
IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 1

Top-Down Induction of Decision Trees Classifiers –
A Survey

Lior Rokach and Oded Maimon

Abstract— Decision Trees are considered to be one of the most
popular approaches for representing classifiers. Researchers from
various disciplines such as statistics, machine learning, pattern
recognition, and data mining considered the issue of growing
a decision tree from available data. This paper presents an
updated survey of current methods for constructing decision tree
classifiers in top-down manner. The paper suggests a unified
algorithmic framework for presenting these algorithms and
provides profound descriptions of the various splitting criteria
and pruning methodology.

Index Terms— Classification, Decision Trees, Splitting Criteria,
Pruning Methods

I. I NTRODUCTION

SUpervised methods are methods that attempt to discover
relationship between the input attributes and the target

attribute. The relationship discovered is represented in a struc-
ture referred to as aModel. Usually models can be used for
predicting the value of the target attribute knowing the values
of the input attributes. It is useful to distinguish between two
main supervised models:Classification Models(Classifiers)
andRegression Models.

Regression models map the input space into a real-valued
domain, whereas classifiers map the input space into prede-
fined classes. For instance, classifiers can be used to classify
mortgage consumers to good (fully payback the mortgage on
time) and bad (delayed payback).

There are many alternatives to represent classifiers. The
decision tree is probably the most widely used approach for
this purpose. Originally it has been studied in the fields of
decision theory and statistics. However, it was found to be
effective in other disciplines such as data mining, machine
learning, and pattern recognition. Decision trees are also
implemented in many real-world applications.

Given the long history and the intense interest in this
approach, it is not surprising that several surveys on decision
trees are available in the literature, such as [1], [2], [3].
Nevertheless, this survey proposes a profound but concise
description of issues related specifically to top-down con-
struction of decision trees, which is considered the most
popular construction approach. This paper aims to organize
all significant methods developed into a coherent and unified
reference.

II. PRELIMINARIES

In a typical supervised learning, a training set of labeled
examples is given and the goal is to form a description that
can be used to predict previously unseen examples.

The training set can be described in a variety of languages.
Most frequently, they are described as aBag Instanceof a

certainBag Schema.The bag schema provides the description
of the attributes and their domains. Formally bag schema
is denoted asR(A ∪ y). Where A denote the set of input
attributes containingn attributes:A = {a1, ..., ai, ..., an} and
y represents the class variable or the target attribute.

Attributes (sometimes called field, variable or feature) are
typically one of two types: nominal (values are members
of an unordered set), or numeric (values are real numbers).
When the attributeai is nominal it is useful to denote
by dom(ai) = {vi,1, vi,2, ..., vi,|dom(ai)|} its domain values,
where |dom(ai)|stands for its finite cardinality. In a similar
way, dom(y) = {c1, ..., c|dom(y)|} represents the domain of
the target attribute. Numeric attributes have infinite cardinali-
ties.

The set of all possible examples is called the instance space.
The instance space is defined as a Cartesian product of all
the input attributes domains:X = dom(a1) × dom(a2) ×
...× dom(an). The Universal Instance Space (or the Labeled
Instance Space)U is defined as a Cartesian product of all
input attribute domains and target attribute domain, i.e.:U =
X × dom(y).

The training set is a bag instance consisting of a set of m
tuples (also known asrecords). Each tuple is described by
a vector of attribute values in accordance with the definition
of the bag schema. Formally the training set is denoted as
S(R) = (< x1, y1 >, ..., < xm, ym >) wherexq ∈ X and
yq ∈ dom(y).

Usually, it is assumed that the training set tuples are gen-
erated randomly and independently according to some fixed
and unknown joint probability distributionD over U . Note
that this is a generalization of the deterministic case when a
supervisor classifies a tuple using a functiony = f(x).

This paper uses the common notation of bag algebra to
present projection (π) and selection (σ) of tuples (see for
instance [4]).

Originally the machine learning community has introduced
the problem ofConcept Learning. To learn a concept is to infer
its general definition from a set of examples. This definition
may be either explicitly formulated or left implicit, but either
way it assigns each possible example to the concept or not.
Thus, a concept can be formally regarded as a function from
the set of all possible examples to the Boolean set{True,
False}.

Other communities, such as the data mining community
prefer to deal with a straightforward extension of theConcept
Learning, know asThe Classification Problem. In this case
we search for a function that maps the set of all possible
examples into predefined set of class labels and not limited to
the Boolean set.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 2

An Inducer, is an entity that obtains a training set and forms
a classifier that represents the generalize relationship between
the input attributes and the target attribute.

The notationI represents an inducer andI(S) represents
a classifier which was induced by performingI on a training
setS.

Most frequently the goal of the Classifiers Inducers is
formally defined as:

Given a training set S with input attributes setA =
{a1, a2, ..., an} and target attributey from a unknown fixed
distribution D over the labeled instance space, the goal is
to induce an optimal classifier with minimum generalization
error.

Generalization error is defined as the misclassification rate
over the distributionD. In case of the nominal attributes it
can be expressed as:

∑

<x,y>∈U

D(x, y) · L(y, I(S)(x)) (1)

WhereL(y, I(S)(x)is the loss function defined as:

L(y, I(S)(x)) =
{

0 if y = I(S)(x)
1 if y 6= I(S)(x) (2)

In case of numeric attributes the sum operator is replaced
with the appropriate integral operator.

The classifier generated by the inducer can be used to
classify an unseen tuple either by explicitly assigning it to
a certain class (Crisp Classifier) or by providing a vector of
probabilities representing the conditional probability of the
given instance to belong to each class (Probabilistic Classifier).

III. D ECISION TREE REPRESENTATION

A Decision tree is a classifier expressed as a recursive
partition of the instance space. The Decision tree consists of
nodes that form aRooted Tree, meaning it is aDirected Tree
with a node calledroot that has no incoming edges. All other
nodes have exactly one incoming edge. A node with outgoing
edges is calledinternal nodeor test nodes. All other nodes
are calledleaves(also known asterminal nodesor decision
nodes).

In the decision tree each internal node splits the instance
space into two or more subspaces according to a certain
discrete function of the input attributes values. In the simplest
and most frequent case each test considers a single attribute,
such that the instance space is partitioned according to the
attribute’s value. In the case of numeric attributes the condition
refers to a range.

Each leaf is assigned to one class representing the most
appropriate target value. Alternatively the leaf may hold a
probability vector indicating the probability of the target value
having a certain value.

Instances are classified by navigating them from the root of
the tree down to a leaf, according to the outcome of the tests
along the path.

Figure 1 describes a decision tree that reasons whether or
not a potential customer will respond to a direct mailing.
Internal nodes are represented as circles whereas leaves are

denoted as triangles. Note that this decision tree incorporates
both nominal and numeric attributes. Given this classifier,
the analyst can predict the response of a potential customer
(by sorting it down the tree), and understand the behavioral
characteristics of the entire population of potential customers
- with respect to direct mailing. Each node is labeled with
the attribute it tests, and its branches are labeled with its
corresponding values.

