
When to Stop? That is the Question

Shulamit Reches1 and Meir Kalech2 and Rami Stern2

1Department of Applied Mathematics, Jerusalem College of Technology, Israel, shulamit.reches@gmail.com
2Information Systems Engineering Department, Ben-Gurion University, Israel, kalech@bgu.ac.il, sternr@gmail.com

Abstract

When to make a decision is a key question in decision making
problems characterized by uncertainty. In this paper we deal
with decision making in environments where the information
arrives dynamically. We address the tradeoff between waiting
and stopping strategies. On the one hand, waiting to obtain
more information reduces the uncertainty, but it comes with
a cost. On the other hand, stopping and making a decision
based on an expected utility, decreases the cost of waiting,
but the decision is made based on uncertain information. In
this paper, we prove that computing the optimal time to make
a decision that guarantees the optimal utility is NP-hard. We
propose a pessimistic approximation that guarantees an opti-
mal decision when the recommendation is to wait. We em-
pirically evaluate our algorithm and show that the quality of
the decision is near-optimal and much faster than the optimal
algorithm.

Introduction
There are many real world domains in which an agent has
to choose the optimal alternative among a set of candidates
based on their utility. The problem becomes more compli-
cated when the utility depends on events that occur dynam-
ically and therefore the decision itself is based on dynami-
cally changing, uncertain information. In such domains, the
question is whether to stop at a particular point and make the
best decision based on the current information or, to wait for
additional information to arrive in order to make a better de-
cision.

As an example, consider the problem of buying the best
stock among several stocks in the stock market. The val-
ues of the stocks may change over time due to future events,
such as publication of the company’s sales report or a change
in the interest rate, etc. The longer we wait, the more infor-
mation becomes available and as a result, a decision is made
with more certainty. However, in many real world domains
there is a cost to waiting. Thus there is a tradeoff between a
waiting strategy that enables one to achieve more informa-
tion and decreases the uncertainty, and a stopping strategy
which decreases the cost.

The goal of this paper is to determine the best time to
make a decision in order to maximize the expected gain

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while taking into consideration the waiting cost. Previous
work (Kalech and Pfeffer 2010) presents optimal and heuris-
tic algorithms for implementing this task. But, as theoretical
and empirical evaluation demonstrates, the algorithm pro-
posed in this paper provides better results. The significance
of this paper is that it (1) formally defines and proves that the
problem of finding the best time to stop is a NP-hard prob-
lem; (2) proposes a polynomial approximation algorithm for
solving the problem and providing a bound on its error; (3)
proves that our algorithm is pessimistic, which means that
its waiting decision is optimal; and (4) empirically evaluates
the algorithm and shows its advantages over previous algo-
rithms, proposed by (Kalech and Pfeffer 2010).

Our empirical evaluation on a syntactic simulation of the
stock market shows that there is no significant difference be-
tween the quality of the decision made by our algorithm and
an optimal algorithm. Moreover, our algorithm’s runtime is
polynomial rather than an exponential runtime of the opti-
mal algorithm. Finally, our algorithm is better, in terms of
runtime and quality of the decision, than the heuristic pro-
posed by (Kalech and Pfeffer 2010).

Related Work
Our work is related in some respects to Horvitz and Rut-
ledge’s work (Horvitz and Rutledge 1991) on decision mak-
ing under bounded resources. The execution of a task is
associated with a utility and a cost depending on resources.
When the resources are bounded, the question is: What is
the best stopping point that will maximally satisfy the task?
The major difference between Horvitz’s approach and ours
is that his goal is to execute a single task while we are seek-
ing to select a candidate from among multiple candidates.

