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ABSTRACT

Model-Based Diagnosis (MBD) is one of the
leading artificial intelligence approaches that
copes with the diagnosis problem. MBD is
known as a hard problem and grows exponen-
tially in the size of the system. In this paper,
we propose a novel approach that combines
MBD with multi-label classification. We pro-
pose to build a classifier that maps symptoms
of the system to possible faults. The major ad-
vantage of this approach is by reducing signif-
icantly the online computational complexity;
The learning process of the relations between
the observation and the diagnosis is performed
in advance offline, and then online, by using
the classifier, we can immediately return the
diagnosis. This paper addresses several chal-
lenges: 1) modeling the MBD problem as a
classification problem, 2) generating informa-
tive samples for the training set, 3) verifying
sound and minimal diagnosis.

1 INTRODUCTION

With the development of technology over the years
and the overgrowing use of large scale and com-
plex systems, the problem of tracking and diagnos-
ing faulty components in the system became more
difficult. Thus, the need for automated diagnosis is
increased. Automated diagnosis is concerned with
reasoning about the health of systems, including the
identification of abnormal behavior, the isolation of
faulty components and the prediction of system be-
havior under normal and abnormal conditions.
Model-Based Diagnosis (MBD) is one of the
leading artificial intelligence approaches that copes
with the diagnosis problem (de Kleer and Williams,
1987). In MBD approach, a model of the system is
being built. The diagnoser observes the actual be-
havior of the system and predicts its behavior by the
model. Discrepancies between the observation and
the prediction—symptoms—are used as the input
for the diagnosis algorithms which produce a set of
possible faults that can explain such symptoms.
MBD is known as a hard problem and grows ex-
ponentially in the size of the system - i.e. the num-

ber of components in the system. In case of large
scale systems using MDB is impractical due to its
computational complexity. Unfortunately, the fact
that many of the systems today (e.g. network sys-
tems, robots etc.) have a huge number of compo-
nents, leads to the infeasibility of MBD approach
in those systems.

Many of the previous diagnosis methods pro-
pose deterministic reasoning and search algorithms
to address the complexity challenge (de Kleer and
Williams, 1987; Williams and Ragno, 2007). These
methods guarantee sound diagnoses; however, in
large systems they fail, due to the infeasible run-
time. Feldman et al. (Feldman et al., 2010b) pro-
pose a stochastic algorithm, SAFARI. Although this
method does not guarantee minimal diagnoses, it
presents solutions which are close to minimal car-
dinality in a very low runtime.

In this paper, we propose to combine MBD with
multi-label classification (Tsoumakas et al., 2010).
Conventional classification tasks deal with prob-
lems where each item should be assigned to ex-
actly one category from a finite set of available la-
bels. This type of classification is referred to in the
literature as “’single-label”. Conversely, in multi-
label classification, an instance can be associated
with several labels simultaneously. Multi-labeling
is a very common problem in text classification:
medical documents, Web pages, and scientific pa-
pers, for example, often belong simultaneously to
a number of concept classes. Due to its increas-
ing practical relevance as well as its theoretical in-
terest, multi-label classification has received more
attention from the machine learning community in
recent years and many recent studies look for effi-
cient and accurate algorithms for coping with this
classification challenge.

For the MBD problem, we propose to build a
classifier that maps symptoms of the system to pos-
sible faults. In particular, the inputs and the outputs
use as the attributes for the learning algorithm while
the faulty components indicate the different classes.
The major advantage of this approach is by reduc-
ing significantly the online computational complex-
ity; The learning process of the relations between
the observation and the diagnosis is performed in



advance offline, and then online, by using the clas-
sifier, we can immediately return the diagnosis.

To implement this process we go through the
next steps: 1) We create a training set of samples by
simulating fault injections and registering the rela-
tion between the inputs+outputs and the faulty com-
ponents. Since the fault space and the input space
are exponential we randomly choose the samples.
One of the major challenges that we address in this
paper is how to select the samples. Then 2) we
train a classifier with the training set offline, and
finally at runtime 3) we enter an observation (in-
puts+outputs) to the classifier and get the diagnosis
candidate. Since this candidate is not guaranteed
to be sound, 4) we verify its soundness and try to
minimize it by stochastic local search.

