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Top-Down Induction of Decision Trees Classifiers —
A Survey

Lior Rokach and Oded Maimon

Abstract— Decision Trees are considered to be one of the mostcertainBag Schemarhe bag schema provides the description
popular approaches for representing classifiers. Researchers from of the attributes and their domaingormally bag schema

various disciplines such as statistics, machine learning, pattern is denoted ask(A U y). Where A denote the set of input

recognition, and data mining considered the issue of growing . N . T
a decision tree from available data. This paper presents an attributes containing: attributes:A = {a,, ..., a;; ..., a, } and

updated survey of current methods for constructing decision tree ¥ répresents the class variable or the target attribute.
classifiers in top-down manner. The paper suggests a unified Attributes (sometimes called field, variable or feature) are

algorithmic framework for presenting these algorithms and typically one of two types: nominal (values are members
provides profound descriptions of the various splitting criteria ¢ a0 unordered set), or numeric (values are real numbers).
and pruning methodology. When the attributea; is nominal it is useful to denote

Index Terms— Classification, Decision Trees, Splitting Criteria, by dom(a;) = {v; 1,2, s Vi ldom(a;)|} 1tS dOmain values,
Pruning Methods where |dom(a;)|stands for its finite cardinality. In a similar
way, dom(y) = {c1, ..., Claom(y)|} represents the domain of

. INTRODUCTION the target attribute. Numeric attributes have infinite cardinali-

Upervised methods are methods that attempt to discovis.

relationship between the input attributes and the targetThe set of all possible examples is called the instance space.
attribute. The relationship discovered is represented in a strii¢re instance space is defined as a Cartesian product of all
ture referred to as #odel Usually models can be used forthe input attributes domainsX = dom(a;) x dom(as) X
predicting the value of the target attribute knowing the values x dom/(a, ). The Universal Instance Space (or the Labeled
of the input attributes. It is useful to distinguish between twimstance Spacel/ is defined as a Cartesian product of all
main supervised model<lassification ModelgClassifiers) input attribute domains and target attribute domain, L=
and Regression Models. X x dom(y).

Regression models map the input space into a real-valuedhe training set is a bag instance consisting of a set of m
domain, whereas classifiers map the input space into predsles (also known asecordy. Each tuple is described by
fined classes. For instance, classifiers can be used to clasaifyector of attribute values in accordance with the definition
mortgage consumers to good (fully payback the mortgage ofithe bag schema. Formally the training set is denoted as
time) and bad (delayed payback). S(R) = (< 1,91 >,...,< T, Ym >) Wherez, € X and

There are many alternatives to represent classifiers. Thee dom(y).
decision tree is probably the most widely used approach forUsually, it is assumed that the training set tuples are gen-
this purpose. Originally it has been studied in the fields efrated randomly and independently according to some fixed
decision theory and statistics. However, it was found to lehd unknown joint probability distributiodd over U. Note
effective in other disciplines such as data mining, machinkat this is a generalization of the deterministic case when a
learning, and pattern recognition. Decision trees are alsapervisor classifies a tuple using a functipe- f(x).
implemented in many real-world applications. This paper uses the common notation of bag algebra to

Given the long history and the intense interest in thisresent projectionn) and selection «) of tuples (see for
approach, it is not surprising that several surveys on decisipitance [4]).
trees are available in the literature, such as [1], [2], [3]. Originally the machine learning community has introduced
Nevertheless, this survey proposes a profound but concike problem ofConcept LearningTo learn a concept is to infer
description of issues related specifically to top-down coits general definition from a set of examples. This definition
struction of decision trees, which is considered the mostay be either explicitly formulated or left implicit, but either
popular construction approach. This paper aims to organig@y it assigns each possible example to the concept or not.
all significant methods developed into a coherent and unifigthus, a concept can be formally regarded as a function from

reference. the set of all possible examples to the Boolean ke,
Falsg.
Il. PRELIMINARIES Other communities, such as the data mining community

In a typical supervised learning, a training set of labelagrefer to deal with a straightforward extension of thencept
examples is given and the goal is to form a description thaearning know asThe Classification Problemin this case
can be used to predict previously unseen examples. we search for a function that maps the set of all possible

The training set can be described in a variety of languagesxamples into predefined set of class labels and not limited to
Most frequently, they are described asBag Instanceof a the Boolean set.
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An Inducer;, is an entity that obtains a training set and formdenoted as triangles. Note that this decision tree incorporates
a classifier that represents the generalize relationship betwbeth nominal and numeric attributes. Given this classifier,
the input attributes and the target attribute. the analyst can predict the response of a potential customer

The notation! represents an inducer arddS) represents (by sorting it down the tree), and understand the behavioral
a classifier which was induced by performifigon a training characteristics of the entire population of potential customers

setS. - with respect to direct mailing. Each node is labeled with
Most frequently the goal of the Classifiers Inducers ithe attribute it tests, and its branches are labeled with its
formally defined as: corresponding values.

Given a training set S with input attributes set =
{a1,as,...,a,} and target attributey from a unknown fixed
distribution D over the labeled instance space, the goal is
to induce an optimal classifier with minimum generalization
error.

Generalization error is defined as the misclassification rate
over the distributionD. In case of the nominal attributes it
can be expressed as:

3" D(a,y) - Ly, 1(5)(x)) & _
<z,y>cU
Where L(y, I(S)(x)is the loss function defined as:
wers@ ={ ) rolgn ﬁ:‘ w4
v Tl ify#IS) (@) <

. . . No S Yes
In case of numeric attributes the sum operator is replaced

with the appropriate integral operator.

The classifier generated by the inducer can be used to . ‘
classify an unseen tuple either by explicitly assigning it to
a certain class (Crisp Classifier) or by providing a vector of

probabilities representing the conditional probability of thE'9- 1
given instance to belong to each class (Probabilistic Classlfler)1n case of numeric attributes, decision trees can be ge-

Decision tree presenting response to direct mailing

ometrically interpreted as a collection of hyperplanes, each
orthogonal to one of the axes.