Another class of problems related to our work is decision
making in regard to multiple observations that are informa-
tive but expensive. The challenge is to decide which vari-
ables to observe in order to maximize the expected utility.
Krause and Guestrin present this problem in the domain of
sensor placement. They consider a sensor network in which
the utility of a sensor is determined by the certainty about
the measured quantity. The task is to efficiently select the
most informative subsets of observation (Krause, Singh, and
Guestrin 2008). (Bilgic and Getoor 2007) address a simi-
lar problem of efficient feature acquisition for classification
in domains in which there are costs associated with the ac-

quisition. The objective is to minimize the sum of the in-
formation acquisition cost. Similarly, (Radovilsky and Shi-
mony 2008) deals with selection under uncertainty and de-
velops an algorithm based on the value of information (VOI)
with a semi-myopic approximation scheme to problems with
real-valued utilities. However, in our case we do not choose
a subset of observations/actions set, but a single candidate
that maximizes the expected utility. This difference is sig-
nificant since we do not focus on the main challenge of the
above papers of how to reduce the complexity of the subset
selection.

Finally, the tradeoff between uncertainty and cost, relates
to the optimal stopping problem (OSP) (Peskir and Shiryaev
2006). In problems, the challenge is to determine when to
stop the process so as to maximize the utility. However,
there is a basic difference between the two. The decision
we obtain is based on multiple alternatives, while in OSP,
when to stop is made for only one alternative. Multiple al-
ternatives increase the complexity exponentially.

Model Description
To describe the model clearly we use an example from the
stock market. Assume a decision maker wishes to decide
about what stock to purchase from a group of three stocks
(c1, c2, c3). The value of the stocks is influenced by future
events such as the consumer price index (CPI), interest rates,
etc. The decision maker cannot evaluate the influence of the
future events on the stocks with certainty, but only with some
degree of probability. Obviously, the sooner the decision is
taken, the less is lost by not investing the money. On the
other hand, the longer the waiting time, the more informa-
tion that can be gathered by knowing the outcome of the ex-
pected events and consequently a more certain decision can
be made.

In our model, each decision will be designated by a candi-
date, and throughout the paper we will refer to the candidate
set C = {c1, c2, ..., cm}. A candidate’s utility depends on
dynamically arriving information. We represent the dynamic
information by random variables. The most fundamental en-
tity is a variable.
Definition 1 (variable) A variable is a discrete, finite ran-
dom variable X taking values x1, ..., xk. The function
Γ(Xi) ∈ T represents the time stamp of variable Xi, where
T is a time horizon T = [a, b]. Given integers i and j,
i < j ⇒ Γ(Xi) ≤ Γ(Xj).

An example of a variable is the interest decreasing in the
stock domain, whose time stamp is 1 (assuming January is
0). Each variable is associated with a probability distribution
over outcomes.
Definition 2 (assignment) If X is a variable, an assign-
ment to X is an outcome xi of X . Two sets of assignments
are consistent if they do not contain different outcomes of
the same variable. A time t global assignment, denoted σt,
is an assignment of values to all variables whose time stamp
is less than or equal to t.

Each candidate’s utility depends on a set of variables. We
represent the way the utility depends on these variables by a
tree.

Definition 3 (candidate tree) A candidate tree cti for can-
didate ci is a tree in which the internal nodes are variables.
The variable corresponding to the node n is denoted X(n).
The edges out of the node n are the possible assignments to
X(n). Each edge X = x is labeled by its probability, de-
noted p(X = x). A leaf n is labeled by its utility U(n). CT
represents the set of candidate trees.

The nodes along a path in the tree must be in increasing
order of time. The variables appearing in cti are denoted by
Vi. Candidate ci’s utility depends on those variables.

X3,t=3
X5,t=4

80

0.6 0.4

X1,t=1

55

n0,1

n4,1 n1,1

0.2 0.8 0.9

60

0.1

65

n2,1 n3,1 n5,1 n6,1

Figure 1: Candidate tree ct1.

X4,t=3
X6,t=4

75

0.7 0.3

X2,t=2

40

n0,2

n4,2 n1,2

0.2 0.8 0.4

70

0.6

45

n2,2 n3,2 n5,2 n6,2

Figure 2: Candidate tree ct2.

