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Abstract: Active learning is the process in which unlabeled in-
stances are dynamically selected for expert labelling, and then a clas-
si�er is trained on the labeled data. Active learning is particularly
useful when there is a large set of unlabeled instances, and acquir-
ing a label is costly. In business scenarios such as direct marketing,
active learning can be used to indicate which customer to approach
such that the potential bene�t from the approached customer can
cover the cost of approach. This paper presents a new algorithm
for cost-sensitive active learning using a conditional expectation es-
timator. The new estimator focuses on acquisitions that are likely
to improve the pro�t. Moreover, we investigate simulated annealing
techniques to combine exploration with exploitation in the classi-
�er construction. Using �ve evaluation metrics, we evaluated the
algorithm on four benchmark datasets. The results demonstrate the
superiority of the proposed method compared to other algorithms.
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1. Introduction
In business scenarios such as direct marketing, it is not well understood which
potential customers actually need the product or service and are inclined to
purchase it. Data mining methods attempt to acquire knowledge from his-
torical data about previous customers' behaviour to improve both the direct
marketing learning rate (e.g., who are the best potential customers), as well
as to estimate the probability of a positive response p̂i from a potential cus-
tomer xi. Often, only a part of the data is labeled, i.e., the purchase behaviour
is known for a minority of the potential customers, while the rest of the data
is unlabeled and only the customers' attributes are known (e.g., demographic
attributes such as age and gender). A classi�er constructed only from the la-
beled instances may be used for classifying the rest of the unlabeled instances,
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i.e., predicting the probability of a potential customer actually buying a certain
product or service. Additionally labeled data, generated from approaching po-
tential customers, may be used to improve the quality of the original classi�er.
Active learning (Cohn et al., 1996) is the process in which unlabeled instances
(e.g., potential customers) are dynamically selected for expert labelling (e.g., a
potential customer is approached in order to obtain his buying response to a
marketing o�er) and then a classi�er is trained on the labeled data. Labelling
the data can be costly; therefore the learner can actively choose the speci�c data
to be labeled, attempting to reduce the need for large quantities of randomly
labeled data. Once the training of the classi�er is complete, the best policy is
to approach only the potential customers with a predicted response rate above
a certain threshold.

Several active learning frameworks are presented in the literature. In pool-
based active learning (Lewis and Gale, 1994) the learner has access to a pool
of unlabeled data and can request the true class label for a certain number of
instances in the pool. Tong and Koller (2000) focus on choosing good queries
from the pool. Other approaches focus on cost-sensitive active learning and
minimizing the misclassi�cation costs (Elkan, 2001), the expected improvement
of class entropy (Roy and McCallum, 2001), or minimizing both labelling and
misclassi�cation costs (Margineantu, 2005). Weiss and Tian (2006) suggest a
method for identifying the optimal training set size for a given dataset based on
analysing the e�ect of costs of acquiring new training examples in classi�cation
problems on the overall utility. Zadrozny (2005) examined a variation in which,
instead of having the correct label for each training example, there is one possible
label (not necessarily the correct one) and the utility associated with that label.
In general, most active learning methods work on a single K-by-K loss matrix
(K is the number of classes) where, in the direct marketing scenario, labels may
be {don't buy; buy small basket; buy large basket} while the possible actions are
{contact customer; do not contact customer}. Moreover, in most cases of cost-
sensitive applications the diagonal elements in the misclassi�cation loss matrix
are usually set to zero, meaning correct classi�cation has no cost, and all other
elements are set to positive values, meaning that there are only costs and no
pro�ts (Hollmén et al., 2000, Turney, 2000). Rather than trying to reduce the
error or the costs, Saar-Tsechansky and Provost (2007) introduced a method
that focuses on acquisitions that are more likely to a�ect decision-making. The
loss (pro�t) function λ(ai |cj) describes the loss incurred by taking action ai

when the state of nature is cj . More speci�cally, instead of using misclassi�cation
costs, they use Bayesian decision theory framework in which actions other than
merely instance labelling are allowed. This results in a more general loss (pro�t)
function than the single K-by-K loss matrix.