A Decision tree is a classifier expressed as a recursiveNaturally decision makers prefer less complex decision
partition of the instance space. The Decision tree consistst#fe, as it is considered more comprehensible. Furthermore
nodes that form &ooted Treemeaning it is eDirected Tree according to Breimaret al [5] the tree complexity has a
with a node calledoot that has no incoming edges. All othercrucial effect on its accuracy performance. The tree complexity
nodes have exactly one incoming edge. A node with outgoiigyexplicitly controlled by the stopping criteria used and the
edges is callednternal nodeor test nodesAll other nodes pruning method employed. Usually thEree Complexityis
are calledleaves(also known agerminal nodesor decision measured by one of the following metrics:
nodes. « The total number of nodes

In the decision tree each internal node splits the instances Total number of leaves
space into two or more subspaces according to a certain Tree Depth
discrete function of the input attributes values. In the simpleste Number of attributes used

and most frequent case each test considers a single attribut@ecision tree induction is closely related to rule induction.
such that the instance space is partitioned according to th&ch path from the root of a decision tree to one of its leaves
attribute’s value. In the case of numeric attributes the conditiean be transformed into a rule simply by conjoining the tests
refers to a range. along the path to form the antecedent part, and taking the
Each leaf is assigned to one class representing the miegtf’s class prediction as the class value. For example, one
appropriate target value. Alternatively the leaf may hold @f the paths in Figure 1 can be transformed into the rule: "If
probability vector indicating the probability of the target valugustomer age< 30, and the gender of the customer is "Male” -
having a certain value. then the customer will respond to the mail”. The resulting rule
Instances are classified by navigating them from the root eét can then be simplified to improve its comprehensibility to
the tree down to a leaf, according to the outcome of the testshuman user, and possibly its accuracy [6].
along the path.
Figure 1 describes a decision tree that reasons whether dV- ALGORITHMIC FRAMEWORK FORDECISION TREES
not a potential customer will respond to a direct mailing. Decision Tree inducers are algorithms that automatically
Internal nodes are represented as circles whereas leavescarstruct a decision tree from a given dataset. Typically the

IIl. DECISION TREEREPRESENTATION
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goal is to find the optimal decision tree by minimizing th&'ocedure DT Inducer(S, A,y)

generalization error. However, other target functions can bé: 7' = TreeGrowing(S, A, y)
also defined, for instance: minimizing the number of nodes o Return TreePruning(S,T)
minimizing the average depth. procedure T'reeGrowing(S, A,y)
Induction of an optimal decision tree from a given data iS1: Create a tred’
considered to be hard task. Hancoekal. [7] have showed »: if One of the Stopping Criteria is fulfillethen
that finding a minimal decision tree consistent with the trainings:  Mark the root node iff” as a leaf with the most common
set is NP-Hard. Hyafil and Rivest [8] have showed that value ofy in S as the class.
constructing a minimal binary tree with respect to the expected: else
number of tests required for classifying an unseen instance & Find a discrete functiorf(A) of the input attributes val-
NP-complete. Even finding the minimal equivalent decision ues such that splitting according tof (A)’s outcomes

tree for a given decision tree [9] or building the optimal (V1,...,V,) gains the best splitting metric.
decision tree from decision tables is known to be NP-Hards:  if best splitting metric> tresholdthen
[10]. 7: Label the root node ifi” as f(A)

The last references indicate that using optimal decision treg for each outcome; of f(A) do
algorithms is feasible only in small problems. Consequentlyg: Subtree; = TreeGrowing(o f(ay=v; S, 4, y).
heuristics methods are required for solving the problemp. Connect the root node &f to Subtree; with an
Roughly speaking, these methods can be divided into two edge that is labelled as
groups: Top-Down and Bottom-Up with clear preference in1. end for
the literature to the first group. 12:  else

Figure 2 presents a typical algorithmic framework for top1s: Mark the root node inl" as a leaf with the most
down inducing of a decision tree. Note that these algorithms common value ofy in S as the class.

are greedy by nature and construct the decision tree in a top- end if

down, recursive manner (also known as "divide and conquer’s: end if

In each iteration, the algorithm considers the partition of thes: Return T

training set using the outcome of a discrete function of ”}fmcedure TreePruning(S, T, y)
input attributes. The selection of the most appropriate functioq_ repeat T
is made according to some splitting measures. After the selec- P . L .
: . . s 2. Select a node in T such that pruning it maximally
tion of an appropriate split, each node further subdivides the improve some evaluation criteria

training set into smaller subsets, until no split gains sufficieng_

- i o .2 if ¢t £ O then
splitting measure or a stopping criteria is satisfied. )
. e ; 4; T = pruned(T, t)
There are various top-down decision trees inducers such B ond if
ID3 [11], C4.5[12], CART [5]. Some of which consists of two s until =g

conceptual phases: Growing and Pruning (C4.5 and CART)7.j ReturnT
Other inducers perform only the growing phase. '

Fig. 2.  Top-Down Algorithmic Framework for Decision Trees Induction.
V. UNIVARIATE SPLITTING CRITERIA The inputs areS (Training Set),A (Input Feature Set) angl (Target Feature)

A. Overview

In most of the cases the discrete splitting functions are o o
univariate. Univariate means that an internal node is split® ¢ (P) is minimum if3i such that component; p= 1.
according to the value of a single attribute. Consequently thee ¢ (P) is maximum ifvi, 1 <i <k, p; = 1/k.
inducer searches for the best attribute upon which to split.* ¢ (P) is symmetric with respect to components of P.
There are various univariate criteria. These criteria can be* ¢ (P) is smooth (differentiable everywhere) in its range.

characterized in different ways, such as: . Note: if the probability vector has a component of 1 (the
According to the origin of the measure: Information Theory,ariaples gets only one value), then the variable is defined as
Dependence, and Distance. pure. On the other hand, if all components are equal the level

According to the measure structure: Impurity Based criterigs jmpurity reach maximum.
Normalized Impurity Based criteria and Binary criteria.

The following sections describe the most common criteriﬁ
in the literature.

Given a training setS the probability vector of the target
tributey is defined as:

B. Irnpunty Based Crlte.na | . - P,(S) _ (|0y=C15| - ‘0y=0|dum<y>\5|) ©)
Given a random variable: with & discrete values, dis- 5] 1S

tributed according t&® = (p1, pa, ..., pr), @n impurity measure

is a function¢:[0, 1]* — R that satisfies the following The goodness-of-split due to discrete attributdés defined

conditions: as reduction in impurity of the target attribute after partitioning
e ¢ (P)>0 S according to the valueg v € dom(a;):
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F. Gain Ratio

A®(a;, S) = ¢(P,(S)) Quinlan [12] proposes th&ain Ratio measure that "nor-

malize” the information gain as following:

|dom(a;)] |0_ S‘

_ A ="Vi,j
X T

j=1

: (b(Py(Jai:'Ui,j S)) (4)

InformationGain(a;, S)

GainRatio(a;, S) Entropy(a;, S)

9)

Information Gain [6] is an Impurity Based Criteria that uses
the entropy measure (origin from information theory) as the

impurity measure. Note that this ratio is not defined when the denominator

is zero. Also the ratio may tend to favor attributes for which
the denominator is very small. Consequently it is suggested

InformationGain(a;, S) = Entropy(y, S) in two stages. First the information gain is calculated for all
|0 ai=0:, S| attributes. Then taking into consideration only attributes that
- Z TJ - Entropy(y,04,=v;;S) (5) have performed at least as good as the average information
vi,j€dom(a;) gain, the attribute that has obtained the best ratio gain is
Where: selected. Quinlan [15] has showed that the gain ratio tends

to outperform simple information gain criteria both from the
Entropy(y,S) = Z _ ‘Uy|—SC|jS | log, |Uy—SC|J‘S | accuracy aspect as well as from classifier complexity aspects.

