
Abstract

One of the challenges of fault detection in the domain of

autonomous systems is the handling of unlabeled data,

meaning, most data sets are not recognized as normal or

faulty. This fact makes it very challenging to be used as a

training set such that learning algorithms would produce a

successful fault detection model. Traditionally unsupervised

algorithms try to address this challenge. In this paper we

present a hybrid approach that combines unsupervised and

supervised methods. An unsupervised approach is utilized

for labeling a training set, and then by a standard supervised

algorithm we build a fault detection and diagnosis model

that is much more accurate. We show promising results on

simulated and real world domains.

1. Introduction

Autonomous systems such as Unmanned Vehicles (UVs)

or robots are susceptible to a variety of hardware and

software faults. These faults might lead to mission failure or

even endanger the safety of the expensive system or its

environment. For example, a pitot-static system failure in an

Unmanned Aerial Vehicle (UAV) might lead to a crash.

To continue operate autonomously, the system must have

an accurate fault detection mechanism. Upon fault detection

a diagnosis process can be triggered and a decision on how

to continue can be made. An accurate fault detection

mechanism presents several challenges in the domain of

autonomous systems: (1) there is a great variety of faults,

such as stuck value, drift or abrapt, (2) a fault expression

can span over time, (3) a fault should be detected as quickly

as possible, online, and with high accuracy, (4) a fault

detection mechanism should be kept light, finally (5) this

domain is also characterized for having unlabeled data.

The Diagnosis should be accurate as well. A diagnosis

report should return a minimal set of components that

includes the root cause of the fault.

Three general approaches are usually used for fault

detection and diagnosis: Knowledge-Based systems, Model-

Based, and Data Driven approaches [Isermann 2005].

Knowledge based systems typically associates recognized

behaviors with predefined known faults and hence, are less

likely to detect an unknown fault. Model-based approaches

are potentially very accurate. The correct behavior of each

component is modeled analytically. The system output is

compared to the modeled output and a high residual

indicates a fault. The diagnosis can be deduced from the

information the model provided. In complex autonomous

systems, the task of modeling the behavior of components is

very hard or even impossible. Data driven approaches are

model free. The online data is usually used to statistically

differentiate a fault from a normal behavior. However, this

task may be not as light as the system requires.

In our previous work [Khalastchi et al., 2013] we

presented an unsupervised approach for fault detection in

the domain of autonomous systems. This approach

combines model based and data driven approaches, and

shows a high rate of detection and a low rate of false

positives. In this paper we aim to show a hybrid approach

that uses an accurate unsupervised approach for fault

detection similar to our previous approach, to create more

accurate and light fault detection and diagnosis model in a

supervised manner.

Empirical evaluation on simulated and real word domains

show that the learnt fault detection model is more accurate

than the original unsupervised approach. Finally, we argue

that this hybrid approach can be generalized to a

classification problem with an unlabeled training set.

2. Related work

Steinbauer conducted a survey on the nature of faults of

autonomous robot systems [Steinbauer 2011]. The survey

participants are developers competing in different leagues of

the Robocup competition ‎[Robocop]. The reported faults

were categorized as hardware, software, algorithmic and

interaction related faults. The survey concludes that

hardware faults have a high negative impact on mission

success. In this paper we focus on detecting such faults.

 We presented an unsupervised approach for sensor fault

detection that combines model-based and data driven

techniques to achieve greater accuracy [Khalastchi et al,

2013]. The hybrid approach presented in this paper utilizes

this unsupervised approach.

The chosen unsupervised approach has a high detection

rate for single dimension faults such as "drift" and "stuck".

These types of faults appear in a variety of related domains.

For example, the Advanced Diagnostics and Prognostics

Testbed [ADAPT] depicts the following faults to sensors on

an electrical circuit. This testbed is used for the diagnosis

competition [DXC,2011]. Another example is the work of

[Hashimoto et al., 2005] that uses kalman filters along with

kinematical models to detect sensor faults such as "stuck",

A Hybrid Approach for Fault Detection and Diagnosis in Autonamous Systems


Eliahu Khlastchi and Meir Kalech and Lior Rokach
Ben-Gurion University of the Negev, Beer-Sheva, Israel

email: {khalastc, kalech, liorrk}@bgu.ac.il

"abrupt" and "scale" on a mobile robot. Our hybrid approach

relies on a function that returns the state of the sensor (i.e.

abrupt, drift, stuck, etc.).

[Leeke et al, 2011] present a methodology for generating

efficient error detection mechanisms. Their approach relies

on injecting faults into data that is used as a training set for a

learning algorithm. The learnt error detection model is of

high accuracy. Our hybrid approach is similar in concept,

but does not rely on fault injection.

3. Decreasing the False Positive Rate

In this section we describe the problem of fault detection

in the domain of unmanned vehicles. We continue with

demonstrating how the unsupervised labeling is done.

Finally, we describe the learning process.

3.1 Problem Description
Let be a set of attributes that are monitored

in real time (e.g. air-speed, heading, pitch, altimeter, etc.)

and let be the set of values for attributes

 at time where is the value assigned to

at time . Past data of m time units of these values
 is also available. is a

sliding window containing at time the latest values of

the monitored attributes. In addition, unlabeled past

recordings of the unmanned vehicle operations are also

available. These recordings can be used as a training set for

a machine learning algorithm if labeled. We denote this

training set as

 where

is the length of operation and is the end time operation ,
thus

 denotes all the values recorded for the

monitored attributes in during operation
Given the goal is to online recognize

whether a fault has occurred to any of the attributes in .