Fig. 1. Decision tree presenting response to direct mailing

In case of numeric attributes, decision trees can be ge-
ometrically interpreted as a collection of hyperplanes, each
orthogonal to one of the axes.

Naturally decision makers prefer less complex decision
tree, as it is considered more comprehensible. Furthermore
according to Breimanet al. [5] the tree complexity has a
crucial effect on its accuracy performance. The tree complexity
is explicitly controlled by the stopping criteria used and the
pruning method employed. Usually theTree Complexityis
measured by one of the following metrics:
• The total number of nodes
• Total number of leaves
• Tree Depth
• Number of attributes used
Decision tree induction is closely related to rule induction.

Each path from the root of a decision tree to one of its leaves
can be transformed into a rule simply by conjoining the tests
along the path to form the antecedent part, and taking the
leaf’s class prediction as the class value. For example, one
of the paths in Figure 1 can be transformed into the rule: ”If
customer age≤ 30, and the gender of the customer is ”Male” -
then the customer will respond to the mail”. The resulting rule
set can then be simplified to improve its comprehensibility to
a human user, and possibly its accuracy [6].

IV. A LGORITHMIC FRAMEWORK FORDECISION TREES

Decision Tree inducers are algorithms that automatically
construct a decision tree from a given dataset. Typically the

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 3

goal is to find the optimal decision tree by minimizing the
generalization error. However, other target functions can be
also defined, for instance: minimizing the number of nodes or
minimizing the average depth.

Induction of an optimal decision tree from a given data is
considered to be hard task. Hancocket al. [7] have showed
that finding a minimal decision tree consistent with the training
set is NP-Hard. Hyafil and Rivest [8] have showed that
constructing a minimal binary tree with respect to the expected
number of tests required for classifying an unseen instance is
NP-complete. Even finding the minimal equivalent decision
tree for a given decision tree [9] or building the optimal
decision tree from decision tables is known to be NP-Hard
[10].

The last references indicate that using optimal decision tree
algorithms is feasible only in small problems. Consequently,
heuristics methods are required for solving the problem.
Roughly speaking, these methods can be divided into two
groups: Top-Down and Bottom-Up with clear preference in
the literature to the first group.

Figure 2 presents a typical algorithmic framework for top-
down inducing of a decision tree. Note that these algorithms
are greedy by nature and construct the decision tree in a top-
down, recursive manner (also known as ”divide and conquer”).
In each iteration, the algorithm considers the partition of the
training set using the outcome of a discrete function of the
input attributes. The selection of the most appropriate function
is made according to some splitting measures. After the selec-
tion of an appropriate split, each node further subdivides the
training set into smaller subsets, until no split gains sufficient
splitting measure or a stopping criteria is satisfied.

There are various top-down decision trees inducers such as
ID3 [11], C4.5 [12], CART [5]. Some of which consists of two
conceptual phases: Growing and Pruning (C4.5 and CART).
Other inducers perform only the growing phase.

V. UNIVARIATE SPLITTING CRITERIA

A. Overview

In most of the cases the discrete splitting functions are
univariate. Univariate means that an internal node is split
according to the value of a single attribute. Consequently the
inducer searches for the best attribute upon which to split.
There are various univariate criteria. These criteria can be
characterized in different ways, such as:

According to the origin of the measure: Information Theory,
Dependence, and Distance.

According to the measure structure: Impurity Based criteria,
Normalized Impurity Based criteria and Binary criteria.

The following sections describe the most common criteria
in the literature.

B. Impurity Based Criteria

Given a random variablex with k discrete values, dis-
tributed according toP = (p1, p2, ..., pk), an impurity measure
is a functionφ:[0, 1]k → R that satisfies the following
conditions:
• φ (P)≥0

procedure DTInducer(S, A, y)
1: T = TreeGrowing(S, A, y)
2: Return TreePruning(S,T)

procedure TreeGrowing(S, A, y)
1: Create a treeT
2: if One of the Stopping Criteria is fulfilledthen
3: Mark the root node inT as a leaf with the most common

value ofy in S as the class.
4: else
5: Find a discrete functionf(A) of the input attributes val-

ues such that splittingS according tof(A)’s outcomes
(v1,. . . ,vn) gains the best splitting metric.

6: if best splitting metric≥ tresholdthen
7: Label the root node inT asf(A)
8: for each outcomevi of f(A) do
9: Subtreei = TreeGrowing(σf(A)=vi

S, A, y).
10: Connect the root node ofT to Subtreei with an

edge that is labelled asvi

11: end for
12: else
13: Mark the root node inT as a leaf with the most

common value ofy in S as the class.
14: end if
15: end if
16: Return T

procedure TreePruning(S, T, y)
1: repeat
2: Select a nodet in T such that pruning it maximally

improve some evaluation criteria
3: if t 6= Ø then
4: T = pruned(T, t)
5: end if
6: until t=Ø
7: ReturnT

Fig. 2. Top-Down Algorithmic Framework for Decision Trees Induction.
The inputs areS (Training Set),A (Input Feature Set) andy (Target Feature)

• φ (P) is minimum if∃i such that component pi = 1.
• φ (P) is maximum if∀i, 1 ≤ i ≤ k, pi = 1/k.
• φ (P) is symmetric with respect to components of P.
• φ (P) is smooth (differentiable everywhere) in its range.

Note: if the probability vector has a component of 1 (the
variablex gets only one value), then the variable is defined as
pure. On the other hand, if all components are equal the level
of impurity reach maximum.

Given a training setS the probability vector of the target
attributey is defined as:

Py(S) = (
|σy=c1S|
|S| , ...,

∣∣σy=c|dom(y)|S
∣∣

|S|) (3)

The goodness-of-split due to discrete attributeai is defined
as reduction in impurity of the target attribute after partitioning
S according to the values vi,j ∈ dom(ai):

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 4

∆Φ(ai, S) = φ(Py(S))

−
|dom(ai)|∑

j=1

|σai=vi,j S|
|S| · φ(Py(σai=vi,j

S)) (4)

Information Gain [6] is an Impurity Based Criteria that uses
the entropy measure (origin from information theory) as the
impurity measure.

InformationGain(ai, S) = Entropy(y, S)

−
∑

vi,j∈dom(ai)

∣∣σai=vi,j
S

∣∣
|S| · Entropy(y, σai=vi,j

S) (5)

Where:

Entropy(y, S) =
∑

cj∈dom(y)

−
∣∣σy=cj

S
∣∣

|S| log2

∣∣σy=cj
S

∣∣
|S|

C. Gini Index

Gini Index is an Impurity Based Criteria that meausures the
divergence between the probability distributions of the target
attribute’s values. The Gini index has been used in various
works (see [5] and [13]). The Gini index is defined as:

Gini(y, S) = 1 −
∑

cj∈dom(y)

(

∣∣σy=cj S
∣∣

|S|)2 (6)

Consequently the evaluation criteria for selecting the at-
tribute ai is defined as:

GiniGain(ai, S) = Gini(y, S)

−
∑

vi,j∈dom(ai)

∣∣σai=vi,j S
∣∣

|S| ·Gini(y, σai=vi,j S) (7)

D. Likelihood Ratio Chi-Squared Statistics

The likelihood-ratio is defined as [14]:

G2(ai, S) = 2 · ln(2) · |S| · InformationGain(ai, S) (8)

This ratio is useful for measuring the statistical significance
of the information gain criteria. The zero hypothesis (H0) is
that the input attribute and the target attribute are conditionally
independent. If H0 holds, the test statistic is distributed asχ2

with degrees of freedom equal to:(dom(ai)−1)·(dom(y)−1).

