Using Wikipedia to Boost Collaborative Filtering Techniques

Gilad Katz	Nir Ofek	Bracha Shapira	Lior Rokach	Guy Shani
Ben Gurion University				
P.O. box 84105 Beer Sheva, Israel 972-8-6477527				
katzgila@bgu.ac.il	nirofek@bgu.ac.il	bshapira@bgu.ac.il	liorrk@bgu.ac.il	shanigu@bgu.ac.il

ABSTRACT

One important challenge in the field of recommender systems is the sparsity of available data. This problem limits the ability of recommender systems to provide accurate predictions of user ratings. We overcome this problem by using the publicly available user generated information contained in Wikipedia. We identify similarities between items by mapping them to Wikipedia pages and finding similarities in the text and commonalities in the links and categories of each page. These similarities can be used in the recommendation process and improve ranking predictions. We find that this method is most effective in cases where ratings are extremely sparse or nonexistent. Preliminary experimental results on the Movielens dataset are encouraging.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Recommender Systems, Wikipedia, Collaborative Filtering, Cold Start Problem

1. INTRODUCTION

A major task of recommender systems is the prediction of item ratings. For example, the online video rental service NetFlix displays besides each new release a predicted rating for the customer, helping her decide whether to rent that movie.

Perhaps the most common approach for recommender systems is collaborating filtering (CF) [9]. CF predicts users' interest in specific items based on their past ratings and the ratings of other (similar) users. This information is used to calculate the similarity among items or users.

Two of the main drawbacks of CF methods are:

Conference '10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010...\$10.00.

Data Sparsity – The user-rating matrix is in many cases sparse and it is difficult to find items that were jointly rated by many users because of the diversity of the item set and user tastes

The Cold-start problem – new items cannot be recommended before sufficient ratings for them are collected [1-2].

In this paper, we boost the available data by integrating user generated data from Wikipedia - a free encyclopedia built collaboratively. We utilize several different relations between Wikipedia items in order to provide traditional collaborating filtering technique with additional information. We use three different Wikipedia resources; the page text, its categories, and links between Wikipedia articles.

Our method is a hybrid of CF and content-based recommendation [3], where the content is a result of user collaboration. We use the Wikipedia content for computing the similarity between items when the existing data on the rating matrix is too sparse. We explain how these similarities can be employed in an item-item CF framework.

We evaluate the performance of the proposed method over the Movielens dataset, simulating various sparsity levels. We compare the performance using separately the three data sources text, links and categories - and their combinations. We show that integrating Wikipedia content significantly improves recommendation results.

2. Background

The idea of integrating external sources to boost collaborative filtering was already explored in previous studies, differing on the data sources they use and on the method used to integrate these sources.

The external sources used are extremely versatile. For example, [4] uses organizational social networks in order to compute similarities between users. Possible indicators of groups include attending the same events, co-authored paper, and being members of the same projects. Once communities are located, the correlation between users is stored. The correlation assists the system in forming an initial profile for a new user. This profile is integrated with a web based recommender system, which uses a proxy server to monitor users' browsing activity. Each content item is classified using a nearest-neighbor algorithm. The classification results, and the users correlation are used as an input for an integrated user profiling algorithm.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

When a recommendation is to be provided for a new user, the system predicts the item rating based on the integrated stored profile.

Similar to our approach, other works use content information gathered on items in order to calculate their correlations. For example, [5] integrates information from a set of knowledge sources, including Wikipedia, and generates a graph of linguistic terms. The generated model enables identifying similar items for any given item. However it only uses certain terms and does not use all the user-generated text. In addition, our work investigates the utilization of other Wikipedia attributes: categories and links.

Semantic relations extraction from concepts in Wikipedia was used by [6] in order to represent domain resources as a set of interconnected Wikipedia articles. This was achieved by using the hyper-links in Wikipedia pages, which were represented in an item similarity matrix. This matrix was used with a known CF technique, showing positive results on Netflix and Last.fm datasets. The authors used only the links of the Wikipedia pages and ignored its text and categories.

Exploiting Wikipedia links and categories was also used in the work presented in [7] on modeling interconnected network of concepts. A concepts network was used to enrich the semantics of the given user's preference. This work differs from ours as it uses only the hyperlinks of Wikipedia pages as well as probabilistic models to generate user-user similarity.

