
Searching for a k-Clique in Unknown Graphs

(Extended Abstract)
Roni Stern

Ben-Gurion University
Beer-Sheva, 85104, Israel
roni.stern@gmail.com

Meir Kalech
Ben-Gurion University

Beer-Sheva, 85104, Israel
kalech@bgu.ac.il

Ariel Felner
Ben-Gurion University

Beer-Sheva, 85104, Israel
felner@bgu.ac.il

ABSTRACT
Agents that solve problems in unknown graphs are usually
required to iteratively explore parts of the graph. In this
paper we research the problem of finding a k-clique in an
unknown graph while minimizing the number of required ex-
ploration actions. Two novel heuristics (KnownDegree and
Clique∗) are proposed to reduce the required exploration
cost by carefully choosing which part of the environment
to explore. We further investigate the problem by adding
probabilistic knowledge of the graph and propose an MDP
and a Monte Carlo based heuristic (RClique∗) that uses
knowledge of edges probabilities to reduce the required ex-
ploration cost. The efficiency of the proposed approaches is
demonstrated on simulated random and scale free graphs.

1. INTRODUCTION
Most classic algorithms that solve graph problems assume

that the entire structure of the graph is given as input in data
structures (e.g. adjacency list or adjacency matrix). We re-
fer to such problems as problems on known graphs. By
contrast, there are real-life problems which can be modeled
as problems on graphs where the graph is not given as input
and is not necessarily known in advance. For example, a
robot navigating in an unknown terrain where vertices and
edges are physical locations and roads respectively. Another
example is an agent searching the World Wide Web, where
the vertices are the web sites and the edges represent hyper-
text links. A possible application is a web crawler searching
an online database such as CiteSeer or Google Scholar (many
of which can not be completely downloaded). We refer to
such problems as problems on unknown graphs.

Solving problems in such unknown graphs requires ex-
ploring some part of the graph. We define an exploration
action, that when applied to a vertex, discovers all its neigh-
boring vertices and edges. In the web graph domain, for
example, the exploration corresponds to sending an HTTP
request, retrieving an HTML page and parsing all the hy-
pertext links in it. The hypertext links are the outgoing
edges, and the connected web sites are the neighboring ver-
tices. For a physical domain, the exploration is applied by
using sensors at a location to discover the near area, e.g., the
outgoing edges and the neighboring vertices on the map.

Cite as: Searching for a k-Clique in Unknown Graphs (Extended Ab-
stract), Roni Stern, Meir Kalech and Ariel Felner, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Such exploration actions are associated with a cost. The
exploration cost often requires a different resource than the
traditional computational effort. For the web graph sce-
nario, the exploration cost includes network I/O of sending
and receiving IP packets. For physical world environment,
exploration cost is associated with the cost of activating sen-
sors at a vertex. In such cases, an important task will be
to solve the problem while minimizing the exploration cost.
Computational CPU cost can be therefore omitted as long
as it is running a polynomial algorithm.

We focus on the problem of searching for a k-clique in
unknown graphs, starting from a single known vertex. A k-
clique is a set of k vertices that are pairwise connected. The
task is to find a k-clique with minimum exploration cost.
Beyond the value of the investigation of such basic prob-
lem in unknown graphs, k-clique can be practical in real-
world unknown graph domains. For example, finding a set
of physical locations forming a clique suggests the existence
of a metropolitan. Another example is an agent searching
for a set of web sites forming a clique. A clique of web sites
suggests resemblance in content. Consider, for example, a
searching process of an online academic database such as
Google Scholar and CiteSeer. Each paper is referenced by
a hypertext link, and citations of a paper are also available
as links. Assume a clique of papers is found, i.e. a group
of papers where each paper cites or is cited by all the other
papers in the group. It is very likely that all papers in the
group discuss the same subject. Thus finding a clique in
such a web site allows a focused content search.1

2. BEST-FIRST SEARCH APPROACH
Searching for a k-clique in unknown graphs is inherently

an iterative process, in which the graph is explored vertex by
vertex. Therefore, we propose a best-first search approach.
At the beginning of every iteration a simple search is per-
formed checking if there is a k-clique in the known part of the
graph. Note that since this step operates on the known part
of the graph, it requires no exploration cost. If a k-clique
has not been found yet and there are vertices that have not
been explored yet, the agent chooses which vertex to explore
next. This is equivalent to a best-first search where applying
an exploration action to a vertex corresponds to expanding
that vertex and generating its neighbors.

In the worst case, all the vertices must be explored. How-
ever we propose several intelligent heuristics that signifi-
cantly reduce the exploration cost in practice. The first

1This structural approach can of course be complemented
by text data mining approach to prune irrelevant papers.



E

S

F

I

JG

H

D

BA

C K

L

Figure 1: Example of the different heuristics.

heuristic, which we call Known Degree, is inspired by a com-
mon heuristic used for k-clique problem in known graphs, of
searching first vertices with high degree [2]. Since the real
degree of a vertex that has not been explored yet is not
known, we consider its known degree - the number of ex-
panded vertices that are adjacent to it. The vertex with
the highest known degree is selected to be explored.

