
 1

Auto-Sign: An Automatic Signature Generator for

High-Speed Malware Filtering Devices

Gil Tahan (Gilta@bgu.ac.il)

Chanan Glezer (Chanan@bgu.ac.il1)

Yuval Elovici (Elovici@bgu.ac.il)

Lior Rokach (liorrk@bgu.ac.il)

Deutsche Telekom Laboratory at Ben Gurion University

Beer Sheva, Israel 84105

ABSTRACT

This research proposes a novel automatic method (termed Auto-Sign) for extracting unique

signatures of malware executables to be used by high-speed malware filtering devices based

on deep-packet inspection and operating in real-time. Contrary to extant string and token-

based signature generation methods, we implemented Auto-Sign an automatic signature

generation method that can be used on large-size malware by disregarding signature

candidates which appear in benign executables. Results from experimental evaluation of the

proposed method suggest that picking a collection of executables which closely represents

commonly used code, plays a key role in achieving highly specific signatures which yield

low false positives.

Keywords

Malware, Automatic Signature Generation (ASG), Intrusion Detection Systems

1
 Corresponding author, Telefax + 972-3-6440414

 2

1. INTRODUCTION

The time interval from the release of new malicious software to the wild till the time that the

security software/hardware companies detects the malware, analyze it, generate a signature

and release an update to its clients is highly critical. During this time interval the malware is

undetectable by most of the signature-based commercial solutions and thus it can easily

propagate [1]. For that reason, it is highly important to detect a new malware as soon as

possible and rapidly generate a good signature so that abundant signature-based solutions can

be updated.

One way to protect organizations from malware is to deploy high-speed malware filtering

appliances on the communication lines that connect the organization to the outside world.

Such appliances are based on deep-packet inspection in real-time and thus support very

simple signatures for detecting malware. Security appliances are an appealing solution

because they require no local overhead to manage them, yet they work continuously to

protect the enterprise [14].

This research focuses on automating the process of generating signatures to be installed

on such appliances for known malware that needs to be filtered by the appliances. Various

techniques have been proposed to derive malware signatures automatically, including among

others: vulnerability-based signatures [1]; payload-based signatures ([7]; [19]); content sifting

[17]; semantic-aware signatures [21]; The Amd algorithm [2]; Honeypot-based signatures

([8]; [15]; [18]), and polymorphic content-based signatures [14][26]. These studies examine

code by matching and analyzing the distribution of string patterns in communication packets;

classifying unsuccessful connections; and modeling invariant code structures. Such signatures

were tested and reported to be effective for small-sized malware (usually worms) [1, 7, 19].

Nevertheless, the employed approaches for signature generation ignore the fact that many

 3

types of malware appear as full-fledged executable and therefore contain a significant portion

of repetitive code emanating from code generators, development tools and platforms.

 Considering the fact that signature-based systems do not account for such large common

code segments, the quality of existing signature generation mechanisms is degraded. Such

quality is measured using sensitivity (low false negative for malware) and specificity (low

false positive for innocuous traffic) measures.

 In order to address the problems stated above, this research proposes and evaluates a

signature generation technique, termed Auto-Sign, for generating signatures which can be

used by Network Intrusion Detection and Protection Systems (NIDS/NIPS) operating as

malware filtering devices [27]. For such devices, Auto-Sign needs to generate a very simple

signature that a network appliance can use for filtering malware in real-time. A very simple

signature is actually a string of bytes or a simple regular expression of bytes at the most. To

improve its precision, Auto-Sign employs an exhaustive and structured technique which first

sanitizes malware from segments of common benign code and only then generates unique

signatures which can be later used for detection of malware traffic.

 The scope of this research is on tackling malicious code in the form of adware, spyware,

Trojans, and viruses. Auto-Sign was tested also on large, full-fledged malicious applications

and not necessarily on short stream-based malware where common code is not relevant.

 Auto-Sign raises many questions with regards to various aspects of the proposed

technique. In this research we were interested in finding the optimal length and selection

criteria of a signature among several candidates in order to minimize false positives as well as

the size and type of the training set in order to minimize false positives. This research

describes the Auto-Sign technique and a set of experiments which were performed on a

collection of malicious and benign executables. Auto-Sign is capable of automatic signature

generation as part of the eDare framework [22] which offers "malware filtering as a service"

 4

and is targeted for Network Service Providers (NSP), Internet service Providers (ISP), small

and large enterprises.

2. RELATED WORK ON AUTOMATIC SIGNATURE GENERATION (ASG)

Automated signature generation for new attacks of this type is extremely difficult due to the

following reasons [18]. In order to create a malware signature, we must identify and isolate

malicious traffic from benign traffic, which is not an easy task under all circumstances due to

sophistication of hacking techniques. The difficulty of signature generation for new attacks is

also difficult since as soon as the signature generation methods are known to the attacker and

especially the statistical ones, he may be able to defeat them by using statistical simulability

as presented in [28][29]. The signature must be general enough to capture all instances

malicious traffic while at the same time specific enough to avoid overlapping with the content

of benign traffic in order to reduce false positives. This problem has so far been handled in an

ad-hoc way based on human judgment. As a case in point, current rule-based network

Intrusion Detection Systems (IDS) can do little to stop zero-day worms [19]. They depend on

content, protocol-anomaly and behavioral signatures which can only be generated in a delay

after the malware has been launched and already created substantial damage.

