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Abstract

This paper introduces an encoding of Model Based Diagnosis
(MBD) to Boolean Satisfaction (SAT) focusing on minimal
cardinality diagnosis. The encoding is based on a combina-
tion of sophisticated MBD preprocessing algorithms and SAT
compilation techniques which together provide concise CNF
formula. Experimental evidence indicates that our approach
is superior to all published algorithms for minimal cardinality
MBD. In particular, we can determine, for the first time, min-
imal cardinality diagnoses for the entire standard ISCAS-85
benchmark. Our results open the way to improve the state-of-
the-art on a range of similar MBD problems.

Introduction
Automated diagnosis is concerned with reasoning about the
health of systems, including the identification of abnormal
behavior, isolation of faulty components and prediction of
system behavior under normal and abnormal conditions. As
systems become large-scale and more complex, their auto-
mated diagnosis becomes more challenging. Model Based
Diagnosis (MBD) is an artificial intelligence based approach
that aims to cope with the diagnosis problem (Reiter 1987;
de Kleer and Williams 1987). In MBD, a model of the sys-
tem is first built. A diagnoser then observes the system to
predict its behavior by the model. Discrepancies between
the observation and the prediction are used as the input for a
diagnosis algorithm which produces a set of possible faults
that can explain the observation.

MBD is known to be a hard problem where algorithms
have exponential runtime (in the size of the system). More-
over, the number of potential diagnoses that may explain an
observation can be huge. Therefore, MBD algorithms typi-
cally focus on minimal diagnoses – that do not contain other
diagnoses, and on minimal cardinality diagnoses – that are
smallest in size. Computing the first minimal diagnosis is in
P , but computing the next one is NP-hard (Bylander et al.
1991). Computing the minimal cardinality is NP-hard, even
for the first diagnosis (Selman and Levesque 1990).

In case of large-scale systems, MBD is often impracti-
cal, especially for high-cardinality faults. For instance, in a
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system of 1000 components, to find a minimal cardinality
diagnosis of size 5, a diagnosis enginemust first verify the
absence of a diagnosis consisting of 4 components (there
are more than 1011 such combinations). To overcome this
problem we consider a novel encoding to SAT.

In recent years, Boolean SAT solving techniques have im-
proved dramatically. Today’s SAT solvers are considerably
faster and able to manage larger instances than yesterday’s.
Moreover, encoding and modeling techniques are better un-
derstood and increasingly innovative. SAT is currently ap-
plied to solve a wide variety of hard and practical combina-
torial problems, often outperforming dedicated algorithms.
The general idea is to encode a (typically, NP) hard problem
instance, µ, to a Boolean formula, ϕµ, such that the solu-
tions of µ correspond to the satisfying assignments of ϕµ.
Given the encoding, a SAT solver is then applied to solve µ.

Previous attempts to apply SAT for MBD (see related
work, below) indicate that SAT and MAX-SAT solvers per-
form poorly on the standard benchmarks. This paper intro-
duces a novel SAT encoding based on a combination of so-
phisticated MBD preprocessing algorithms and SAT com-
pilation techniques. Our approach results in concise CNF
formulae. Experimental evidence indicates that are superior
to those obtained in previous work.

We focus on minimal cardinality diagnosis evaluating our
approach using two standard benchmarks: ISCAS-85 (Brglez
et al. 1989) and 74XXX (Hansen, Yalcin, and Hayes 1999).
We run two known sets of observations with minimal cardi-
nalities between 1–30, and for the first time succeed to com-
pute a minimal cardinality diagnosis for all observations in
the benchmark. We compare our algorithm to HA* (Feldman
and van Gemund 2006), CDA* (Williams and Ragno 2007),
SAFARI (Feldman, Provan, and van Gemund 2010), HDIAG
(Siddiqi and Huang 2007) and DCAS (Siddiqi 2011). Results
are unequivocal. Our algorithm outperforms the others, of-
ten by orders of magnitude, in terms of runtime. This result
is even more significant, as SAFARI is a stochastic algorithm,
known as fast, which does not even aim to guarantee mini-
mal cardinality. Our approach, on the other hand, guarantees
a minimal cardinality diagnosis and runs faster than SAFARI.