In the targeted marketing context, an instance x i ∈ X is de�ned as the set
of attributes (e.g., age, gender) of a unique potential customer. It is assumed
that the records in the dataset are independent and behave according to some
�xed and unknown joint probability distribution. For the sake of clarity we will
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assume a binary outcome for the target attribute y, speci�cally y = {”a”, ”r”}
standing for �accept� and �reject� respectively. The cost of approaching and
suggesting a product to the customer xi is denoted as Ci. If the customer xi

agrees to the o�er, then the utility obtained from this customer is denoted as
Ua

i ∈ <. If the customer rejects the o�er, its utility is Ur
i ∈ <. Let the cor-

responding utility of inaction be Ψi. The notation p̂i represents the estimate
for pi, the probability that customer xi will respond positively to the proposal
if approached. Note that all utility values are a function of the customer's at-
tribute vector xi. The targeted marketing problem is to select the best sequence
of potential customers {i1, i2 . . . in} from the set of all potential customers that
will be approached, such that the expected pro�t will be maximized.

In order to maximize the expected pro�t, the decision maker should approach
customer xi if the probability of a positive response is bigger than the costs
of approach (Saar-Tsechansky and Provost, 2007). This is represented in the
following equivalent equations:

p̂i · Ua
i + (1− p̂i) · Ur

i − Ci > Ψi (1)

p̂i >
Ci + Ψi − Ur

i

Ua
i − Ur

i

≡ oi

ri
(2)

where oi and ri are merely shorthand for the numerator and denominator of the
decision threshold ratio in Eq. 1. The classi�er will be used to estimate p̂i.

In this paper we present a new active learning framework for the discrete
choice targeted marketing problem: Active Cost sensitive learning with deci-
sion Trees (ACT). Speci�cally, the investigated problem is concerned with the
decision as to which potential customer xi we should approach with a new
product o�er. The decision is made according to the customer's own charac-
teristics and the past history of purchasing by previously approached poten-
tial customers. While active learning strictly addresses improved exploration
of the dataset, ACT selects the next customer (or batch of customers) to be
approached by the marketing campaign considering the costs/pro�ts of the ex-
ploration/exploitation tradeo� during the learning process. For this purpose we
suggest measuring the utility using a new pessimistic approach. There are three
contributions in ACT:

1. Pessimistic expectation: ACT uses a pessimistic expectation estimator for
selecting the consequent data.

2. Working with batches: The training dataset is divided into a set of equal
partitions (batches). We develop an approximation method to estimate
the potential contribution of the n-th customer in the batch.

3. Exploration-exploitation trade-o�: ACT balances the models needed to
explore the data on one hand and to exploit the data on the other hand,
using simulated annealing (Kirkpatrick et al., 1983). Unlike most cost-
sensitive active learning methods that try to optimize some testing set
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measures (e.g., pro�t), in this study we are also interested in the training
performance (i.e., pro�t or loss) during the training phase. Thus, there is
no clear division between the training phase and the execution (validation)
phase.

Here we use the Decision Tree induction for the classi�er (Quinlan, 1993).
Decision Trees are considered to be self-explanatory models and easy to follow
when compacted (Rokach and Maimon, 2005). Pessimistic measures were used
before for pruning decision trees (Rokach and Maimon, 2008). The proposed
principles of ACT can be adjusted to other induction methods such as neural
networks.

This paper extends the initial results of Rokach et al. (2007) with an ex-
panded description of the algorithm and extensive experimentation of ACT on
more datasets and evaluation metrics.

The rest of this paper is organized as follows: Section 2 presents the compo-
nents of the new active learning algorithm for decision trees. Section 3 reports
the experiments carried out on benchmark datasets. Finally, Section 4 concludes
the work with a discussion.

2. The ACT Algorithm
A typical marketing database contains a huge dataset, with information on the
company's potential customers. It can be expensive to label the data (e.g.,
we need to approach the potential customer and propose the new product to
her). Starting with a small set of labeled examples, we search the unlabeled
database for customers who may provide useful information for creating an
accurate classi�er. Once a customer is chosen, we approach her and propose the
new product. According to the customer response, the newly labeled example
is then put into the labeled pool. The learner trains on the labeled pool and
outputs a classi�er. Based upon the classi�er, we search the unlabeled database,
and repeat this process until triggering a kind of stopping criteria (e.g., running
out of budget). Then, the �nal classi�er is used to classify the rest of the
potential customers.