An hybrid approach of MBD and machine learn-
ing has been investigated in previous work (Nigge-
mann et al., 2009; Alonso-Gonzilez et al., 2010).
This paper addresses several interesting challenges
related to multiple faults:

1. How to train the classifier? in particular, how
to choose the inputs (attributes) and the faulty
components (classes)?

2. What classification approach is appropriate to
the diagnosis problem?

3. How to verify sound and minimal diagnoses at
runtime?

Preliminary experiments in the DXC frame-
work (Second International Diagnostic Competi-
tion (DXC 10), 2010) on the 74xxzx benchmark sys-
tems, show the performance of the multi-label clas-
sification approach.

2 RELATED WORK

Many of the previous diagnosis methods propose
deterministic reasoning and search algorithms. One
approach proposes to divide the diagnosis process
to two stages, first to find the conflict sets which
each one of them includes at least one fault, and
then to generate multiple faults that explain the
observation by hitting set over the conflicts (de
Kleer and Williams, 1987; Williams and Ragno,
2007). These methods guarantee sound diagnoses,
and some of them are even complete; however, in
large systems they tend to fail, due to the infeasible
runtime or space.

Other compilation based approaches try to rep-
resent the system in other formulations in order to
cope with the complexity. For instance, Torta and
Torasso represent the MBD problem with OBDD
(Torta and Torasso, 2004), while Huang and Dar-
wiche represent it with DNNF (Huang and Dar-
wiche, 2005). There are some attempts to solve the
diagnosis problem with SAT solvers (Feldman et
al., 2006), however all the above approaches are de-
terministic and since the diagnosis problem is hard
they do not scale well.

There are other nondeterministic approaches.
For instance, Feldman et al. (Feldman et al., 2010b)
propose a stochastic algorithm, SAFARI, in which a
candidate is verified by a series of trials where each
trial tries to improve the former one. Although this
method does not guarantee minimal diagnoses, it

presents solutions which are close to minimal car-
dinality in a very low runtime.

There is much work which considers the diagno-
sis problem in terms of inductive learning. These
approaches try to learn the relations between the
symptoms and the faults (Murray et al., 2006). One
of the disadvantages of most of these approaches is
that they learn only a single fault rather than mul-
tiple faults (Balakrishnan and Honavar, 1998). We,
on the other hand, propose a method to learn multi-
ple faults with multi-label classification.

There are some works which propose a hybrid
approach that combines model-based diagnosis and
classification. Stein at al. (Niggemann et al.,
2009) present diagnosis for automotive applications
which uses a model of the vehicle systems to train
a classifier in compilation time with machine learn-
ing techniques based on linear regression and deci-
sion trees. Alonso et al. (Alonso-Gonzélez ef al.,
2010) also use AdaBoost approach to train an en-
semble of classifiers in temporal systems. In this
approach, they perform fault detection and local-
ization based on consistency, and fault identifica-
tion with the time series classifiers. Both papers
focus on strong models, where the components are
represented with behavior modes. In our paper we
focus on large-scale weak model systems. In such
systems it is possible to train the classier only on a
very small subset of the sample space. In addition,
since we address multiple faults which is a basic
requirement in MBD, we propose multi-label clas-
sification which has not been combined before with
model-based diagnosis.

3 MODEL DESCRIPTION

In this section we will define first the classification
problem and the multi-label classification (section
3.1). Then we will show how to implement the
MBD problem in terms of multi-label classification
(section 3.2). In section 3.3 we will describe how to
select the samples for the training set ,and in section
3.4 we will show how to train the classifier. Finally,
in section 3.5 we will describe how to get a diagno-
sis at runtime and verify its consistency.

3.1 Multi-Label Classification

The classification problem can be stated as follows:
given training data {(z1,y1), ..., (T, yn)} produce
a classifier h, such that h(x) can be evaluated for
any possible value of x as close as possible to the
true group label y. We use the term “attributes”
for x and “classes” for y. For the training data-set,
the true labels y; are known but will not necessarily
match their in-sample approximations. For new ob-
servations, the true labels y; are unknown, and then
it is a prime target for the classification procedure
to classify the observation correctly.

