advance since they depend on the specific run-time
conditions of the environment, and the actions taken by the
agents.

[Fröhlich et al., 1997], and later[Rooset al., 2003] use
a consistency-based approach to diagnose a spatially dis-
tributed systems. A set ofn agents are responsible for diag-
nosingn sub-systems, correspondingly. Every agent makes
a local diagnosis to its own sub-system and then all agents
compute a global diagnosis. In order to build a global diag-
nosis set, each agent should consider the correctness of those
inputs of its subsystem that are determined by other agents.
But, Roos et al. and Fröhlich at al. assume that each di-
agnoser agent knows the context of its sub-system and so it
may make the diagnosis. However in our multi-agent system
the diagnoser does not have the context so it is impossible to
make a diagnosis to every agent separately, unless we supply
a model of the coordination between the agents.

[Kalech and Kaminka, 2004] presented a consistency-
based diagnosis procedure for behavior-based agents, which
utilized a model of behaviors that the agents should be in
agreement on (i.e., concurrence coordination). However,

their approach was specific only to agreements.

3 Coordinated Multi-Agent Systems
We adopt a model-based approach to diagnosis of coordina-
tion failures. To do this, we formalize an agent, a multi-agent
system, and the coordination between the agents.

3.1 The Agent Model
An agent is an entity that perceives its environment through
sensors and takes actions upon its environment using actua-
tors. Obviously, there are many different possible models that
can be used to describe agents. Our focus is on the coordina-
tion of multiple agents through their actuators and their sen-
sors, and thus we will use a simplified model, of completely
reactive agents, composed only of sensor and actuator com-
ponents. The connections between the sensors and actuators
are described logically.
Definition 1. An agent is a pair 〈CMP,CON〉 of com-
ponentsCMP , and connectionsCON . CMP is a pair
〈SEN, ACT 〉 whereSEN is a set of boolean variables rep-
resenting the sensors and theACT is a set of boolean vari-
ables representing the actions.CON is a set of logical conse-
quence statements, where the literals ofSEN are on the left
side of consequences, and the literals ofACT are on the right
side.

At any time, the agent may sense through a number of sen-
sors, but may only select one action. Thus multiple literals
in SEN may be true, but at any time exactly one literal of
ACT must be true. To enforce this, we apply acompleteness
formula (i.e.ACT1 ∨ . . . ∨ ACT|ACT |) and a set ofmutual-
exclusionformulas∀i, j¬(ACTi ∧ACTj).
Example 1. Suppose we model a scout robot who looks for
wounded. The robot has two sensor components, one is a ra-
dio sensor with two message values{seek, found} and the
other is a camera sensor which indicates if the wounded is
found. The actions of the robot{SEEK, WAIT} are se-
lected based on the sensor readings: Once the robot receives
aseek message it selects the actionSEEK. It will switch to
the actionWAIT upon finding the wounded (via its camera),
or upon receiving a message that it was found (by someone
else).

We represent this agent as follows:

SEN = {SENradio_seek, SENradio_found, SENcamera_found}
ACT = {SEEK, WAIT}
CON = {SENradio_seek ∧ ¬SENcamera_found ⇒ SEEK,

SENradio_found ∨ SENcamera_found ⇒ WAIT}

In addition, we should verify that only one action is selected
by the agent, using the followingcompletenessandmutual-
exclusionaxioms:

WAIT ∨ SEEK

¬(WAIT ∧ SEEK)

3.2 A Model of Coordination
The multi-agent systems of interest to us are composed of
several agents, which (by design) are to satisfy certain coor-
dination constraints. We call this type of system ateam, to



distinguish it from general multi-agent systems in which it is
possible that no coordination constraints exist.
Definition 2. A teamT is a set of agents.T = {A1...An}
whereAi is an agent. Given a teamT , AS represents the
set of the action literals of the agents. Formally, letACTi be
the set of actions of agentAi thenAS =

⋃n
i=1 ACTi, where

ASij represents thej’th boolean action variable of agentAi.
As a shorthand, we useASi to denote the boolean action lit-
eral of agentAi whose value is true. We callASi theactive
selectionof agentAi.