The second heuristic we developed relates to the size of
the potential k-clique that a vertex is connected to. A set
of vertices is a potential k-clique if they have already been
explored and they may become a part of a k-clique. This
occurs only when a set of explored vertices is a clique itself
(albeit smaller than k), and if there exist enough unexplored
vertices that are neighbors of all the vertices in that set. The
second heuristic we proposed chooses to explore the vertices
that are connected to the largest potential k-clique. An
important property of this heuristic is that k minus the size
of the largest potential k-clique is a tight lower bound to the
cost of exploring a k-clique. In other words, no admissible
heuristic can be better.

Figure 1 presents an example of both heuristics. The size
of the desired clique is 6. Gray and white nodes mark ex-
panded and generated nodes respectively. The next node
chosen by KnownDegree will be G as its known degree is 4.
On the other hand, Clique∗ will choose either H,I or J , as
they are connected to a potential k-clique of size three (nodes
S,E and F ). Note that (S,E, F ) is a potential 6-clique be-
cause nodes H,J and I may become connected when they
will be explored.

In many domains, although the exact searched graph is
unknown, there is some knowledge on the probability of the
edges. For example, if the searched graph is the World Wide
Web then it is well-known that it behaves like a scale free
graph in which the degree distribution of the graph vertices
follows a power law (i.e. the probability of a vertex having
a degree x is xβ for some exponent β) [1]. Another example
that is common in robotics is a navigator robot with imper-
fect vision of the environment. This can be represented as
an error probability on the existence of an edge in the graph
of the environment.

By adding probabilistic knowledge, the problem of search-
ing for a k-clique in an unknown graph can be modeled as a
finite-horizon MDP. The states are all possible exploration
outcomes and the actions are the exploration actions applied
to nodes in Vgen. Unfortunately, the size of the MDP state
space grows double exponential with the number of vertices
in the graph, prohibiting solvers that requires enumerating
all of the states such as Value or Policy Iteration.

We propose RClique∗, a Monte-Carlo based sampling
heuristic that combines Clique∗ and probabilistic knowl-
edge of the edges in the graph. RClique∗ approximates the
expected exploration cost by sampling states of the MDP
state space mentioned above. This is done by using Clique∗

(with random tie braking) to choose which vertex to explore
and simulate the exploration outcome using the probabilistic
knowledge available. This simulated exploration is repeated

Figure 2: Random graphs, various levels of noise.

until either a k-clique is found or a maximum exploration
depth is reached (the maximum depth is a predefined pa-
rameter to the search). This whole process is repeated a
predefined number of times. The average exploration cost
of finding a k-clique is then used as a heuristic. It is impor-
tant to note that during the simulated exploration no real
exploration is preformed, thus it does not incur any explo-
ration cost.

3. EXPERIMENTAL RESULTS
We experimented with simple random graphs and scale

free graphs. Probabilistic knowledge was simulated by defin-
ing a prior probability for every possible edge between gener-
ated nodes. We defined a variable noise that determines the
maximum uncertainty of a single edge. For every possible
edge e the agent is given P (e ∈ E)=1-rand(0, noise) if e ∈ E
or P (e ∈ E) = rand(0, noise) otherwise, where rand(a, b)
is a random number uniformly distributed between a and b.
Clearly if noise = 1 the agent has random knowledge about
the existence of edges in G.

We run experiments on 100 random graphs with 100 ver-
tices and 800 edges. For RClique∗ we used 250 samples and
a depth of 3 with various levels of noise. Figure 2 shows
the average exploration cost of searching for a 5-clique. The
y-axis shows the average exploration cost. The bars de-
notes the different heuristics. Random is a baseline heuris-
tic where vertices are explored randomly. LowerBound is
the shortest path from the root to the closest k-clique in the
graph plus k − 1. No algorithm can do better than that.

Interestingly, even with a setting of 50% noise RClique∗

outoperfroms Clique∗ by a factor of almost 2. We have
also evaluated the effect of different sampling depths on a
RClique∗ heuristic using 250 samples and 50% noise. Depth
1,2,3,4 and 5 yielded an exploration cost that was 5.34, 4.15,
2.65, 2.52, 2.32 times the lowerbound respectively. Thus it
seems that while deeper sampling reduces the exploration
cost of the search, there is no substantial reduction beyond
depth 3. Similar results were obtained for scale-free graphs
except for two phenomenons. No significant difference be-
tween Clique∗ and KnownDegree was found. Additionally,
the reduction in exploration cost of the the non-probabilistic
heuristics over Random grew to more than 80%. This is be-
cause scale-free graph usually contain few ”hub” nodes that
are connected to many other nodes, yielding better results
for KnownDegree and worse results for Random.

4. REFERENCES
[1] A. Bonato and W. Laurier. A survey of models of the

web graph. In CAAN, pages 159–172, 2004.

[2] E. Tomita and T. Kameda. An efficient
branch-and-bound algorithm for finding a maximum
clique with computational experiments. J. of Global
Optimization, 37(1):95–111, 2007.