E. Normalized Impurity Based Criteria

The Impurity Based Criterion described above is biased
towards attributes with larger domain values. Namely it prefers
input attributes with many values over attributes with less
values [11]. For instance, an input attribute that represents
the national security number, will probably get the highest
information gain. However, adding this attribute to a decision
tree will result with a poor generalized accuracy.

For that reason, it is useful to ”normalize” the impurity
based measures, as described in the following sections.

F. Gain Ratio

Quinlan [12] proposes theGain Ratio measure that ”nor-
malize” the information gain as following:

GainRatio(ai, S) =
InformationGain(ai, S)

Entropy(ai, S)
(9)

Note that this ratio is not defined when the denominator
is zero. Also the ratio may tend to favor attributes for which
the denominator is very small. Consequently it is suggested
in two stages. First the information gain is calculated for all
attributes. Then taking into consideration only attributes that
have performed at least as good as the average information
gain, the attribute that has obtained the best ratio gain is
selected. Quinlan [15] has showed that the gain ratio tends
to outperform simple information gain criteria both from the
accuracy aspect as well as from classifier complexity aspects.

G. Distance Measure

Lopez de Mantras [16], introduced a distance measure. Like
Gain Ratio this measure also normalizes the impurity measure.
However, it suggests normalizing it in a different way:

DM(ai, S) =
∆Φ(ai, S)

− ∑
vi,j∈dom(ai)

∑
ck∈dom(y)

b · log2 b
(10)

Where:

b =
|σai=vi,j AND y=ck

S|
|S|

H. Binary criteria

The binary criteria are used for creating binary decision
trees. These measures are based on the division of the input
attribute domain into two subdomains.

Let β(ai, d1, d2, S) denote the binary criterion value for
attributeai over sampleS whend1 andd2 are its corresponded
subdomains. The value obtained for the optimal division of the
attribute domain into two mutually exclusive and exhaustive
subdomains, is used for comparing attributes, namely:

β∗(ai, S) = max β(ai, d1, d2, S) (11)

s.t.

d1 ∪ d2 = dom(ai)
d1 ∩ d2 = ∅

I. Twoing Criteria

Breiman et al. [5] point out that the Gini index may
encounter problems when the domain of the target attribute is
relatively wide. In this case they suggest using binary criterion
called Twoing Criterion. This criterion is defined as:

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 5

twoing(ai, d1, d2, S) =

0.25 · |σai∈d1S|
|S| · |σai∈d2S|

|S| ·

(
∑

ci∈dom(y)

∣∣∣∣
|σai∈d1 AND y=ci

S|
|σai∈d1S|

− |σai∈d2 AND y=ci
S|

|σai∈d2S|

∣∣∣∣)2

(12)

When the target attribute is binary the Gini and twoing
criteria are equivalent. For multi-class problems the twoing
criteria prefers attributes with evenly divided splits.

J. Orthogonality Criterion

Fayyad and Irani [17] have presented the ORT criterion.
This binary criteria is defined as:

ORT (ai, d1, d2, S) = 1 − cosθ(Py,1, Py,2) (13)

Whereθ(Py,1, Py,2) is the angle between two distribution
vectorsPy,1 and Py,2 of the target attributey on the bags
σai∈d1S andσai∈d2S respectively.

Fayyad and Irani [17] showed that this criterion performs
better than the information gain and the Gini index for specific
problems constellation.

K. Kolmogorov-Smirnov Criteria

Friedman [18] and Rounds [19] have suggested a binary
criterion that uses Kolmogorov-Smirnov distance. Assuming
a binary target attribute, namelydom(y) = {c1, c2}, the
criterion is defined as:

KS(ai, d1, d2, S) =∣∣∣∣
|σai∈d1 AND y=c1S|

|σy=c1S|
− |σai∈d1 AND y=c2S|

|σy=c2S|

∣∣∣∣ (14)

Utgoff and Clouse [20] suggest extending this measure
to handle target attribute with multiple classes and missing
data values. Their results indicate that the suggested method
outperforms the gain ratio criteria.

L. Other Univariate Splitting Criteria

Additional univariate splitting criteria can be found in the
literature, such as permutation statistic [21], mean posterior
improvement [22], and hypergeometric distribution measure
[23].

M. Comparison of Univariate Splitting Criteria

Comparative studies of the splitting criteria described above,
and others, have been conducted by several researchers during
the last thirty years, such as [24], [25], [5], [26], [17], [27],
[28], [71], [73]. Most of these comparisons are based on em-
pirical results, although there are some theoretical conclusions.

Most of the researchers point out that in most of the cases
the choice of splitting criteria will not make much difference
on the tree performance. Each criterion is superior in some
cases and inferior in other, as the ”No-Free Lunch” theorem
suggests.

VI. M ULTIVARIATE SPLITTING CRITERIA

In Multivariate Splitting Criteria several attributes may par-
ticipate in a single node split test. Obviously, finding the best
multivariate criteria is more complicated than finding the best
univariate split. Furthermore, although this type of criteria may
dramatically improve the tree’s performance, these criteria are
much less popular than the univariate criteria.

Most of the Multivariate Splitting Criteria are based on
linear combination of the input attributes. Finding the best
linear combination can be performed using greedy search
[5], [29] linear programming [30], [31], linear discriminant
analysis [30], [18], [32], [33], [34], [35] and others [36], [37],
[38].

VII. STOPPINGCRITERIA

The growing phase continues until a stopping criteria is
triggered. The following conditions are common stopping
rules:

All instances in the training set belong to a single value of
y.

The maximum tree depth has been reached.
The number of cases in the terminal node is less than the

minimum number of cases for parent nodes.
If the node were split, the number of cases in one or more

child nodes would be less than the minimum number of cases
for child nodes.

The best splitting criteria is not greater than a certain
threshold.

VIII. P RUNING METHODS

A. Overview

Employing tightly stopping criteria tends to create small and
under-fitted decision trees. On the other hand, using loosely
stopping criteria tends to generate large decision trees that
are over-fitted to the training set. Pruning methods originally
suggested by Breimanet al. [5] were developed for solving this
dilemma. According to this methodology a loosely stopping
criterion is used, letting the decision tree to overfit the training
set. Then the overfitted tree is cut back into smaller tree by
removing sub branches that are not contributing to the gener-
alization accuracy. It has been shown in various studies that
employing pruning methods can improve the generalization
performance of a decision tree especially in noisy domains.