The actions of agents in a team are coordinated. We utilize
two coordination primitives—concurrenceandmutual exclu-
sion—to define the coordination constraints. Concurrence
states that two specific actions must be taken jointly, at the
same time. Mutual exclusion states the opposite, i.e., that
two specific actions may not be taken at the same time.
Definition 3. A concurrence coordination (CCRN)constraint
between two actions of different agents mandates that the two
actions must be true concurrently. Logically, we represent
this constraint in a DNF (disjunctive normal form). For two
actionsASix andASjy (actionx of agentAi and actiony of
agentAj) as follows:

CCRN(ASix, ASjy) ⇒ (ASix ∧ ASjy) ∨ (¬ASix ∧ ¬ASjy)

Definition 4. A mutual exclusion coordination MUEXcon-
straint between two actions of different agents mandates that
they cannot be true concurrently. Logically, for two actions
ASix andASjy,

MUEX(ASix, ASjy) ⇒ (ASix ∧ ¬ASjy) ∨
(¬ASix ∧ ASjy) ∨
(¬ASix ∧ ¬ASjy)

Once we defined the coordination types, we can model the
coordination between the agents formally with a set of coor-
dination constraints, defining a graph:
Definition 5. A coordination graphfor a teamT is an undi-
rected graphCG = {V, E}, where the vertices setV repre-
sents the boolean variables of the actions of the agents, and
the set of edgesE is the set of coordination constraints be-
tween the actions. We useCGm to refer to them’th con-
straint withinE. CG(ASix, ASjy) denotes the constraint re-
lating ASix andASjy. CGm is considered true if the con-
straint holds and false otherwise.
Example 2. Figure 1 presents a coordination graph. The
concurrence constraints are represented by solid lines, and
the mutual exclusion constraints are represented by dashed
lines. Assume a team of three agents{A1, A2, A3}. A1 and
A2 are scout robots as described in Example 1, andA3 is a
paramedic robot who has one radio sensor with one message
value {found_message}, and three actions{JOIN, TREAT,
CHARGE}. AgentsA1 and A2 have the same role in the
team so they haveconcurrence coordinationconstraints be-
tween their actions. At the beginningA1 and A2 receive
a seek message so they select the actionSEEK while A3

may select any action exceptTREAT , meaning it can not
treat a wounded, while the other robots seek. We can see
themutual exclusion coordinationconstraints between these

behaviors. OnceA1 or A2 find the wounded, they send a
found_message to the other agents in the team, thenA1

andA2 transport to theWAIT action, whileA3 transports
to JOIN action. Again we can see theconcurrence coordi-
nationconstrains between these behaviors. In addition, when
agentA3 is being charged (CHARGE behavior), there are
no constraints between the agents. The correspondingCG is
formally defined as follows:

V = {AS1W AIT
, AS2W AIT

, AS1SEEK
, AS2SEEK

,

AS3T REAT
, AS3JOIN

, AS3CHARGE
}

E = {CCRN(AS1W AIT
, AS2W AIT

),

CCRN(AS1SEEK
, AS2SEEK

),

MUEX(AS2SEEK
, AS3T REAT

),

CCRN(AS2W AIT
, AS3JOIN

),

MUEX(AS1SEEK
, AS3T REAT

),

CCRN(AS1W AIT
, AS3JOIN

)}
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Figure 1:The coordination graph for team {A1, A2, A3}.

Given a coordination graphCG and a teamT , we can de-
fine a multi-agent system description as a set of implications
from the normality of the agents to the satisfaction of the co-
ordination constraints. This is the final piece in formalizing a
normally-functioning multi-agent system.
Definition 6. A multi agent system description (MASD)is
a set of implications from the normality of agents in a team
T to CG. The meaning of the predicateAB(.) is that the
corresponding agent is considered abnormal (failing).