Related work
SAT-based solutions for MBD have already been proposed.
Smith et al. (Smith et al. 2005) encode a circuit, represent-



COMPS = {X1, X2, A1, A2, O1}
OBS = {A,¬B,C,¬D,¬E}

Figure 1: MBD: A full adder.

ing each component through its clauses and add constraints
for cardinality. This is the basis for all the other SAT-based
encodings, including the one we propose. Bauer (Bauer
2005) introduces a tailored SAT solver specifically designed
to return many diagnoses. Stein et al. (Stein, Niggemann,
and Lettmann 2006) address diagnosis of qualitative models
of physical systems with multiple fault modes. Feldman et
al. (Feldman et al. 2010) propose an encoding to MAX-
SAT and demonstrate that off-the-shelf solvers require more
consistency checks than the stochastic diagnosis algorithm
SAFARI (Feldman, Provan, and van Gemund 2010).

Our approach focuses first on better modeling of MBD,
and then on improving its encoding to SAT. Sophisti-
cated preprocessing facilitates the introduction of con-
straints that enable to simplify the CNF encoding and also
boost the search for minimal cardinality diagnosis. It is this
“compiler-like” approach that enables us to significantly im-
prove the subsequent runtime of the underlying SAT solver.

Compilation-based methods have also been proposed in
the MBD context. Torasso and Torta apply BDDs to compile
the model (Torasso and Torta 2006). Darwiche (Darwiche
2001) compiles a system description into Decomposable
Negation Normal Form (DNNF) where a minimal cardinal-
ity diagnosis can be found in polynomial time. However, in
systems with many components, the size of the DNNF be-
comes a bottleneck (Siddiqi and Huang 2007). Siddiqi (Sid-
diqi and Huang 2007) suggests to optimize MBD by identi-
fying components that dominate others. We adopt this idea
and apply it in our SAT-based approach.

Model-Based Diagnosis
Model Based Diagnosis problems arise when the normal be-
havior of a system is violated due to faulty components as
indicated by certain observations. We focus on weak fault
models (WFM), which ignore the mode of abnormal be-
havior of components. An MBD problem is specified as a
triplet 〈SD,COMPS,OBS〉 where: SD is a system description,
COMPS is a set of components, and OBS is an observation.
The system description takes into account that some com-
ponents might be abnormal (faulty). This is specified by an
unary predicate AB on components such that AB(c) is true
when component c is faulty. Denoting the correct behav-
ior of c as a propositional formula, ϕc, SD is a conjunction
of constraints of the form (¬AB(c) ⇒ ϕc). Namely, each
component which is not faulty follows its correct behavior.

A diagnosis problem (DP) arises when, under the assump-
tion that none of the components are faulty, there is an incon-
sistency between the system description and the observation
(de Kleer and Williams 1987; Reiter 1987).

Definition 1 [Diagnosis Problem]. Given an MBD,
〈SD,COMPS,OBS〉, a diagnosis problem arises when

SD ∪ {¬AB(c) | c ∈ COMPS} ∪ OBS ` ⊥.

For example, a diagnosis problem arises for the MBD of
Figure 1 as normal behavior would give output E = true .

Once there is an inconsistency, a diagnosis algorithm tries
to find a subset ∆ ⊆ COMPS which, if assumed faulty, ex-
plains the observation.

Definition 2 [Diagnosis] Given an MBD, 〈SD,COMPS,
OBS〉, ∆ ⊆ COMPS is a diagnosis if SD ∪ {AB(c) | c ∈
∆} ∪ {¬AB(c) | c ∈ COMPS −∆} ∪ OBS 0 ⊥ . We say that
∆ is a minimal diagnosis if no proper subset ∆′ ⊂ ∆ is a
diagnosis, and that ∆ is a minimal cardinality diagnosis if
for any other diagnosis ∆′ ⊆ COMPS, |∆| ≤ |∆′|.

For the MBD of Figure 1, ∆1={X1, X2}, ∆2={O1},
∆3={A2} are minimum diagnoses; ∆2, ∆3 are minimal
cardinality diagnoses as there is no smaller diagnosis.

The Standard Approach to SAT-Based MBD
The standard encoding of MBD to Boolean Satisfiability
(e.g. as introduced in (Smith et al. 2005)) associates each
component c ∈ COMPS with a corresponding Boolean
“health” variable Hc. Viewing the observation as a proposi-
tional statement, an encoding is obtained by specifying

ϕ = OBS ∧ ∧{ Hc ⇒ ϕc | c ∈ COMPS }
In a satisfying assignment for ϕ, the values assigned to the
health variables determine a diagnosis ∆. To focus on min-
imal cardinality diagnosis we seek a satisfying assignment
with a minimal number of those variables taking value false .
This can be achieved using a MAX-SAT solver, as in (Feld-
man et al. 2010), or, as done in this paper, by introduc-
ing a cardinality constraint which constrains the sum of the
negated health variables (viewing true as 1 and false as 0).
Cardinality constraints are encoded to CNF using standard
techniques, e.g. (Eén and Sörensson 2006).