Figures 1 and 2 present two candidate trees. For instance,
the node n1,1 in ct1 represents variable X3 at time t = 3.
The probability of its left edge is 0.8 and of its right edge is
0.2. The value 80 in the left leaf of ct1 represents the utility
of the path {n0,1, n1,1} through the edged labelled by the
probabilities 0.4 and 0.8. This root to leaf path represents
one possibility of assignments sequence that determines the
utility of the candidate. We assume that different candidates
are affected by different variables.

The utility of a candidate is known for certain only at the
leaves. However, the expected utility of a candidate can be
calculated at any depth and will consider the subtree from
that depth. The expected utility computation can be trivially
implemented by a recursive function. The expected utility of
a leaf is its utility; for an internal node it is the expectation
of the expected utilities of its children. Formally:
Definition 4 (expected utility) Given a node n ∈ cti, the
function EU(n), returns the expected utility of n:

EU(n) =

U(n) n is a leaf∑
i p(X(n) = xi)EU(ni) otherwise

where ni represents the successor node of n via assignment
X = xi.

For instance, the expected utility of the root in Figure 1 is:
0.4∗(0.8∗0.8+0.2∗0.55)+0.6∗(0.9∗0.6+0.1∗0.65) = 1.77.

The expected utility is only an estimate of the real utility,
based on the information known at the current time. Wait-
ing to the next time reduces the uncertainty about the can-
didates’s utilities and hence increases the chance to make a
good decision. However, waiting incurs a cost.
Definition 5 (cost) Each assignment a is associated with a
waiting cost, denoted CST (a).

Definition 6 (path) Given a node n ∈ cti, the function
PT H(n), returns the set of assignments in the root to n
path: {Xi1 = xi1 , Xi2 = xi2 , ...}.

Definition 7 (probability of path) Given a node n,
PrPT H(n) =

∏
j∈PT H(n) Pr(j).

The expected gain is the difference between the expected
utility and the cost:

Definition 8 (expected gain) Given node n ∈ cti,
GN (n) = EU(n)− CST (σ

Γ(X(n))
)

There is a tradeoff between the first component of GN ,
the expected utility, and the second component, the waiting
cost. The challenge of this paper is to present an algorithm
to find the time that maximizes the gain. Unfortunately, we
could not compute the time to make the decision and the
decision on the best candidate separately, since in each time
the decision might be different. Therefore we define a policy
to determine what to do in all situations the decision maker
might face.
Definition 9 (policy) A policy is a function π : G →
{stop, wait}, where G is the set of all global assignments

If the policy specifies to stop, the decision maker also
needs to decide which candidate to choose. Since this de-
cision is simple we do not include it in the definition of a
policy.

Based on the above definitions, we can define the timed
decision making problem (TDM):
Definition 10 (Timed Decision Making(TDM) problem)
Let W = {CT, σ, T, CST }, where
1. CT is a set candidate trees CT = {ct1, ct2, ..., ctm}.
2. G is a set of all global assignments.
3. T = [a, b] is a time horizon.
4. CST : G → R, is a cost function.
Let the global expected gain, GEG(W, t, π) be a function
that obtains W , a time stamp t ∈ T , and a policy π, and
calculates the expected gain to the decision maker from this
policy.

Given W and a time stamp t ∈ T , the TDM problem is
finding a policy that maximizes GEG(W, t, π).

We present the timed decision making problem as a deci-
sion problem in order to prove that timed decision making
problem (TDM) is NP-hard, .

Given W = {CT,G, T, CST }, a time stamp t ∈ T , and a non-
negative integer K. Answer: ”Yes” if there exist a policy π
such that the global expected gain GEG(W, t, π) ≥ K.
Theorem 1 TDM problem is NP-hard.
Proof: We present a reduction from the SAT problem
(Cook 1971). An instance of SAT is given by a proposi-
tional logic formula Φ(x1, ..., xn), the aim being to answer
”yes” if there is some assignment to the Boolean variable
x1, ..., xn that satisfies the formula. Without loss of general-
ity, we assume that Φ(x1, ..., xn) is presented in Conjunctive
Normal Form (CNF), i.e., Φ(x1, ..., xn) =

∧
i ψi, where each ψi

is a clause-a disjunction of literals. We create an instance of
TDM as follows.
• We set C = {c1, c2, ..., cn, cn+1}.
• We set the time horizon T = [0, tn].
• For each Boolean variable xi of the SAT formula, we cre-

ate a timed variableXi which affects the candidate ci. We
also create an additional timed variable Xn+1 which af-
fects the candidate cn+1.