Another key motivation of pruning is ”trading accuracy for
simplicity” as presented by Bratko and Bohanec [39]. When
the goal is to produce a sufficiently accurate compact concept
description, pruning is highly useful. Within this process the
initial decision tree is seen as a completely accurate one, thus
the accuracy of a pruned decision tree indicates how close it
is to the initial tree.

There are various techniques for pruning decision trees.
Most of them perform top down or bottom up traversal of the
nodes. A node is pruned if this operation improves a certain
criteria. The following sections describe the most popular
techniques.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 6

B. Cost-Complexity Pruning

Breimanet al’s pruning method [5], cost complexity pruning
(also known as weakest link pruning or error complexity
pruning) proceeds in two stages. In the first stage, a sequence
of trees T0, T1, . . . , Tk are built on the training data where
T0 is the original tree before pruning and Tk is the root tree.

In the second stage, one of these trees is chosen as the
pruned tree, based on its generalization error estimation.

The tree Ti+1 is obtained by replacing one or more of
the sub-trees in the predecessor tree Ti with suitable leaves.
The sub-trees that are pruned are those that obtain the lowest
increase in apparent error rate per pruned leaf.:

α =
ε(pruned(T, t), S)− ε(T, S)

|leaves(T)| − |leaves(pruned(T, t))| (15)

Where ε(T, S) indicates the error rate of the treeT over
the sampleS and |leaves(T)| denote the number of leaves in
T . pruned(T,t)denote the tree obtained by replacing the node
t in T with a suitable leaf.

In the second phase the generalization error of each pruned
tree T0, T1, . . . , Tk is estimated. The best pruned tree is
then selected. If the given dataset is large enough the authors
suggest to break it into training set and pruning set. The trees
are constructed using the training set and evaluated on the
pruning set. On the other hand, if the given dataset is not large
enough they propose to use cross-validation methodology,
despite the computational complexity implications.

C. Reduced Error Pruning

Quinlan [6] has suggested a simple procedure for prun-
ing decision trees known as Reduced Error Pruning. While
traversing over the internal nodes from the bottom to the
top, the procedure checks for each internal node, whether
replacing it with the most frequent class does not reduce
the tree’s accuracy. In this case, the node is pruned. The
procedure continues until any further pruning would decrease
the accuracy.

In order to estimate the accuracy Quinlan proposes to use
a pruning set. It can be shown that this procedure ends with
the smallest accurate subtree with respect to a given pruning
set.

D. Minimum Error Pruning (MEP)

The Minimum Error Pruning has been proposed by Niblett
and Bratko [40]. It performs bottom-up traversal of the internal
nodes. In each node it compares the l-probability error rate
estimation with and without pruning.

The l-probability error rate estimation is a correction to the
simple probability estimation using frequencies. IfSt denote
the instances that have reached nodet, then the error rate
obtained if this node was pruned is:

ε
′
(t) = 1 − max

ci∈dom(y)

|σy=ciSt|+ l · papr(y = ci)
|St|+ l

(16)

Wherepapr(y = ci) is the a-priori probability ofy getting
the valueci, and l denote the weight given to the a-priori
probability. A node is pruned if it does not increase the m-
probability error rate.

E. Pessimistic Pruning.

Quinlan’s pessimistic pruning [12] avoids the need of prun-
ing set or cross validation and uses the pessimistic statistical
correlation test instead.

The basic idea is that the error ratio estimated using the
training set is not reliable enough. Instead a more realistic
measure known as continuity correction for binomial distribu-
tion should be used:

ε
′
(T, S) = ε(T, S) +

|leaves(T)|
2 · |S| (17)

However this correction still produces optimistic error rate.
Consequently Quinlan suggests pruning an internal node t if
its error rate is within one standard error from a reference tree,
namely:

ε
′
(pruned(T, t), S) ≤ ε′(T, S)

+

√
ε′(T, S) · (1− ε′(T, S))

|S| (18)

The last condition is based on statistical confidence interval
for proportions. Usually the last condition is used such thatT
refers to a sub-tree whose root is the internal nodet and S
denote the portion of the training set that refer to the nodet.

The pessimistic pruning procedure performs top-down
traversing over the internal nodes. If an internal node is pruned
then all its descendants are removed from the pruning process,
resulting in a relatively fast pruning.

F. Error-Based Pruning (EBP)

Error-Based Pruning is an evolution of the pessimistic
pruning. It is implemented in the well-known C4.5 algorithm.

As in pessimistic pruning the error rate is estimated using
the upper bound of the statistical confidence interval for
proportions.

εUB(T, S) = ε(T, S)+Zα·
√

ε(T, S) · (1− ε(T, S))
|S| (19)

Whereε(T, S) denote the misclassification rate of the tree
T on the training setS. Z is the inverse of the standard normal
cumulative distribution andα is the desired significance level.

Let subtree(T,t)denote the sub tree rooted by the nodet.
Let maxchild(T,t)denote the most frequent child node oft
(namely most of the instances inS reach this particular child)
and letSt denote all instances inS that reach the nodet.

The procedure performs bottom-up traversal over all nodes
and compares the following values:

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 7

εUB(subtree(T, t), St) (20)

εUB(pruned(subtree(T, t), t), St) (21)

εUB(subtree(T, maxchild(T, t)), Smaxchild(T,t)) (22)

According to the lowest value the procedure either leaves
the tree as is, prune the nodet, or replaces the nodet with
the sub tree rooted bymaxchild(T,t).

G. Optimal Pruning

Bratko and Bohanec [39] and Almuallim [41] address the
issue of finding optimal pruning.

Bohanec and Bratko [39] introduce an algorithm guarantee-
ing optimality called OPT. This algorithm finds the optimal
pruning based on dynamic programming, with complexity of
Θ(|leveas(T)|2) whereT is the initial decision tree.

Almuallim [41] introduced an improvement of OPT called
OPT-2, which also performs optimal pruning using dynamic
programming. However the time and space complexities of
OPT-2 are bothΘ(|leveas(T∗)| · |internal(T)|), WhereT∗ is
the target (pruned) decision tree andT is the initial decision
tree.

Since the pruned tree is habitually much smaller than the
initial tree and the number of internal nodes is smaller than the
number of leaves, OPT-2 is usually more efficient than OPT
in terms of computational complexity.

H. Minimum Description Length Pruning

Rissanen [42], Quinlan and Rivest [43] and Mehtaet al.
[44] used the Minimum Description Length for evaluating the
generalized accuracy of a node. This method measures the size
of a decision tree by means of the number of bits required to
encode the tree. The MDL method prefers decision trees that
can be encoded with fewer bits. Mehtaet al. [44] indicate that
the cost of a split at a leaft can be estimated as:

Cost(t) =
∑

ci∈dom(y)

|σy=ciSt| · ln |St|
|σy=ciSt|

+
|dom(y)| − 1

2
ln
|St|
2

+

ln
π
|dom(y)|

2

Γ(|dom(y)|
2)

(23)

Where|St| denote the number of instances that have reached
to nodet.

The splitting cost of an internal node is calculated based on
the cost aggregation of its children.