ϕk = ϕ ∧ (Σ { ¬Hc | c ∈ COMPS } ≤ k)

For a constant k, ϕk is satisfied only if at most k health
variables take the value false . More specifically, we seek a
value k such that ϕk is satisfiable and ϕk−1 is not satisfiable.
This involves iterating over calls to the SAT solver.

Our Approach to SAT-Based MBD
Our approach to encoding MBD to SAT builds on the classic
one but is constraint-based. First, we model the SD similar
to the classic approach but in terms of constraints. Second,
we analyze the SD to introduce additional (redundant) con-
straints that will later boost the search for a minimal cardi-
nality analysis. Third, we introduce constraints to model the
given observation OBS and an additional constraint which
is inferred by reasoning about SD and OBS and imposes a
bound on the cardinality of the diagnosis (the number of un-
healthy gates). This additional constraint eases the search
for the minimal cardinality diagnosis when later solving the
MBD problem. Given all of these constraints, we apply a
constraint compiler to simplify and encode them to a cor-
responding CNF. Finally we apply a SAT solver to seek a
suitable satisfying assignment and solve the problem. In the
rest of this section we describe these phases in more detail.



Figure 2: Modeling component c by composition with xor

The basic model for SD A well-known improvement for
the WFM with a single observation is to observe that when
searching for minimal diagnoses the behaviour of each com-
ponent c can be assumed to be either healthy, in which case
c is normal or else unhealthy in which case it produces an
opposite output to normal. The basic model for SD consists
of constraint

∧{ comp(c, Hc) | c ∈ COMPS } (1)

which associates each component c with its health variable
Hc. The formal specification of comp(c, Hc) is illustrated
in Figure 2 where component c is modeled by its composi-
tion with a new xor component that receives as inputs the
output from c and the negated health variable ¬Hc. If Hc

is true then this composition is equivalent to the normal be-
havior of c, otherwise it is equivalent to component c with
a negated output. For example, the system depicted as Fig-
ure 1 is modeled by the following constraints:

comp(X1, HX1) = xor(A, B, Z′1) ∧ xor(¬HX1 , Z′1, Z1)
comp(X2, HX2) = xor(Z1, C, D

′) ∧ xor(¬HX2 , D′, D)
comp(A1, HA1) = and(A, B, Z′2) ∧ xor(¬HA1 , Z′2, Z2)
comp(A2, HA2) = and(Z1, C, Z

′
3) ∧ xor(¬HA2 , Z′3, Z3)

comp(O1, HO1) = or(Z2, Z3, E
′) ∧ xor(¬HO1 , E′, E)

where xor(A, B, C) (and(A, B, C),or(A, B, C)) represents the
gate with inputs A, B and output C. Modeling comp(c, Hc) by
introducing an xor gate for each component later motivates
our choice of CryptoMiniSat (Soos 2010), which offers di-
rect support for xor clauses, as the underlying SAT solver.

We introduce an additional constraint

sum eq({ ¬Hc | c ∈ COMPS } , UHs) (2)

to specify that the sum of the negated health variables is the
number represented by the Boolean variables UHs. Later we
will require to satisfy the constraints of the model and also
to minimize the number represented by UHs.

Introducing (redundant) Cardinality Constraints Rea-
soning about relations between the components in a sys-
tem description SD enables to infer (cardinality) constraints
about the number of unhealthy components in certain sub-
systems of SD. These constraints when compiled into the
CNF, help boost the search, by the SAT solver, for a mini-
mal cardinality diagnosis. A key point is the assertion in (de
Kleer 2008) that the number of outputs in a system is an
upper bound on its minimal cardinality diagnosis, for any
observation. Another important concept we adopt is that
of “gate domination” introduced in (Kirkland and Mercer
1987) and applied also by Siddiqi who further introduces
the notion of a “cone”. The following wording is taken
from (Siddiqi and Huang 2007) in a setting where the system
is a logical circuit and the components are its gates.

Definition 3 (Dominator and Cone) A gate X in the fan-
in region of gate G is dominated by G, and conversely G is
a dominator of X , if any path from X to an output of the
circuit contains G. The cone corresponding to a gate G is
the set of gates dominated by G. A maximal cone is one that
is either contained in no other cone or contained in exactly
one other cone which is the entire circuit.