 Several approaches have been employed in order to expedite the process of signature

generation for effective containment of worms. Autograph [7] stores source and destination

addresses of each inbound unsuccessful TCP connection it observes. Once an external host

has made unsuccessful connection attempts to more than s internal IP addresses, the flow

classifier considers it to be a scanner. All successful connections from an IP address, flagged

as a scanner, are classified as suspicious, and their inbound packets written to the suspicious

flow pool. Autograph next selects the most frequent byte sequences across the flows in the

suspicious flow pool as signatures. At the start of a worm’s propagation, the aggregate rate at

which all infected hosts scan the IP address space is quite low. Because Autograph relies on

 5

overhearing unsuccessful scans to identify suspicious source IP addresses, early in an

epidemic an Autograph monitor will be slow to accumulate suspicious addresses, and in turn

slow to accumulate worm payloads. To address this problem Autograph uses a tattler that, as

its name suggests, shares suspicious source addresses among all monitors, toward the goal of

accelerating the accumulation of worm payloads.

 Honeycomb [8] tries to spot patterns in traffic previously seen on the honeypot.

Honeycomb overlays parts of flows in the traffic and use a Longest Common Substring (LCS)

[4] algorithm to spot similarities in packet payloads. [18] followed-up this work by designing

a double-honeypot system, deployed in a local network for automatic detection of worm

attacks from the Internet. Two algorithms based on Expectation-Maximization [10] and

Gibbs sampling [9] are proposed for efficient computation of Position Aware Distribution

Signature (PADS). The PAYL sensor [19] employ anomaly detection which is based on the

principle that “zero-day” attacks are delivered in packets whose data is unusual and distinct

from all prior “normal content” flowing to or from the victim's site. The Nemean architecture

[21] is a semantic-aware Network Intrusion Detection System (NIDS) which contains two

components: a data abstraction component that normalizes packets from individual sessions

and renders semantic context, and a signature generation component that clusters similar

sessions and uses machine-learning techniques to generate signatures for each cluster. In a

related study, the Amd algorithm generates semantic-aware code templates and specifies the

conditions for a match between the templates and the programs being checked [2].

Polygraph [13] provides a content-based signature generation techniques for polymorphic

worms. The underlying assumption is that possible to automatically generate signatures that

match many variants of polymorphic worms offering low false positives and low false

negatives. Newsome et al. (2005) propose and evaluate a system that expands to notion of

single substring signatures (tokens) to conjuctions, ordered sets of multiple tokens and

 6

Bayesian (score) tokens. EarlyBird [17] sifts through the invariant portion of a worm’s

content will appear frequently on the network as it spreads or attempts to spread. In Netspy

[19] the invariant portion of network traffic generated by a spyware program is used to derive

a spyware signature. This is because a signature that has content related to specific user input

will miss network activity generated by the program on other user input. Netspy uses a

variant of the longest common subsequence (LCSeq) algorithm [6] to find such invariants

sections.

 Filiol [26] address the problem that commercially available anti-viruses are not resistant

against black-box analysis. He suggested generating multiple sub-signatures that are

randomly selected from a longer signature. Sub signatures are distributed such that “any sub-

pattern is a fixed value which depends on the user/computer identification data”.

The aforementioned automatic signature generation techniques focus on analyzing

similarities and anomalies in executables’ substrings, code tokens as well as statistical

distribution of code across variants of malware. Consequently, testing of such signatures was

performed on short, stream-based malware such as Nimda, Code Red/Code Red II, MS

Blaster (1.8KB long), Sober, Netsky and B[e]agle. Nevertheless, larger malware executable

files, carrying full-fledged applications usually contain a significant portion of common code

segments which are planted by software development platforms spawning the malware but

are found also in benign executables. As a result, automatically selecting a signature that will

be both sensitive and specific is a very challenging task in the case of these large files.

 The goal of this research is to generalize the above work by proposing an automatic

signature generation technique, termed Auto-Sign, capable of generating highly-sensitive and

highly-specific signatures for malware of any size and type operating in any operating system

environment (i.e., Trojan horses, spyware, adware, viruses, and worms). The technique is also

capable of handling malware such as self-decrypted/self-executed files; or archive files (i.e.,

 7

CAB, MSI, Zip). Of course a signature derived for unencrypted/uncompressed malware

cannot be used for detecting the same malware in encrypted or compressed files. Short,

stream-based malware (not a self-contained application) which does not include significant

portions of common code is also not a typical candidate for Auto-sign.

3. THE PROPOSED AUTOMATIC SIGNATURE GENERATION METHOD

In order to create and employ signature for effective and efficient detection of malware in

executables, our technique should generate a signature which complies with several

requirements. First, we are interesting to find a signature σ of length s with a low probability

p0 to appear in a benign file. In classical signature-based detection, the number of

appearances of a contiguous signature σ in a benign file of n bytes is distributed as2:

() ()()0 0 02 , 2 (1)Z N n p n p p− − −∼ (1)

The false positive rate of such detector is directly determined by p0. Thus lowering the value

of p0 will result in a lower false positive. In order to apply with a certain level of false

positive rate, one should require that the p0 will not exceed a certain value e.

However estimating p0 is not an easy task. Assuming we are using a relatively small sample

of benign files, then simply measuring the frequency of signature σ in the sample might be

unreliable. As proposed in [26] , we can use a first-order Markov model to estimate the

probability p0 of a signature σ containing s bytes as:

()0 1 2 1 3 2 1ˆ Pr() Pr() Pr() Pr()s sp b b b b b b bσ −= ⋅ ⋅ ⋅ ⋅⋯

2
 This is slightly different from the probabilistic law presented in [28] because here are not refering to the

general case of which the signature bytes are not necessary contiguous,

 8

where bi is the ith bytes in σ.