I. Other Pruning Methods

There are other pruning methods reported in the literature.
Wallace and Patrick [45] proposed a MML (minimum message
length) pruning method. Kearns and Mansour [46] provide a
theoretically-justified pruning algorithm.

Mingers [26] proposed the Critical Value Pruning (CVP).
This method prunes an internal node if its splitting criterion
is not greater than a certain threshold. By that it is similar to
a stopping criterion. However, contrary to a stopping criterion
a node is not pruned if at least one of its children does not
fulfill the pruning criterion.

J. Comparison of Pruning Methods

Several studies aim to compare the performance of different
pruning techniques [6], [26], [47].

The results indicate that some methods (such as Cost-
Complexity Pruning, Reduced Error Pruning) tend to over-
pruning, i.e. creating smaller but less accurate decision trees.
Other methods (like Error Based Pruning, Pessimistic Error
Pruning and Minimum Error Pruning) bias toward under-
pruning.

Most of the comparisons concluded that the ”No Free
Lunch” theorem applies in this case also, namely there is no
pruning method that in any case outperform other pruning
methods.

IX. OTHER ISSUES

A. Weighting Instances

Some decision trees inducers may give different treatments
to different instances. This is performed by weighting the
contribution of each instance in the analysis according to a
provided weight (between 0 to 1).

B. Misclassification costs

Several decision trees inducers can be provided with nu-
meric penalties for classifying an item into one class when it
really belongs in another.

C. Handling Missing Values

Missing values are a common experience in real world data
sets. This situation can complicate both induction (a training
set that some of its values are missing) as well as classification
(new instance that miss certain values).

This problem has been addressed by several researchers
such as Friedman [18], Breimanet al. [5] and Quinlan [48].
Friedman [18] suggests handling missing values in the training
set in the following way. Letσai=?S indicate the subset of
instances inS whose ai values are missing. When calcu-
lating the splitting criteria using attributeai, simply ignore
all instances that their values in attributeai are unknown,
namely instead of using the splitting criteria∆Φ(ai, S) it uses
∆Φ(ai, S − σai=?S).

On the other hand, Quinlan [48] argues that in case of
missing values the splitting criteria should be reduced pro-
portionally as nothing has been learned from these instances.
In other words instead of using the splitting criteria∆Φ(ai, S)
it uses the following correction:

|S − σai=?S|
|S| ∆Φ(ai, S − σai=?S) (24)

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 8

In a case where the criterion value is normalized (like in
the case of Gain Ratio), the denominator should be calculated
as if the missing values represent an additional value in the
attribute domain.

Once a node is split, Quinlan suggests addingσai=?S to
each one of the outgoing edges with the following corre-
sponded weight:

∣∣σai=vi,j S
∣∣/|S − σai=?S|.

The same idea is used for classifying a new instance with
missing attribute values. When an instance encounters a node
where its splitting criteria can be evaluated due to a missing
value, it is passed through to all outgoing edges. The predicted
class will be the class with the highest probability in the
weighted union of all the leaf nodes at which this instance
ends up.

Another approach known assurrogate splitswas presented
by Breiman et al. [5] and is implemented in the CART
algorithm. The idea is to find for each split in the tree a
surrogate split which uses a different input attribute and which
most resembles the original split. If the value of the input
attribute used in the original split is missing, then it is possible
to use the surrogate split. The resemblance between two binary
splits over sample S is formally defined as:

res(ai, dom1(ai), dom2(ai), aj , dom1(aj), dom2(aj), S) =∣∣σai∈dom1(ai) AND aj∈dom1(aj) S
∣∣

|S|

+

∣∣σai∈dom2(ai) AND aj∈dom2(aj) S
∣∣

|S| (25)

When the first split refers to attributeai and splits its
domain todom1(ai) anddom2(ai). The alternative split refers
to attributeaj and splits its domain todom1(aj) anddom2(aj).

Loh and Shih [28] suggest estimating the missing value
based on other instances. On the learning phase if the value of
a nominal attributeai in tupleq is missing, then it is estimated
by it mode over all instances having the same target attribute
value. Formally,

est(ai, yq, S) = arg max
vi,j∈dom(ai)

∣∣σai=vi,j AND y=yq S
∣∣ (26)

whereyq denote the value of the target attribute in the tuple
q. If the missing attributeai is numeric then instead of using
mode ofai it is more appropriate to use its mean.

X. DECISION TREESINDUCERS

A. ID3

Quinlan [11] has proposed the ID3 algorithm. It is con-
sidered as a very simple decision tree algorithm. ID3 uses
Information Gain as Splitting Criteria. The growing stops
when all instances belong to a single value of target feature or
when best information gain is not greater than zero. ID3 does
not apply any pruning procedure. It does not handle numeric
attributes neither missing values.

B. C4.5

C4.5 is an evolution of ID3, presented by the same author
[12]. It uses Gain Ratio as splitting criteria. The splitting is
ceased when the number of instances to be splitted is below a
certain threshold. Error-Based Pruning is performed after the
growing phase. C4.5 is capable to handle numeric attributes. It
can induce from a training set that incorporates missing values
by using corrected Gain Ratio Criteria as presented in section
IX.

C. CART

CART stands for Classification and Regression Trees. It
was developed by Breimanet al. [5] and is characterized
by the fact it constructs binary trees, namely each internal
node has exactly two outgoing edges. The splits are selected
using the Twoing Criteria and the obtained tree is pruned by
Cost-Complexity Pruning. When provided CART can consider
misclassification costs in the tree induction. It also enables
users to provide prior probability distribution.

An important feature of CART is its ability to generate
regression trees. Regression trees are trees where their leaf
predicts a real number and not a class. In case of regression
CART looks for splits that minimize the prediction squared
error (The Least-Squared Deviation). The prediction in each
leaf is determined based on the weighted mean for node.

D. CHAID

Researchers in applied statistics have developed starting
from early seventies several procedures for generating de-
cision trees, such as: AID [49], MAID [50], THAID [51]
and CHAID [52]. CHIAD (Chisquare-Automatic-Interaction-
Detection) was originally designed to handle nominal at-
tributes only. For each input attributeai, CHAID finds the pair
of values inVi that is least significantly different with respect
to the target attribute. The significant difference is measured
by the p value obtained from a statistical test. The statistical
test used depends on the type of target attribute. If the target
attribute is continuous, anF test is used, if it is nominal,
then a Pearson chi-squared test is used, if it is ordinal, then a
likelihood-ratio test is used.

For each selected pair CHAID checks if the p value obtained
is greater than a certain merge threshold. If the answer is
positive it merges the values and searches for an additional
potential pair to be merged. The process is repeated until no
significant pairs are found.