If the classi�er is a decision tree, then for estimating the probability pi one
should �rst locate the appropriate leaf k in the tree that refers to the given
instance xi . Following that, one should extract the frequency vector (how many
instances relate to each possible value of the target feature). In the usual case
of target marketing the frequency vector has the form: (mk,a,mk,r) where mk,c

representing the number of instances in the training set that reach leaf k and
are classi�ed as �accept� or �reject� respectively. According to Laplace's law of
succession, the probability pi is estimated as:

p̂i =
mk,a + 1

mk,a + mk,r + 2
(3)
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Figure 1. Decision Tree for Target Marketing

Besides estimating the point probability p̂i, we are interested in estimating
the standard deviation σ̂i for this probability. An approach to a customer can
be considered as a Bernoulli trial. For the sake of simplicity, we approximate the
standard deviation of the Bernoulli parameter with the normal approximation
(see for instance Brown et al., 2001):

σ̂i =

√
p̂i(1− p̂i)

mk,a + mk,r
(4)

To illustrate the importance of the standard deviation consider the simple
decision tree classi�er presented in Figure 1. Figure 1 demonstrates a simple
decision tree with three input features: "Education", "Work class", and "Annual
income". Each leaf display a vector indicating the number of customers in the
training set that �t this path. Each customer is labeled as either "accept,"
indicating he accepted the proposed marketing o�er, or "reject� indicating the
opposite. For instance, there are twenty customers in the training set who have
high school education and are classi�ed as "accept" (leaf A). Note that in this
decision tree both leaf A and leaf B have the same estimated probability of 0.4
for the "accept" class (for the moment ignoring the Laplace correction).

The potential contribution of having an additional instance for the second
path (leaf B) is greater than that of having an additional instance for the �rst
path (leaf A), because in the former case the additional labeling is crucial in
order to clarify the actual value of estimated probability (i.e., shrinking the
standard deviation). Moreover, the potential contribution of labeling the i-
th instance in the same path and adding it to the training set decreases in i.
Namely, the contribution of adding i instances to a certain path is lower than
i times the contribution of adding the �rst instance to that path. Thus, the
calculation of the potential contribution of each instance in the new selected
batch depends on the other instances that are allotted to this batch.
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In the following sub-sections we present the elements of a new cost-sensitive
active learning algorithm � ACT: (i) a pessimistic pro�t estimator for selecting
the consequent potential customer, or (ii) batch of potential customers, (iii)
taking into consideration the tradeo� between exploration vs. exploitation.

2.1. Pro�t Evaluation using Pessimistic Expectation
In this sub-section we suggest a method for pessimistic evaluation of the pro�t.
Suppose we approach some new potentially pro�table customers whose features
correspond with a speci�c leaf k in the decision tree � mnew. Following Eq. 1,
the pessimistic probability that a single new potentially pro�table customer will
buy is:

p̃ =

∞∫

−∞
xf(x|x < o

r )dx =

o
r∫

−∞
xf (x) dx (5)

where f (x) is the (unknown) true probability density function. We integrate
the expected pro�t with respect to the condition that the decision is incorrect
(i.e., the success probability is less than the decision threshold). The expected
pessimistic pro�t (PP ) from the new customers is:

PP = mnew(r · p̃− o) (6)

More speci�cally, the pessimistic pro�t is de�ned as follows:

PP = mnew(r

o
r∫

−∞
xf (x) dx− o) (7)

For the normal approximation to the distribution f (x) with the frequency
vector (mk,a,mk,r) we can solve for the following analytic solution:

PP = mnew(r

o
r∫

−∞

xe
−(x−µ)2

2σ2

√
2πσ2

dx− o) = mnew(rφ(
o
r − µ

σ
)(µ− 1

2 )− o) (8)

where µ, σ are replaced with their estimates Eq. 3 and Eq. 4 respectively and
φ the cumulative normal distribution function.