Unstructured textual information from IMDB was used in [3], where it was integrated with EachMovie's user-rating dataset. A Bayesian algorithm was then used to classify ratings into one of the six class labels 0-5 (representing a user's satisfaction with an item). The classification result, based on bag-of-words approach, was used to boost pure collaborating filtering technique. The technique showed improvement with higher sparsity levels. This work differs from ours in the fact that it only utilizes text and ignores other types of data. Furthermore, we use different methods to calculate the item similarity.

3. Wikipedia-based Item Similarity

The proposed method consists of two off-line preparation steps: a) identifying Wikipedia item data pages b) the enrichment of the user-item ranking matrix with artificial ratings using Wikipedia content for the model building; and on an online prediction.

3.1 Assigning Wikipedia pages to data items

In order to use the information contained in Wikipedia, we first need to identify the pages describing the items. We currently focus on movies ratings, but our method can be generalized to other domains that are described on Wikipedia, such as books, music and so forth. This is a challenge, because of possible ambiguities – some movies are named after books, while others have the names of objects ("Boomerang" being one example), and some have adjective names (e.g. "Big").

This was done by the following heuristic steps:

a) Generating several variations of each movie's name (with and without the year, the removal of ", the" and ", a" etc'),

b) Compare the generated names with corresponding page titles in Wikipedia.

c) Choose the page with the largest number of categories that contain the word "film" (for example, "Films shot in Vancouver").

Using this technique, we were able to assign 1512 items out of the 1682 (89.8%) contained in the Movielens database to their corresponding Wikipedia pages.

3.2 Predicting Item Ratings

We now describe how we compute item rating predictions. This process consists of the following steps: a) we use several data sources to calculate item-item similarity using Wikipedia; b) we create a similarity metric that combines the existing user ratings and the data collected from Wikipedia; c) we use the combined item-item similarity metric to compute ratings for unknown items and insert them to the user-item rating matrix in order to reduce sparsity. We now review each step in detail.

a) Similarity computation:

We use three Wikipedia features to calculate the similarity between a pair of items – text, categories and links.

Text similarity: we extract the text from each movie page, and use a bag-of-words approach to represent the text[8]. We then compare similarity between movies based on a cosine measure [9] over the bag-of-words. Thus, movies that are described using many identical words are considered similar. For example, The Sounds of Music and Fantasia are two movies which received high similarity.

Category similarity: in Wikipedia, items can be assigned a set of categories (or tags). In the movie domain these categories can be "American films", "Actions films", or "Films shot in Los Angeles". We compute movie similarity based on the number of joined categories of two movies.

Links similarity: in Wikipedia, many pages contain links to other Wikipedia pages, forming a graph of linked pages. In this work we use only single indirection of links. That is, we count identical outgoing links from two movie pages. For example, Batman and Con Air (both action movies) have high links similarity.

It is often noticed in Wikipedia studies that such links may contain much noise. We thus consider only the links that are in the "plot" and "cast" paragraphs. Furthermore, the Wikipedia categories are also implemented as links to category pages. We, however, do not consider categories as links.

We compute each of the three similarity measures to produce three item-item similarity matrices. When combining these different matrices, we obviously must calibrate them to be in the same range and scale. We use here the following (ad-hoc) similarity calibration method:

The text similarity computed using the cosine score over the bagof-words produces values in the range [0,1]. The values of the two other similarities are natural numbers (counts). We choose to truncate counts higher than 5, which are very rare, as these already signify high similarity for both links and categories. Thus, we remain with values in the range of [1,5]. We then use the following transformation on the textual similarity values (the values were set empirically):

$$f(x) = \begin{cases} x \ge 0.9 \Longrightarrow 5\\ 0.9 > x \ge 0.7 \Longrightarrow 4\\ 0.7 > x \ge 0.5 \Longrightarrow 3\\ 0.5 > x \ge 0.3 \Longrightarrow 2\\ x < 0.3 \Longrightarrow 0 \end{cases}$$

An obvious next step for future research is to learn the calibration using machine learning techniques, but for now this simple ad-hoc method serves us well.