It then selects the best input attribute to be used for splitting
the current node, such that each child node is made of a group
of homogeneous values of the selected attribute. Note that no
split is performed if the adjusted p value of the best input
attribute is not less than certain split threshold. This procedure
stops also when one of the following conditions is fulfilled:

Maximum tree depth is reached.
Minimum number of cases in node for being a parent is

reached, so it can not be split any further.
Minimum number of cases in node for being a child node

is reached.
CHAID handles missing values by treating them all as a

single valid category. CHAID does not perform pruning.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 9

E. QUEST

Loh and Shih [28] have presented the QUEST (Quick,
Unbiased, Efficient, Statistical Tree) algorithm. QUEST sup-
ports univariate and linear combination splits. For each split,
the association between each input attribute and the target
attribute is computed using the ANOVA F-test or Levene’s test
(for ordinal and continuous attributes) or Pearson’s chi-square
(for nominal attributes). If the target attribute is multinomial,
two-means clustering is used to create two super-classes.
The attribute that obtains the highest association with the
target attribute is selected for splitting. Quadratic Discriminant
Analysis (QDA) is applied to find the optimal splitting point
for the input attribute. QUEST has negligible bias and it yields
a binary decision trees. Ten-fold cross-validation is used to
prune the trees.

F. Reference to Other Algorithms

Table I describes other decision trees algorithms available
in the literature. Obviously there are many other algorithms
which are not included in this table. Nevertheless most of
these algorithms are variation of the algorithmic framework
presented above. A profound comparison of the above algo-
rithms and many others has been conducted in [72].

TABLE I

ADDITIONAL DECISION TREESINDUCERS

Algorithm Description Reference
CAL5 Designed specifically for

numerical-valued attributes
[74]

FACT An earlier version of QUEST.
Uses statistical tests to select
an attribute for splitting each
node and then uses discrimi-
nant analysis to find the split
point.

[75]

LMDT Constructs a decision tree
based on multivariate tests that
are linear combinations of the
attributes.

[76]

T1 A one-level decision tree that
classifies instances using only
one attribute. Missing values
are treated as a ”special value”.
Support both continuous an
nominal attributes.

[77]

PUBLIC Integrates the growing and
pruning by using MDL cost.

[78]

MARS A multiple regression function
is approximated using linear
splines and their tensor prod-
ucts.

[79]

XI. A DVANTAGES AND DISADVANTAGES OF DECISION

TREES

Several advantages of the decision tree as a classification
tool have been pointed out in the literature:

• Decision Trees are self-explanatory and when compacted
they are also easy to follow. Furthermore decision trees
can be converted to a set of rules. Thus this representation
is considered as comprehensible.

• Decision trees are capable to handle both nominal and
numeric input attributes.

• Decision tree representation is rich enough to represent
any discrete-value classifier.

• Decision trees are capable to handle datasets that may
have errors.

• Decision trees are capable to handle datasets that may
have missing values.

• Decision trees are considered to be a nonparametric
method; meaning decision trees have no assumptions on
the space distribution and on the classifier structure.

On the other hand decision trees have disadvantages such
as:

• Most of the algorithms (like ID3 and C4.5) require that
the target attribute will have only discrete values.

• As decision trees use ”divide and conquer” method, they
tend to perform well if a few highly relevant attributes
exist, but less so if many complex interactions are present.
One of the reasons for that is that other classifiers
can compactly describe a classifer that would be very
challenging to represent using a decision tree. A simple
illustration of this phenomenon is the replication problem
[53] of decision trees. Since most decision trees divide
the instance space into mutually exclusive regions to
represent a concept, in some cases the tree should contain
several duplications of the same subtree in order to
represent the classifier. For instance if the concept follows
the following binary function:y = (A1∩A2)∪ (A3∩A4)
then the minimal univariate decision tree that represents
this function is illustrated in Figure 3. Note that the tree
contains two copies of the same subtree.

• The greedy characteristic of decision trees leads to an-
other disadvantage that should be point it. This is its
over-sensitivity to the training set, to irrelevant attributes
and to noise [12].

Fig. 3. Illustration of Decision Tree with Replication

XII. SPECIAL CASES OFTOP-DOWN DECISION TREES

INDUCTION

A. Oblivious Decision Trees

Oblivious Decision Trees are decision trees in which all
nodes at the same level test the same attribute. Despite its
restriction, oblivious decision trees are found to be effective
as a feature selection procedure. Almuallim and Dietterich
[54] as well as Schlimmer [55] have proposed forward feature

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 10

selection procedure by constructing oblivious decision trees,
whereas Langley and Sage [56] suggested backward selection
using the same means. Kohavi and Sommer [57] have showed
that oblivious decision trees can be converted to a decision
table.

Recently Lastet al. [58] have suggested a new algorithm for
constructing oblivious decision trees, called IFN (Information
Fuzzy Network) that is based on information theory.

Figure ?? illustrates a typical oblivious decision tree with
four input features: glucose level (G), age (A), Hypertension
(H) and Pregnant (P) and the Boolean target feature repre-
senting whether that patient suffers from diabetes. Each layer
is uniquely associated with an input feature by representing
the interaction of that feature and the input features of the
previous layers. The number that appears in the terminal
nodes indicates the number of instances that fit this path. For
example: regarding patients whose glucose level is less than
107 and their age is greater than 50, 10 of them are positively
diagnosed with diabetes while 2 of them not diagnosed with
diabetes.

The decision tree is built by a greedy algorithm, which tries
to maximize the mutual information measure in every layer.
The recursive search for explaining attributes is terminated
when there is no attribute that explains the target with statis-
tical significance.

Fig. 4. Illustration of Oblivious Decision Tree

B. Decision Trees Inducers For Large Datasets

With the recent growth in the amount of data collected by
information systems there is a need for decision trees that can
handle large datasets.

Catlett [59] has examined two methods for efficiently grow-
ing decision trees from a large database by reducing the
computation complexity required for induction. However the
Catlett method requires that all data will be loaded into the
main memory before induction. Namely the largest dataset that
can be induced is bounded by the memory size.

Fifield [60] suggests parallel implementation of the ID3
Algorithm. However like Catlett it assumes that all dataset
can fit in the main memory.

Chan and Stolfo [61] suggest to partition the datasets
into several disjoin datasets, such that each dataset is loaded
separately into the memory and used to induce a decision tree.
The decision trees are then combined to create a single clas-
sifier. However, the experimental results indicate that partition
may reduce the classification performance, meaning that the
classification accuracy of the combined decision trees is not

as good as the accuracy of a single decision tree induced from
the entire dataset.

Mehta et al. [62] have proposed SLIQ an algorithm that
does not require loading the entire dataset into the main
memory, instead it uses secondary memory (disk) namely a
certain instance is not necessarily resident in main memory
all the time. SLIQ creates a single decision tree from the
entire dataset. However, this method also has upper limit for
the largest dataset that can be processed because it uses a data
structure that scales with the dataset size and this data structure
is required to be resident in main memory all the time.

Shaferet al. [63] have presented a similar solution called
SPRINT. This algorithm induces decision trees relatively
quickly and removes all of the memory restrictions from
decision tree induction. SPRINT scales any impurity based
split criteria for large datasets.