MASD = {¬AB(Ai) ∧ ¬AB(Aj) ⇒ CG(ASix, ASjy)

|CG(ASix, ASjy) ∈ CG ∧ Ai, Aj ∈ T}

4 Diagnosis of Coordination Faults
A violation of the coordination constraints may be the result
of a fault in one of the sensors or other agent components
1 Given anMASD and a set of normality assumptions, it is
possible to infer that a fault exists (and to generate hypotheses
as to its identity), by checking whether the observed actions
of the agents satisfy theMASD.

1It may also be the result of a fault in the environment, e.g., when
a message is lost in transit. This is treated as a fault in the receiver.



Let us formalize the coordination diagnosis in terms of
model based diagnosis:
Definition 7 Coordination Diagnosis Problem. Given
{T, MASD, AS} whereT is a team of agents{A1...An},
MASD is a multi agent system description defined overT
(Def. 6), andAS is the set of the actions of the agents (Def.
2), then thecoordination diagnosis problem (CDP)arises
when

MASD ∪ {¬AB(Ai)|Ai ∈ T} ∪ AS ` ⊥

We use the following example to illustrate.
Example 3.Suppose we are given the followingMASD, T ,
andAS (only the true literals inAS are shown):

T = {A1, A2, A3, A4, A5, A6}
MASD = {¬AB(A1) ∧ ¬AB(A4) ⇒ MUEX(AS11, AS41),

¬AB(A1) ∧ ¬AB(A2) ⇒ CCRN(AS12, AS21),

¬AB(A1) ∧ ¬AB(A6) ⇒ CCRN(AS12, AS61),

¬AB(A2) ∧ ¬AB(A3) ⇒ CCRN(AS22, AS31),

¬AB(A2) ∧ ¬AB(A5) ⇒ CCRN(AS22, AS51),

¬AB(A2) ∧ ¬AB(A6) ⇒ CCRN(AS21, AS61),

¬AB(A3) ∧ ¬AB(A4) ⇒ MUEX(AS32, AS42),

¬AB(A3) ∧ ¬AB(A5) ⇒ CCRN(AS31, AS51)}
AS = {AS11, AS21, AS31, AS41, AS51, AS61}

Figure 2 shows the coordination graph for thisCDP .
Assuming all the agents are not abnormal, the ac-
tions of certain agents violate the constraints satisfac-
tion and so they are not consistent with the coordina-
tion graph. For instance, the actionsAS11 = true and
AS41 = true causes an inconsistency inCG1, as it
produces a false value ofMUEX(AS11, AS41), though,
MUEX(AS11, AS41) should be true, given the normality
assumptions¬AB(A1),¬AB(A4). On the other hand, if
the actionsAS12, AS21, AS32, AS41, AS52, AS61 were true
(implying that the other actions were false), they would have
been consistent with the coordination graph.
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Figure 2: The coordination graph and active selection
(gray circles) of the teamT = {A1, A2, A3, A4, A5, A6}

Given a CDP , the goal of the coordination diagnosis
process is to determine a minimal set of abnormal agents

whose selection and subsequent setting of theAB(.) clause
would eliminate the inconsistency (consistency-based diag-
nosis, Section 4.1), or explain it (abductive diagnosis, Sec-
tion 4.2). In terms of CSP, the set of abnormal agents would
explain the constraints satisfaction violation. A coordination
diagnosis (a set of abnormal agents) is minimal, iff no proper
subset of it is a coordination diagnosis.

Once the set of such abnormal agents is found, the diag-
noser infers the abnormal components (in our case, sensors)
within the abnormal agents. This is done using straightfor-
ward back-chaining through the setCON (Def. 1) of logical
consequence statements connecting sensors to actions (e.g.,
as in[Kalech and Kaminka, 2003]).