Cones are single-output sub-circuits and as such, a min-
imal cardinality diagnosis will always, independent of the
observation, indicate at most one unhealthy component per
cone. Hence, given a partition to (maximal) cones, we can
introduce cardinality constraints to state that each cone con-
tains at most one unhealthy gate. These constraints, though
redundant, improve considerably the search for minimal car-
dinality diagnosis. This because search can backtrack as
soon as it indicates two unhealthy components in a cone.

Motivated by the utility of partitioning a system to cones,
we seek a more general partitioning, which enables to apply
similar cardinality constraints to larger subsystems of com-
ponents. To this end we introduce the notion of a “section”.
We denote by outputs(c) the set of system outputs which
occur at the end of a path from a component c.

Definition 4 (Section) Given a system description SD with
components COMPS we define a disjoint partitioning
COMPS = S1 ∪ S2 ∪ · · · ∪ Sn such that for every c1, c2 ∈
COMPS, c1 and c2 are in the same section Si if and only if
outputs(c1) = outputs(c2).

Obtaining a partition to sections following Definition 4
is straightforward and can be computed in polynomial time
complexity. Given the partitioning, we introduce the fol-
lowing three constraints which together further improve the
encoding and hence the subsequent search for minimal car-
dinality diagnosis. First we express the sum of the negated
health variables per individual section Si:

sum eq({ ¬Hc | c ∈ Si } , UHsi) (3)
This enables to decompose the total number of unhealthy
components in terms of partial sums per section:

UHs1 + · · ·+ UHsn = UHs (4)
Constraint (4) improves on Constraint (2) which is conse-
quently rendered redundant. Consider that any encoding of
the total sum (number of unhealthy components) follows, by
divide and conquer, some form of decomposition to partial
sums. Constraint (4) guides the encoding to follow a specific
decomposition for which the partial sums (number of un-
healthy components per section) can be further constrained:∧n

i=1 lessEq(UHsi, bi) (5)
where bi denotes the smaller of the following two bounds
on the number of unhealthy components in section Si: (a)
viewing Si as a system, following the assertion of de Kleer,
the number of outputs from Si is a bound, and (b) for any
c ∈ Si, |outputs(c)| is a bound. Note that by Definition 4,
this value is independent of c.

To illustrate the utility of sections, consider the system
given as Figure 3 where cones are depicted in dotted lines
and sections in dashed. The section labeled S1 has 3 outputs,
but each component c ∈ S1 has only 2 corresponding system



outputs (|outputs(c)| = 2). Hence, 2 is an upper bound on
the number of unhealthy gates in S1. Note that if reasoning
about cones instead of sections, the bound on the number of
unhealthy components in S1 is 3.

Figure 3: Partitioning a system to cones and sections.

Proposition 1 Let S be a section and c ∈ S a component.
Then, the number of unhealthy gates (in a minimal cardinal-
ity diagnosis) in S is at most |outputs(c)|.

Proof (idea) Let ∆ be a minimal cardinality diagnosis with
k unhealthy gates and let c be a component in a section S
which contains t unhealthy gates. Assume for contradic-
tion that t > |outputs(c)|. We construct a diagnostic ∆′

with k′ < k unhealthy gates as follows: Mark the unhealthy
gates from S as healthy and propagate the observed inputs to
identify the “flipped” outputs which contradict the observed
outputs. For each flipped output o ∈ outputs(c), toggle the
health value for the gate which outputs o to obtain ∆′. The
construction marks t unhealthy gates as healthy and at most
|outputs(c)| gates as unhealthy. So for ∆′ with k′ unhealthy
gates we have k′ ≤ (k − t+ |outputs(c)|) < k . �

The reader might observe another benefit of partition-
ing to sections: if gate X is dominated by gate G, then
outputs(X)=outputs(G) implying that the gates of a cone
are always in the same section. So, given a partition to sec-
tions, the identification of cones may be performed “per sec-
tion” which is more efficient.

