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ABSTRACT 

In this demo we present a recommender benchmark framework 

that serves as an infrastructure for comparing and examining the 

performance and feasibility of different recommender algorithms 

on various datasets with a variety of measures. The extendable 

infrastructure aims to provide easy plugging of novel 

recommendation-algorithms, datasets and compare their 

performance using visual tools and metrics with other algorithms 

in the benchmark. It also aims at generating a WEKA-type 

workbench [1] for the recommender systems field to enable usage 

and application of common recommender systems (RS) 

algorithms for research and practice. The demo movie is available 

at : http://www.youtube.com/watch?v=fsDITf6s0WY 

 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval - Information filtering, Selection process. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 

Benchmark, recommendation engines, datasets, evaluators, 

metrics, dataset characteristics. 

1. INTRODUCTION 
Providing quality recommendations for various domains and 

datasets is challenging many academic studies and commercial 

applications that aim at suggesting the user the most suited items 

for her needs, context and preferences. An application designer 

who wishes to add a recommendation engine to an application 

should choose from a large variety of available algorithms or 

examine the feasibility and performance of a newly developed 

algorithm for the application at hand.  

 

2. SYSTEM DESCRIPTION 
Our benchmark may serve two goals: 1. a decision support tool 

for selection the best suitable recommender engine for a certain 

problem and data. The framework provides a recommendation-

system administrators the tools for evaluating multiple 

recommenders with different datasets, metrics, and benchmark-

policies to assist with her decision; 2. An infrastructure to perform 

research related to RS. The benchmark currently includes several 

RS techniques, numerous datasets and evaluation metrics, so that 

algorithms can be evaluated and compared with any suit able 

datasets and metrics. We also enable easy plug-in of new 

algorithms. At the moment the benchmark includes for example: 

collaborative filtering SVD, Ensemble of CF, Community-based 

recommender and cross-domain algorithms. As a test–case for the 

feasibility and ease of plugging new algorithms and datasets, a 

class of graduate students from BGU University implemented and 

plugged 10 new algorithms and numerous datasets and performed 

evaluation comparing the algorithms, among the algorithms that 

they plugged in are clustering-based recommender, ontology- 

based, transfer learning for cross-domain and others.    

The framework maintains the following features:  

1. Support of a variety of RS techniques ( e.g., CF, Social, etc.) 

2. Support of a variety of evaluation measures 

3. Support of off-line and on-line evaluations protocols  

4. Including built-in statistical procedures and reporting tools  

5. Easy to plug new algorithms, datasets and measures using API 

 6. User-friendly   

When using the benchmark (Figure 1), the user can choose the 

datasets; the algorithms; evaluators and metrics (Figure 2). Then, 

the user can explore the benchmark results using several views 

(Figure 3) to deduce conclusions. He can also obtain analysis of 

the datasets and manipulate its features (e.g., sparsity).  
 

 
 

 

Figure 1. Introducing a recommender/dataset to the framework  
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Figure 2. Benchmark configuration 

 

 

Figure 2. Example of Benchmark results 

3. SYSTEM ARCHITECTURE 
The benchmark framework architecture (Figure 4) follows 

the multi-tier paradigm. To allow maximum flexibility, 

recommendation algorithms and dataset are  implemented 

as plug-ins to the framework. These plug-ins can be added 

and removed to and from the framework in runtime which 

allows development and integration with no dependency of 

the framework itself. Another key feature is the complete 

decoupling of the recommendation algorithms plug-ins and 

the dataset plug-ins implementation. An algorithm can use 

the dataset as input as long as the data contained in this 

dataset is appropriate to the algorithm (for example, 

community-based recommendation algorithm needs 

community data). 

The framework contains four core components: 

 

1. The recommendations framework – contains the 

APIs’ for recommender algorithms and data-sets. 

2. The benchmark framework – contains the APIs’ for 

benchmarking as well as the notions of Evaluators 

and Metrics.  

3. The plug-in manager – contains the APIs’ for 

wrapping recommenders and data-sets as plug-ins. 

4. Recommenders and data-sets plug-ins –are 

developed separately from the framework and are 

following the plug-in APIs’. They are plugged-in to 

the system using the plug-in manager.  

Recommender and dataset plug-ins are completely 

decoupled. The benchmark framework allows using a 

recommender with a dataset according to the used 

recommendation method and the content type of the data in 

the dataset. For example: collaborative filtering 

recommenders can be benchmarked only with datasets that 

contain rating data. 
 

 
Figure 4: System Architecture 

 

4. RELATED WORK 
Two related framework should be mentioned, the WEKA 

[1] framework for machine learning is a well established 

workbench for data mining tasks such as clustering and 

classification. Although many recommender systems 

algorithms are based on machine learning methods, WEKA 

is not suitable for evaluating RS algorithms as it does not 

support basic RS algorithms such as CF and not the basic 

data models such as rating matrices. Mahout[2] is a 

machine learning library that includes collaborative filtering 

and SVD algorithms for recommendations. It is a library of 

scalable modules and is currently limited to the above 

mentioned algorithms. Its library modules are to be used 

when implementing recommender systems for production. 

Our benchmark is aimed at a much earlier stage of selecting 

a suitable recommender system for the problem at hand 

comparing candidate methods rather than the actual 

construction of the system.   
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[1] WEKA workbench -http://www.cs.waikato.ac.nz/ml/weka/ 

[2] Sean Owen, Robin Anil, Ted Dunning, and Ellen 

Friedman. Mahout in Action. Manning Publications, 

2010. published under Manning Early Access Program.
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DEMO DESCRIPTION 
 

The demo enables evaluation and comparison of 

recommender algorithms on various datasets. It 

enables easy plug-in of new algorithms and new 

datasets, configuration of the datasets features and 

the condition of the evaluation, and presents 

graphical results of the evaluation. 

 

Link to demo movie: 

http://www.youtube.com/watch?v=fsDITf6s0WY 

 

Hardware requirements  
For a small scale demonstration any standard machine will do. 

For a full-blown demonstration: 2 x Intel Xeon 4C Processor, 

24GB RAM and at least 1TB of storage. 

 

 Software requirements  
Java 1.6.x, MySQL 5.1, Tomcat 6.0.2x.  

 

Network Access requirements  
Port 8080 should be open for incoming HTTP connections. Any 

other port can be used for that matter. 

 

The presenter Aviram Dayan is part of a team of researcher and 

scientific programmers at Ben-Gurion University that is working 

on various projects related to recommender systems together 

with researchers from Deutsche Telekom Laboratories (TLabs) at 

Berlin. 
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