To illustrate, we compute the expected pessimistic pro�t for the customers
that belong to leaf E of the decision tree presented in Figure 1. This leaf
represents 11 customers who previously agreed to the purchase proposal and
98 others who refused. For the sake of simplicity we assume that oi ≡ o = 1
and that ri ≡ r = 10. We also assume that there are an additional mnew =
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1000 unlabeled customers who belong to the case represented by leaf E. µ̂ =
11+1

11+98+2 = 0.108108 and σ̂ = 0.029742. Computing Eq. 8:

PP (mk,a,mk,r,mnew) = 1000 · 10 · φ(−0.272) · (0.108− 0.5)− 1000 · 1
= −2538.48

The pessimistic pro�t after approaching customer xi is weighted according to
the estimated probability p̂i. There are two possible outcomes: If the customer
buys the product, mk,a is increased by 1. If the customer does not buy the
product, mk,r is increased by 1. In both cases p̂i and p̃i are updated and mnew

decreases by 1. The pessimistic pro�t gain (PPG) is the di�erence between the
estimated pessimistic pro�t before and after approaching a customer. The leaf
selection rule for the decision tree is to approach only customers from the leaf(s)
with the highest PPG.

Consider the previous example. If we decide to approach one of the 1000
unlabeled customers (recall that for the sake of simplicity we ignore the addi-
tional branches in the decision tree), then the pessimistic pro�t can be one of
the two options:

1. The customer buys the new product. The success ("accept") probability
is updated to µ̂ = 12+1

12+99+2 = 0.116 and σ̂ = 0.0305. Thus, using Eq. 8,
the new pessimistic pro�t is (now that only 999 new customers are left):
PP=-2147.18

2. The customer does not buy the new product. The success ("accept")
probability is updated to µ̂ = 11+1

11+99+2 = 0.107. Note that the decision
rule to approach the customer has not been changed. Thus, the new
pessimistic pro�t is: PP=-2585.76

Because we cannot predict the actual response of the customer, we weigh
the above pessimistic pro�ts according to the estimated probability and obtain:
−2147.18·0.108108−2585.76·0.891892 = −2538.26. Thus, the pessimistic pro�t
gain for approaching this customer is: PPG1 = −2538.26− (−2538.48) = 0.2.

Eq. 8 is used when the estimated success probability is greater than the
threshold. In the case that this condition is not met, we use the following
optimistic loss measure:

OL = mnew(r

∞∫

−∞
xf(x|x >

o

r
)dx− o)

= mnew(rφ(
o
r − µ

σ
) · σ

1− φ(
o
r−µ

σ )
+ rµ− o) (9)
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2.2. The Pessimistic Pro�t Gain for the n-th Customer
The previous section presented a method for calculating the pessimistic pro�t
gain under two assumptions: (i) Customers are approached one at a time, and
(ii) we wait for the response of one customer before approaching the next one.
However, this situation is typically not the case in many targeted marketing ap-
plications, as multiple customers are contacted simultaneously by the di�erent
salespersons. Therefore, the targeting policy should be re�ned to approach a
quota of customers simultaneously. The pessimistic pro�t for the �rst n cus-
tomers of a certain node k is:

PPGn (mk,a,mk,r,mnew) =
n∑

j=0

(
n
j

)
pj(mk,a,mk,r)

· (1− p(mk,a,mk,r))
n−j · PP (mk,a + j, mk,r + n− j,mnew − n) (10)

Note that by setting n = 0 in Eq. 10 we obtain the current pro�t (before
approaching any customer). Moreover, for the sake of simplicity Eq. 10 refers
only to pessimistic pro�t. However, by introducing an appropriate indicator
function, Eq. 10 can easily be generalized to cover the optimistic loss as well.

Following Eq. 10, we can de�ne the gain obtained from selecting an addi-
tional n-th customer from node k:

Gn (mk,a, mk,r, mnew) = PPGn (mk,a,mk,r,mnew)
−PPGn−1 (mk,a,mk,r,mnew) (11)

2.3. Next Batch Selection
Simulated annealing (Kirkpatrick et al., 1983) is a generic probabilistic meta-
algorithm for global optimization problems. Its key idea by default is to exploit,
meaning, to take the action with the best estimated reward. Yet, with some
probability, exploration is performed by selecting an action at random. The ratio
between exploration and exploitation is traded dynamically so that exploration
fades in time. In the context of ACT, each consecutive batch j, (of size N) is
composed of the following proportion of randomly selected data instances:

Tj+1 = 0.1
γ·j
k (12)

where j is the batch number, k is the number of batches, and γ is a positive
constant. The remaining instances in the batch are selected using the pessimistic
pro�t gain model. The exploration rate is decreased as T decreases: in the
empirical study we used γ = 2, and the smallest k was 20. Therefore, in the
second batch (j = 1) 79% of the instances were randomly selected, while in the
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last batch only 1% of the instances were randomly selected. Too small T values
may result in inaccurate probability estimations. As T becomes smaller and the
best instances are already exploited, the forthcoming batches will contain more
instances located near the border (r · p̃− o) of the decision region. These points
may have a great impact (as measured by how many unlabeled instances are in
the same decision region) on the total pro�t. Note, however, that our main goal
is not to improve the class probability estimations, but to improve the marketing
decisions. A tradeo� between these two goals might exist (Saar-Tsechansky and
Provost, 2007).