c;jEdom(y)
C. Gini Index G. Distance Measure

Gini Index is an Impurity Based Criteria that meausures the Lopez de Mantras [16], introduced a distance measure. Like
divergence between the probability distributions of the targ&in Ratio this measure also normalizes the impurity measure.
attribute’s values. The Gini index has been used in variot@Wever, it suggests normalizing it in a different way:
works (see [5] and [13]). The Gini index is defined as:

.. g :C.S o A@(al,S)
Gini(y,S) = 1 - Y (|@’|S-7|)2 6) DM(a;,5) = — 5 S b-logyb (10)
cjedom(y) v;,; €Edom(a;) ¢ €dom(y)

Consequently the evaluation criteria for selecting the AWhere:
tribute a, is defined as: '

|0a;=v; j AND y=c,. S|

b N g
GiniGain(a;, S) = Gini(y, S) 5]
u0sS] —
- Z TJ -Gini(y, 04,0, ;8) (7) H. Binary criteria
st The binary criteria are used for creating binary decision
D. Likelihood Ratio Chi-Squared Statistics trees. These measures are based on the division of the input

attribute domain into two subdomains.

Let 5(a;,d1,ds,S) denote the binary criterion value for
attributea; over sampleS whend; andd; are its corresponded
G*(a;,S) = 2-In(2) - |S| - InformationGain(a;,S) (8) Subdomains. The value obtained for the optimal division of the

attribute domain into two mutually exclusive and exhaustive

This ratio is useful for measuring the statistical Signiﬁcan%bdomams is used for comparing attributes, namely:
of the information gain criteria. The zero hypothesis, \Hs ' '

that the input attribute and the target attribute are conditionally

The likelihood-ratio is defined as [14]:

independent. If Ij holds, the test statistic is distributed g% B*(ai, S) = max B(a;,dy,ds, S) (11)
with degrees of freedom equal t@lom(a;)—1)-(dom(y)—1). st
E. Normalized Impurity Based Criteria
The Impurity Based Criterion described above is biased dy Udy = dom(a;)
towards attributes with larger domain values. Namely it prefers dyNdy =0

input attributes with many values over attributes with less

values [11]. For instance, an input attribute that represents_ . o

the national security number, will probably get the higheét Twoing Criteria

information gain. However, adding this attribute to a decision Breiman et al. [5] point out that the Gini index may

tree will result with a poor generalized accuracy. encounter problems when the domain of the target attribute is
For that reason, it is useful to "normalize” the impurityrelatively wide. In this case they suggest using binary criterion

based measures, as described in the following sections. called Twoing Criterion. This criterion is defined as:
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VI. MULTIVARIATE SPLITTING CRITERIA

twoing(as, dy, da, S) = In Multivariate Splitting Criteria several attributes may par-

0aica, S| |Caica, S| ticipate in a single node split test. Obviously, finding the best
a; 1 a; 2

0.25 - g S| multivariate criteria is more complicated than finding the best
g g univariate split. Furthermore, although this type of criteria may
( |9a;cdy AND y=c;5| _ |9a;eds AND y=c; S| )? dramatically improve the tree’s performance, these criteria are
| S| | S ivari iteri
c;€dom(y) Ta;€dy Ta;€ds much less popular than the univariate criteria.

12) Most of the Multivariate Splitting Criteria are based on

nljnear combination of the input attributes. Finding the best
ear combination can be performed using greedy search
], [29] linear programming [30], [31], linear discriminant

analysis [30], [18], [32], [33], [34], [35] and others [36], [37],

When the target attribute is binary the Gini and twoi
criteria are equivalent. For multi-class problems the twoi
criteria prefers attributes with evenly divided splits.

J. Orthogonality Criterion [38].
Fayyad and lIrani [17] have presented the ORT criterion.
This binary criteria is defined as: VIl. STOPPINGCRITERIA

The growing phase continues until a stopping criteria is
ORT(a;,dy,ds,S) = 1 — cosb(P,1,P,2) (13) triggered. The following conditions are common stopping
rules:

Where6(P, 1, P, 2) is the angle between two distribution . . L .
’ ’ All instances in the training set belong to a single value of

vectors P, ; and P, » of the target attributey on the bags

Oa,ed, S AN og,cq, S respectively. .
Fayyad and Irani [17] showed that this criterion performs |N€ maximum tree depth has been reached.

better than the information gain and the Gini index for specific 1h€ number of cases in the terminal node is less than the

problems constellation. minimum number of cases for parent nodes.
If the node were split, the number of cases in one or more
K. Kolmogorov-Smirnov Criteria child nodes would be less than the minimum number of cases

Friedman [18] and Rounds [19] have suggested a bindff child nodes. o _
criterion that uses Kolmogorov-Smirnov distance. Assuming The best splitting criteria is not greater than a certain
a binary target attribute, namelyom(y) = {c1,cs}, the threshold.
criterion is defined as:

VIIl. PRUNING METHODS
KS(a;,di,ds, S) = A. Overview

0aicds AND y=c, S| |0a,edi AND y=c, S| (14) Employing tightly stopping criteria tends to create small and
|oy=c, S| |oy=c, S| under-fitted decision trees. On the other hand, using loosely
Utgoff and Clouse [20] suggest extending this measugtopping criteria tends to generate large decision trees that
to handle target attribute with multiple classes and missige over-fitted to the training set. Pruning methods originally
data values. Their results indicate that the suggested metlsoggested by Breimagt al.[5] were developed for solving this

outperforms the gain ratio criteria. dilemma. According to this methodology a loosely stopping
o o o criterion is used, letting the decision tree to overfit the training
L. Other Univariate Splitting Criteria set. Then the overfitted tree is cut back into smaller tree by

Additional univariate splitting criteria can be found in theemoving sub branches that are not contributing to the gener-
literature, such as permutation statistic [21], mean posteriization accuracy. It has been shown in various studies that
improvement [22], and hypergeometric distribution measugmploying pruning methods can improve the generalization

[23]. performance of a decision tree especially in noisy domains.
) o - o Another key motivation of pruning is "trading accuracy for
M. Comparison of Univariate Splitting Criteria simplicity” as presented by Bratko and Bohanec [39]. When

Comparative studies of the splitting criteria described abovidg goal is to produce a sufficiently accurate compact concept
and others, have been conducted by several researchers dutgsgription, pruning is highly useful. Within this process the
the last thirty years, such as [24], [25], [5], [26], [17], [27]initial decision tree is seen as a completely accurate one, thus
[28], [71], [73]. Most of these comparisons are based on erfie accuracy of a pruned decision tree indicates how close it
pirical results, although there are some theoretical conclusioissto the initial tree.