Gehrkeet al. [64] introduced RainForest; a unifying frame-
work for decision tree classifiers that are capable to scale
any specific algorithms from the literature (including C4.5,
CART and CHAID). In addition to its generality, RainForest
improves SPRINT on a factor of three. In contrast to SPRINT,
however, RainForest requires a certain minimum amount of
main memory, proportional to the set of distinct values in
a column of the input relation. However, this requirement is
considered modest and reasonable.

Other decision tree inducers for large datasets can be found
in the works of Alsabtiet al. [65], Freitas and Lavington [66]
and Gehrkeet al. [67].

C. Incremental Induction

Most of the decision trees inducers require rebuilding the
tree from scratch for reflecting new data that has became
available. Several researches have addressed the issue of
updating decision trees incrementally.

Utgoff [68], [69] presents several methods for updating
decision trees incrementally. An extension to the CART al-
gorithm that is capable to induce incrementally is described
in Crawford [70]).

XIII. C ONCLUSION

This paper presented an updated survey of top-down deci-
sion trees induction algorithms. It has been shown that most
algorithms fit into a simple algorithmic framework whereas
the differences concentrate on the splitting criteria, stopping
criteria and the way trees are pruned.

REFERENCES

[1] S. R. Safavin and D. Landgrebe. A survey of decision tree classifier
methodology. IEEE Trans. on Systems, Man and Cybernetics, 21(3):660-
674, 1991.

[2] S. K. Murthy, Automatic Construction of Decision Trees from Data:
A MultiDisciplinary Survey. Data Mining and Knowledge Discovery,
2(4):345-389, 1998.

[3] R. Kohavi and J. R. Quinlan. Decision-tree discovery. In Will Klosgen
and Jan M. Zytkow, editors, Handbook of Data Mining and Knowledge
Discovery, chapter 16.1.3, pages 267-276. Oxford University Press,
2002.

[4] S. Grumbach and T. Milo: Towards Tractable Algebras for Bags. Journal
of Computer and System Sciences 52(3): 570-588, 1996.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 11

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth Int. Group, 1984.

[6] J.R. Quinlan, Simplifying decision trees, International Journal of Man-
Machine Studies, 27, 221-234, 1987.

[7] T. R. Hancock, T. Jiang, M. Li, J. Tromp: Lower Bounds on Learning
Decision Lists and Trees. Information and Computation 126(2): 114-
122, 1996.

[8] L. Hyafil and R.L. Rivest. Constructing optimal binary decision trees is
NP-complete. Information Processing Letters, 5(1):15-17, 1976

[9] H. Zantema and H. L. Bodlaender, Finding Small Equivalent Decision
Trees is Hard, International Journal of Foundations of Computer Science,
11(2):343-354, 2000.

[10] G.E. Naumov. NP-completeness of problems of construction of optimal
decision trees. Soviet Physics: Doklady, 36(4):270-271, 1991.

[11] J.R. Quinlan, Induction of decision trees, Machine Learning 1, 81-106,
1986.

[12] J. R. Quinlan, C4.5: Programs For Machine Learning. Morgan Kauf-
mann, Los Altos, 1993.

[13] S. B. Gelfand, C. S. Ravishankar, and E. J. Delp. An iterative growing
and pruning algorithm for classification tree design. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 13(2):163-174, 1991.

[14] F. Attneave, Applications of Information Theory to Psychology. Holt,
Rinehart and Winston, 1959.

[15] J.R. Quinlan, Decision Trees and Multivalued Attributes, J. Richards,
ed., Machine Intelligence, V. 11, Oxford, England, Oxford Univ. Press,
pp. 305-318, 1988.

[16] R. Lopez de Mantras, A distance-based attribute selection measure for
decision tree induction, Machine Learning 6, 81-92, 1991.

[17] U. M. Fayyad and K. B. Irani. The attribute selection problem in
decision tree generation. In proceedings of Tenth National Conference
on Artificial Intelligence, pages 104–110, Cambridge, 1992. MA: AAAI
Press/MIT Press.

[18] J. H. Friedman. A recursive partitioning decision rule for nonparametric
classifiers. IEEE Trans. on Comp., C26:404-408, 1977.

[19] E. Rounds, A combined non-parametric approach to feature selection
and binary decision tree design, Pattern Recognition 12, 313-317, 1980.

[20] P. E. Utgoff and J. A. Clouse, A Kolmogorov-Smirnoff Metric for Deci-
sion Tree Induction, Technical Report 96-3, University of Massachusetts,
Department of Computer Science, Amherst, MA

[21] X. Li and R. C. Dubes, Tree classifier design with a Permutation statistic,
Pattern Recognition vol. 19, 229-235, 1986.

[22] P. C. Taylor and B. W. Silverman. Block diagrams and splitting criteria
for classification trees. Statistics and Computing, 3(4):147-161, Decem-
ber 1993.

[23] J. K. Martin. An exact probability metric for decision tree splitting and
stopping. An Exact Probability Metric for Decision Tree Splitting and
Stopping, Machine Learning, 28 (2-3):257-291, 1997.

[24] E. Baker AND A. K. Jain. On feature ordering in practice and some
finite sample effects. InProceedings of the Third International Joint
Conference on Pattern Recognition, pages 45-49, San Diego, CA, 1976.

[25] M. BenBassat. Myopic policies in sequential classification. IEEE Trans.
on Computing, 27(2):170-174, February 1978.

[26] J. Mingers. An empirical comparison of pruning methods for decision
tree induction. Machine Learning, 4(2):227-243, 1989

[27] W. L. Buntine, T. Niblett: A Further Comparison of Splitting Rules for
Decision-Tree Induction. Machine Learning, 8: 75-85, 1992.

[28] Loh and Shih, Split selection methods for classification trees. Statistica
Sinica, 7: 815-840, 1997.

[29] S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of
oblique decision trees. Journal of Artificial Intelligence Research, 2:1-
33, August 1994.

[30] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

[31] Bennett and O.L. Mangasarian. Multicategory discrimination via linear
programming. Optimization Methods and Software, 3:29-39, 1994.

[32] J. Sklansky and G. N. Wassel. Pattern classifiers and trainable machines.
SpringerVerlag, New York, 1981.

[33] Y. K. Lin and K. Fu. Automatic classification of cervical cells using a
binary tree classifier. Pattern Recognition, 16(1):69-80, 1983.

[34] W.Y. Loh and N. Vanichsetakul. Tree-structured classification via gen-
eralized discriminant Analysis. Journal of the American Statistical
Association, 83:715-728, 1988.

[35] G. H. John. Robust linear discriminant trees. In D. Fisher and H. Lenz,
editors, Learning From Data: Artificial Intelligence and Statistics V,
Lecture Notes in Statistics, Chapter 36, pages 375-385. Springer-Verlag,
New York, 1996.

[36] Paul E. Utgoff. Perceptron trees: A case study in hybrid concept
representations. Connection Science, 1(4):377-391, 1989.

[37] D. Lubinsky. Algorithmic speedups in growing classification trees by
using an additive split criterion. Proc. AI&Statistics93, pp. 435-444,
1993.