3. Experimental Study
The purpose of this section is to present the numerical experiments on a set
of benchmark datasets that evaluate the e�ciency of the ACT algorithm and
each one of its components presented in the previous section. Thereafter, we
compare the performance of ACT and the performance of (i) ACT w/o P �
ACT without the pessimistic pro�t calculation (ii) ACT w/o S � ACT without
the simulated annealing for explore/exploit control. Furthermore, we compare
the performance of ACT to the performance of random instance selection and
the performance of the GOAL algorithm (Saar-Tsechansky and Provost, 2007).

3.1. Experiment Setup
The algorithms were evaluated on four benchmark datasets. Each dataset was
divided into a training set and a test set. Details can be found in the appendix.
For Donation, Adult and Insurance, 60 equal-size batches were used. For the
smaller Credit, 20 batches were used. In all cases we employed the C4.5 induc-
tion algorithm (Quinlan, 1993) with the unpruned option which enabled us to
construct the decision tree. The Laplace correction Eq. 3 is used in order to
estimate the success probability. The same 10 di�erent randomizations of the
training set were used to measure the generalized performance and compare the
algorithm variations.

Note that in any real world application, the actual values of the cost and
the revenue � oi and ri de�ned in Eq. 1 � should be estimated from the spe-
ci�c application. For the Donation data the solicitation cost is given and the
positive response utility can be predicted (see for instance Saar-Tsechansky and
Provost, 2007 for a detailed description on how these values can be appropriately
estimated). For the other datasets we had to fabricate the values considering
these arguments: (i) for values of o/r much lower than the customers` positive
response rate, a positive pro�t is guaranteed and the relative contribution of an
intelligent model is less signi�cant (ii) for values of o/r much higher than the
customer` positive response rate, the risk of loss becomes too high, and risky
scenarios are unacceptable in most business applications. Therefore � avoid-
ing risky scenarios � the maximum potential contribution (in percent) of an
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intelligent model is manifested when the value of o/r is equal to the customers'
positive response rate. Thus, we set the ratio of o/r around the customers'
positive response rate.

3.2. Experimental Results
Our evaluation consists of �ve metrics, each showing a di�erent possible scenario:

1. Testing set pro�t : The pro�t yielded by the algorithm using the testing
set. That is the standard metric upon which cost-sensitive active learning
methods are measured.

2. Training set pro�t : In a scenario where the marketing campaign is con-
tinuous, there is no clear division between the training phase and the test
phase. We are interested in the pro�t achieved in the training phase as
well

3. Precision: The accurate decision rate as a function of the percentage of
acquired responses from the training pool. Precision is used to assess the
pro�tability in the testing pool. Higher rates indicate higher gross pro�t
margins and return of investment (ROI). In a scenario where the campaign
is trying to improve e�ciency, the ROI needs to be assessed.

4. Gain Charts: A scenario where the marketing budget is limited and the
classi�er is required to select a few top customers, and to approach only
them. This is di�erent from the rest of the scenarios, since in the other
cases the classi�er can approach any customer he predicts as pro�table,
while here the classi�er is limited in the number of customers it can ap-
proach. Even if the classi�er predicts more customers as pro�table, it
can't approach them due to budget restrictions.

5. Campaign pro�t : This metric simulates a real world situation where the
campaign does not have separate data for the training phase and for the
testing phase. The campaign starts directly from a single pool of data.
In addition to measuring the pro�t, we can determine where the training
phase and the campaign should end.

Since the curves of the compared algorithms might intersect, we used the AUC
(Area Under the Curve) measure as a single value metric to compare algorithms
and establish a possible dominance relationship among them. The reported
values represent the mean AUC performance over ten random partitions of the
data. All algorithms start at the same point, and converge at the end to the
same point, so the AUC indicates di�erences only in the middle part of the
algorithms. Using the AUC measure attenuates to some extent the di�erences
between the algorithms, since this di�erence can only be seen in the middle
part. Nevertheless, we found the AUC measure satisfactory for demonstrating
the superiority of ACT.