In multi-label classification, an instance can be
associated with several labels simultaneously. The
multi-label classification (MLC) problem can be
described as follows: Each instance x; may be clas-
sified with a subset of labels Y;, such that Y; C L.
Where L is a given set of predefined binary labels
L = {\1,..., \n}. For a given set of labeled exam-
ples D = {zo,z1,..., 2} the goal of the learning
process is to find a classifier h : X — Y, which



maps an object z € X to a set of its classifica-
tion labels Y, such that h(xz) = {A,...,\,} for
all z € X. The main feature distinguishing multi-
label classification from a regular classification task
is that a number of labels have to be predicted si-
multaneously.

3.2 MBD as a Multi-Label Classification
Problem

The MBD problem is defined by three sets; 1) a set
of assumables (components) (COM PS), 2) a set
of first-order sentences which represent a model de-
scription of the behavior of the components and the
connections between them (SD), and 3) observa-
tions which are represented by a set of first-order
sentences (OBS). A diagnosis problem arises
when these sets are inconsistent with each other.

Definition 1. Diagnosis Problem. Given
{SD,COMPS,0OBS} the diagnosis problem
(DP) arises when

SDU{~AB(COMPS;)|COMPS; € COMPS}UOBS + L

where AB(c) is an unary predicate which is true
when component c is faulty.

Once there is inconsistency, the diagnosis algo-
rithm tries to find a set of faulty components which
leads to consistency.

Definition 2. A diagnosis is a set A C COMPS
such that:

SDU{AB(COMPS;)|[COMPS; € A}U
{-AB(COMPS;)|COMPS; € COMPS —A}UOBS¥F L

We are interested in minimal diagnosis, meaning,
no proper subset of it is a diagnosis.

Superficially, it seems that there is no relation
between MBD and classification, since typically a
classification approach is used for problems where
there are many samples. The samples use for train-
ing a classier: a model of how the attributes affect
the classes. On the other hand, MBD does not use
samples at all but a predefined model. However, a
deep vision shows that it is possible to train a classi-
fier based on a given model in MBD, by generating
samples with simulated faulty samples.

In particular, we propose to represent the ob-
servation by the attributes (x) and the faulty com-
ponents by the classes (y). In this way we can
learn the relations between the observations and the
faults. We assume in that idea that there are con-
nections between the observations and the faulty
components. Obviously, this assumption is correct
in many real world systems like mechanical sys-
tems, software etc. For instance, a car veering may
caused due to a faulty left wheel. Learning the re-
lations in electric circuits is challenging, since this
is a many-to-many relationship, and so there could
be many explanations for each observation and vice
versa.

MBD approach does not assume to have sam-
ples for the system, and so we propose to actively
generate samples to train a classifier. A sample is
composed of: 1) the attributes, in our case the in-
puts (I N) and outputs (OUT), and 2) the classes,
in our case multiple faulty components. We use a

multi-label classification since multiple faults can
explain the observation. The process of generating
the training set (7'S) is described in algorithm 1.
We iteratively run through some constant N to build
N samples (line 2). For each sample we randomly
set inputs and assumables (lines 3—4) and propagate
through the system to explore the outputs (line 5).
The inputs+outputs are used as the attributes and
the assumables as the class (lines 6-7).

Algorithm 1 TRAINING_SET
(input: system description S D
output: a training set 7'.S)

1: TS+ 0

2: foralli € {1,..., N} do

IN < setinputs’ values
COMPS < set assumables
OUT < propagate through SD
attribute < IN |JOUT
classes <~ COMPS
sample « (attribute, class)
TS «+ TS U{sample}

10: end for

11: return TS

VRRADNRW

To clarify the propagation process through the
system (line 5), we should define first a weak fault
model:

Definition 3. weak fault model (WFM). In
weak fault model (WFM), the assumables
are defined for the components by the pred-
icate. AB(COMPS,). The system descrip-
tion is equivalent to —-AB(COMPS;) =
FiA, .., AmAB(COMPS,) = F,, where
F1, ..., F,, are propositional formulas.

In W EF M, we can propagate through the behav-
ior of all the healthy components, but not through
those components that are abnormal, since the sys-
tem description does not determine their behavior.
To propagate through the behavior of faulty compo-
nents we need to define a strong fault model (Struss
and Dressier, 1989).