Let f*(x) represents a function that returns a signature of length x that appears in the malware

code and has lowest 0p̂ . However if f*(s) is not sufficient, i.e. ()()0ˆ *p f s e< , then we are

compelled to search for a larger signature f*(s+1). Note that ()()0ˆ *p f x is monotonically

decreasing in x because there are only two cases:

1. If ()*f x ⊂ ()* 1f x+ then ()() ()() () ()()0 0 1 0ˆ ˆ ˆ* 1 * Pr *x xp f x p f x b b p f x++ = ⋅ ≤

(which satisfies monotony)

2. If ()*f x ⊄ ()* 1f x+ then ()() ()()0 0ˆ ˆ* 1 *p f x p f x+ ≤ because by definition of f*

()() ()()0 0ˆ ˆ* 1 * &p f x p f x b+ ≤ where & indicates the concatenation operation.

Other requirements from the signature are: The signature should be sufficiently short to

decrease the problems of Internet packet splits and detection hardware storage limitations

(i.e., various IDS/IPS devices such as DefensePro [5]); Third, the signature should comply to

the limitations of high-speed deep packet inspection devices that can detect and remove

malware in real-time in high-speed data stream. Finally, it should be well-defined to enable

totally automatic generation. The major challenge in conforming to the aforementioned

requirements was to develop a methodology that can locate code segment or segments highly

unique to a given malware instance and can therefore serve as a powerful and unique

signature meeting the stringent requirement set forth by commercial high-speed malware

filtering devices.

Since many malware executables nowadays are in fact developed using 4th Generation

development platforms (e.g. MSVC, J2EE, Delphi), the binary code of malware nowadays

contains a large portion of code placed by these development platform. These portions of

 9

common code are identical or almost identical except address references. Such common

segments were not developed by the authoring hacker, but were linked to the malware as part

of the underlying code generator’s library and are termed Common Function Code (CFC). To

significantly decrease the risk of selecting such abundant segments as a signature that may

lead to high false positive rate, we must first identify and disregard the CFC part. The CFC of

a malware file can be identified by analyzing the malware content against a repository of

CFC which is termed a Common Function Library (CFL). The CFL can be derived based on

a collection of benign executables and should be regularly updated in order to take into

account the evolution of benign (and potentially malicious) files.

 To meet the requirements stated above, we developed the Auto-Sign methodology which

is schematically described in Figure 1.

 10

Figure 1: The Auto-Sign methodology

 3.1 Setup:

During the setup phase a data structure (library) representing a collection of benign

executables is constructed. The data structure is termed CFL.

The CFL is comprises of the following data structures.

1) 3-gram-frequency: A vector of 2↑24 (~16 million) entries where each cell represents the

number of occurrences of each 3-gram (three consecutive bytes) in the collection of

benign files. The n-gram size was chosen to be 3 in order to comply with memory

constraints. N-Gram was also used in [23] for malware detection and in [24] and [25] for

Construct CFL/CTL

Generate Signature candidates

Compute Indices for signature
candidates

Trim unsatisfactory signature
candidates.

Rank remaining signature
candidates (by distance,

probability, entropy)

Select best and final
signature.

Setup
Phase

Signature
Generation

Phase All
candidate

were
trimmed

 11

malware phylogeny. The collection of benign files used for constructing the CFL is

scanned sequentially in order to record the number of occurrences of each 3-gram.

2) 3-gram-Files-association: A 2↑24 X 64 bit-map where a '1' Binary value in a cell (i, j)

indicates the appearance of a specific 3-gram i in the jth group of files. The CFL files are

divided into 64 groups.

3) 3-gram-relative-position-within-file : A 2↑24 X 64 bit-map where a '1' Binary value in a

cell (i, j) indicates the appearance of 3-gram i in the jth internal segment of a file

(assuming the file is divided into 64 equal length segments).

The common threat library termed CTL can be constructed as a separate data structure in a

similar manner.

Maintaining lookup tables which capture the appearance of each possible 3-gram in a file (or

group of files for large CTL/CFLs), as well as the relative position of 3-grams in each file

promotes the scalability of Auto-Sign. This enables handling large repositories of CFL/CTL

files representing many heterogeneous software platforms, when other techniques such as

LcSeq [6] are not feasible anymore.

3.2 Signature Generation:

.

 12

The aim of this process is to auto generate an efficient signature. The process is repreated for

each malware M. First, a set of signature candidates is extracted from different positions

within the malware M. Each signature candidate CM looks for a fixed contiguous sequence of

bytes CM ∈ {0, 1, 2, . . . , 255}s with s = |CM|. Using our 3-grams representation CM

comprises a number of 3-grams depending on the length of the signature (e.g. a signature of

length 4 bytes is comprised from two 3-grams that overlap by two bytes). Employing the 3

data structures prepared during the setup stage (3.1), the following indices are calculated for

each signature candidate extracted from the malware:

1) Spread: In subsection 3.1 we have divided each file into 64 segments. The “Spread”

measure represents the spread of the signature’s 3-grams along the various segments for

all the files in the CFL. For example, Spread=1 indicates that the signature is located in

only one segment in all the files of the CFL.

The match of a certain 3gram k in a benign subset S of three contiguous bytes may be

described as a Bernoulli variable:

1

0 1

gram
kS

k gram
k

p
X

p

= −

The value gram
kp is determined by the efficiency of the k’s 3-gram.

We define the following variable with respect to a segment j:

1, 3 , :3 ()

0,

M j

j

iff gram C file CFL gram segment file

Y

else

∀ ⊂ ∀ ∈ ⊂
=

 (2)

where segmentj(file) denote the jth internal segment of file.