In order to conclude which algorithm is superior from the ten di�erent ran-
domizations of each of the four datasets, we followed the robust non-parametric
procedure that was proposed by Demsar (2006): First, we applied the adjusted
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Friedman test in order to reject the null hypothesis (that neither algorithm is
superior), then we applied the Bonferroni-Dunn test to examine if ACT per-
forms signi�cantly better than existing classi�ers. We also computed the mean
rank of each algorithm (over the four datasets), and the normalized mean. The
statistical signi�cance of the di�erences in performance between the ACT al-
gorithm and the other algorithms was veri�ed with the one-tailed paired t-test
(pairing the ten randomizations of each dataset) with a con�dence level of 90%.

We computed the Mean Rank of each algorithm (e.g., if an algorithm ranks
1st, 2nd, 1st, 3rd on the four datasets, respectively, then its Mean Rank is
7/4=1.75. We also computed the mean normalized performance, i.e., if the
normalized performance of algorithm i on dataset j is de�ned as:

NAUCi,j =
AUCi,j −mink AUCk,j

maxk AUCk,j −mink AUCk,j
(13)

The mean normalized performance of algorithm i is:

MNAUCi =
n∑

j=1

NAUCi,j

n
. (14)

We hereby present some tables for the AUC of the evaluation metric and some
graphs for performance measures of the algorithm for the Donation dataset.
The full set of graphs and tables is given elsewhere (Naamani, 2008).

3.2.1. Evaluation metric #1: Testing-set pro�t
Table 1 presents the AUC for the testing set pro�t. The adjusted Friedman
test rejected the null hypothesis that all algorithms perform the same with a
con�dence level of 90%. The * sign in the boxes represents cases in which
ACT is signi�cantly better using the one tailed t-test with a con�dence level
of 90%. The # sign represents cases where the algorithm in question is better
than ACT with a con�dence level of 90% 1. ACT is seen to be superior using
ranking and normalized ranking. Using Eq. 13 indicates that pessimism alone
contributes about 75% to the improvement of ACT, while simulated annealing
alone contributes 62% 2.

3.2.2. Evaluation metric #2: Training-set pro�t
Training set pro�t graphs are presented in Figures 2 and 3. The pro�t increases
as more instances become available. Naturally, when using the entire training
set all the algorithms converge to the same pro�t. Algorithms that do not

1The high variance is caused by the ten-folds-cross validation procedure, yet the di�erence
between the methods is statistically signi�cant

2The two measures are partially correlated, therefore the sum of the individual components
is over 100%
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Table 1. Testing-set pro�t (AUC)
Dataset ACT GOAL ACTw/oP ACTw/oS Random
Adult 16824±180 15999±160* 15450±203* 16185±152* 16011±166*
Credit 419.1±10.6 424.2±6.8# 410.4±16.3* 417.4±14.7* 423.8±8.1#
Donation 8647±64 7532±70* 7745±55* 7072±42* 7307±52*
Insurance 422.8±20.8 424.0±20.2 406.5±30.7* 404.8±27.7* 403.4±34.4*
Mean
Rank

1.75 2.25 3.75 3.75 3.5

Mean
Perf.

90% 67% 15% 28% 38%

employ simulated annealing (GOAL, random, ACT w/o S) have an almost linear
behavior. Algorithms that employ simulated annealing (ACT, ACT w/o T, ACT
w/o P) display a large unimodal peak, and an initial quadratic-like growth (e.g.,
up to about 30%). The positive a�ect of simulated annealing on the training
pro�t (i.e., the maximum training pro�t) is observed until around 50% of the
training data is selected. This phenomenon can be explained by the fact that
a rather good classi�er can be constructed with 50% of the training data, Yet,
the remaining set of un-approached customers still contains many pro�table
customers.

The adjusted Friedman test rejected the null hypothesis that all algorithms
perform the same with a con�dence level of 90%. The Bonferroni-Dunn test
concluded that ACT signi�cantly outperforms Random and ACT w/o P at 90%
con�dence level.

As can be seen in Table 2, ACT is signi�cantly better than GOAL and
random for all datasets. Pessimism contributes 100% to the improvement of
ACT, while simulated annealing contributes 78%.