• Each candidate tree cti contains the variableXi. The vari-
able has two possible assignments: 0 or 1, with probabil-
ity 0.5. CT = {ct1, ct2, ..., ctn+1}.

• A global assignment σ is (X1 = a1, ..., Xn+1 = an+1)
where ai ∈ {0, 1}∀1 ≤ i ≤ n+ 1.

• For each variable Xi, 1 ≤ i ≤ n there is a time stamp
Γ(Xi) = ti

• We set K = B + c
2n where B, c > 0.

• The CST function calculates a real value to each assign-
ment σi. Let S =

∑
σi
CST (σi) where σi is an assign-

ment of time stamp tn.

The expected gain of an assignment σtn = (a1, ..., an) is
U(a1, ..., an) = max(GN (n)) − cost(σtn) when n is a
node in the path of the assignment σtn . Suppose that the
value of U(a1, ..., an) is:

U(a1, ..., an) =

{
D if Φ(x1, ..., xn) = true

0 else

Where ai = 1 iff xi = true and D = c+B + 2nS.

Suppose that EU(n) ∀n ∈ tcn+1 = B > 0 and that the
expected gain of candidates cn+1 at time t = 0 is the highest
among the candidates. Assume also that we already know
the expected gain of waiting to time stamps t1, ..., tn−1 and
it is less than K. Let W = {CT,G, T, CST }.

We now prove that there exists a policy π such that
GEG(W, t, π) ≥ K if and only if Φ(x1, ..., xn) is satisfi-
able.
(⇒) Assume there is a policy π such that

GEG(W, t, π) ≥ K. As a result, since B < K and
the expected gain of waiting to time stamps t1, ..., tn−1 are
less than K, there must be at least one assignment σtn of
the random variables X1 = a1, ..., Xn = an that holds
U(a1, ..., an) > B, and thus U(a1, ..., an) = D. osing c1
and c2 Consequently, for x1, ..., xn that correspond to the
above assignment, Φ(x1, ..., xn) = true, and x1, ..., xn
satisfies the formula.

(⇐) Assume that Φ(x1, ..., xn) is satisfiable; then for the
satisfying assignment x1, ..., xn, there is an assignment of
the random variables X1 = a1, ..., Xn = an that holds
U(a1, ..., an) = D. We can define a policy π as follows:
π(σt) = wait iff there exists an assignment of the random
variables X1 = a1, ..., Xn = an such that U(a1, ..., an) =
D. According to the above, there exists such an assignment.
The probability of this assignment is 1

2n .
Consequently, based on the knowledge that the overall

cost of waiting to time stamp tn is S, the total expected gain
from this policy holds: TEG(W, t, π) ≥ 1

2nD +(1 − 1
2n)B − S =

1
2n (c + B + 2nS) + B − 1

2nB − S = B + c
2n = K. As a result we

obtain that Timed Decision Making (TDM) is NP-hard.
It is possible to represent our problem by Markov De-

cision Process (MDP). In such a model, the states at time
t would be the time t global assignments, and the actions
would be to either select the best candidate at that time, or
wait one more time step. The transition function from a time
t state to a time t+ 1 state for a wait action would be given
by the product of the probabilities of the time t + 1 assign-
ments. A stop action leads to a terminal state in which a
reward is received equal to the gain of the winning candi-
date. For space limitations we refer the reader to Kalech and

Pfeffer (Kalech and Pfeffer 2010) which explain this model
and its limitations in our problem.

As proved, this problem is NP-hard, thus any optimal al-
gorithm will increase exponentially in the number of can-
didates (for an optimal algorithm see (Kalech and Pfeffer
2010)). In the next section, we present a polynomial approx-
imation model, in which the expected utility from stopping
is computed optimally but not that of the waiting.