 13

Let pj,k,i represent the probability of k’s 3gram to appear at least one time in segment j of a

benign file i. pj,k,i can be estimated the complementary probability, i.e. that the probability of

the event that k is not been found in the segment:

() jsegment () 2gram
j,k,i kp =1- 1-p

i −
 (3)

Thus Yj is distributed as Bernoulli with success probability of

, ,

M

seg
j j k i

k C i CFL

p p
⊂ ∈

= ∏ ∏ (4)

Note that because the segments are equally sized then ;seg seg
j ip p i j= ∀ ≠

The following formula specifies the spread measure:

64

1

()CFL M j
j

Spread C Y
=

= ∑ (5)

Spreadis distributed as the sum of 64 identically distributed Bernoulli random variables

which can be approximated to Normal distribution ()64 , 64 (1)seg seg segN p p p⋅ ⋅ ⋅ − .

4) Freq: The average frequency of all 3-grams that comprise a candidate signature

(computed using the 3-gram-frequency data structure). Higher “Freq” may indicate a

bad signature candidate. The following formula specifies the probability measure:

()
; 3 ; 3

CFLFreq ()
2

M

S
k

k C S file CFL S file S

M

M

X

C
CFL C

∀ ⊂ = ∀ ∈ ∀ ⊂ ==
−

∑ ∑ ∑
 (6)

Note that 2MC − represent the number of 3gram in the signature CM.

 14

Freq is a sum of distributed Bernoulli random variables. Note that the central limit theorem

can not be applied here directly as the X’s are not identically distributed (different success

probabilities). Thus we are using Poisson approximation as proposed in [30]:

()Pr
!

k e
Freq k

k

λλ −⋅= = (7)

where:

()
; 3

2

2
M

gram
k

k C S file CFL

M

file p

C
λ ∀ ⊂ = ∀ ∈

− ⋅
=

−

∑ ∑
 (8)

The cumulative distribution function (CDF) is:

() ()1 ,
Pr

!

k
Freq k

k

λΓ +
≤ = (9)

where Γ(x,y) is the Incomplete gamma function and k is the floor function.

3) R=Freq/Spread: By dividing the aforementioned freq and spread we are able to further

increase and normalize the crude probability metric for a candidate signature. For

example, when all the comprising 3-grams of the candidate signature are concentrated in

the same area within an executable (most likely indicating an area of common code) the

normalized score will yield a higher value compared to a situation (in a different

executable) where the 3-grams are found spread in numerous relative positions within the

executable.

We hypothesize that those m candidates are less likely to appear within CFL files in

consistent areas of a file thus less likely to belong to chunks common code. This

hypothesis indicates that low ratio candidate signatures are associated with lower

signature probabilities in benign files (signature efficiency).

 15

Proposition 1 mathematically examines this hypothesis under limited circumstances. In

section 4.2 we empirically examine this hypothesis in general circumstances.

Proposition 1: Let R1 and R2 represent the ratios of two candidate signatures C1 and C2

both of length s=3 test on single file. If P0(C1) < P0(C2) then E(R1)<E(R2)

Proof:

R1 and R2 are ratio of two Poisson variables. Thus:

() 1
1 1

1 1

1
()

Probability
E R E E Probability E

Spread Spread

= = ⋅

Using the approximation of the mean of the inverse of a Normal distribution [32]:

()
11

1

1
E R λ

µ
≈ ⋅

According to the theorem condition (s=3, 1CFL =) and using Eq. (8) we obtain:

1 0 12 ()file p Cλ = − ⋅

() 264
1 0 164 1- 1-p (C)

file

µ − =

i.e.:

()
()

0 1
1

264
0 1

2 ()

64 1- 1-p (C)
file

file p C
E R

−

− ⋅
=

We assume the file is large enough (i.e. larger than 64*4 which is reasonable assumptions as

usually files contains thousands of bytes). In this case moving from P0(C1) to P0(C2), i.e.

the probability is increased 0 2

0 1

()

()

P C

P C
 times will result in increasing the nominator by

 16

0 2

0 1

()

()

P C

P C
 times but the denominator to be increased in less than 0 2

0 1

()

()

P C

P C
 times. Thus the

entire rate is increased as Proposition 1 argues.

4) Distance:

We examine the distance of each candidate signature that does not appear in the common

library to its nearest signature that does appear in the common library.

The structure of executable is built from a continuous partition of common library functions

and then a unique code partition. For the sake of clarity we assume that there is only one

partition of each type as illustrated in Figure 2. Each line represents a segment of 64 bytes

which is also the length of the candidates that we examine. Let assume for the example that

we know that the 25th segment is part of the common library (by looking into many other

files). However we are not aware where the unique partition begins. However segments that

are located in higher places (i.e. are located far way from the 25th segment) have larger

chance to be part of the unique block (and because of that can be good candidate for a

signature). Specifically in figure 2, the 70th segment is more likely to be part of the unique

partition than the 60th segment. We formulate the last intuition in the following proposition.

Proposition 2: Assuming the executable consists of two contiguous partitions of common

and unique code, then the expected squared distance of an unique segment to the closet

known common segment is grater than the expected squared distance of a common segment

to the closet known common segment.

Proof:

 17

Without loss of generality the common code is located in the first n segments and the unique

code is located in the remaining m segments. A unique segment located in position b (b>n)

and a common segment is located in position a (a<=n).

The location of the closet known common segment is distributed according to some unknown

discrete distribution:

1

Pr () ; 1
n

i i
i

location i β β
=

= = =∑ :

The expected squared distance from location to a and b are:

() []2 2 22commonSD E location a E location aE location a = − = − +

() []2 2 22uniqueSD E location b E location bE location b = − = − +

Thus:

() []() 0unique commonSD SD b a E location b a− = − + + >

 18

Figure 2: Illustrating the motivation of the distance estimator

Common{

Unique{

Segment 25
known to

be common .
.