Most of the researchers point out that in most of the casesThere are various techniques for pruning decision trees.
the choice of splitting criteria will not make much differenceMost of them perform top down or bottom up traversal of the
on the tree performance. Each criterion is superior in somedes. A node is pruned if this operation improves a certain
cases and inferior in other, as the "No-Free Lunch” theoreaniteria. The following sections describe the most popular
suggests. techniques.
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B. Cost-Complexity Pruning Wherep,,,(y = ¢;) is the a-priori probability ofy getting
the valuec;, and ! denote the weight given to the a-priori

Breimanet al's pruning method [5], cost complexity pruning B )
if it does not increase the m-

(also known as weakest link pruning or error complexityroPability. A node is pruned
pruning) proceeds in two stages. In the first stage, a sequeREPability error rate.
of trees G, Ty, ..., T are built on the training data where
To is the original tree before pruning and, Ts the root tree. E. Pessimistic Pruning.
In the second stage, one of these trees is chosen as t
pruned tree, based on its generalization error estimation.
The tree T,, is obtained by replacing one or more O orrelation test instead.

the sub-trees in the predecessor treewith suitable leaves. The basic idea is that the error ratio estimated using the

The sub-trees that are pruned are those that obtain the IOV\{est . . . .
. . i raining set is not reliable enough. Instead a more realistic
increase in apparent error rate per pruned leaf.:

measure known as continuity correction for binomial distribu-
tion should be used:

hSuinlan’s pessimistic pruning [12] avoids the need of prun-
]jng set or cross validation and uses the pessimistic statistical

e(pruned(T,t),S) — (T, S)
« = (15)
|leaves(T)| — |leaves(pruned(T,t))] / lleaves(T))|

e (T,9) = e(T,S) BRI

Wheree(T, S) indicates the error rate of the tr&e over (17)

the sampleS and |leaves(T) denote the number of leaves in . . . o
. : However this correction still produces optimistic error rate.
T. pruned(T,t)denote the tree obtained by replacing the nodét ! . . .
. . . onsequently Quinlan suggests pruning an internal node t if
t in T with a suitable leaf. . SN
— its o rate is within one standard error from a reference tree,
In the second phase the generalization error of each pruned- .
tree Ty, Ty, ..., Ty is estimated. The best pruned tree is y:
then selected. If the given dataset is large enough the authors
suggest to break it |_nto tralnmg get and pruning set. The trees /(pruned(ﬂ 1),5) <&'(T, S)
are constructed using the training set and evaluated on the
pruning set. On the other hand, if the given dataset is not large e(T,8)-(1—¢€'(T,5))
enough they propose to use cross-validation methodology, + S|
despite the computational complexity implications.

(18)

The last condition is based on statistical confidence interval
. for proportions. Usually the last condition is used such fhat
C. Reduced Error Pruning refers to a sub-tree whose root is the internal noded S
Quinlan [6] has suggested a simple procedure for prudenote the portion of the training set that refer to the node
ing decision trees known as Reduced Error Pruning. WhileThe pessimistic pruning procedure performs top-down
traversing over the internal nodes from the bottom to theaversing over the internal nodes. If an internal node is pruned
top, the procedure checks for each internal node, whethieen all its descendants are removed from the pruning process,
replacing it with the most frequent class does not reducesulting in a relatively fast pruning.
the tree’s accuracy. In this case, the node is pruned. The
procedure continues until any further pruning would decrea&e Error-Based Pruning (EBP)
the accuracy.
In order to estimate the accuracy Quinlan proposes to uséError-Based Pruning is an evolution of the pessimistic
a pruning set. It can be shown that this procedure ends wifning. It is implemented in the well-known C4.5 algorithm.

the smallest accurate subtree with respect to a given pruning\s in pessimistic pruning the error rate is estimated using
set. the upper bound of the statistical confidence interval for

proportions.

D. Minimum Error Pruning (MEP)

The Minimum Error Pruning has been proposed by Niblett e(T,S) - (1-¢e(T,9))
and Bratko [40]. It performs bottom-up traversal of the internal cus(T,8) = (T, S)+Za- S|
nodes. In each node it compares the I-probability error rate
estimation with and without pruning. Wheree(T, S) denote the misclassification rate of the tree
The I-probability error rate estimation is a correction to thé on the training se. Z is the inverse of the standard normal
simple probability estimation using frequencies.Sif denote cumulative distribution and is the desired significance level.
the instances that have reached nddéehen the error rate  Let subtree(T,t)denote the sub tree rooted by the nade
obtained if this node was pruned is: Let maxchild(T,t)denote the most frequent child node tof
(namely most of the instances fhreach this particular child)
and letS; denote all instances if that reach the node
() = 1 - max |Ty=c:Sel + 1 Papr(y = ¢i) (16)  The procedure performs bottom-up traversal over all nodes
ci€dom(y) |St| +1 and compares the following values:

(19)
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Mingers [26] proposed the Critical Value Pruning (CVP).
This method prunes an internal node if its splitting criterion
eup(subtree(T;t), 5) (20)  is not greater than a certain threshold. By that it is similar to
eup(pruned(subtree(T,t),t), Sy) (21)  a stopping criterion. However, contrary to a stopping criterion
evB(subtree(T, maxchild(T,t)), Spagchiacr,yy) (22) @ node is not pruned if at least one of its children does not

. ) fulfill the pruning criterion.
According to the lowest value the procedure either leaves

the tree as is, prune the nodeor replaces the nodewith

the sub tree rooted byaxchild(T,t) J. Comparison of Pruning Methods
Several studies aim to compare the performance of different
G. Optimal Pruning pruning techniques [6], [26], [47].

. The results indicate that some methods (such as Cost-
Bratko and Bohanec [39] and Almuallim [41] address thE“,omplexity Pruning, Reduced Error Pruning) tend to over-

issue of finding optimal pruning, runing, i.e. creating smaller but less accurate decision trees
Bohanec and Bratko [39] introduce an algorithm guaranteg- P . . S '
[39] 9 g Ether methods (like Error Based Pruning, Pessimistic Error

ing optimality called OPT. This algorithm finds the optimal . N . !
pruning based on dynamic programming, with complexity ofrru:;:g and Minimum_ Error Pruning) bias toward under-
O(|leveas(T)|?) whereT is the initial decision tree. plli/l ? ‘ th _ uded that the "No F
Almuallim [41] introduced an improvement of OPT calle OS,, of the comparisons conciude at the No Free
OPT-2, which also performs optimal pruning using dynami ungh theorem appllgs in this case also, namely there IS no
programming. However the time and space complexities BFutnhmg method that in any case outperform other pruning
OPT-2 are bottO(|leveas(Tx)| - linternalT')|), WhereT' is Metnods.
the target (pruned) decision tree afdis the initial decision
tree. IX. OTHER ISSUES
Since the pruned tree is habitually much smaller than tie \Weighting Instances

initial tree and the number of internal nodes is smaller than theSome decision trees inducers mav aive different treatments
number of leaves, OPT-2 is usually more efficient than OPT Y9