Definition 4. strong fault model (SFM).
In  strong  fault  model (SFM), the
system description is equivalent to

—“AB(COMPS;) = Fi1 N AB(COMPS;) =
FLQ/\,...,/\_\AB(COMPS»,L) = le A\
AB(COMPS,,) = Fy o, where
Fi1, Fha..., Fy 1 Fy, 2 are propositional formulas.

In SFM, we can propagate and get the cor-
rect behavior of a component as well as its faulty
behavior. For simplicity, we define in this paper
that a faulty behavior returns the negation of the
correct behavior (if ~AB(COMPS;) = F; then
AB(COMPS;) = —F;). Thus we build a train-
ing set by generating samples in a strong model as
described. For instance, Table 1 presents several
samples created for the full adder in Figure 1. The
sequences in the first column represent the values of
the three inputs and two outputs (A, B, C, D, E),
and the components appear in the second column,
represent the multi-label faulty components. For in-
stance, propagating through the full adder with the
inputs A =1, B =1,C' = 1 and the faulty compo-
nent X7 (such that it returns the negative value of
xor) produces the output D = 0, ' = 1. Therefore,



Figure 1: A full adder.

Attributes Classes
1,1,1,0,1 X1

1,1,1,1,1 X1, X
1,1,1,0,1 | Xa, A,
1,0,0,0,0 | X3

1,0,0,1,0 | X1,X2
1,0,0,0,1 X, Ay

Table 1: A set of samples for the full adder in Figure
1.

the attributes are 1,1,1,0,1 and the multi-label is
Xi.

There are still two challenges in this approach,
first how to choose the inputs for each sample? sec-
ond, how to choose the faulty components? the first
challenge will be addressed in future work, mean-
while we randomly select inputs, the second chal-
lenge will be addressed in the next section.

3.3 Building the Training Set

Given m the number of inputs and n the number of
components, the sample space is 2™ (the product
of 2™ inputs and the power set of the faulty com-
ponents). Unfortunately, this space is feasible only
for very small systems. We should choose only a
very small subset of this space, and the challenge in
this section is how to choose the most informative
samples?

It is easy to train all single fault components
since this number is linear in the size of the system
and so we actually train all of them. But double
fault and more must be partially trained. We will
describe our approach on the double fault selection
and then extend it to multiple fault.

An intuitive approach could be to train the com-
ponents that are more likely to fail. Under the as-
sumption in MBD, that faulty components are inde-
pendent, we could take the most likely pair of com-
ponents. However, we assume in our algorithm a
uniform distribution of failure, and thus we cannot
prefer any pair.

We propose a new approach, with no prior prob-
abilities, to learn the probability of pairs to be in the
same diagnosis. For this we present first a conflict,
as defined by Reiter (Reiter, 1987):

Definition 5. conflict. A conflict for

{SD,COMPS,0BS} is a set CONF C
COMPS such that:

SD U {-AB(COMPS;)|COMPS; € CONF}UOBS
is inconsistent.

A conflict is a set of assumables that their healthy
assumption leads to inconsistency, thus at least one
of the assumables is faulty. If the conflict set is
minimal the observation can be explained by each

one of the faulty assumable. That means that sta-
tistically, two assumables that appear in the same
conflict are more likely to emit the same observa-
tion. A diagnosis will include a representative of
each conflict; that is the hitting set (de Kleer and
Williams, 1987; Reiter, 1987). Thus two assum-
ables that appear in the same diagnosis are more
likely to emit different observations. Obviously,
there are counter examples for each one of these
claims, but based on the definitions of conflict and
observation these claims are statistically straight-
forward.