Table 2. Training-set pro�t (AUC)
Dataset ACT GOAL ACTw/oP ACTw/oS Random
Adult 477±174 -3697±68* -4774±397* -3695±76* -3645±138*
Credit 125±24.8 -40±23* -74±23* -72±18* -44±14*
Donation 454±68 208±67* 56±78* 198±57* 157±111*
Insurance 277±46 -59±41* -285±63* -105±53* -107±46*
Mean
Rank

1 2.5 5 3.25 3.25

Mean
Perf.

100% 29% 0% 22% 23%
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Figure 2. The training-set performance of ACT vs. GOAL and Random on the
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Figure 3. The training-set performance of ACT vs. components on the Donation
dataset
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3.2.3. Evaluation metric #3: Precision

The adjusted Friedman test rejected the null hypothesis that all algorithms
perform the same with a con�dence level of 90%. The Bonferroni-Dunn test
concluded that ACT signi�cantly outperforms only ACT w/o P at 90% con�-
dence level. As presented in Table 3, the one tailed t-test shows that ACT is
signi�cantly better than GOAL and random for all datasets but one. Pessimism
contributes about 76% to the improvement of ACT, while simulated annealing
contributes about 45%.

Table 3. Precision (AUC)
Dataset ACT GOAL ACTw/oP ACTw/oS Random
Adult 60.21±0.64 57.09±0.27* 54.84±0.54* 57.3±0.43* 57.12±0.65*
Credit 86.09±1.06 86.59±0.68 85.22±1.63* 85.92±1.47 86.55±0.81
Donation 6.41±0.48 6.14±0.75* 6.13±0.26* 6.17±0.52* 5.73±0.44*
Insurance 11.16±0.41 10.57±0.3* 10.27±0.3* 10.46±0.31* 10.33±0.41*
Mean
Rank

1.5 2.5 4.75 2.75 3.5

Mean
Perf.

91% 59% 15% 46% 36%

3.3. Evaluation metric #4: Gain charts

We investigate a scenario where the marketing budget is limited, we do not
use all the training data and we approach only the top customers (those with
the highest probability of a positive response). Figure 4 demonstrates the gain
of the ACT algorithm: the top 20% of the customers generate almost 40%
of the positive responses � a more than 10% improvement over the other two
algorithms.

In Table 4 we present the AUC for the situations where only 50% of the
training data is used, in order to approach the best 10% of the customers in the
testing data. We took the middle batch of each experiment run - batch #30 for
donation, adult and insurance datasets, and batch #10 for credit dataset. We
then looked at the top 10% of customers approached. The adjusted Friedman
test rejected the null hypothesis that all algorithms perform the same with
a con�dence level of 90%. However, the Bonferroni-Dunn test did not di�er
between the algorithms. Table 4 present cases in which ACT is signi�cantly
better using the one tailed t-test. ACT is signi�cantly better than GOAL and
random for all datasets. Pessimism contributes about 59% to the improvement
of ACT, while simulated annealing contributes about 71%.
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Figure 4. Gain chart for donation dataset, ACT vs. GOAL and random

3.4. Evaluation metric #5: Continuous pro�t
In the previous metrics we have demonstrated ACT's superiority by training it
on the testing set and then testing it. Here, we do not separate the training
phase from the testing phase. We show ACT running incrementally on all the
available data without stopping the learning. As can be seen in Figures 5, 6,
7, and 8 ACT demonstrates a peak training pro�t at around 50%-60% of the
dataset. This would suggest stopping the direct marketing campaign when the
pro�t from each additional batch stops increasing. The curves start with a
zero or even negative pro�t (e.g., Fig. 7, adult) initially (the initial 10%-25%)
before the pro�ts starts accumulating at a quadratic or linear rate. The initial
�at section indicates that the prediction model is not yet e�ective and further
learning is needed.
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Figure 6. Insurance Continuous Train Pro�t
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Table 4. Gain summary (AUC)
Dataset ACT GOAL ACTw/oP ACTw/oS Random
Adult 400±493 392±388* 389±316* 396±307* 396±359*
Credit 2.96±2.82 2.85±0.86* 2.99±1.24* 2.88±1.11* 2.92±0.61*
Donation 130.2±32.1 114.2±29.16* 113.5±18.2* 100.7±26* 104.5±28.2*
Insurance 52.6±2.82 46.88±0.86* 41.37±1.24* 43.3±1.11* 44.22±0.61*
Mean
Rank

1.25 3.25 3.5 4 3

Mean
Perf.