4.1 Consistency-Based Coordination Diagnosis
We begin by defining consistency-based coordination diagno-
sis.
Definition 8. A consistency-based global coordination diag-
nosis (CGCD)is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

The first step in this process to determine which agents are in
conflict (violate the constraints between them):
Definition 9. Two agentsa and b are calledconflict pair
〈a, b〉, if there exist a constraintCGi that relatesa andb and
whose value is false.

∀a, b ∈ T, ∃i, j, k s.t.¬CGi(ASaj , ASbk) ⇒ 〈a, b〉
Definition 10. A local conflict setis a set of the all conflict
pairs in the system, and is denoted byLC.
Example 4. LC in the graph of example 3 is:LC =
{〈A1, A4〉 〈A1, A2〉, 〈A1, A6〉, 〈A2, A3〉, 〈A2, A5〉}
The local conflict set forms the basis for theCGCD, be-
cause for each conflict pair, at least one of the agents is ab-
normal. However, theCGCD is not a simple combination
of all agents in theLC pairs, as arbitrary selection of agents
may lead to diagnosis sets that are themselves inconsistent.
For instance, treating each pair in the computedLC in Ex-
ample 4 by itself, produces the following subset of possible
diagnoses:

〈A1, A2〉 ⇒ {AB(A1),¬AB(A2)}
〈A1, A2〉 ⇒ {¬AB(A1), AB(A2)}
〈A1, A4〉 ⇒ {AB(A1),¬AB(A4)}
〈A1, A4〉 ⇒ {¬AB(A1), AB(A4)}

It is easy to see that combining these diagnoses
may produce inconsistency (for instance, combining
the first and last implications would produce the set
{AB(A1),¬AB(A2),¬AB(A1), AB(A4)}).

Therefore, we cannot diagnose every conflict pair by itself
and then combine the results. Rather, we should compute the
diagnoses sets∆ considering the dependencies between the
conflict pairs. To do this, we should look for the abnormal
agent(s) in every conflict pair.

We achieve this goal by generating a hitting-set of agents,
selecting at least one agent as abnormal from every conflict



pair, such that the resulting agents cover between them all
conflict pairs. We want to maintain a minimal number of such
agents. This is somewhat similar to Reiter’s HS-Tree[1987],
or de Kleer and Williams’ technique[1987]. It is also related
to minimal model techniques used in non-monotonic reason-
ing [Olivetti, 1992; Niemelä, 1996]. We plan to explore these
connections in the future.

We achieve this goal by transforming the conflict set into
a graph, and finding the vertex cover for this graph. Let us
define a conflict graphG = {V ′, E′} whereE′ is a set of
the conflict pairs andV ′ is a set of the agents involved in
the conflict set. In order to compute the diagnosis we run an
algorithm to find a minimal vertex cover—a set of vertices
that involve all edges. A vertex cover set is guaranteed to
be a diagnosis since all the edges, namely the conflict pairs,
are covered by this set, namely by a set of abnormal agents.
We are looking for all the possible minimal vertex cover sets,
since the diagnosis contains all the possibilities of abnormal
agents. Minimal vertex covers guarantee minimal diagnosis,
since a vertex cover is minimal only if no proper subset of it
is a vertex cover.

Determining a minimal vertex cover is known to be NP-
Complete, however the problem of determining the set of
minimal vertex covers is NP-Hard[Skiena, 1990]. A sim-
ple O(2|V |) exact algorithm for its solution is to find all the
possible vertex covers in size one, then continue to find the
possible vertex covers in size two, under the condition that it
is not a superset of a previous vertex cover, and so on up to
the max size of the graph. The complexity of computing the
CGCD is thus the same as in single-agent diagnosis meth-
ods, e.g.,[de Kleer and Williams, 1987].
Example 5. Figure 3 presents the graph of the conflict pairs
that were computed in example 4. The vertex cover set of
size one is empty, for size two it isV C1 = {A1, A2}, and
there are two sets of size three:V C2 = {A1, A3, A5} and
V C3 = {A2, A4, A6} (there are more vertex cover sets which
are superset ofV C1), it is unnecessary to continue to check
the vertex cover in size four and more since every such vertex
cover will be a superset of the formers. By building the vertex
cover sets we obtain the global coordination diagnosis,∆1 =
{A1, A2}, ∆2 = {A1, A3, A5}, ∆3 = {A2, A4, A6}}.
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Figure 3:A graph of the conflict pairs in example 4