[38] I. K. Sethi and J. H. Yoo. Design of multicategory, multifeature split
decision trees using perceptron learning. Pattern Recognition, 27(7):939-
947, 1994.

[39] I. Bratko and M. Bohanec, Trading accuracy for simplicity in decision
trees, Machine Learning 15, 223-250, 1994.

[40] T. Niblett and I. Bratko, Learning Decision Rules in Noisy Domains,
Proc. Expert Systems 86, Cambridge: Cambridge University Press, 1986.

[41] H. Almuallim: An Efficient Algorithm for Optimal Pruning of Decision
Trees. Artificial Intelligence 83(2): 347-362, 1996.

[42] J Rissanen, Stochastic complexity and statistical inquiry. World Scien-
tific, 1989.

[43] J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using The
Minimum Description Length Principle. Information and Computation,
80:227-248, 1989

[44] Manish Mehta, Jorma Rissanen, Rakesh Agrawal: MDL-Based Decision
Tree Pruning. KDD 1995: 216-221.

[45] C. Wallace and J. Patrick, Coding decision trees, Machine Learning 11:
7-22, 1993.

[46] M. Kearns and Y. Mansour, A fast, bottom-up decision tree pruning
algorithm with near-optimal generalization, in J. Shavlik, ed., ‘Machine
Learning: Proceedings of the Fifteenth International Conference’, Mor-
gan Kaufmann Publishers, Inc., pp. 269-277, 1998.

[47] F. Esposito, D. Malerba and G. Semeraro.
A Comparative Analysis of Methods for Pruning Decision Trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):476-492, 1997.

[48] J. Quinlan, Unknown attribute values in induction. In Segre, A. (Ed.),
Proceedings of the Sixth International Machine Learning Workshop
Cornell, New York. Morgan Kaufmann, 1989.

[49] J. A. Sonquist, E. L. Baker, and J. N. Morgan. Searching for Structure.
Institute for Social Research, Univ. of Michigan, Ann Arbor, MI, 1971.

[50] M. W. Gillo, MAID: A Honeywell 600 program for an automatised
survey analysis. Behavioral Science 17: 251-252, 1972.

[51] J. N. Morgan and R. C. Messenger. THAID: a sequential search program
for the analysis of nominal scale dependent variables. Technical report,
Institute for Social Research, Univ. of Michigan, Ann Arbor, MI, 1973.

[52] G. V. Kass. An exploratory technique for investigating large quantities
of categorical data. Applied Statistics, 29(2):119-127, 1980.

[53] G. Pagallo and D. Hassler. Boolean feature discovery in empirical
learning. Machine Learning, 5(1), 1990.

[54] H. Almuallim and T.G. Dietterich, Learning Boolean concepts in the
presence of many irrelevant features. Artificial Intelligence, 69: 1-2, 279-
306, 1994.

[55] Schlimmer, J. C. Efficiently inducing determinations: A complete and
systematic search algorithm that uses optimal pruning. In Proceedings
of the 1993 International Conference on Machine Learning, pp 284-290,
San Mateo, CA, Morgan Kaufman, 1993.

[56] P. Langley and S. Sage, Oblivious decision trees and abstract cases. in
Working Notes of the AAAI-94 Workshop on Case-Based Reasoning,
pp 113-117, Seattle, WA: AAAI Press, 1994.

[57] R. Kohavi and D. Sommerfield, Targeting business users with decision
table classifiers, in R. Agrawal, P. Stolorz & G. Piatetsky-Shapiro,
eds, ‘Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining’, AAAI Press, pp. 249-253, 1998.

[58] M. Last, O. Maimon, and E. Minkov, Improving Stability of Decision
Trees, International Journal of Pattern Recognition and Artificial Intel-
ligence, 16: 2,145-159, 2002.

[59] J. Catlett. Mega induction: Machine Learning on Vary Large Databases,
PhD, University of Sydney, 1991.

[60] D. J. Fifield. Distributed Tree Construction From Large Datasets, Bach-
elor’s Honor Thesis, Australian National University, 1992.

[61] P. Chan and S. Stolfo, On the Accuracy of Meta-learning for Scalable
Data Mining, J. Intelligent Information Systems, 8:5-28, 1997.

[62] M. Mehta, R. Agrawal and J. Rissanen. SLIQ: A fast scalable classifier
for data mining: In Proc. If the fifth Int’l Conference on Extending
Database Technology (EDBT), Avignon, France, March 1996.

[63] J. C. Shafer, R. Agrawal and M. Mehta, SPRINT: A Scalable Parallel
Classifier for Data Mining, Proc. 22nd Int. Conf. Very Large Databases,
T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and
Nandlal L. Sarda (eds), 544-555, Morgan Kaufmann, 1996.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART C, VOL. 1, NO. 11, NOVEMBER 2002 12

[64] J. Gehrke, R. Ramakrishnan, V. Ganti, RainForest - A Framework for
Fast Decision Tree Construction of Large Datasets,Data Mining and
Knowledge Discovery, 4 (2/3) 127-162, 2000.

[65] K. Alsabti, S. Ranka and V. Singh, CLOUDS: A Decision Tree Classifier
for Large Datasets, Conference on Knowledge Discovery and Data
Mining (KDD-98), August 1998.

[66] A. Freitas and S. H. Lavington, Mining Very Large Databases With
Parallel Processing, Kluwer Academic Publishers, 1998.

[67] J. Gehrke, V. Ganti, R. Ramakrishnan, W. Loh: BOAT-Optimistic
Decision Tree Construction. SIGMOD Conference 1999: pp. 169-180,
1999.

[68] P. E. Utgoff. Incremental induction of decision trees. Machine Learning,
4:161-186, 1989.

[69] P. E. Utgoff, Decision tree induction based on efficient tree restructuring,
Machine Learning 29 (5): 1997.

[70] S. L. Crawford. Extensions to the CART algorithm. Int. J. of ManMa-
chine Studies, 31(2):197-217, August 1989.

[71] Loh and Shih, Families of splitting criteria for classification trees.
Statistics and Computing 1999, vol. 9, pp. 309-315.

[72] Lim, Loh and Shih A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms .
Machine Learning 2000, vol. 40, pp. 203-228.

[73] Shih, Selecting the best splits classification trees with categorical vari-
ables. Statistics and Probability Letters 2001, vol. 54, pp. 341-345.

[74] W. Muller and F. Wysotzki. Automatic construction of decision trees for
classification. Annals of Operations Research, 52:231-247, 1994.

[75] W. Y. Loh and N. Vanichsetakul. Tree-structured classification via
generalized discriminant Analysis. Journal of the American Statistical
Association, 83:715-728, 1988.

[76] C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine
Learning, 19:45-77, 1995

[77] R. C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63-90, 1993.

[78] Rajeev Rastogi and Kyuseok Shim, PUBLIC: A Decision Tree Classi-
fier that Integrates Building and Pruning,Data Mining and Knowledge
Discovery, 4(4):315-344,2000.

[79] J. H. Friedman, Multivariate Adaptive Regression Splines, The Annual
Of Statistics, 19, 1-141, 1991.