. . ; to different instances. This is performed by weighting the
in terms of computational complexity. - . . . .
contribution of each instance in the analysis according to a

provided weight (between 0 to 1).
H. Minimum Description Length Pruning

Rissanen [42], _Quinlan anq Rivest [43] and Mem'?\al. B. Misclassification costs
[44] used the Minimum Description Length for evaluating the n . . .
generalized accuracy of a node. This method measures the sizatVeral decision trees inducers can be provided with nu-
of a decision tree by means of the number of bits required R€1C penalt|es_ for classifying an item into one class when it
encode the tree. The MDL method prefers decision trees th&!ly Pelongs in another.
can be encoded with fewer bits. Meldhal. [44] indicate that
the cost of a split at a leafcan be estimated as: C. Handling Missing Values

Missing values are a common experience in real world data
| St sets. This situation can complicate both induction (a training
Cost(t) = Z oy=c;St| - In m set that some of its values are missing) as well as classification
ci€dom(y) e (new instance that miss certain values).
n |dom(y)| — 1 ln@+ This problem has been addressed by several researchers
2 2 such as Friedman [18], Breimagt al. [5] and Quinlan [48].
71' Friedman [18] suggests handling missing values in the training
T \dom(y)l) set in the following way. Letr,,—»S indicate the subset of
2 instances inS whose a; values are missing. When calcu-
(23) lating the splitting criteria using attribute;, simply ignore
Where|S;| denote the number of instances that have reach@ll instances that their values in attribute are unknown,

|[dom (y)|
2

In

to nodet. namely instead of using the splitting criterle®(a;, S) it uses
The splitting cost of an internal node is calculated based é¥®(ai, S — 04,=7.5).
the cost aggregation of its children. On the other hand, Quinlan [48] argues that in case of

missing values the splitting criteria should be reduced pro-
portionally as nothing has been learned from these instances.

I. Other Pruning Method . : o L
er Fruning e 0. S ] ) In other words instead of using the splitting critefA@ (a;, .S)
There are other pruning methods reported in the literatufeses the following correction:

Wallace and Patrick [45] proposed a MML (minimum message
length) pruning method. Kearns and Mansour [46] provide a |S — 04,225

theoretically-justified pruning algorithm. S A®(a;; 5~ 0a,=15) (24)
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In a case where the criterion value is normalized (like iB. C4.5

the case of Gain Ratio), the denominator should be calculateccy 5 is an evolution of ID3, presented by the same author
as if the missing values represent an additional value in the] |t uses Gain Ratio as splitting criteria. The splitting is
attribute domain. ceased when the number of instances to be splitted is below a
Once a node is split, Quinlan suggests adding-»S t0  certain threshold. Error-Based Pruning is performed after the
each one of the outgoing edges with the following corrggrowing phase. C4.5 is capable to handle numeric attributes. It
sponded weightlo,,—., ;S|/|S — 04,=25]. can induce from a training set that incorporates missing values
The same idea is used for classifying a new instance wighy using corrected Gain Ratio Criteria as presented in section
missing attribute values. When an instance encounters a ngxde
where its splitting criteria can be evaluated due to a missing
value, it is passed through to all outgoing edges. The predicted CART
class will be the class with the highest probability in the CART stands for Classification and Regression Trees. It
weighted union of all the leaf nodes at which this instancgas developed by Breimagt al. [5] and is characterized
ends up. by the fact it constructs binary trees, namely each internal
Another approach known asirrogate splitsvas presented node has exactly two outgoing edges. The splits are selected
by Breimanet al. [5] and is implemented in the CART using the Twoing Criteria and the obtained tree is pruned by
algorithm. The idea is to find for each split in the tree &ost-Complexity Pruning. When provided CART can consider
surrogate split which uses a different input attribute and whichisclassification costs in the tree induction. It also enables
most resembles the original split. If the value of the inpuisers to provide prior probability distribution.
attribute used in the original split is missing, then it is possible An important feature of CART is its ability to generate
to use the surrogate split. The resemblance between two bingggression trees. Regression trees are trees where their leaf
splits over sample S is formally defined as: predicts a real number and not a class. In case of regression
CART looks for splits that minimize the prediction squared
error (The Least-Squared Deviation). The prediction in each

res(a;, doms (a;),doms(a;),aj, domy(a;), domsa(aj),S) = leaf is determined based on the weighted mean for node.
‘Uaiedoml(ai) AND ajedoml(aj)S’ D. CHAID
5]

Researchers in applied statistics have developed starting
|Jaied07”2(ai) AND_ajedoms(a;) S | (25) from early seventies several procedures for generating de-
|S] cision trees, such as: AID [49], MAID [50], THAID [51]
and CHAID [52]. CHIAD (Chisquare-Automatic-Interaction-
doma!n todom (a;) a_nd.domz(ai).. The alternative split refers 5&21(122082“)/\{\/?; Zggw?:gutdaet?rl%ﬁ, (t:OH :fg‘ (fjilr:ed Sntohrglgg:r at
to attributea; and splits its domain t(,joml_(aj) anddg@(aj). of values inV; that is least significantly different with respect
Loh and Sh'h [28] suggest est|mat|_ng the missing Vall{S the target attribute. The significant difference is measured
based on other instances. On the learning phase if the valug,0ty,o , \ajue obtained from a statistical test. The statistical
anominal attributes; in tuple ¢ is missing, then itis estimated oy seq depends on the type of target attribute. If the target
by it mode over all instances having the same target attl’lblgﬁribute is continuous, afF test is used, if it is nominal,
value. Formally, then a Pearson chi-squared test is used, if it is ordinal, then a
likelihood-ratio test is used.
For each selected pair CHAID checks if the p value obtained
est(a;,yq, §) = argmax ‘Uai:vi,j AND y:yq5| (26) s greater than a certain merge threshold. If the answer is
vi,g €dom(az) positive it merges the values and searches for an additional

wherey, denote the value of the target attribute in the tupleotential pair to be merged. The process is repeated until no

¢. If the missing attribute:; is numeric then instead of usingsignificant pairs are found. _ N
mode Ofaz- it is more appropriate to use its mean. It then selects the best Input attribute to be used for Spllttlng

the current node, such that each child node is made of a group
of homogeneous values of the selected attribute. Note that no
X. DECISION TREESINDUCERS split is performed if the adjusted p value of the best input
A. D3 attribute is not less than certain split threshold. This procedure
’ stops also when one of the following conditions is fulfilled:
Quinlan [11] has proposed the ID3 algorithm. It is con- Maximum tree depth is reached.
sidered as a very simple decision tree algorithm. ID3 usesMinimum number of cases in node for being a parent is
Information Gain as Splitting Criteria. The growing stopseached, so it can not be split any further.
when all instances belong to a single value of target feature otMinimum number of cases in node for being a child node
when best information gain is not greater than zero. ID3 doisreached.
not apply any pruning procedure. It does not handle numericCHAID handles missing values by treating them all as a
attributes neither missing values. single valid category. CHAID does not perform pruning.