An Approximate Solution
The approximated gain can be calculated by a decision tree
approach. In this approach we merge candidate utility func-
tions into a single decision tree, where each level in the tree
represents a time stamp associated with a variable, i.e., level
li in the tree represents a time point ti where we decide
whether to stop or wait.

In the decision tree, there are two nodes on each level:
Stop node, where the decision maker stops and chooses one

of the candidates. A stop node, spi is the expected utility
of stopping at level li.

Wait node, where the decision maker decides to wait. The
wait node, wti is the expected utility of waiting for the
next time level. This is the maximum between the stop
node and the wait node of level li+1.

To describe the calculation of spi, we define first the fol-
lowing:
Definition 11 (NODESjt) The set NODESjt represents
the nodes whose time is less or equal than t in ctj and they
have no children with time stamp less or equal to t.

For example, in Figure 1, NODES1
3 =

{n2,1, n3,1, n4,1}, NODES1
4 = {n2,1, n3,1, n5,1, n6,1}.

In our approximated solution we compute, for each time
stamp ti, the expected utility by stopping (spi) at that level.
When stopping, the optimal choice is the candidate with the
highest expected utility. Thus, the expected utility of stop-
ping (spi) is computed by finding the expected utility of the
winner for each possible assignment and multiplying it by
the probability of that assignment. Algorithm 1 describes
this computation. The algorithm obtains time t and a set of
candidate trees CT . For each one of the candidate trees we
sort, in lines –11, the nodes whose time is less or equal to t
(NODESjt) according to their expected utility. We sort in
an inverse order and insert the ordered nodes into array sj [].
All the arrays are added to the set S. Now we want to iter-
ate over the arrays, and thus we initiate pointers the arrays.
indx[] keeps the pointers to the arrays, where indx[i] keeps
a pointer to array sj []. All the pointers are initiated to point
to the first node in the corresponding array (lines 12–14). In
the main loop (lines 15–19), we find the best node (the node
with the highest expected utility) among the nodes that are
currently pointed. Since each node that is currently pointed
appears in a different candidate tree, we actually pick the
one that currently wins (line 16). To compute its probability
of winning, we multiply its probability with the probability
of the nodes of the other candidates given that sj is the win-
ner. This means that for each one of the candidate trees we
sum over the probabilities of the nodes that have a lower ex-
pected utility than the winner (line 17). Finally, in line 19,
we increment the pointer of the local winner to the next node

to find the winner in the next iteration. We go through this it-
eration until one of the candidate nodes has been scanned. In
line 20 the function subtracts the cost of waiting from exp.

Algorithm 1 EXPECTED STOPPING
(input: time t)
(input: candidate trees CT)

1: Internal variables:
2: S ← ∅
3: indx[m]

4: i← 1

5: j ← 1

6: exp← 0

7: best

8: for all ctj ∈ CT do
9: sj []← sort(t, ctj)

10: S ← S
∪
sj []

11: end for
12: for all j ≤ m do
13: indx[j]← 1

14: end for
15: while ∀j ≤ m, indx[j] did not reach to the end of sj [] do
16: best← max(S, indx[])

17: exp ← exp + EU(sbest[indx[best]]) ·
PrPT H(sbest[indx[best]]) ·∏

i ̸=best

∑|si[]|
k=indx[i]

PrPT H(si[k])

18: indx[best]← indx[best] + 1

19: end while
20: return exp− CST (σt)

sp1=65.3

sp0=66.3 wt0=66.704

wt1=66.704

sp2=65.655 wt2=66.704

sp3=65.772 wt3=66.704

sp4=66.704

Figure 3: Decision tree based on ct1 and ct2.