b) Combine the metrics into a unified item-item similarity metric

At this point there are three item-item similarity metrics. Our goal is to combine them into a single item-item similarity metric that can be used to compute ratings predictions. We currently combine the metrics using a simple weighted average approach. For every pair of items I and j we use the following formula:

final_sim(i, j) =
$$\frac{\sum_{m=1}^{n} sim_m(i, j)^* weight_m}{\sum_{m=1}^{n} weight_m}$$

where i and j are the items whose similarity we attempt to calculate and m is a similarity metric. At this point, all similarity matrices were given identical weight (assigning the weights more intelligently is one of the areas for future research).

c) Compute ratings for unknown items

We now attempt to use the item-item similarity matrix in order to add additional ratings to the user-item rating matrix. The ratings are added in the following manner: for each missing user rating, we find all the items whose similarity (in the matrix created in the previous section) to the analyzed item is greater than 0. We then use the following formula to calculate each item's artificial rating:

The rating of each unrated item i for user u is calculated by the set of items K that were rated by the user u in the following way:

$$\forall rating(u,i) = \frac{\sum_{k \in K} rating(u,k) * sim(k,i)}{\sum_{k \in K} sim(k,i)}$$

After the completion of this step, the missing values of user-item rating matrix are filled with the calculated values thus reducing the sparsity of the matrix. The method does not provide ratings for every item; only to those user-items pairs for which there are sufficiently similar (defined by a threshold) items that were also ranked by the user.

We would like to emphasize that *the ratings calculated here are not the ratings presented to the user*. These ratings are used only to reduce the sparsity of the matrix, thus improving the performance of the standard CF. The prediction itself is done by a standard CF system (see section 3.3). Experiments we conducted showed that this approach produces better results than using our method to directly generate the ratings.

3.3 The Prediction Phase

As mentioned before, all predictions are calculated using itemitem collaborating filtering. When providing a prediction for a user-item rating the CF algorithm relies, whenever possible, on the "real" ratings of the training set rather than on the artificial ratings. The reason for this is that the artificial ratings are merely an estimation and therefore are less accurate.

If a user u rated a sufficient number of items to exceed a predefined thresh, the original user-item rating matrix is used by the CF algorithm for predicting the (u,i) rating.

If the number of "real" ratings of user u is smaller than the predefined threshold, the original user-item matrix is enriched by our similarity model. If user rated no items, all operations are performed on a matrix that includes the artificial ratings.

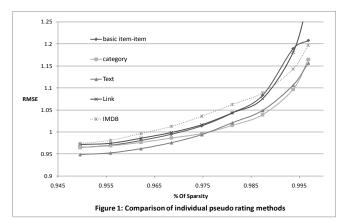
4. Evaluation

We evaluated the proposed method using the Movielens dataset. This dataset contains 943 users and 1682 items.

In order to evaluate the contribution of the proposed method, we have compared it to a standard item-item similarity recommender system, using adjusted cosine similarity in order to calculate the similarity among items and a weight sum prediction in order to calculate the prediction [10].

We used learning set sizes ranging between 5% and 80% of the total provided ratings, providing a sparsity of 99.68% to 95%, respectively. The learning sets were generated by randomly choosing, for each user, X% of its provided ratings.

We compared the performance based on the original matrix (containing only the original training data) to the matrix generated by our proposed method. As can be seen in Figures 1 and 2, the proposed method provided a substantial improvement.



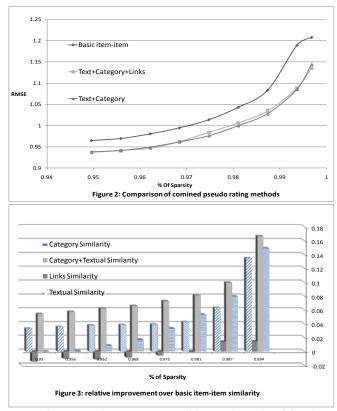
From figure 1 it can clearly be seen that the text and categorybased methods provide a considerable improvement, while the links similarity does not improve the performance of the model. In addition, it is easy to see that the IMDB-based similarity yields significantly worse results that the common item-item similarity method.

We believe that IMDB's poor performance is due to the nature of the content. IMDB's plot information is short and uninformative, meant to entice the reader and encourage him to see the movie. Wikipedia, on the other hand, usually provides ample information that includes detailed explanations on various aspects of the movie. For example, the movie "Toy Story" is described by 146 words in IMDB, while in Wikipedia it is described by approximately 6000.