In our approach we try to learn the dissimilar-
ity between the outputs of faulty components. The
more difference between components’ output the
more likely they are in the same diagnosis. Al-
gorithm 2 describes how to build the dissimilar-
ity matrix between components. We iteratively run
through Z random inputs (line 4). For each in-
put we simulate a faulty behavior of each compo-
nent separately (lines 6-7) and propagate the inputs
through the system to emit the outputs (line 8). For
each output we define a different matrix (OUT")
in which we save its values for the different in-
puts (lines) over the faulty components (columns)
(lines 9—11). The element OUT]?k represents the

value of output OUT; with the inputs IN; when
COM Py, is faulty. Then, in lines 14-19, we com-
pute the dissimilarity between every pair of compo-
nents regarding every output (the dissimilarity be-
tween every two columns in OUT"). The dissimi-
larity is the ratio between the number of differences
and the number of inputs. We save the dissimilar-
ity in the matrix STM"* for each output and nor-
malize each matrix separately (line 20). Finally,
we sum up the dissimilarity matrices and normal-
ize into NOR_SIM (lines 22-25). The element
NOR_SIM;y, represents the dissimilarity between
the components COM P; and COMPS),. The
more dissimilarity between components the more
likely they will be in the same diagnosis.

To generate a training set of double fault com-
ponents, we randomly select pairs of faulty compo-
nents based on the dissimilarity matrix. We prop-
agate random inputs through the system with the
faulty components and register the outputs. A sam-
ple in the training set is an instance of the in-
puts+outputs and the faulty components. Let us
demonstrate the whole process based on the circuit
in Figure 1. Assume three random inputs: IN' =
{A=1,B=1,C=1},IN>?={A=1,B =
1,0 = 0}and IN® = {A =1,B =0,C = 0}.
The OUT matrices for the outputs D and E are
presented in Tables 2 and 3. For instance, OU TH
represents the upper-left cell which is the output of
a scenario where the input presented in the first row
(IN7) and by simulating X as faulty. The corre-
sponding SIM matrices are presented in Tables 4
and 5. The values in parentheses are before normal-
izing. The diagonal line is O since it represents the
dissimilarity between a component to itself. The
values in the elements below the diagonal are the
same as the values in the upper side and so we ig-

nore them. For instance, the value % in the second
element of the first line in Table 5 represents the dis-



Algorithm 2 SIMILARITY MATRIX
(input: system description SD
input: components COM PS
output: dissimilarity matrix NOR_STM)

ouT?,...,oUT!UTI
SIM*', ..., SIM!CUT
NOR_SIM <+ {{0}}
forall: € {1,...,Z} do
IN < setrandom inputs’ values
forallj € {1,...,n} do
set A\y.; "AB(COMP) N AB(COM Pj)
OUT < propagate through SD
forall f € {1,...,|OUT|} do
10 ouUT/, + oUTy
11: end for
12: end for
13: end for
14: forall f € {1,...,|OUT|} do
15: foralli € {1,...,n} do

R bl S

16: forallj € {i,...,n} do

17: SIMifj < similarity between column OUT,if and
OUTJ.f

18: end for

19: end for

20: normalize ST M f

21: end for

22: forall f € {1,...,|OUT|} do

23:  NOR-SIM + NOR.SIM + SIM’
24: end for

25: normalize NOR_SIM

26: return NOR_SIM

2 | A1 | Ay | O

O—‘OX
O-—‘Ok

1 1 1
0 0 0
1 1 1

Table 2: The OUT® matrix for output D in Figure
1.

similarity between the first two columns in Table 3,
that indicates that these vectors are different in one
value out of three (the normalized value is Tls)' Fi-
nally, Table 6 is a normalized summation over Table
4 and 5. According to this matrix, it is very likely
to select for the training set the pair { X1, 0, 1} and
it is unlikely at all to choose {A2,O1}. Note that
indeed the conflict sets for the above observations
reflect the similarities. For instance, the compo-
nents { X7, Xo} appear together almost in all con-
flicts that one of them appears in; indeed the sim-
ilarity between them is very high % (the comple-
ment of the dissimilarity).

Extending the training set to triple fault and
more is performed in the same manner based
on the dissimilarity matrix computed for pairs.
For each dissimilarity between COM PS; and
COMPS,;, we compute the extension of adding
COMPS}), by adding the dissimilarity proba-
bilities of COMPS; with COMPS, and of
COMPS; with COMPS},. As will be shown in
the next section, the extension will be actually done
only for a subset of the space.

3.4 Classification Methodology

Given the set of samples we can train a classi-
fier. We adopt the AdaBoost meta-algorithm for the
classification process (Freund and Schapire, 1995).
In this method, a set of s classifiers are built se-

2

o ==
SO =
&

Ay A
1 0
1 0
1 1

'—‘OOO

Table 3: The OUTF matrix for output E in Figure
1.