Let us demonstrate the approximate decision tree by an
example. Assume Figure 1 and Figure 2 represent two can-
didate trees whiele CST (σt) = t. We generate the deci-
sion tree in a bottom-up manner, since each waiting node
is actually the maximum of the nodes in the next level. In
the last level l4 there is only one node, sp4. NODES1

4 =

{n2,1, n3,1, n5,1, n6,1}, NODES2
4 = {n2,2, n3,2, n5,2, n6,2}. The

function sort sorts these sets into s1 and s2. For clarifi-
cation, we present the expected utility of the nodes although
in the algorithm we use the nodes. s1 = [80, 65, 60, 55], s2 =

[75, 70, 45, 40]. In the first iteration (lines 15–19), best = 1
since s1[1] = 80 > s2[1] = 75. Thus, exp = s1[1] ·
PrPT H(n2,1) · (PrPT H(n2,2) + PrPT H(n3,2) + PrPT H(n5,2) +

PrPT H(n6,2)) = 80 · (0.4 · 0.8) · (0.3 · 0.8 + 0.7 · 0.4 + 0.7 · 0.6 +

0.3 · 0.2) = 25.6. Then the pointer to s1 is incremented
to point on s1[2]. In the next iteration, best = 2 since
s2[1] = 75 > s1[2] = 65. Thus, exp = exp + s2[1] ·
PrPT H(n2,2) · (PrPT H(n6,1) +PrPT H(n5,1) +PrPT H(n3,1)) =

75 · (0.8 · 0.3) · (0.6 · 0.1 + 0.6 · 0.9 + 0.4 · 0.2) = exp+ 12.24 = 37.84.

Finally, exp = 70.704 and the expected utility of stopping
is sp4 = 70.704− 4 = 66.704. wt3 = sp4 since there is no
wait node in time t4. In the same way we calculate sp3 based
on NODES1

3 = {n2,1, n3,1, n4,1}, NODES2
3 = {n2,2, n3,2, n4,2}:

sp3 = 65.772. wt2 = max(st3, wt3) = 66.704. The complete deci-
sion tree is presented in Figure 3.

At runtime, the decision maker decides to wait or stop
according to sp0 and wt0. The agent decides to stop if
sp0 > wt0 and then it chooses the candidate with the highest
expected utility. If the agent decides to wait, several assign-
ments will occur. At this point the decision tree needs to be
recomputed, because some of the nodes become irrelevant.

Analysis
A policy that uses Algorithm 1, implements a pessimistic
approach. If the algorithm decides to wait, then we are guar-
anteed that an optimal algorithm would decide the same. In
case that the algorithm decides to stop, it says that the ex-
pected gain from stopping is greater than the expected gain
from waiting, although by comparing it to the optimal wait-
ing expectation, it could be lower:
Proposition 1 Given time t and global assignment σt, a
policy that uses Algorithm 1, maximizes GEG(W, t, π) for
π(σt) = wait. For π(σt) = stop, GEG(W, t, π) ≤
GEG(W, t, π∗), where π∗ is an optimal policy.
Proof: By definition, for each time t, Algorithm 1 finds the
optimal expected gain of stopping, considering the candidate
with the maximal gain for each assignment. The waiting
node is the maximum between the wait node and the stop
node at the next time level. As a result, it does not take into
consideration the combination of waiting and stopping for
different assignments. Thus, the wait node’s value, wt0, is
less or equal than the optimal expected gain from waiting. If
π(σt) = wait it means that wt0 > st0, and thus the optimal
expected gain from waiting is also higher than st0. That
means that our algorithm guarantees the optimal expected
gain from waiting. If π(σt) = stop it means that sp0 > wt0,
and since the wait node’s value, wt0, is less or equal than
the optimal expected gain from waiting, it may be that the
optimal expected gain from waiting is greater than sp0.