A disadvantage of the consistency-based approach is that
it may produce diagnoses that are unsound, in the sense that
while they eliminate the inconsistency, they do not explain

it. Intuitively, such diagnoses correspond to eliminating the
abnormal agents from consideration, rather than suggesting
that they change their actions. For such diagnoses, there may
be no actions that the abnormal agents could take in such a
way that the constraints inMASD will be satisfied.

For instance, in Example 5 the diagnosis set{A1, A2}
represents a minimal set of abnormal agents, but chang-
ing their actions(A11 = false,A12 = true, A21 =
false, A22 = true) will leave the constraints system un-
satisfied withCCRN(AS12, AS21) = false. On the other
hand, changing the actions of the agents in the other diag-
noses ({A1, A3, A5}, {A2, A4, A6}) will eliminate the incon-
sistency.

4.2 Abductive Coordination Diagnosis
The implication is that stronger conditions on the solution sets
may be needed. Such conditions correspond to abductive di-
agnosis, in which changing the actions of the abnormal agents
entails the coordination graph:
Definition 11. An abductive global coordination diagnosis
(AGCD) is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

and,

{AB(Ai)|Ai ∈ ∆}
⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS ⇒ CG

where, we make the active selection of agentAi (Def. 2),
ASi, false, and forceAi to choose a different action,

AB(Ai) ⇒ ¬ASi ∧ (ASi1 ∨ . . . ∨ ASi|ACT |)

The first condition in Def. 11 is exactly as in Definition 8 (i.e.,
CGCD) to satisfy the consistency requirement. The second
condition requires that for any abnormal agents found, it will
be possible to change their active selection, in order to entail
the coordination graph and thus satisfy the coordination con-
straints. Note that the entailment here is of the coordination
graph, not the fullMASD.

The unsound diagnosis set{A1, A2}, given by the
consistency-based approach (in Example 5), will not pass this
second condition, since the alternative actions of agentA1

and of agentA2 do not entail the coordination graph.
In order to satisfy Definition 11, the diagnosis process

needs to go beyond pinpointing suspect agents, to verifying
that by changing their actions, coordination will be restored.
Thus in contrast with consistency-based approach, we do not
utilize conflict pairs to compute the diagnoses, but instead ex-
amine all action literals assignments that entail the coordina-
tion graph, i.e., all actions which will satisfy the coordination
constraints. Then the process compares the existing truth val-
ues to those that will satisfy the coordination, and computes
aminimalset of changes.
Example 6. Let us compute theAGCD of the Example 3.
Table 1 presents the satisfying truth assignments for the ac-
tions of agentsA1 . . . A6. There are only two such assign-
ments. In order to find the minimalAGCD, we should com-
pare the actions of the agents with these assignments and
point out the agents that deviate. Consider the actions in



Example 3 (whereAS11, AS21, AS31, AS41, AS51, AS61 are
true, and the other action literals are false). Then, in the first
row AS11 = false, but we haveAS11 = true. We thus
mark actionAS11 as faulty. The second value in the table is
AS12 = true, but we haveAS12 = false, so we again mark
this as faulty, and so on for each one of the actions. For the
first entry in the truth table we got the following faulty ac-
tions: AS11, AS12, AS31, AS32, AS51, AS52. From this list,
we can determine the abnormal agents by finding the agents
whose actions are faulty. We thus conclude that a minimal
AGCD is ∆1 = {A1, A3, A5} for this row. From the sec-
ond row, we similarly find∆2 = {A2, A4, A6}. Setting these
agents to abnormal, and thus forcing them to select different
actions, would satisfy the coordination constraints.