Introducing Constraints to Break Symmetry Symmetry
breaking (e.g. (Crawford et al. 1996)) is about adding con-
straints to select a particular solution in case it is just as good
as some other set of solutions. Consider a cone C in SD. Any
minimal cardinality diagnosis of SD will indicate at most one
unhealthy component in C. Without loss of generality, we
may assume that all dominated components in C are healthy.
This is correct because if X is unhealthy in some minimal
cardinality diagnosis and dominated by G, then G must be
healthy. So, there exists another minimal cardinality diagno-
sis where X is healthy and G is not. Based on this observa-
tion we can restrict the search for so-called “top-level” mini-
mal cardinality diagnoses. The following is equivalent to the
corresponding definition from (Siddiqi and Huang 2007).

Definition 5 (top-level diagnosis (TLD)) We say that a
minimal cardinality diagnosis is top-level if it does not con-
tain any dominated gates.

To restrict the search to top-level minimal cardinality di-
agnoses we add the following constraints where D denotes
the set of dominated gates.

{ Hc = true | c ∈ D } (6)

Figure 4: Minimal cardinality diagnosis is size 2 but prop-
agating observed inputs leads to 1 contradiction to the ob-
served outputs.

Introducing constraints to indicate healthy components
reduces the number of (unassigned) health variables and
hence boosts the search for minimal cardinality diagnosis.

Modeling the Observation and Further Boosting Search
Let t and f denote the sets of variables assigned true and
false in OBS respectively. Then, to model the observation we
add the obvious constraints.

{ X = true | X ∈ t } ∪ { X = false | X ∈ f } (7)

To improve the search for a minimal cardinality diagno-
sis one can introduce an upper bound on the minimal car-
dinality, for example using the assertion from (de Kleer
2008) that the number of outputs in a system is an up-
per bound on the minimal cardinality. Siddiqi proposes
(Siddiqi 2011) to improve this bound for a given observa-
tion by propagating the input values through the system,
and then taking as an upper bound the number of contra-
dictions between the observed and the propagated outputs.
While this idea is intuitively appealing, the circuit depicted
as Figure 4 illustrates that it is not always correct. Con-
sider OBS = { I1,¬I2, I3, O1,¬O2 }. Propagating the in-
puts through the circuit assigns 0 to both outputs and hence
counts a single contradiction with the observation (on O1).
However, the only (minimal cardinality) diagnosis for this
example has cardinality 2. This example is not contrived:
83 of the 350 observations for system 74181 of the 74XXX
benchmark, exhibit a minimal cardinality diagnosis larger
than the bound obtained when counting conflicts between
propagated and observed outputs.

We propose a fix to obtain a correct upper bound on the
size of a minimal cardinality diagnosis.

Procedure 1 Given a system and an observation, repeat-
edly propagate the observed inputs through the system as
follows: if the inputs of a component c are known then eval-
uate its normal output v. If the output from c is not in con-
tradiction with the given observation, then mark c as healthy
and maintain its output as v. Otherwise, if the observation
indicates the output from c as ¬v, then mark c as unhealthy
and maintain its output as ¬v.

For the circuit in Figure 4, propagating the inputs of gate
A1 gives the output 0 in contradiction to the observation on
O1. Hence, we mark A1 as unhealthy and propagate the ob-
servation O1 = 1 as an input to A2 together with I3 = 1.
This results in an additional contradiction to the observation
O2 = 0 and so we mark A2 as unhealthy too, and report
the value 2 as an upper bound for the minimal cardinality.
Procedure 1 provides both an upper-bound as well as a di-
agnosis with the corresponding number of unhealthy com-



ponents. Note that this procedure is correct also when given
probes (observed values on the outputs from internal gates).

Proposition 2 Application of Procedure 1 indicates an
upper-bound on the minimal cardinality diagnosis.

Proof (idea) It follows from the construction that the gates
marked unhealthy, call them ∆, are those whose output
contradicts the observation. So flipping the outputs from
∆ gates gives a behaviour consistent with the observation.
Hence, ∆ is a diagnosis and so |∆| is an upper-bound. �

Let kUB be the bound found by application of Procedure 1
and UHs be the Boolean variables representing the number
of the unhealthy components in the system. We introduce a
constraint:

lessEq(UHs, kUB) (8)

To appreciate the impact of Procedure 1 we note that, for
the ISCAS-85 and 74XXX benchmarks, there are many in-
stances for which Procedure 1 provides a bound identical to
the actual minimal cardinality. For such observations, our
SAT-based approach still needs to validate that there is no
diagnosis of smaller size.