.

.

Segment 60

Segment 70

 19

5) Entropy: In addition the new estimators presented above, we also use entropy measure

which has known to be useful for selecting effective signatures [26].

6) Bits: the total number of files (or file groups) that contain the signature. ‘

Measures 1- 6 were calculated for the CFL. Measures 2 and 6 were calculated for the CTL.

The signature generation process can therefore be summarized as follows:

1) Generate signature candidates of length L by splitting the examined malware

executable to segments of equal length L.

2) Calculate the following measures (for each signature candidate):

Spread (based on CFL), Freq/Spread (based on CFL), Bits (Based on CFL), Entropy (you

should define it with all others), Freq (based on CTL), Bits (based on CTL). This stage is

done using the data structures created in the setup stage.

3) Mark each candidate appearing in the CFL (bits>0):

Only signatures that do not have any incident where all their comprising 3-Grams appear

in a file within the CFL repository are considered viable candidates

4) Trim candidates appearing in the CFL (CFL-bits>0) or appearing in the CTL. Note

that we trim candidates that appear in the CTL because common functions of malcode are

also not good candidates for identifying a certain malware.

5) Rank remaining candidates (marked during stage 3) by distance from CFL:

 20

 The n candidates with the highest physical distance from the CFL/CTL areas (as

calculated from the 3-gram-relative-position-within-file matrix) are selected. Our

assumption is that a high distance of a signature candidate from the closest chunk of

common code within the executable indicates an area of code which represents the

malware more uniquely.

6) Rank remaining candidates using CFL-Freq / CFL-Spread:

 Out of the n candidates selected in phase 5, m candidates with the lowest CFL-Freq /CFL-

Spread ratios are selected.

7) Rank remaining candidates based on entropy:

Out of the m candidates selected in phase 6, the w signature candidates with the highest

degree of entropy are ranked as best and final It is customary to assume that a signature

candidate with a higher degree of entropy is less likely to be associated with areas

common to different executables (i.e., constants, text with repeating characters) and is

therefore a more unique identifier of the malware.

8) Select actual signature:

Out of the w remaining candidates the one with the highest entropy is selected as the

actual signature .

Table 1 provides a pseudo-code specification of the aforementioned signature selection

process.

 21

Proposition 3: The computational complexity of the algorithm in Table 1 is ((2))O CR CL⋅ −

where CR denote the number of requested candidates and CL is the candidate length

Proof:

The computational complexity of the algorithm in Table 1 is computed as follows: the

GenerateSignatureCandidates complexity is)(CRO , the complexity of the first loop (lines 3-

13) is))2((−⋅ CLCRO , the complexity of the second loop (lines 15-19) is)(CRO , the

complexity of the third loop (lines 21-26) is)(CRO , the complexity of

Candidates.SortBY_DistanceFromCFL is)log(CRCR⋅ , the complexity of the fourth loop on

lines 29-30 is)(CRO (worth case when N=0), the complexity of the fifth and sixth loop in

lines 32-34 and 37-39 is also)(CRO , and the complexity of Candidates.SortBY_Entropy is

)log(CRCR⋅ . Thus the overall complexity is))2((−⋅ CLCRO .

 22

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Candidates=GenerateSignatureCandidates(Maleware,CandidatesRequired,CandLen);

ForEach Candidate in Candidates do

{

Candidate.CFLspread = CFL.CalcSpread (Candidate);

Candidate.CFLNormProb = CFL.Average3gramProb (Candidate) / Candidate.CFLspread;

Candidate.CFL_bits = CFL.Count_Files_With_All_3gram (Candidate)

Candidate.Entropy = Entropy(Candidate.string);

Candidate.InCFL = (Candidate.CFL_bits > 0);

Candidate.CTL_bits = CTL.Count_Files_With_All_3gram (Candidate)

Candidate.InCTL = (Candidate.CTL_bits > T);

}

ForEach Candidate in Candidates do

{

If Candidate.InCFL then continue; // disregard

Candidate.DistanceFromCFL = DistanceFrom(Candidate.offset, Candidates);

}

ForEach Candidate in Candidates do

{

If Candidate.InCFL or

 Candidate.InCTL then

 Candidates.delete(Candidate);

}

Candidates.SortBY_DistanceFromCFL();

For i=Candidates.count downto N+1 do

Candidates.delete(i);

Candidates.SortBY_CFLNormProb();

For i=Candidates.count downto M+1 do

Candidates.delete(i);

Candidates.SortBY_Entropy();

For i=Candidates.count downto 2 do

Candidates.delete(i);

Signature = Candidates[1];

Table 1: Pseudo-Code of signature selection process.

 23

4. EVALUATION

4.1 Examining the effectiveness of Auto-Sign

The evaluation described in this section comprises of a set of experiments we conducted to

test the effectiveness of Auto-Sign. The experimental design was aimed at assessing the

impact of various independent variables on the quality of the signature which is characterized

by the number of false positive appearances of a signature in a set of clean (benign) files. The

independent variables used by this study are the proportion of CFL versus test files and the

size of a signature (32, 64, 128 bytes).

The first task in the evaluation (Figure 4) is to assemble two repositories: one comprising

benign and the other comprising malicious (threat) executables. The benign repository is

randomly split 10 times into training- and testing-sets. A distinct CFL is constructed 10 times

for each of these sampled training sets where the size of the training set is increased in a

linear fashion during each of these 10 iterations. The threat repository, on the other hand, is

held fixed during the evaluation and therefore the CTL is constructed once before being used

by the signature generation algorithm.