COMP; X1 X2 Ay Ag [oh
X 0 [0 [I0 L@ [
X IR ONE ONE )
Ay - - 0 0 0
Ag - - - 0 0
[oh - - 0

Table 4: The S1M matrix for output D in Figure 1.

quentially. On each round, the weights of each in-
correctly classified example are increased (or alter-
natively, the weights of each correctly classified ex-
ample are decreased), so that the new classifier on
the next round will focus on those examples. Fi-
nally, the whole s classifiers use for the classifica-
tion task by averaging their results.

We adapt AdaBoost for the MBD problem, by
training every new classifier to an increased set of
diagnoses. In this way we train the classifiers to
cope with different sizes of diagnosis. Specifically,
in the first round we train the classifier with the
training set as built in Section 3.3. The classifica-
tion algorithm in each round could be any multi-
label classification, in our case we used RAKFEL
(Tsoumakas and Vlahavas, 2007) with the classi-
fication algorithm J48. Then, in each round we
update the training set to train a new classifier as
follow:

1. Each sample in the training set is tested in the
classifier of the previous round and its false
negative rate is measured. The false negative
rate is the ratio between the number of mis-
classified components and the injected faulty
components (Feldman er al., 2010a).

2. Every sample is associated with a weight:
w; = a + b * (false negative rate), where
a and b are constants that affirm a,b €
[0,1] and a + b < 1. Note that the lower false
negative rate the higher w;, since we encour-
age to retrain misclassified samples rather than
samples that have been classified correctly.

3. To build the new training set for the next clas-
sifier, we randomly choose z samples from the
previous training set considering the weights
of the samples (with repeats). Each chosen
sample is increased by one component. The
new component is extended by the initial dis-
similarity matrix, as described in the previous
section. In this way, we give more chance
to misclassified samples on the one hand, and
on the other hand we train diagnoses in larger
sizes.

4. Finally, we train a new classifier with the new
training set using RAKFEL.

Eventually we trained s classifiers, each clas-
sifier for different size of diagnosis. At runtime,
we use all the classifiers for the diagnosis process.
Each classifier returns multi-label which represents



Table 5: The SIM matrix for output E in Figure 1.

COMP; | X1 | X2 | A1 | A2 | O
= e e S
Al 0 T T
Ao 0 0
Ol - 0

Table 6: The normalized summation matrix of ma-
trices 4 and 5.

a set of components (denoted by COMPSA C
COMPS), where each one of them is associ-
ated with a confidence value in a range of [0, 1]
(the confidence represents the likelihood of the
component to be classified as a diagnosis). Let
(COMP;, conf;) denote the confidence conf; €
[0,1] of component COMP; € COMPSa. To
determine the actual confidence of a component
based on the whole classifiers, we evaluate the
weight of each classifier and return the weighted
average confidence of the component over the clas-
sifiers.

We will demonstrate this process in the next ex-
ample. Assume a training set of pairs as presented
in Table 7. After training a classifier on this train-
ing set we check each one of the samples on this
classier. The third column presents the results of
the classifier on these samples, the fourth column
presents the false negative rate of each sample and
the fifth column presents the weight, where a = 0.1
and b = 0.9. Based on the weights we create an-
other z samples, and each one of them is extended
by a new component. The extension is done with
Table 6. For instance, to determine whether to ex-
tend the pair X, O; by either X5, A; or As, we
add each one of them to X; and O; separately and
normalize as presented in Table 8. We train a new
classifier with the new training set.

3.5 Consistent Diagnosis

At runtime, the AdaBoost obtains the observations
(inputs and outputs) and returns a set of compo-
nents with their confidence value. We set two con-
stants, P for the threshold of the confidence, and
@ for the number of components in the diagno-
sis. To select a diagnosis candidate, we randomly
choose () components with a confidence greater
than P, out of the components returned by Ad-
aBoost. COM PSpg € COM PSn represents the
chosen diagnosis. This diagnosis is not guaranteed
to be minimal nor consistent, and thus we should
check these properties.