Compiling Constraints to CNF In (Metodi et al. 2011)
the authors describe a compiler that encodes finite domain
constraints to CNF. Besides facilitating the encoding pro-
cess, this compiler also applies partial evaluation and other
optimizations to simplify the constraints before encoding
them to CNF. In particular, it applies “equi-propagation”
which is the process of identifying equalities between lit-
erals (and constants) implied by a given constraint. If X=L
is implied by a constraint (where X is a variable and L is a
literal or a Boolean constant), then all occurrences of X are
replaced by L, reducing the number of variables in the sub-
sequent CNF encoding. For example, consider a constraint
comp(c, Hc) = and(X, Y, Z′) ∧ xor(¬Hc, Z′, Z) modeling the
component of Figure 2, in a context where X=1 is a system
input and Hc=1 is determined by symmetry breaking. Equi-
propagation gives the additional equations Y=Z′, and Z=Z′

which are applied to all other constraints. Then, comp(c, Hc)
is removed from the model and not encoded to CNF.

Diagnosis Process and Implementation
We summarize the four phases of the diagnosis process in
our approach. Let µ = 〈SD,COMPS,OBS〉 be an MBD prob-
lem. In the first two phases we construct a constraint model.
First, focusing on SD, to introduce constraints which are in-
dependent of the observation, and then “per observation” to
introduce further constraints. In the third phase we encode
the constraint model to a CNF, ϕµ, and finally in the fourth,
solve ϕµ using a SAT solver to compute (one or all) minimal
cardinality diagnoses.

Modeling the system (“offline”): We first model SD by
Constraint (1). We add Constraints (3–5) to bound the num-
ber of unhealthy components per section and represent the
total number of unhealthy components as an integer variable
represented by the Boolean variables UHs. Finally, we add
symmetry breaking Constraint (6) which states that, without

loss of generality, we may assume that dominated compo-
nents are healthy. All of the system preprocessing is per-
formed “offline”, once per system.

Modeling the observation (“online”): OBS is modeled by
introducing Constraint (7) and an additional (cardinality)
Constraint (8) is introduced to further bound the number of
unhealthy components (by kUB) based on Procedure 1. The
simplification of the entire constraint system is performed
“online”, for each observation.

Encoding: The constraint model is encoded to CNF, ϕµ,
applying the optimizing CNF compiler (Metodi et al. 2011).

Solving: To compute a diagnosis, ∆, we seek a satisfying
assignment for the encoding, ϕµ, by applying the Crypto-
MiniSat solver (Soos 2010). ∆ is then the set of health vari-
ables assigned false by this assignment. Denoting |∆| = k,
we again seek a satisfying assignment, but this time for
ϕ ∧ (UHs < k). If a satisfying assignment is found, it in-
dicates a smaller diagnosis, ∆′. Otherwise, ∆ is of minimal
cardinality. This process is invoked repeatedly, each time
finding a smaller diagnosis, until for some k′ the formula
ϕ ∧ (UHs < k′) is not satisfiable. Then, the diagnosis found
in the previous iteration is of minimal cardinality.

To facilitate the search for a minimal cardinality diag-
nosis, we apply the SAT solver wrapper, SCryptoMini-
Sat (Metodi 2012). SCryptoMiniSat takes as input a CNF
formula (ϕµ) and the Boolean variables representing a num-
ber (UHs). It provides a satisfying assignment which mini-
mizes the given number.

After finding the first minimal cardinality diagnosis with
k′ faulty components (as described above), we seek to enu-
merate the set of all top-level minimal cardinality diagnoses.
To this end, we apply an additional functionality of SCrypto-
MiniSat which allows to enumerate (possibly with a speci-
fied time-out) all, or a specified number of, satisfying assign-
ments for a given CNF. We apply this option to enumerate
all satisfying assignments for ϕµ ∧ (UHs = k′).

To compute all minimal cardinality diagnoses, we first ob-
serve that any minimal cardinality diagnosis, ∆′, which is
not top-level can be obtained by expanding another one, ∆,
which is top-level and is determined by replacing each dom-
inated component from ∆′ by its corresponding dominator.
For the converse, given a minimal cardinality TLD, the set
of minimal cardinality diagnoses it expands to is given by
the following procedure.
Procedure 2 Let ∆ = {G1, . . . , Gk} be a minimal cardinal-
ity TLD consisting of k dominator gates from correspond-
ing cones C1, . . . , Ck. First, propagate the inputs through
the system, flipping the outputs for unhealthy gates (those in
∆), thus annotating for each cone Ci its inputs and outputs.
Then, per cone Ci, determine the set of single components
G ∈ Ci that can replace Gi in ∆ such that this replacement is
still a diagnosis: Xi = {G ∈ Ci |∆ \ {Gi} ∪ {G} is a diagnosis}. Fi-
nally, the elements of X1×· · ·×Xk are the minimal cardinality
diagnoses that ∆ expands to.
We omit, for lack of space, the formal proof that Proce-
dure 2 provides a representation of all minimal cardinality
diagnoses in time O(|COMPS|2) per TLD.



