
Recommenders Benchmark Framework
Aviram Dayan

Ben-Gurion University
Beer-Sheva 80145

Israel

avdayan@cs.bgu.ac.il

Lior Rokach
Ben-Gurion University

Beer-Sheva 80145
Israel

liorrk@bgu.ac.il

Aykan Aydin
Deutsche Telekom AG

Berlin 64295
Germany

aykan.aydin@telekom.de

Guy Katz
Ben-Gurion University

Beer-Sheva 80145
Israel

rakreshet@gmail.com

Bracha Shapira
Ben-Gurion University

Beer-Sheva 80145
Israel

bshapira@bgu.ac.il

Radmila Fishel
Ben-Gurion University

Beer-Sheva 80145
Israel

fishelr@bgu.ac.il

Naseem Biasdi
Ben-Gurion University

Beer-Sheva 80145
Israel

naseem@cs.bgu.ac.il

Roland Schwaiger

Deutsche Telekom AG
Berlin 10781

Germany

roland.schwaiger@telekom.de

ABSTRACT

In this demo we present a recommender benchmark framework

that serves as an infrastructure for comparing and examining the

performance and feasibility of different recommender algorithms

on various datasets with a variety of measures. The extendable

infrastructure aims to provide easy plugging of novel

recommendation-algorithms, datasets and compare their

performance using visual tools and metrics with other algorithms

in the benchmark. It also aims at generating a WEKA-type

workbench [1] for the recommender systems field to enable usage

and application of common recommender systems (RS)

algorithms for research and practice. The demo movie is available

at : http://www.youtube.com/watch?v=fsDITf6s0WY

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval - Information filtering, Selection process.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords

Benchmark, recommendation engines, datasets, evaluators,

metrics, dataset characteristics.

1. INTRODUCTION
Providing quality recommendations for various domains and

datasets is challenging many academic studies and commercial

applications that aim at suggesting the user the most suited items

for her needs, context and preferences. An application designer

who wishes to add a recommendation engine to an application

should choose from a large variety of available algorithms or

examine the feasibility and performance of a newly developed

algorithm for the application at hand.

2. SYSTEM DESCRIPTION
Our benchmark may serve two goals: 1. a decision support tool

for selection the best suitable recommender engine for a certain

problem and data. The framework provides a recommendation-

system administrators the tools for evaluating multiple

recommenders with different datasets, metrics, and benchmark-

policies to assist with her decision; 2. An infrastructure to perform

research related to RS. The benchmark currently includes several

RS techniques, numerous datasets and evaluation metrics, so that

algorithms can be evaluated and compared with any suit able

datasets and metrics. We also enable easy plug-in of new

algorithms. At the moment the benchmark includes for example:

collaborative filtering SVD, Ensemble of CF, Community-based

recommender and cross-domain algorithms. As a test–case for the

feasibility and ease of plugging new algorithms and datasets, a

class of graduate students from BGU University implemented and

plugged 10 new algorithms and numerous datasets and performed

evaluation comparing the algorithms, among the algorithms that

they plugged in are clustering-based recommender, ontology-

based, transfer learning for cross-domain and others.

The framework maintains the following features:

1. Support of a variety of RS techniques (e.g., CF, Social, etc.)

2. Support of a variety of evaluation measures

3. Support of off-line and on-line evaluations protocols

4. Including built-in statistical procedures and reporting tools

5. Easy to plug new algorithms, datasets and measures using API

 6. User-friendly

When using the benchmark (Figure 1), the user can choose the

datasets; the algorithms; evaluators and metrics (Figure 2). Then,

the user can explore the benchmark results using several views

(Figure 3) to deduce conclusions. He can also obtain analysis of

the datasets and manipulate its features (e.g., sparsity).

Figure 1. Introducing a recommender/dataset to the framework

mailto:avdayan@cs.bgu.ac.il
mailto:liorrk@bgu.ac.il
mailto:rakreshet@gmail.com
mailto:fishelr@bgu.ac.il
http://www.youtube.com/watch?v=fsDITf6s0WY

Figure 2. Benchmark configuration

Figure 2. Example of Benchmark results

3. SYSTEM ARCHITECTURE
The benchmark framework architecture (Figure 4) follows

the multi-tier paradigm. To allow maximum flexibility,

recommendation algorithms and dataset are implemented

as plug-ins to the framework. These plug-ins can be added

and removed to and from the framework in runtime which

allows development and integration with no dependency of

the framework itself. Another key feature is the complete

decoupling of the recommendation algorithms plug-ins and

the dataset plug-ins implementation. An algorithm can use

the dataset as input as long as the data contained in this

dataset is appropriate to the algorithm (for example,

community-based recommendation algorithm needs

community data).

The framework contains four core components:

1. The recommendations framework – contains the

APIs’ for recommender algorithms and data-sets.

2. The benchmark framework – contains the APIs’ for

benchmarking as well as the notions of Evaluators

and Metrics.

3. The plug-in manager – contains the APIs’ for

wrapping recommenders and data-sets as plug-ins.

4. Recommenders and data-sets plug-ins –are

developed separately from the framework and are

following the plug-in APIs’. They are plugged-in to

the system using the plug-in manager.

Recommender and dataset plug-ins are completely

decoupled. The benchmark framework allows using a

recommender with a dataset according to the used

recommendation method and the content type of the data in

the dataset. For example: collaborative filtering

recommenders can be benchmarked only with datasets that

contain rating data.

Figure 4: System Architecture

4. RELATED WORK
Two related framework should be mentioned, the WEKA

[1] framework for machine learning is a well established

workbench for data mining tasks such as clustering and

classification. Although many recommender systems

algorithms are based on machine learning methods, WEKA

is not suitable for evaluating RS algorithms as it does not

support basic RS algorithms such as CF and not the basic

data models such as rating matrices. Mahout[2] is a

machine learning library that includes collaborative filtering

and SVD algorithms for recommendations. It is a library of

scalable modules and is currently limited to the above

mentioned algorithms. Its library modules are to be used

when implementing recommender systems for production.

Our benchmark is aimed at a much earlier stage of selecting

a suitable recommender system for the problem at hand

comparing candidate methods rather than the actual

construction of the system.

5. REFERENCES
[1] WEKA workbench -http://www.cs.waikato.ac.nz/ml/weka/

[2] Sean Owen, Robin Anil, Ted Dunning, and Ellen

Friedman. Mahout in Action. Manning Publications,

2010. published under Manning Early Access Program.

http://www.cs.waikato.ac.nz/ml/weka/

DEMO DESCRIPTION

The demo enables evaluation and comparison of

recommender algorithms on various datasets. It

enables easy plug-in of new algorithms and new

datasets, configuration of the datasets features and

the condition of the evaluation, and presents

graphical results of the evaluation.

Link to demo movie:

http://www.youtube.com/watch?v=fsDITf6s0WY

Hardware requirements
For a small scale demonstration any standard machine will do.

For a full-blown demonstration: 2 x Intel Xeon 4C Processor,

24GB RAM and at least 1TB of storage.

 Software requirements
Java 1.6.x, MySQL 5.1, Tomcat 6.0.2x.

Network Access requirements
Port 8080 should be open for incoming HTTP connections. Any

other port can be used for that matter.

The presenter Aviram Dayan is part of a team of researcher and

scientific programmers at Ben-Gurion University that is working

on various projects related to recommender systems together

with researchers from Deutsche Telekom Laboratories (TLabs) at

Berlin.

http://www.youtube.com/watch?v=fsDITf6s0WY
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://dev.mysql.com/downloads/mysql/5.1.html
http://tomcat.apache.org/download-60.cgi