Algorithm 3 describes the process of the diagno-
sis verification. The obtained diagnosis candidate is
checked through DPLL for consistency. If it is con-
sistent then we try to minimize it to get a minimal
diagnosis (lines 6-10). Similarly to SAFARI (Feld-
man et al., 2010b), our algorithm tries to minimize
the diagnosis by iteratively flipping in each round

COMP; X1 X Aq As O, Attributes Classes Actual False Weight

X, 0 ﬁ(%) ﬁ(%) %(1) %(1) classification negative

Xs - 0 %(%) %(%) %(%) 1,1,1,0,0 X1,01 X1 0.5 0.55

Ay 0 %(%) %(%) 1,1,1,1,1 X1, X2 X1, Xa 0 0.1

A, - 0 0 1,1,1,0,1 Xo, Ay Xo, Ay 0 0.1

0O, - - 0 1,0,0,0,1 X1,0, X1,01, As 0 0.1
1,0,0,1,0 | X3,Xo O, 1 1
1,0,0,0,1 | Xo, Ay Ay 0.5 0.55

Table 7: A set of double fault samples and their
weights.

Triple fault Dissimilarity
X1,01, X2 %+§1*5+%:%
X1,01, Ay §+§+%:%
X1,01,42 | §+54+0=3

Table 8: Dissimilarity of (X, 01, 7).

the value of one abnormal assumable in the diagno-
sis, until we obtain an inconsistent diagnosis. The
advantage of our algorithm is that the next flipped
assumable is not randomly selected as in SAFARI,
but it is determined based on the confidence value
of the components returned by the classifier (line
8).

If the diagnosis candidate obtained by AdaBoost
is inconsistent, then it must be a subset of another
diagnosis, thus we repeatedly increase the diagnosis
by adding more components (lines 2-5). The selec-
tion of the next component is done by a stochastic
local search (Hoos and Sttzle, 2004), considering
again the confidence value of the components. The
returned diagnosis is the first one to pass the con-
sistency check by DPLL.

Note that the consistency check through DPLL
and the minimality check are relevant only to
W F M (see Definition 3), which is in the interest of
this paper. Although, the learning stage, described
in Section 3.2, was done under the assumption of
SEF M, which takes into consideration that abnor-
mal components behave in negative way. However,
since a diagnosis in SF' M must be a diagnosis in
W FM (Console and Torasso, 1991), by injecting
diagnosis samples in SF' M, we actually add diag-
nosis samples that are valid in W FM too. Thus
we can infer, by the classifier, diagnoses that can be
checked with DPLL.

4 EVALUATION

There are many constants that should be addressed
in our method, for instance, how many inputs are

Algorithm 3 CHECK_CONSISTENCY
(input: diagnosis COM PSpg
output: a diagnosis set A)

A0

while COM P Spq, is inconsistent (check with DPLL) do
COMP; € COMPSA\COMPSpq|Vj,conf; >
conf;
COMPSpg < COMPSpg U{COMP;}

end while

while COM P Spq is consistent (check with DPLL) do
A+ COMPSpqg
COMP; € COMPSpq|Vj, conf; < conf;
COMPSpg + COMPSpo\{COMP;}

end while

TeYXRRRNE W
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return A




System | Description |[OBS| | [COMPS]
74182 4-bit carry-lookahead generator 14 19
74185 4-bit magnitude comparator 14 33
74283 4-bit adder 14 36
74181 4-bit ALU 22 65
Table 9: An overview of the 74XXX benchmark
circuits.
System | Random | Multi-Label Classification
74182 13.432 10.07
74L85 21.79 17.54
74283 25.66 21.08
74181 46.86 41.16

Table 10: Consistency checks until verifying a di-
agnosis.

required for the dissimilarity matrix? how many
samples are required in each iteration of AdaBoost?
how to choose the inputs? how to set ) and P?
etc. Since multi-label classification for MBD has
not been done before, we do not have answers for
these challenges, and so in this section we just
present some preliminary results that show that our
approach is significant. We plan to further examine
all the above open questions in order to present a
consistent and robust approach.

