Learning Social Preferences in Games

Ya’akov Gal, Avi Pfeffer, Barbara J. Grosz
Harvard University

Francesca Marzo
University of Siena

Motivation

- Computer agents are becoming an integral part of people’s lives.
- Computer and people are making decisions together.
- People’s behavior in social environments is varied and complex.
- We need to build agents that interact successfully with people in these situations.

The Challenge

- People’s behavior is affected by a multitude of variables:
 - social preferences, e.g. selfish/altruistic players
 - types of environments, e.g. cooperative/non cooperative
 - social context, e.g. who needs whom
 - People make mistakes!

Problem and proposed Solution

- Difficult for analytical approaches (e.g. Game Theory) to capture diversity of behavior.
- To build a socially adaptive agent, we need to
 - define social factors in a precise framework.
 - learn them through observing people interact.
 - be able to model different types of people in different types of scenarios.
 - account for people’s mistakes.
Our Hypothesis

• Agents need to learn social preferences to interact with people.
• A socially competent agent will
 • be more successful (in terms of outcome) than an analytical agent.
 • be able to generalize to people and situations it has not seen before.

Our Approach

• Use a game for testing decision-making in groups comprised of people and computer agents.
• Formalize a social utility function that depends on social preferences, such as individual benefit, social welfare, advantageous inequality.
• Build a model of human play that incorporates social utility.
• Evaluate model by using it to play against people.

Our Framework

• Colored Trails (CT) [Grosz and Kraus ’04] - a computer board game for testing theories of negotiation.
• CT can support humans and machines playing together.
• Each player has a goal; certain resources are needed to reach it.
• Players are allocated resources and can exchange resources in order to reach the goal.
The Scenario

- Game flow comprises of:
 1. Allocator makes a proposal.
 2. Deliberator responds to proposal.
 3. Movement towards goal.
- Score depends on distance from goal and number of chips at the end of the game.
- Game is non-cooperative.
Social preferences in CT

- Reference points
 - No Negotiation Alternative NN_D, NN_A
 - Proposed Outcome PO_D, PO_A
- Social preferences of Deliberator are defined in terms of outcomes
 - Selfishness $PO_D - NN_D$
 - Social Welfare $(PO_D + PO_A) - (NN_D + NN_A)$
 - Advantage of Outcome $PO_D - PO_A$
 - Advantage of Trade $(PO_D - NN_D) - (PO_A - NN_A)$

Modeling the Deliberator

- Given exchange x, social utility for Deliberator $u(x)$ is a weighted sum of its social preferences.
- Probability of acceptance of exchange e is $P(accept|x) = \frac{1}{1 + e^{-u(x)}}$
- Utility also measures the degree to which a decision is preferred.

Using the model to make a proposal

- Allocator will propose the exchange that maximizes its outcome.

$$e = \arg\max_{x \in E} P(accept|x) PO_A(x) + (1 - P(accept|x)) NN_A$$

Modeling different Deliberators

- We use a mixture model of Deliberator types.
- For each type of Deliberator there is a different
 - social utility function
 - probability of accepting a given proposal
- Allocator will propose deal that maximizes expected utility over all possible Responder types.
Data Collection

- used 32 subjects over 2 trials.
- each round consisted of 8 CT games, which paired up different people; altogether 192 data points.
- each data consisted of game description, proposal, and response.
- games were played in various contexts.
- game performance determined payment for subjects.
- parameters learned using EM and gradient descent algorithm.

Model evaluation

- We used two groups, each consisting of 5 human subjects and 3 computer players.
- We played 21 different games.
- Each game was played 4 times; once between two people; 3 times between computer Allocator and a human Deliberator.
- We aggregated the rewards of subjects and each type of computer players.

Types of Computer Allocators

- Social Agent - used our social utility model to make an offer.
- Nash equilibrium (NE)
- Nash bargaining (NB)

\[e = \arg\max_{x \in E} (PO_D(x) - NN_D)(PO_A(x) - NN_A) \]
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Total outcome</th>
<th>Exchanges accepted</th>
<th>Exchanges declined</th>
<th>No offers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social agent</td>
<td>2880</td>
<td>16</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>NE</td>
<td>2100</td>
<td>13</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>NB</td>
<td>2400</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Human</td>
<td>2440</td>
<td>16</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Example

- Social agent’s offer was accepted, the NE offer was declined

<table>
<thead>
<tr>
<th>Model</th>
<th>Allocator score</th>
<th>Deliberator Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Negotiation</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Social Agent</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>NE</td>
<td>180</td>
<td>155</td>
</tr>
<tr>
<td>NB</td>
<td>150</td>
<td>190</td>
</tr>
</tbody>
</table>

Related and Future work

- Using CT as testbed for agents designed by humans [Grosz, Kraus, Talman and Stossel '04].
- Modeling repeated interactions between players in CT.
- Limited visibility of board/chips.
- Using CT as a Turing-test framework.

Conclusion

- Computers that reason about social behavior are more adept to playing with people.
- Social behavior must be learned.
- Our approach
 - used a framework where computers and people interact together.
 - learned a model of human play.
 - our computer outperformed traditional game theoretic players.
Example

• Most declines for social agent occurred when it was already better off.

<table>
<thead>
<tr>
<th>Model</th>
<th>Proposer score</th>
<th>Responder Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>no offer</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>SP</td>
<td>200</td>
<td>15</td>
</tr>
</tbody>
</table>