In each such configuration we generated three signatures with lengths of 32, 64, 128 bytes

for all 849 malware files. The false positive count of the best signatures generated by Auto-

sign was calculated by performing a cross-validation of the selected signature against the test

set.

The repository of benign files included 5494 files with lengths ranging from 3Kb to 8MB.

The repository of malware instances comprised of 849 files with lengths ranging from 6Kb to

4.25MB (11 executables where above 1 MB and 200 above 300KB). The distribution of

malware file types is depicted in Figure 5. Generating the signatures for the malware

repository took 5.7 seconds using one 3Ghz Pentium processor. Figure 6 depict a sample of

 24

Auto-Sign's output with a list of files, their signatures and the indices calculated for these

signatures.

Table 2 depicts the average false positive counts for monotonically increasing proportions

of the CFL in the following two configurations: 33% training set (CFL with CTL)/67%

testing set; and 50% training (CFL with CTL)/50% testing set. Table 3 compares the average

false positive counts for 25% training-75% testing set once with the CTL and once without.

For each such configuration we used a 10 cross-fold validation over the 849 files for the 3

signature lengths.

The results indicate the fact that even a large CFL of up to 50% of the clean files

repository cannot compensate for short signatures of 32 Bytes. The size of the signature is

optimal at 64 Bytes as the improvement from 64 to 128 Bytes is not substantial. Moreover,

the important factor with regards to the CFL selection is the "proximity" of the common code

to the code generated by coding platforms. This is evident from the fact that in the case of the

25-75%, removing the files of the CTL hampers the precision of the signatures and increases

the amount of false positives. Moreover, the results also indicate that there is no point

increasing the CFL beyond some optimal threshold. Once the CFL represents a critical mass of the

common code (in the case of choosing a 25% CFL randomly, approximately 7.5% of the clean

repository), adding files to the CFL does not yield any marginal decrease in the false positive rates of

candidates.

Finally, we also generated signatures for the malware using random selection and

entropy-maximization for the various signature lengths. Under the entropy-maximization

approach, the signature was picked from an area within the malware which has the highest

entropy score. This was done in order to minimize the likelihood of the signature's

appearance in benign executables which would yield frequent false-positive detections.

Table 4, depicts the number of malware files whose signature was found in the benign

repository of 5494 files. The results indicate that the entropy maximization technique is

 25

superior to random selection in all signature lengths however both techniques are far from

being feasible for meeting the quality of the CFL and especially CFL+CTL performance.

Figure 4: The Auto-Sign Evaluation Plan

Collect repository of
5494 benign Win32

executables.

Randomly split clean repository
into 2 sets: a) "training" file set

b) Test file set.

Build CFL from training
file set

Generate signature for
each threat

Cross validate signatures
against Test file set

Calculate Average False
Positive

Collect 849
abundant malware

instances

Generate CTL

10 *

10 *
CFL sets

849 *
Malware

3*
Signature
Lengths

 26

Worm Emails,
209, 25%

Virus , 232,
27%Trojan , 100,

12%

Exploits , 69,
8%

Email Flooder,
57, 7%

Denial of
Service , 53,

6%

Flooder, 43,
5%

P2P, 43, 5%

Worm , 43, 5%

Figure 5: Distribution of Malware Types

Figure 6: Sample of Signature Data with Indices

 27

50%-50%
with CTL

33%-67%
with CTL

 32Byte 64Byte 128Byte 32Byte 64Byte 128Byte
CFL=5% 32 0 0 CFL=3.3% 54 9 10
CFL=10% 28 1 0 CFL=6.6% 31 1 1
CFL=15% 19 0 0 CFL=9.9% 25 1 0
CFL=20% 17 0 0 CFL=13.2% 30 0 0
CFL=25% 21 0 0 CFL=16.5% 25 0 0
CFL=30% 20 0 0 CFL=19.8% 22 0 0
CFL=35% 22 0 0 CFL=23.1% 22 0 0
CFL=40% 26 0 0 CFL=26.4% 19 0 0
CFL=45% 23 0 0 CFL=29.7% 17 0 0
CFL=50% 25 0 0 CFL=33% 21 0 0

Table 2: False positive counts as a function of the CFL size

25%-
75%

with CTL

25%-75%
without

CTL
 32Byte 64Byte 128Byte 32Byte 64Byte 128Byte
CFL=2.5% 43 10 7 CFL=2.5% 58 20 10
CFL=5% 43 6 5 CFL=5% 55 14 10
CFL=7.5% 46 10 9 CFL=7.5% 52 11 10
CFL=10% 34 0 0 CFL=10% 39 2 2
CFL=12.5% 25 0 0 CFL=12.5% 36 1 1
CFL=15% 24 0 0 CFL=15% 32 2 1
CFL=17.5% 35 0 0 CFL=17.5% 40 2 1
CFL=20% 35 0 0 CFL=20% 38 1 1
CFL=22.5% 25 0 0 CFL=22.5% 36 3 2
CFL=25% 27 0 0 CFL=25% 32 2 1

Table 3: False positive counts as function of the CFL size - with/without CTL

 Random Entropy

32Bytes 64Bytes 128Bytes 32Bytes 64Bytes 128Bytes

297 249 227 197 124 91

Table 4: False Positive Counts: Random vs. Entropy-Maximization

 28

4.2 Are the estimators’ good indicators for the signature efficiency?

Our method filters the signature candidate list by employing different estimators in a cascade

manner. In order to obtain a good signature (i.e. which does not appear in the benign file) ,

the estimators need to be informative discriminator to if the signature might appear or not in

a benign file. In this section we examine how indicative the estimators are.