We now prove the approximated error. The approximated
error depends on the time the policy decides to stop. It is
actually the cost of waiting from the current time stamp to
level ln−1, while ln is the last level.
Theorem 2 Given time horizon T = [a, b], and t′ ∈ T ,
where π(σt

′
) = stop, the absolute approximation error ϵ

of the policy that uses Algorithm 1, is ϵ < CST (σtn) −
CST (σt

′+1), where n is the height of the decision tree.
Proof: In the last level ln, there is only one stop node.
Since the stop nodes are optimal and since the wait node
wtn−1 = spn, then wtn−1 is also optimal. At time level
t′, the optimal value of the expected gain from waiting is
wtn−1 + (CST (σtn) − CST (σt

′+1)). In that case, this
will be the value of the stop node at time t′. The ob-
tained value of the expected gain from waiting, wt0 at
time t′, is the maximal value between sp1 and wt1. This
value is less than the optimal value and greater or equal
than wtn−1. If π(σt) = stop, then sp0 > wt0 and thus

sp0 > wtn−1. As a result, the absolute approximation error
ϵ, is ϵ < CST (σtn)− CST (σt

′+1).
Note that this approximated error will be obtained in rare

cases. Let us examine the upper bound case in which the
error is CST (σtn)−CST (σt

′+1). Note that this case could
not actually be obtained, since in this case the sp0 would
obtained this value. The meaning of this hypothesized case
is that there is no assignment that justifies waiting. This will
happen only in case that there is an absolute winner for every
possible assignment.

Finally, we prove the complexity of Algorithm 1.
Proposition 2 The complexity of Algorithm 1 isO(m2 ·M+
m ·M logM), where m is the number of candidates and M
is the maximal size among the candidate trees.
Proof: In time stamp ti the algorithm sorts the nodes in the
set NODESjti for each candidate tree ctj . Since the max-
imum number of nodes in NODESjti is M , the worst case
complexity of this sort isM logM . We perform this sort for
each candidate tree, thus the complexity isO(m ·M logM).
To compare between the sorted sets in set S, the algorithm
goes over the candidates and finds the maximum among the
pointed nodes of the candidates. This computation is m2.
The algorithm stop once it reaches to the end of one can-
didate’s array (line 15). The worst case is M . Finding the
PrPT H of each node could be calculated once before the
loop with complexity of m ·M logM . Thus the worst case
complexity of Algorithm 1 is O(m2 ·M +m ·M logM).

Empirical Evaluation
We experimentally validated our algorithm within a system-
atic artificial framework inspired by the stock market. We
extensively varied the number of candidate stocks (2-30) and
the time horizon of the economic events (1-5) (i.e., the timed
variables). The waiting cost of all the events was fixed to a
constant value of $2.8K for each event. We ran each com-
bination 625 times. In each test the distribution of the eco-
nomic events outcome as well as the possible profits of the
stocks (the utility) were randomly selected from a range of
[$10K . . . $100K].

We compared our algorithm (APPROX) to: (1) an optimal
solution (OPT); (2) the heuristic presented in (Kalech and
Pfeffer 2010) (HEURIST), and to two baseline algorithms;
(3) a stopping strategy: determining the winning candidate
at the beginning based only on the expected utility (STOP);
and (4) a waiting strategy: determining the winning candi-
date at the end based on full information (WAIT).

We compared the above algorithms using two metrics: (1)
runtime, and (2) the outcome utility. To normalize the util-
ity, we divided it by the utility obtained by an omniscient
decision maker with no cost.

Due to space limitations, we only present a subset of the
results with a time horizon of 5 levels. Figure 4 presents the
utility for a test setting of up to six candidates. Due to mem-
ory limitations the optimal algorithm failed for larger candi-
date sets. The utility obtained by our algorithm is very close
to the optimum and actually the difference between them is
not significant. This result is much better than the results of
the baseline algorithms and even those of the heuristic al-
gorithm. The runtime of all the algorithms is polynomial,

0.8

0.85

0.9

0.95

1

N
o

rm
a

li
ze

d
 u

ti
li

ty
APPROX OPT HEURIST STOP WAIT

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

APPROX OPT HEURIST STOP WAIT

Figure 4: Normalized utility over 6 candidates.