+

When the first split refers to attribute; and splits its
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E. QUEST « Decision trees are capable to handle both nominal and

Loh and Shih [28] have presented the QUEST (Quick, Numeric input attributes.
Unbiased, Efficient, Statistical Tree) algorithm. QUEST sup- * D€cision tree representation is rich enough to represent
ports univariate and linear combination splits. For each split, any discrete-value classifier.
the association between each input attribute and the target Decision trees are capable to handle datasets that may
attribute is computed using the ANOVA F-test or Levene's test Nave errors.
(for ordinal and continuous attributes) or Pearson’s chi-square® Decision trees are capable to handle datasets that may
(for nominal attributes). If the target attribute is multinomial, ~ have missing values. _ _
two-means clustering is used to create two super-classes, Decision trees are considered to be a nonparametric
The attribute that obtains the highest association with the Method; meaning decision trees have no assumptions on
target attribute is selected for splitting. Quadratic Discriminant ~ the space distribution and on the classifier structure.
Analysis (QDA) is applied to find the optimal splitting point On the other hand decision trees have disadvantages such
for the input attribute. QUEST has negligible bias and it yieldgs:
a binary decision trees. Ten-fold cross-validation is used to. Most of the algorithms (like ID3 and C4.5) require that
prune the trees. the target attribute will have only discrete values.

« As decision trees use "divide and conquer” method, they
tend to perform well if a few highly relevant attributes
exist, but less so if many complex interactions are present.
One of the reasons for that is that other classifiers
can compactly describe a classifer that would be very
challenging to represent using a decision tree. A simple
illustration of this phenomenon is the replication problem
[53] of decision trees. Since most decision trees divide
the instance space into mutually exclusive regions to
TABLE | represent a concept, in some cases the tree should contain
several duplications of the same subtree in order to
represent the classifier. For instance if the concept follows

F. Reference to Other Algorithms

Table | describes other decision trees algorithms available
in the literature. Obviously there are many other algorithms
which are not included in this table. Nevertheless most of
these algorithms are variation of the algorithmic framework
presented above. A profound comparison of the above algo-
rithms and many others has been conducted in [72].

ADDITIONAL DECISION TREESINDUCERS

Algorithm Description _ Reference the following binary functiory = (A1 N A2) U (A3 N As)
CALS Designec  specificay  forl [74] then the minimal univariate decision tree that represents
FACT An earlier version of QUEST] [75] this function is illustrated in Figure 3. Note that the tree
Uses statistical tests to selet contains two copies of the same subtree.
an attribute for splitting each « The greedy characteristic of decision trees leads to an-
node and then uses discrim)- . L. N
nant analysis to find the split other dlse}Q\/_antage that. ;hould be pomt it. Thls_ is its
point. over-sensitivity to the training set, to irrelevant attributes
LMDT Constructs a decision tree [76] and to noise [12].

based on multivariate tests that
are linear combinations of the
attributes.
T1 A one-level decision tree that [77]
classifies instances using only
one attribute. Missing values
are treated as a "special value/'.
Support both continuous an
nominal attributes.

PUBLIC Integrates the growing and [78]
pruning by using MDL cost.
MARS A multiple regression function [79]

is approximated using lineal
splines and their tensor prod-

ucts. Fig. 3. lllustration of Decision Tree with Replication
X|. ADVANTAGES AND DISADVANTAGES OF DECISION XIl. SPECIAL CASES OFTOP-DOWN DECISION TREES
TREES INDUCTION

Several advantages of the decision tree as a classificatfonOblivious Decision Trees

tool have been pointed out in the literature: Oblivious Decision Trees are decision trees in which all
« Decision Trees are self-explanatory and when compacteddes at the same level test the same attribute. Despite its

they are also easy to follow. Furthermore decision treesstriction, oblivious decision trees are found to be effective

can be converted to a set of rules. Thus this representatas a feature selection procedure. Almuallim and Dietterich

is considered as comprehensible. [54] as well as Schlimmer [55] have proposed forward feature
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selection procedure by constructing oblivious decision treexs good as the accuracy of a single decision tree induced from
whereas Langley and Sage [56] suggested backward selectlom entire dataset.
using the same means. Kohavi and Sommer [57] have showedlehta et al. [62] have proposed SLIQ an algorithm that
that oblivious decision trees can be converted to a decisidoes not require loading the entire dataset into the main
table. memory, instead it uses secondary memory (disk) namely a
Recently Laset al.[58] have suggested a new algorithm forcertain instance is not necessarily resident in main memory
constructing oblivious decision trees, called IFN (Informatioall the time. SLIQ creates a single decision tree from the
Fuzzy Network) that is based on information theory. entire dataset. However, this method also has upper limit for
Figure ?? illustrates a typical oblivious decision tree withthe largest dataset that can be processed because it uses a data
four input features: glucose level (G), age (A), Hypertensiatructure that scales with the dataset size and this data structure
(H) and Pregnant (P) and the Boolean target feature repietequired to be resident in main memory all the time.
senting whether that patient suffers from diabetes. Each layeiShaferet al. [63] have presented a similar solution called
is uniquely associated with an input feature by representiSPRINT. This algorithm induces decision trees relatively
the interaction of that feature and the input features of thgickly and removes all of the memory restrictions from
previous layers. The number that appears in the termirgdcision tree induction. SPRINT scales any impurity based
nodes indicates the number of instances that fit this path. split criteria for large datasets.
example: regarding patients whose glucose level is less tharGehrkeet al.[64] introduced RainForest; a unifying frame-
107 and their age is greater than 50, 10 of them are positivelprk for decision tree classifiers that are capable to scale
diagnosed with diabetes while 2 of them not diagnosed witlny specific algorithms from the literature (including C4.5,
diabetes. CART and CHAID). In addition to its generality, RainForest
The decision tree is built by a greedy algorithm, which trieignproves SPRINT on a factor of three. In contrast to SPRINT,
to maximize the mutual information measure in every layefiowever, RainForest requires a certain minimum amount of
The recursive search for explaining attributes is terminat@gain memory, proportional to the set of distinct values in
when there is no attribute that explains the target with statig-column of the input relation. However, this requirement is

tical significance. considered modest and reasonable.
Other decision tree inducers for large datasets can be found
w50 ~<] 10 in the works of Alsabtiet al. [65], Freitas and Lavington [66]
» ®§ @VQ aon and Gehrkeet al. [67].
%‘Q (1556) _
e >30_~<] (06) C. Incremental Induction
K@%ﬂ :? 20) Most of the decision trees inducers require rebuilding the
TS tree from scratch for reflecting new data that has became
True <] ©.1 available. Several researches have addressed the issue of
updating decision trees incrementally.
Fig. 4. lllustration of Oblivious Decision Tree Utgoff [68], [69] presents several methods for updating

decision trees incrementally. An extension to the CART al-
gorithm that is capable to induce incrementally is described

B. Decision Trees Inducers For Large Datasets in Crawford [70]).
With the recent growth in the amount of data collected by
information systems there is a need for decision trees that can XIIl. CONCLUSION
handle large datasets. This paper presented an updated survey of top-down deci-

~ Catlett [59] has examined two methods for efficiently growsjon trees induction algorithms. It has been shown that most
ing decision trees from a large database by reducing thgjorithms fit into a simple algorithmic framework whereas
computation complexity required for induction. However thehe differences concentrate on the splitting criteria, stopping
main memory before induction. Namely the largest dataset that
can be induced is bounded by the memory size.