For this purpose we performed the following experiment. We randomly sampled 2,000 64

bytes signatures from various malcode and calculated their estimators. Then we search the

signature on a benign corpus to obtain the fact if the signature appears in benign files.

Table 5 summarizes the results of t-test of two-sample assuming unequal variances which

compares the estimators values in case that the signature appeared in the benign corpus or

not. The results are very encouraging. For all estimators the null hypothesis are rejected with

5%α = . Thus the proposed estimators are good indicators for predicting if a signature would

appear in benign files.

Estimator Mean value of the

estimator for

signatures that

appeared in

benign corpus

Mean value of the

estimator for

signatures that did

not appear in

benign corpus

p-value on

two-tail

Conclusion

Entropy 0.55±0.008833

0.32±0.075756

4.05E-37 Significant

Ratio 1493.06±2441 3728.99±3306 1.7E-25 Significant

Distance 13.28±24.22 0.586+
3.963629

3.62E-82 Significant

Number of

observations

1695 305

Table 5: Results of t-test of two-sample assuming unequal variances

 29

4.3 Are the estimators’ statistically independence?

In addition to the fact that estimators should be indicative for choosing the best signature. We

would like that the estimators will be diverse in the way they rank signatures. Otherwise there

is no point in using multiple estimators. This requirement is similar to the diversity

requirement in mixture-of-experts techniques in AI [33] and specifically in malware detection

[34]. These methods are very effective, mainly due to the phenomenon that various types of

models have different ``inductive biases''. It has shown that such diversity can be used to

increase the predictive performance of the system. In order to examine the diverseness of the

estimators we used the data described in the previous section and check whether the

estimators are statistically independent using chi-square test.

Unfortunately, the results indicate that the estimators are statistically dependent with

5%α = . However, Auto-Sign does not simply weight these estimators. Instead, it uses it in a

cascade manner: first it uses distance estimator then the ratio estimator and finally the entropy

estimator. Thus, it is more reasonable to examine the statistics dependence which reflects this

cascading procedure. Assuming that each estimator filters half of the candidates to the next

cascade, we examine the statistic dependence between estimator’s values for the chosen

(unfiltered) candidates and the corresponding values of the subsequent estimator. The results

that are presented in Table 7, indicate that the estimators are statistically independent with

5%α = when they are used in a cascade manner.

 30

Test p-value Conclusion

Distance vs. Entropy 0.037 Statistically dependent

Ratio vs. Entropy 1.53636E-52 Statistically dependent

Ratio vs. Distance 0.005 Statistically dependent

Table 6: Results of chi-square test for independent

Test p-value Conclusion

Distance vs. Ratio 0.363

Statistically independent

Ratio vs. Entropy 0.070 Statistically independent

Table 7: Results of chi-square test for independence in cascade manner

5. CONCLUSION

This paper proposes a new approach for automatic generation of signatures for malware

executable of all sizes with an intention to be used by high-speed malware filtering devices.

We consider the fact that large executables are comprised of substantial amounts of code that

originates from the underlying standard development platforms and is thus replicated across

various instances of both benign and malware developed by these platforms. In order to

minimize the risk of false positive classification of benign executables as malware, we

propose and evaluate a method to discard signature candidates that contain such replicated

chunks of code.

The empirical findings presented in section 4 support the viability of the general approach

proposed by this research and suggest that eliminating signature candidates belonging to

 31

common code segments has a more profound effect on restricting the level of false positives

than increasing the length of a signature. N-grams, however, are not the only measure which

can be used to realize the general approach posed by Auto-Sign and alternative ones can be

used as a substitute for representing signatures (i.e., segment prefix/suffix, hash values etc.)

The main benefit of the proposed method is that it enables analysis at the binary level and

does not require a semantic interpretation of code into function blocks using techniques such

as code markers, disassembly, state-machines etc. This benefit means that the methodology is

generic and is not affected by changes in CPU or introduction of new development platforms.

Nevertheless. enterprises which would like realize Auto-Sign in generating signatures for

high-throughput network security appliances need to follow a more exhaustive and

systematic methodology for building their CFL repository. Considering the global variety of

development platforms and the mobility of threats facilitated by the Internet, ensuring the

external validity of this study relies substantially on reaching a critical mass of CFL files

which represents abundant development platforms. Furthermore, it often does not suffice for

a signature to be available—deployed signatures must be managed, distributed and kept up-

to-date by security administrators [16].

We plan to repeat the evaluation Auto-Sign on a larger scale with much more malware

files and CFLs generated for different development environments. We also plan to evaluate

additional methods for trimming, ranking and choosing the best signature out of the

collection of candidates. In addition, in order to further strengthen the signatures and

minimize the risks of false positives we propose to use "composite signatures" which are

generated by using two or more distinct signatures for each malware. This activity addresses

the biggest challenge of Auto-Sign which is the need to reduce to zero the amount of false

positives before being deployed for generating signatures in high-speed malware filtering

 32

devices. In the future we plan to use Auto-Sign to generate multiple signatures in order to

increase the resistance against black box analysis as described in [26].

Acknowledgments
The authors gratefully thank the action editors and the anonymous reviewers whose

constructive comments significantly helped in improving the quality and accuracy of this

paper.

6. REFERENCES

 [1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation of

vulnerability-based signatures. In Proc. of the 2006 IEEE Symposium on Security and Privacy, 2006.