We run preliminary experiments on the 74zzx
benchmark systems (presented in Table 9), to check
some of the attributes of the multi-label classifica-
tion approach. We run the scenarios of the DXC-
2010 (Second International Diagnostic Competi-
tion (DXC 10), 2010). Note that these scenarios in-
clude also probes. In the first experiment we show
the benefit of our approach over a random approach.
We have built the dissimilarity matrix by simulating
each single fault component through Z=100 input
samples (Section 3.3). We have trained the above
systems through a small set of samples: We have
trained all single faults, and quarter of the double
faults, and the same number for three, four and five
multiple faults. Each diagnosis was trained through
100 inputs. For instance, in system 74263, only 9
diagnoses were trained in each round of AdaBoost
(for each diagnosis size 1-5), with 100 inputs.

At runtime, we set Q = 1 and P = 0.5. In
fact, we literately added one component in every it-
eration, in the order of their confidence, until we
got a consistent diagnosis (by checking it through
DPLL). We compared it with a random approach,
in which we added in each iteration a random com-
ponent (rather than the component with the next
confidence value). We compared the number of
added components until a consistent diagnosis was
verified. Table 10 summarizes the average num-
ber of components in each approach. As shown,
our multi-label classification approach requires less
consistency checks to find a diagnosis than a ran-
dom approach. Note that the large number of com-
ponents in the diagnosis is mainly due to the probes
in the scenarios; these probes significantly reduce
the number of consistent states. To summarize, this
experiment shows that even learning over a very
small sample set improves the process of finding
a diagnosis. We believe that increasing the sample
set will further improve the diagnosis. We will ex-
amine this issue in the future.

The next experiment examines the utility of the
diagnosis as defined in (Feldman et al., 2010a). The

e . . n(N+1) aN+1
utility is defined as follows: 1 — P D) — FET

where n is the false negative, n is the false posi-
tive, and NV is the the set of healthy components
from the viewpoint of the diagnoser. For this exper-
iment, we ask to check how the confidence affects
the utility. The utility of a scenario is a measure-
ment that takes into consideration the tradeoff be-
tween the false negative and false positive. In our
algorithm we determine the diagnosis based on the
confidence value returned by the classifier for each
one of the components. Typically the classifica-
tion is determined as a result of the confidence, for
instance, the multi-label diagnosis contains all the
components with confidence greater than 0.5. Ob-
viously, it is not guaranteed to be consistent, but we
are interested, in the next experiment, to evaluate
the false negative and false positive as a function of
the confidence threshold.

To this aim, we checked the utility for different
values of confidence threshold 0.1, 0.2, 0.3, 0.4,
0.5. We compared the utility to that of a random se-
lection algorithm. We set the random algorithm to
select the same number of components as the multi-
label selected with the confidence threshold. Fig-
ures 2, 3, 4 and 5 summary the results for the four
benchmarks. The x-axis is the confidence threshold
and the y-axis is the utility. In each one of these
graphs we can see that the utility of our approach
outperforms the utility of a random approach. In
addition we can see that in big systems the utility
reduces with the threshold. The reason is that the
number of components grows and thus the prob-
ability of finding the exact faulty components re-
duces.

To summarize, we can see that the classification
increases the utility of the diagnosis over random
selection. In addition, the size of the system and the
confidence are correlated and affect the decision of
what threshold is the best one. In the future we plan
to investigate this issue.
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Figure 3: utility for 74L85.
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5 SUMMARY AND FUTURE WORK

In this paper we presented a model-based diagnosis
engine using multi-label classification. In this ap-
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proach the observation uses as the attributes and the
faulty components in the diagnosis are the classes.
We try to learn the relations between the obser-
vations and the diagnoses. For this, we proposed
to simulate a training set by generating samples
of the most likely multiple fault diagnoses. We
adapted the AdaBoost approach for our MBD prob-
lem, and used RAKEL as multi-label classifier with
J48 learning algorithm. Preliminary results show
the advantages of our approach over a random ap-
proach.

In the future, we propose to investigate and learn
the constants in our method. In particular, we want
to learn the weights of the classifier in AdaBoost,
the number of required samples as a function of
the size of the system, the number of samples to
learn the dissimilarity matrix and the ideal number
of classifiers in AdaBoost. In addition, in this pa-
per we chose the inputs randomly. We want to in-
vestigate a better approach to chose the inputs by
orthogonal arrays.
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