Fifield [60] suggests parallel implementation of the ID3

i i i 1] S. R. Safavin and D. Landgrebe. A survey of decision tree classifier
Algor.lthm' Howeyer like Catlett it assumes that all dataset methodology. IEEE Trans. on Systems, Man and Cybernetics, 21(3):660-
can fit in the main memory. 674, 1991.

Chan and Stolfo [61] suggest to partition the datasetg] S. K. Murthy, Automatic Construction of Decision Trees from Data:
into several disjoin datasets, such that each dataset is loaded 9(4“)"};'2'5'3_";;'95’“233{3 Survey. Data Mining and Knowledge Discovery,
Separate_ly_ into the memory and u;ed to induce a dec_'3|0n ”E[%- R. Kohavi an|d J. R. Quinlan. Decision-tree discovery. In Will Klosgen
The decision trees are then combined to create a single clas- and Jan M. Zytkow, editors, Handbook of Data Mining and Knowledge
sifier. However, the experimental results indicate that partition Discovery, chapter 16.1.3, pages 267-276. Oxford University Press,
may .I’Qduge the classification perfo_rmance, meaning th.at th8 s. Grumbach and T. Milo: Towards Tractable Algebras for Bags. Journal
classification accuracy of the combined decision trees is not of Computer and System Sciences 52(3): 570-588, 1996.

REFERENCES



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002

(5]
(6]
(7]

(8]
9]

(20]
(1]
[12]

(23]

[14]

[15]

[16]

[17]

(28]
[29]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
(28]

[29]

[30]
(31]
(32
(33]

[34]

[35]

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification afg86]
Regression Trees. Wadsworth Int. Group, 1984.

J.R. Quinlan, Simplifying decision trees, International Journal of Mar{37]
Machine Studies, 27, 221-234, 1987.

T. R. Hancock, T. Jiang, M. Li, J. Tromp: Lower Bounds on Learning
Decision Lists and Trees. Information and Computation 126(2): 11438]
122, 1996.

L. Hyafil and R.L. Rivest. Constructing optimal binary decision trees is
NP-complete. Information Processing Letters, 5(1):15-17, 1976 [39]
H. Zantema and H. L. Bodlaender, Finding Small Equivalent Decision
Trees is Hard, International Journal of Foundations of Computer Sciengg]
11(2):343-354, 2000.

G.E. Naumov. NP-completeness of problems of construction of optimgi1]
decision trees. Soviet Physics: Doklady, 36(4):270-271, 1991.

J.R. Quinlan, Induction of decision trees, Machine Learning 1, 81-10f2]
1986.

J. R. Quinlan, C4.5: Programs For Machine Learning. Morgan Kauf43]
mann, Los Altos, 1993.

S. B. Gelfand, C. S. Ravishankar, and E. J. Delp. An iterative growing
and pruning algorithm for classification tree design. IEEE Transacti({m]
on Pattern Analysis and Machine Intelligence, 13(2):163-174, 1991.

F. Attneave, Applications of Information Theory to Psychology. Holt[45]
Rinehart and Winston, 1959.

J.R. Quinlan, Decision Trees and Multivalued Attributes, J. Richard
ed., Machine Intelligence, V. 11, Oxford, England, Oxford Univ. Press,
pp. 305-318, 1988.

R. Lopez de Mantras, A distance-based attribute selection measure for
decision tree induction, Machine Learning 6, 81-92, 1991. 47]
U. M. Fayyad and K. B. Irani. The attribute selection problem ir{
decision tree generation. In proceedings of Tenth National Conference
on Atrtificial Intelligence, pages 104-110, Cambridge, 1992. MA: AAAI
Press/MIT Press. 48]
J. H. Friedman. A recursive partitioning decision rule for nonparametr[c
classifiers. IEEE Trans. on Comp., C26:404-408, 1977.

E. Rounds, A combined non-parametric approach to feature selecti@&]
and binary decision tree design, Pattern Recognition 12, 313-317, 1980.
P. E. Utgoff and J. A. Clouse, A Kolmogorov-Smirnoff Metric for Deci-
sion Tree Induction, Technical Report 96-3, University of Massachuset{go]
Department of Computer Science, Amherst, MA

X. Liand R. C. Dubes, Tree classifier design with a Permutation statist{g’,l]
Pattern Recognition vol. 19, 229-235, 1986.

P. C. Taylor and B. W. Silverman. Block diagrams and splitting criteri%2
for classification trees. Statistics and Computing, 3(4):147-161, Dece 2]
ber 1993.

J. K. Martin. An exact probability metric for decision tree splitting and®3l
stopping. An Exact Probability Metric for Decision Tree Splitting and
Stopping, Machine Learning, 28 (2-3):257-291, 1997. (54
E. Baker AND A. K. Jain. On feature ordering in practice and some
finite sample effects. IProceedings of the Third International Joint
Conference on Pattern Recognitigmages 45-49, San Diego, CA, 1976.[55]
M. BenBassat. Myopic policies in sequential classification. IEEE Trans.
on Computing, 27(2):170-174, February 1978.

J. Mingers. An empirical comparison of pruning methods for decision
tree induction. Machine Learning, 4(2):227-243, 1989 [
W. L. Buntine, T. Niblett: A Further Comparison of Splitting Rules for
Decision-Tree Induction. Machine Learning, 8: 75-85, 1992.

Loh and Shih, Split selection methods for classification trees. Statistit&/]
Sinica, 7: 815-840, 1997.

S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of
oblique decision trees. Journal of Artificial Intelligence Research, 2:1-
33, August 1994, [58
R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

Bennett and O.L. Mangasarian. Multicategory discrimination via linedp®]
programming. Optimization Methods and Software, 3:29-39, 1994.

J. Sklansky and G. N. Wassel. Pattern classifiers and trainable machirié€]
SpringerVerlag, New York, 1981.

Y. K. Lin and K. Fu. Automatic classification of cervical cells using a61]
binary tree classifier. Pattern Recognition, 16(1):69-80, 1983.

W.Y. Loh and N. Vanichsetakul. Tree-structured classification via gef62]
eralized discriminant Analysis. Journal of the American Statistical
Association, 83:715-728, 1988.

G. H. John. Robust linear discriminant trees. In D. Fisher and H. Lenff3]
editors, Learning From Data: Atrtificial Intelligence and Statistics, V
Lecture Notes in Statistics, Chapter 36, pages 375-385. Springer-Verlag,
New York, 1996.

6]

11

Paul E. Utgoff. Perceptron trees: A case study in hybrid concept
representations. Connection Science, 1(4):377-391, 1989.

D. Lubinsky. Algorithmic speedups in growing classification trees by
using an additive split criterion. Proc. Al&Statistics93, pp. 435-444,
1993.