# A1 A2 A3 A4 A5 A6

1 2 1 2 1 2 1 2 1 2 1 2
1 0 1 1 0 0 1 1 0 0 1 1 0
2 1 0 0 1 1 0 0 1 1 0 0 1

Table 1:Coordination-satisfying actions in Example 6.

Obviously, we should consider only the minimalAGCD.
We fulfill this requirement by comparing every new hypoth-
esized coordination diagnosis to the former coordination di-
agnoses, and checking whether it is a subset, a superset, or
different than the former diagnoses.

Thus theAGCD problem is essentially that of finding all
sets of truth assignments that will satisfy a target proposition,
an NP-Hard problem. A detailed discussion of satisfiability,
and the rich literature offering efficient exact and approxi-
mate solution methods is well beyond the scope of this paper.
However, we point at two diagnosis-specific mechanisms that
can potentially be used to alleviate computational load in our
case:

1. Ordered binary decision diagram (OBDD)[Bryant,
1992] can be used to efficiently reason about diagnosis-
satisfying assignments[Torasso and Torta, 2003]. By
restricting the representation, boolean manipulation be-
comes much simpler computationally. We can com-
pactly represent the coordination graph using OBDDs
(an off-line construction process), and then truth assign-
ments can be computed in linear time in many cases.

2. Assumption-based truth maintenance systems (ATMS)
[de Kleer, 1986] can be used to build the satisfying as-
signments incrementally. We exploit the fact that it is
unnecessary to check all the assignments since the legal
assignments depend each on the other. For instance, as-
sume a concurrence coordination betweena andb and
betweenb andc:

((a ∧ b) ∨ (¬a ∧ ¬b))∧
((b ∧ c) ∨ (¬b ∧ ¬c))

Instead of computing the full truth table ofa, b andc,
(23), we can use an ATMS, which given these justifica-
tions will provide only two assignments:(a = true, b =
true, c = true) or (a = false, b = false, c = false).

5 Summary and Future Work
We presented a novel formalization for diagnosing coordina-
tion failures in multi agent systems by representing the co-
ordination as constraints between agents which must be sat-
isfied. We model such coordination using two coordination
constraints (concurrence and mutual exclusion). In the diag-
nosis process the diagnoser observes the actions of the agents,
then it finds the candidate abnormal agents who violated the
constraints by the coordination model, and finally continues
to compute the abnormal sensors by back-chaining (previ-
ously shown in[Kalech and Kaminka, 2003]).

We defined both a consistency-based and abductive diag-
nosis versions of coordination diagnosis, and proposed initial
algorithms for both. The consistency-based approach finds
the local conflicts between pairs of agents, then continues
to compute the diagnosis by combining the conflicts using
a minimal vertex cover algorithm. We showed that this ap-
proach is unsound, in that it may produce diagnoses that are
impossible since any transformation of their value will not
satisfy the constraints between the agents. The second ap-
proach maps the abductive coordination diagnosis problem
to that of satisfiability, finding a minimal set of truth-value
changes that satisfy a given proposition. Here, our initial ap-
proach pre-computes all the possible coordination-satisfying
action assignments, and then uses these during on-line diag-
nosis by comparing the actions of the agents to each one of
the instances of the satisfying action assignments.

Our goal in this paper was to take a first step towards the
use of model-based diagnosis techniques in multi-agent sys-
tems, by representing it as CSP. Naturally, much is left for fu-
ture research. First, the algorithms we proposed are related to
key techniques in diagnosis, constraint-satisfaction, and non-
monotonic reasoning. We plan to explore these connections,
to bring to bear on this diagnosis problem. Second, we inten-
tionally avoided the use of complex multi-component agent
models, and focused on simple coordination primitives. We
hope to explore richer models of both in the future. In addi-
tion, while this paper has adopted the perspective of a cen-
tralized single diagnoser, we plan to tackle distributed algo-
rithms next. Representing the model-based diagnosis of co-
ordination as CSP opens new opportunity to inspire both of
the areas: distributed CSP as well as diagnosis of multi-agent
systems.
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