 [2] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. E. Bryant. Semantics-aware malware

detection, In IEEE Symposium on Security and Privacy.Oakland, California, May 2005.

[3] S. P. Chung, A.K. Mok. Allergy attack against automatic signature generation, Recent Advances in

Intrusion Detection, 61-80, 2006

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

 2001

 [5] DefensePro, Radware, http://www.radware.com/.

 [6] D.S. Hirschberg, 1977. Algorithms for the Longest Common Subsequence Problem. J. ACM 24, 4

(Oct. 1977), 664-675.

 [7] HA. Kim. and B. Karp, Autograph: Toward automated, distributed worm Signature detection, in

Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, CA, August, 2004.

 [8] C. Kreibich, and J. Crowcroft. Honeycomb: creating intrusion detection signatures using

honeypots. SIGCOMM Comput. Commun. Rev. 34, 1 (Jan. 2004), 51-56.

 33

 [9] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton.

Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment,” Science, vol.

262, 208–214, Oct. 1993.

 [10] C. E. Lawrence and A. A. Reilly. An Expectation Maximization (EM) algorithm for the

identification and characterization of common sites in unaligned biopolymer sequences, PROTEINS:

Structure, Function and Genetics, 7, 41–51, 1990.

 [11] R. Lemos, Counting the Cost of Slammer. CNET news.com. http://news.com.com/2100-1001-

982955.html, Jan. 2003.

 [12] D. Moore, C, Shannon, G., Voelker., S. and Savage. Internet Quarantine: Requirements for

containing self-Propagating code. In Proceedings of IEEE INFOCOM 2003 (Mar. 2003).

[13] J. Newsome, B. Karp, D. Song, Polygraph: Automatically generating signatures for polymorphic

worms, 2005 IEEE Symposium on Security and Privacy (S&P'05), pp. 226-241

[14] P. Szor, The Art of Computer Virus Research and Defense, Addison-Wesley, 2005.

 [15] N. Provos. A virtual honeypot framework, Tech. Rep. CITI Technical Report 03-1, Center for

Information Technology Integration, University of Michigan, Ann Arbor, Michigan, USA, , Oct.

2003.

 [16] K. Rieck, P.Laskov, Language models for detection of unknown attacks in network traffic,

Journal in Computer Virology, 2(4), 243- 256, 2007.

 [17] S. Singh, C. Eitan, G. Varghese, and S. Savage. Automated worm fingerprinting. In 6th

Symposium on Operating Systems Design and Implementation (OSDI), December 2004.

 [18] Y. Tang, S. Chen, Defending against Internet worms: A signature-based approach, in Proc. of

IEEE INFOCOM’05, Miami, Florida, USA, May 2005.

 [19] K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion detection. In Recent

Advance in Intrusion Detection (RAID), Sep 2004.

 34

 [20] H. Wang, S. Jha and V. Ganapathy. NetSpy: Automatic Generation of Spyware Signatures for

NIDS Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC'06),

2006.

 [21] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for generating semantics-

aware signatures, In 14th USENIX Security Symposium. Baltimore, Maryland, August 2005.

[22] Y. Elovici, A., Shabtai, R., Moskovitch, G., Tahan, C., Glezer Applying Machine Learning

Techniques for Detection of Malicious Code in Network Traffic", The 30th Annual German

Conference on Artificial Intelligence (KI-2007), Springer, LNCS Vol. 4667, 44-50, Osnabrück,

Germany, September 10-13, 2007.

[23] T. Abou-Assaleh, N. Cercone, V. Kešelj, R. Sweidan, "NGram Based Detection of New

Malicious Code," 28th Annual International Computer Software and Applications

Conference Workshops and Fast Abstracts (COMPSAC'04), pp. 41-42, 2004,

[24] Goldberg, L. A., Goldberg, P.W., Phillips, C. A. & Sorkin, G., “Constructing Computer

virus phylogenies”. Journal of Algorithms, 26(1), pp.188-208.

[25] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, “Malware Phylogeny Using

Maximal πPatterns”, EICAR 2005 Conference: Best Paper Proceedings, 2005, 167-174.

[26] Filiol, E., “Malware Pattern Scanning Schemes Secure Against Black-box Analysis”, Journal in

Computer Virology, 2(1), pp. 35-50, 2006.

[27] Benjamin Morin, Ludovic Mé, “Intrusion detection and virology: an analysis of differences,

similarities and complementariness”, Journal in Computer Virology, 3(1), pp. 39-49, 2007.

[28] Filiol E. and Josse S. “A Statistical Model for Viral Detection Undecidability”, Journal in

Computer Virology, 3 (2), 65-74, 2007.

[29] Filiol E. and Raynal F. Malicioux, “Malicious Cryptography … reloaded and also malicious

statistics”, CanSecWest 2008, Vancouver, 26--28 Mars 2008.

.

 35

[30] Le Cam, L. (1960). An approximation theorem for Poisson binomial distribution, Pacific J.

Math., 10, 1181-1197.

[31] Ederer, F., and N. Mantel. 1974. Confidence limits on the ratio of two Poisson variables. Am. J.

Epidemiol. 100:165-167.

[32] C. D. Lai, G. R. Wood, C. G. Qiao, The Mean of the Inverse of a Punctured Normal Distribution

and Its Application, Biometrical Journal, Volume 46 Issue 4, Pages 420 - 429, 2004

[33] L. Rokach, Collective Agreement-based Pruning of Ensembles, Computational Statistics and

Data Analysis (to appear).

[34] E. Menahem, A. Shabtai, L. Rokach, Y. Elovici, Improving malware detection by applying

multi-inducer ensemble, Computational Statistics and Data Analysis (to appear).