Figure 2 presents the performance of the proposed methods when combining several item-item similarities (since the links similarity failed to produce significantly better results on its own, we have also combined only the text and categories similarities).

It is observed that the combination of several item-item similarity methods provides an additional boost to the performance of the model. In addition, as shown in Figure 3, the combined methods perform better than any method (text, category or links) on its own.

Figure 3 presents the relative improvement of the three similarity method and the category+link method over the basic item-item similarity.



From these experiments we are able to draw the following conclusions:

- 1. It is observed that using the text and category information contained in Wikipedia significantly improves accuracy of recommendations. This holds true when using them separately and together.
- 2. The improvement is most significant in high sparsity.
- 3. The links similarity provides little improvement and on some sparsity levels actually produces inferior results. We assume that this is due to the high "noise" level of the links. For example, in the movie "titanic", there is a link to the National Hockey League's page one of the events in which the movie was promoted.
- 4. It is clear that the combination of several similarity methods yields better results than any method alone. We have verified this conclusion by using paired-t tests with a confidence level of 95%. The combination of the category and text similarities seems to be slightly better than a combination of all three similarities, but we were not able to prove this hypothesis with sufficient confidence.
- 5. The proposed method is most effective in scenarios in which the data sparsity is very high.
- 6. The information contained in the IMDB in noticeably *inferior* to that found in Wikipedia (and using it in low sparsity may actually *harm* the results)

5. Conclusion

In this paper we examined the possible benefits of using Wikipedia as an external source of information for recommender systems. We have examined text, categories and links as possible means to augment the available data, and proposed a method for combining the ratings. Our preliminary experiments have shown that the text and the categories (which are actually tags assigned by readers) provide the greatest improvement to results.

In addition, we showed that the information stored in Wikipedia is much more valuable than that stored in IMDB. We find it noteworthy that information that was generated in a collaborative fashion by users is more valuable for the purposes of collaborative filtering than information created by "experts". Furthermore, the information in Wikipedia is much more versatile and contains much more background information and elaboration on various aspects of the item (aspects that people find interest in, as it was added in the first place).

We believe that future work in this area consists of two possible directions: the first is the utilization of additional sources of information in Wikipedia (info boxes and the references to sites other than Wikipedia are two possibilities); the second is a more advanced use of the information sources presented in this paper. For example, a statistical model may be able to infer which categories have greater impact than others on the similarity of items. Another option is learning the cases in which collaborative filtering technique can perform better having artificial ratings.

6. REFERENCES

- Maltz, D. and K. Ehrlich, 1995. *Pointing the way: active collaborative filtering*, in Proceedings of the SIGCHI conference on Human factors in computing systems, ACM Press/Addison-Wesley Publishing Co.: Denver, Colorado, United States. p. 202-209.
- [2] Adomavicius, G. and A. Tuzhilin, 2005. Toward the Next Generation of Recommender Systems: A Survey of the Stateof-the-Art and Possible Extensions. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 17(6).
- [3] Melville, P., R.J. Mooney, and R. Nagarajan. 2002. Content-Boosted Collaborative Filtering for Improved Recommendations. AAAI-02 Proceedings,
- [4] MIDDLETON, S.E., et al. 2002. Exploiting Synergy Between Ontologies and Recommender Systems. International Workshop on the Semantic Web, Proceedings of the 11th International World Wide Web Conference WWW-2002, Hawaii, USA.
- [5] Semeraro, G., et al. 2009. Knowledge infusion into contentbased recommender systems. in Proceedings of the third ACM conference on Recommender systems, ACM: New York, New York, USA. p. 301-304.
- [6] Loizou, A. and S. Dasmahapatra. 2010. Using Wikipedia to alleviate data sparsity issues in Recommender Systems. Semantic Media Adaptation and Personalization (SMAP), 2010. 5th International Workshop on p. 104 - 111.
- [7] Lee, J.w., Lee S.g., and Kim, H.j.. 2011. A probabilistic approach to semantic collaborative filtering using world knowledge. Journal of Information Science. 37(1): p. 49-66.
- [8] Salton, G. 1983. *Introduction to Modern Information Retrieval*. New York: McGraw Hill, p. 448.
- [9] Sarwar, B., et al. 2001. Item-based collaborative filtering recommendation algorithms, in Proceedings of the 10th international conference on World Wide Web, ACM: Hong Kong, Hong Kong. p. 285-295