I. K. Sethi and J. H. Yoo. Design of multicategory, multifeature split
decision trees using perceptron learning. Pattern Recognition, 27(7):939-
947, 1994.

I. Bratko and M. Bohanec, Trading accuracy for simplicity in decision
trees, Machine Learning 15, 223-250, 1994.

T. Niblett and I. Bratko, Learning Decision Rules in Noisy Domains,
Proc. Expert Systems 86, Cambridge: Cambridge University Press, 1986.
H. Almuallim: An Efficient Algorithm for Optimal Pruning of Decision
Trees. Atrtificial Intelligence 83(2): 347-362, 1996.

J Rissanen, Stochastic complexity and statistical inquiry. World Scien-
tific, 1989.

J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using The
Minimum Description Length Principle. Information and Computation,
80:227-248, 1989

Manish Mehta, Jorma Rissanen, Rakesh Agrawal: MDL-Based Decision
Tree Pruning. KDD 1995: 216-221.

C. Wallace and J. Patrick, Coding decision trees, Machine Learning 11:
7-22, 1993.

M. Kearns and Y. Mansour, A fast, bottom-up decision tree pruning
algorithm with near-optimal generalization, in J. Shavlik, ed., ‘Machine
Learning: Proceedings of the Fifteenth International Conference’, Mor-
gan Kaufmann Publishers, Inc., pp. 269-277, 1998.

F. Esposito, D. Malerba and G. Semeraro.

A Comparative Analysis of Methods for Pruning Decision Trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):476-492, 1997.

J. Quinlan, Unknown attribute values in induction. In Segre, A. (Ed.),
Proceedings of the Sixth International Machine Learning Workshop
Cornell, New York. Morgan Kaufmann, 1989.

J. A. Sonquist, E. L. Baker, and J. N. Morgan. Searching for Structure.
Institute for Social Research, Univ. of Michigan, Ann Arbor, Ml, 1971.
M. W. Gillo, MAID: A Honeywell 600 program for an automatised
survey analysis. Behavioral Science 17: 251-252, 1972.

J. N. Morgan and R. C. Messenger. THAID: a sequential search program
for the analysis of nominal scale dependent variables. Technical report,
Institute for Social Research, Univ. of Michigan, Ann Arbor, Ml, 1973.
G. V. Kass. An exploratory technique for investigating large quantities
of categorical data. Applied Statistics, 29(2):119-127, 1980.

G. Pagallo and D. Hassler. Boolean feature discovery in empirical
learning. Machine Learning, 5(1), 1990.

] H. Almuallim and T.G. Dietterich, Learning Boolean concepts in the

presence of many irrelevant features. Artificial Intelligence, 69: 1-2, 279-
306, 1994.

Schlimmer, J. C. Efficiently inducing determinations: A complete and
systematic search algorithm that uses optimal pruning. In Proceedings
of the 1993 International Conference on Machine Learning, pp 284-290,
San Mateo, CA, Morgan Kaufman, 1993.

56] P. Langley and S. Sage, Oblivious decision trees and abstract cases. in

Working Notes of the AAAI-94 Workshop on Case-Based Reasoning,

pp 113-117, Seattle, WA: AAAI Press, 1994.

R. Kohavi and D. Sommerfield, Targeting business users with decision
table classifiers, in R. Agrawal, P. Stolorz & G. Piatetsky-Shapiro,

eds, ‘Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining’, AAAI Press, pp. 249-253, 1998.

] M. Last, O. Maimon, and E. Minkov, Improving Stability of Decision

Trees, International Journal of Pattern Recognition and Atrtificial Intel-
ligence, 16: 2,145-159, 2002.

J. Catlett. Mega induction: Machine Learning on Vary Large Databases,
PhD, University of Sydney, 1991.

D. J. Fifield. Distributed Tree Construction From Large Datasets, Bach-
elor's Honor Thesis, Australian National University, 1992.

P. Chan and S. Stolfo, On the Accuracy of Meta-learning for Scalable
Data Mining, J. Intelligent Information Systems, 8:5-28, 1997.

M. Mehta, R. Agrawal and J. Rissanen. SLIQ: A fast scalable classifier
for data mining: In Proc. If the fifth Int'l Conference on Extending
Database Technology (EDBT), Avignon, France, March 1996.

J. C. Shafer, R. Agrawal and M. Mehta, SPRINT: A Scalable Parallel
Classifier for Data Mining, Proc. 22nd Int. Conf. Very Large Databases,
T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and
Nandlal L. Sarda (eds), 544-555, Morgan Kaufmann, 1996.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002

[64]

(65]

[66]

[67]

(68]
[69]
[70]
[71]

[72]

[73]
[74]

[75]

[76]
[77]

[78]

[79]

J. Gehrke, R. Ramakrishnan, V. Ganti, RainForest - A Framework for
Fast Decision Tree Construction of Large Datasets,Data Mining and
Knowledge Discovery, 4 (2/3) 127-162, 2000.

K. Alsabti, S. Ranka and V. Singh, CLOUDS: A Decision Tree Classifier
for Large Datasets, Conference on Knowledge Discovery and Data
Mining (KDD-98), August 1998.

A. Freitas and S. H. Lavington, Mining Very Large Databases With
Parallel Processing, Kluwer Academic Publishers, 1998.

J. Gehrke, V. Ganti, R. Ramakrishnan, W. Loh: BOAT-Optimistic
Decision Tree Construction. SIGMOD Conference 1999: pp. 169-180,
1999.

P. E. Utgoff. Incremental induction of decision trees. Machine Learning,
4:161-186, 1989.

P. E. Utgoff, Decision tree induction based on efficient tree restructuring,
Machine Learning 29 (5): 1997.

S. L. Crawford. Extensions to the CART algorithm. Int. J. of ManMa-
chine Studies, 31(2):197-217, August 1989.

Loh and Shih, Families of splitting criteria for classification trees.
Statistics and Computing 1999, vol. 9, pp. 309-315.

Lim, Loh and Shih A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms .
Machine Learning 2000, vol. 40, pp. 203-228.

Shih, Selecting the best splits classification trees with categorical vari-
ables. Statistics and Probability Letters 2001, vol. 54, pp. 341-345.

W. Muller and F. Wysotzki. Automatic construction of decision trees for
classification. Annals of Operations Research, 52:231-247, 1994.

W. Y. Loh and N. Vanichsetakul. Tree-structured classification via
generalized discriminant Analysis. Journal of the American Statistical
Association, 83:715-728, 1988.

C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine
Learning, 19:45-77, 1995

R. C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63-90, 1993.

Rajeev Rastogi and Kyuseok Shim, PUBLIC: A Decision Tree Classi-
fier that Integrates Building and Pruning,Data Mining and Knowledge
Discovery, 4(4):315-344,2000.

J. H. Friedman, Multivariate Adaptive Regression Splines, The Annual
Of Statistics, 19, 1-141, 1991.