0.8

0.85

0.9

0.95

1

N
o

rm
a

li
ze

d
 u

ti
li

ty

APPROX HEURIST STOP WAIT

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

APPROX HEURIST STOP WAIT

Figure 5: Normalized utility over 30 candidates.

except for the optimal algorithm which is exponential. For
instance, the average runtime of the optimal algorithm for
six candidates is 5836 milliseconds, while that of the other
algorithms is less than two milliseconds.

0

5

10

15

20

R
u

n
ti

m
e

 (
m

s)

APPROX HEURIST STOP WAIT

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
u

n
ti

m
e

 (
m

s)

#candidates

APPROX HEURIST STOP WAIT

Figure 6: Runtime over 30 candidates.

Other than for the optimal algorithm, we further com-
pared algorithms for larger sets of up to 30 candidates. The
utility of our algorithm was always significantly better than
the others, as shown in Figure 5. Surprisingly, although both
our algorithm as well as the heuristic, are polynomial, our al-
gorithm is also better than the heuristic in terms of runtime,
as shown in Figure 6.

To illustrate the significance of these results, consider the
stock market and five candidate stocks. Based on our experi-
ments, the average profit of the optimal algorithm is $92.8K,
which is 92.8% of the optimum. Our algorithm’s profit is,
on average, less than the optimal only in $300, while the
heuristic reduces the profit in $2800. Obviously the baseline
algorithms reduce the profit drastically. The wait strategy,
for instance, produces a profit of $11, 300.

Finally, Figure 7 shows the pessimistic attribute of our al-
gorithm. The y-axis represents the depth (in percentage rel-
ative to the maximal horizon) in which the algorithms stop
and decide. As analyzed, our algorithm always stops at most
at the depth of the optimal algorithm, since the waiting de-
cision of our algorithm is optimal.

0

0.2

0.4

0.6

0.8

1

D
e

p
th

 i
n

 p
e

rc
e

n
ts

APPROX OPT HEURIST STOP WAIT

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

D
e

p
th

 i
n

 p
e

rc
e

n
ts

#candidates

APPROX OPT HEURIST STOP WAIT

Figure 7: Normalized depth over 6 candidates.

Summary and Future Work
In this paper we presented the problem of decision making
with dynamic information. We focused on the question of
when to stop and make a decision that maximizes the util-
ity, where there is a cost for waiting. We proved that this
problem is NP-hard, and thus presented an approximation
algorithm that is pessimistic and polynomial in the number
of candidates. We proved that our approximation computes
the optimal expected utility when stopping. Empirical eval-
uation of our algorithm showed no significant difference be-
tween the outcome utility of the optimal algorithm and ours,
yet both are significantly better than a previous algorithm
(Kalech and Pfeffer 2010).

In the future we plan to further investigate this problem in
domains involving multi-agent decision making, where mul-
tiple agents should share the same decision, based on differ-
ent variables and utilities. Basically, a multi-agent version
of our approximation grows exponentially in the number of
agents and thus we plan to reduce this complexity.

References
Bilgic, M., and Getoor, L. 2007. Voila: efficient feature-
value acquisition for classification. In AAAI’07: Proceed-
ings of the 22nd national conference on Artificial intelli-
gence, 1225–1230. AAAI Press.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In STOC ’71: Proceedings of the third annual ACM
symposium on Theory of computing, 151–158. New York,
NY, USA: ACM.
Horvitz, E., and Rutledge, G. 1991. Time-dependent utility
and action under uncertainty. In In Proceedings of Seventh
Conference on Uncertainty in Artificial Intelligence, 151–
158. Morgan Kaufmann.
Kalech, M., and Pfeffer, A. 2010. Decision making with dy-
namically arriving information. In Proceedings of the 9th
international joint conference on Autonomous agents and
multiagent systems (AAMAS-10).
Krause, A.; Singh, A. P.; and Guestrin, C. 2008. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Ma-
chine Learning Research 9:235–284.
Peskir, G., and Shiryaev, A. 2006. Optimal Stopping and
Free-Boundary Problems. Birkhäuser Basel.
Radovilsky, Y., and Shimony, S. E. 2008. Observation sub-
set selection as local compilation of performance profiles. In
UAI, 460–467.