Find a Single Minimal Cardinality Diagnosis (30 sec. timeout) Find All Minimal Cardinality Diagnoses (1800 sec. timeout)
System HA* CDA* SAFARI SAT HDIAG DCAS SAT

Name comp in out offline Succ. Time Succ. Time Succ. rate% Time Succ. Time Succ. Time Succ. Time Succ. TLD All
Secs. rate% Secs. rate% Secs. (minimal%) Secs. rate% Secs. rate% Secs. rate% Secs. rate% Secs. Secs.

74181 65 14 8 0.02 68.3 3.15 46.3 4.51 100.0 (44) 0.00 100.0 0.02 N/A
74182 19 9 5 0.01 100.0 0.00 100.0 0.01 100.0 (91) 0.00 100.0 0.01 N/A
74283 36 9 5 0.01 100.0 0.04 100.0 1.45 100.0 (57) 0.00 100.0 0.02 N/A

c432 160 36 7 0.03 78.1 3.63 38.2 5.15 100.0 (28) 0.03 100.0 0.03 100.0 0.21 100.0 0.31 100.0 0.07 0.09
c499 202 41 32 0.08 24.1 5.45 10.1 1.22 100.0 (7) 0.05 100.0 0.04 100.0 0.12 100.0 0.20 100.0 0.08 0.10
c880 383 60 26 0.06 11.9 3.76 6.3 6.66 100.0 (48) 0.18 100.0 0.05 99.0 0.07 99.0 0.12 100.0 0.08 0.11

c1355 546 41 32 0.24 11.4 3.90 0.0 - 100.0 (5) 0.37 100.0 0.07 99.5 0.16 99.5 0.15 100.0 0.13 0.16
c1908 880 33 25 0.37 6.4 1.75 0.0 - 100.0 (17) 1.08 100.0 0.14 90.5 368.13 76.5 82.25 100.0 0.25 0.30
c2670 1193 233 140 0.29 12.3 4.83 0.0 - 100.0 (14) 2.71 100.0 0.15 90.0 176.17 100.0 3.15 100.0 0.23 0.29
c3540 1669 50 22 0.71 3.7 4.30 0.0 - 100.0 (9) 5.25 100.0 0.27 N/A
c5315 2307 178 123 1.50 2.7 11.94 0.0 - 100.0 (9) 13.34 100.0 0.42 0.0 - 97.5 52.34 100.0 0.58 0.67
c6288 2416 32 32 1.48 13.6 7.87 0.0 - 53.5 (25) 16.18 100.0 0.56 0.0 - 27.5 305.10 50.0 104.58 105.14
c7552 3512 207 108 1.73 4.2 1.06 0.0 - 0.0 - 99.3 1.07 0.0 - 87.5 260.93 100.0 1.01 1.12
c7552 (with 80 sec timeout) 7.3 20.77 0.0 0.0 99.5 (13) 43.50 100.0 1.49

Table 1: Systems description (left), and results for Feldman’s scenario set (middle) and Siddiqi’s scenario set (right).

Experimental Results
Table 1 summarizes an evaluation of our SAT-based algo-
rithm on the common benchmarks ISCAS-85 (Brglez et al.
1989), and 74XXX (Hansen, Yalcin, and Hayes 1999). The
left part presents the systems: names, and numbers of com-
ponents, inputs and outputs. It also indicates the preprocess-
ing time per system (for the SAT-based approach) which in-
cludes all actions performed “once per system”: construct-
ing the constraint model, decomposing the system to sec-
tions, computing the bounds per section, etc. Experimenta-
tion involves two sets of scenarios (observations) with multi-
ple faulty components. The middle part of the table presents
results for scenarios generated by Feldman et al. (Feldman,
Provan, and van Gemund 2010). This is the larger set and
includes hard scenarios with the highest minimal cardinality.
In the right part, results for scenarios generated by Siddiqi
(Siddiqi 2011) where minimal cardinality is bounded by 8.