95% 30% 36% 24% 37%

4. Conclusions and Discussion
In this paper we presented a new method for cost-sensitive active learning with
decision trees: ACT. Speci�cally, the investigated problem is concerned with the
decision as to which potential customer we should approach with a new product
o�er. The decision is made according to the customer's own characteristics and
the past history of purchasing by previously approached potential customers.
While other active learning algorithms strictly address improved exploration of
the dataset, ACT also considers the costs/pro�ts of the exploration/exploitation
tradeo� during the learning process. Thus, there is no need to separate the
model training step from the actual exploitation of the dataset arti�cially.

We used four benchmark datasets to test ACT extensively. Using our devised
performance metrics, ACT was found to outperform the newest active learning
algorithm so far: GOAL. We extensively tested the contribution of each one of
ACT's unique di�erent contributions:

1. The pessimistic expectation estimator for selecting the consequent data
seems to provide most of ACT's advantage for most performance measures.

2. The exploration-exploitation trade-o� via simulated annealing is the sec-
ond most contributory factor to ACT's performance. Unlike most studies
of cost-sensitive active learning methods that try to optimize some test-
ing set measures (e.g., pro�t), in this study we are also interested in the
training performance (i.e., pro�t or loss) during the training phase. Thus,
there is no clear cut between the training phase and the execution (vali-
dation) phase. Note that we did not attempt to optimize the simulated
annealing algorithm, so further improvement is possible.

3. Training the dataset on sequential partitions (batches) is bene�cial, since
we can decide better when to stop the learning process, and it is more
practical for the multi-marketing arena, where customers are processed in
batches.

The proposed principles of ACT are not unique to decision trees and can
be adjusted to other induction methods (e.g., such as neural networks) where
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we can solve approximately the integral expression in Eq. 7. Furthermore, the
pessimistic expectation estimator is also not unique (Rokach et al., 2008).

A. Appendix: Description of the Datasets Used in the
Experiments

Table 5 presents the attributes of the datasets used in the experiments. Follow-
ing is a description of each dataset.

1. The Donation dataset. This dataset represents a real-world case study and
was previously used in the KDD cup 98 3. The original donation datasets
contains 479 attributes. However, for the classi�cation task we used only
the following 15 input attributes: ODATEDW, INCOME, RAMNTALL,
NGIFTALL, CARDGIFT, MINRAMNT, MINRDATE, MAXRAMNT,
MAXRDATE, LASTGIFT, LASTDATE, FISTDATE,NEXTDATE,
TIMELAG, AVGGIFT. The class refers to a real response of a person
to contribute a donation. The A priori "success" response rate in the
training set is almost 5%. The original dataset contained 95,413 training
instances, of which we randomly selected only 10,000 training instances.
The testing-set contains 96,357 instances, of which we randomly selected
another 10,000 instances.

2. The Adult dataset. This dataset predicts whether income exceeds $50K/yr
based on census data. It is also known as the "Census Income" dataset. It
was taken from the UCI repository (Blake and Merz, 1998). The a priori
"success" response rate in the training set is 23%. It contains 10,000
training instances and 20,000 instances for testing.

3. The Insurance dataset. The insurance company benchmark has been used
in the CoIL challenge 2000 (Putten and Someren, 2000). The a priori
"success" response rate in the training set is almost 6%. It contains 5822
training instances and 4000 instances for testing.

4. The Credit dataset. This dataset concerns credit card applications. It was
taken from the UCI repository. The a priori "success" response rate in the
training set is 43%. It contains 300 training instances and 370 instances
for testing.

3http://kdd.ics.uci.edu//databases/kddcup98/kddcup98.html
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Table 5. Attributes of the Datasets Used in the Experiments
Dataset #

Attr.
Train
Size

Test
Size

#
Batchs

Resp.
Rate

o
Value

r
Value

Adult 14 10000 20000 60 23% 2.9 10
Insurance 85 5822 4001 20 6% 0.49 10
Credit 15 300 370 20 43% 3.5 10
Donation 15 10000 10000 60 5% 0.68

(Given)
Varied
(mean
15)
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