Feldman’s scenario set: In Table 1 (middle) we compare
our algorithm with HA* (Feldman and van Gemund 2006),
CDA* (Williams and Ragno 2007) and SAFARI (Feldman,
Provan, and van Gemund 2010). All experiments are run
on the same machine.1 The table reports on the search for
the first minimal cardinality diagnosis, for each algorithm,
indicating the percentage of observations solved within 30
seconds (succ. rate%) and the average search time, exclud-
ing timeouts (time). SAFARI, applies a stochastic approach
which does not guarantee minimal cardinality. Feldman et
al. report (Feldman, Provan, and van Gemund 2010) that
even for single and double fault cardinalities, SAFARI does
not always find the minimal cardinality. We run SAFARI in
a configuration which instead guarantees a minimal subset
diagnosis. So, SAFARI is often faster, comparing to HA*
and CDA*, at the expense of minimality. For SAFARI, the
table indicates in brackets (minimal%) also the percentage
of observations, excluding timeouts, where a minimal car-

1Intel Core 2 Duo (E8400 3.00GHz CPU, 4GB memory) under
Linux (Ubuntu lucid, kernel 2.6.32-24-generic).

dinality diagnosis was found. Our algorithm is presented in
the last column (SAT). It clearly outperforms the other three
algorithms. There are 11 observations for system c7552
which we do not solve within the 30 second timeout. These
are solved within 80 seconds each, as indicated by the last
row in the table. This row reports results when considering
an 80 seconds timeout for the 1557 observations for system
c7552. One may observe that while our SAT based ap-
proach now solves all observations, the results for HA* and
CDA* are basically the same as with the 30 sec. timeout. SA-
FARI now solves almost all observations but provides a min-
imal cardinality diagnosis for only 13%. So, we succeed to
compute and verify minimal cardinality diagnosis even for
scenarios with a minimal cardinality of 30. To the best of
our knowledge, no algorithm before succeeded to compute
minimal cardinality diagnosis for such hard scenarios.

Siddiqi’s scenario set: In Table 1 (right) we compare our
algorithm with HDIAG (Siddiqi and Huang 2007) and DCAS
(Siddiqi 2011) for which we present results from (Siddiqi
2011) where experiments are reported for a 2.4GHz IntelX-
eon X3220 with 2Gb RAM (empty rows in the table indi-
cate that these numbers where not reported). Both algo-
rithms verify minimal cardinality diagnosis. The first and
third colums report the percentage of scenarios for which
HDIAG and DCAS find all minimal cardinality diagnoses
within 1800 seconds. The second and fourth columns re-
port the average runtimes for the same sets of scenarios. In
column 5 we present the success rate (same success criteria)
of our algorithm (SAT) running on our machine1, in column
six we report the average runtime to compute the top level
diagnoses, and in column seven, the average runtime to com-
pute all minimal cardinality diagnoses. We observe that the
difference between finding top level diagnoses and all min-
imal cardinality diagnoses is small (supporting the fact that
it is performed in polynomial time per top-level diagnosis as
described above). Our SAT-based algorithm clearly outper-
forms HDIAG and DCAS. It succeeds to compute all minimal
cardinality diagnoses for all observations for all the systems



except c6288 where it succeeds on 50% of the 40 observa-
tions compared to 26.5% for DCAS. Note that because of the
higher success rate, the average runtimes of our SAT algo-
rithm involve harder instances not solved by DCAS.

Conclusion
This paper presents a novel encoding of MBD to SAT which
enables to determine, for the first time, minimal cardinality
diagnoses for the entire standard ISCAS-85 benchmark. The
power behind our approach comes from a combination of so-
phisticated system preprocessing, improved modeling, and
the application of SAT compilation techniques. Our Proce-
dure 1 improves on existing techniques to provide an initial
bound on minimal cardinality. Our Procedure 2 improves on
existing techniques to extend a TLD to the set of all minimal
cardinality diagnoses it represents. Experimental evaluation
considers the ISCAS-85 and 74XXX benchmarks with large
sets of scenarios involving observations with minimal cardi-
nalities of up to 30. We compare our SAT-based algorithm
to HA*, CDA*, SAFARI, HDIAG and DCAS. Results are
unequivocal. Our algorithm outperforms the others, often
by orders of magnitude, in terms of runtime. We succeed
to find and verify a minimal cardinality diagnosis for all but
11 of the scenarios in under 30 seconds per scenario, and
for the remaining 11 in under 80 seconds. Further details
regarding the experimental evaluation as well as a prototype
implementation of our SAT-based MBD tool can be found at
(Metodi et al. 2012).
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