This decision should be made as quick as possible after a

fault has occurred, and should be as accurate as possible. By

'accurate' we mean that a fault detector should have a high

detection rate and a low false positive rate. In addition, a

minimal set of diagnosis that includes the root cause of the

fault should be returned.

3.2 The Outline of the Approach
We introduce a hybrid approach which consists of an

offline preprocess and an online fault detection and

diagnosis process. The offline preprocess conducts an

unsupervised algorithm to label an unlabeled training set.

Then, a supervised learning algorithm is used to construct a

fault detection and diagnosis model that can be used online

with greater accuracy. Figure 1 depicts the outline of our

approach.

3.2.1 The offline preprocess

The unlabeled past operations recordings are delivered as

an input to an unsupervised fault detection algorithm. This

algorithm is described in section 3.3. In summary this

algorithm translates the behavior of each attribute in each

sliding window to normal or to one of pre-defined

suspicious patterns (e.g. stuck, drift). In addition, each

sliding window is labeled according to the unsupervised

classification (i.e. "Normal", or the diagnosis of the fault).

However, a small portion of the normal examples may be

misclassified as faults; these are the false positives of the

unsupervised fault detection. The resulted labeled data is fed

into a decision-tree based leaning algorithm. The resulted

fault detection and diagnosis model – can be used

online, and is more accurate than the original unsupervised

fault detection and diagnosis approach as shown in the

results section.

3.2.2 The online fault detection process

The online input is a time series confined into a sliding

window With each time step the data in is

transformed into a categorical data which can be fed into the

fault detection and diagnosis model - (resulted by

the offline preprocess). The fault detection and diagnosis

model classifies the data presented in as normal or as

faulty by returning the fault diagnosis as a classification. In

section 3.5 we describe the fault detection and diagnosis

online process in detail.

3.3 Unsupervised Labeling
Each past operation of the autonomous system

 is fed into an unsupervised diagnosis engine. This

diagnosis engine uses a heuristic decision which is based on

a prior knowledge of a structural model as well as the online

consumed data (sliding window) to determine an

occurrence of a fault and its diagnosis. We chose this

approach due to its very low rate of false positives and the

high fault detection rate which usually is 1 or very close to

1. Note that any unsupervised fault detection and diagnosis

approach can be used to label the unlabeled training set.

Being online and unsupervised, the approach relies on

correlated attributes to provide the necessary comparison

between expected and unexpected behavior of attributes.

The approach assumes that correlated attributes behave as

redundant to one another. This is usually the case for the

domain of unmanned vehicles with a rich array of sensors

and modeled variables.

Each attribute is subjected to tests by suspicious pattern

recognizers. A suspicious pattern recognizer is a part of the

fault detection system input and is domain specific. The

latest values of an attribute extracted from are
Figure 1: The Outline of the Approach

tested. For example, we use a drift test and a stuck test.

However, when an attribute shows a suspicious pattern it

does not necessarily suggest a fault; it could be a reaction to

a normal action of the unmanned vehicle. For example,

maintaining altitude may appear as stuck, and altitude

climbing may appear as a drift.

To differentiate between a normal reaction and a fault, the

approach uses a heuristic decision based on a structural

model. A structural model depicts components dependency.

The heuristic decision compares an attribute that shows a

suspicious pattern with an attribute that used to be correlated

to it in the previous sliding window. If they do not share

component dependency and show different patterns then this

is due to a fault. Otherwise, it might be a reaction to a

normal action of the unmanned vehicle.

For example, if the altimeter is suspected for a drift, and

the GPS indicated altitude is also drifting then this is

probably due to the altitude climbing action of the UAV

(and not a fault). If the altimeter is stuck while the GPS

indicated altitude is not, then it is probably due to a fault.

Furthermore, these attributes are dependent on different

subsystems. This fact makes these attributes less likely to be

affected by the same fault.

The data of each sliding window,

 , is transformed into a line of categorical data

with the addition of the classification made by the

unsupervised fault detection algorithm. A recognized

suspicious pre-defined pattern is replaced by its class. We

use a drift and a stuck pattern recognizers which correspond

to "drift" and "stuck" categories. An additional "regular"

category is given to an attribute which is not suspected by

any suspicious pattern recognizer.

For example, assume a sliding window of size
 containing the values of 3 attributes at a time step :

Time step

t-4 0.9 1 3

t-3 0.1 2.5 3

t-2 0.05 3 3

t-1 0.15 3.1 3

t 0.05 3.9 3

Assume that the unsupervised diagnosis engine reported a

fault for this time step including diagnosis components
 . The data of the sliding window will

be registered as one training sample, where is

categorized as "regular", is categorized as "drift", and

is categorized as "stuck". In addition, this sample is

classified by the diagnosis of the fault - . Thus, the

registered training sample for this time step is:

Regular,Drift,Stuck, . Note that the fact that this

sample contains drift and stuck does not necessarily entail a

fault. In some cases it may indicate a normal behavior.

The “Fault” classification (e.g.) may be correct or

not; it depends on the accuracy level of the unsupervised

approach. The next section will discuss how this inaccuracy

affects the constructed decision tree.

3.4 A Decision Tree Based Fault Detection Model
3.4.1 The effect of falsely classified training examples

Decision trees have some tolerance towards falsely

labeled examples in their training set. During the model

construction, the algorithm grows a decision tree. In each

step the algorithm computes the information gain obtained

by selecting each attribute and chooses the one with the

highest information gain (()). The information gain is

determined by the entropy of the attribute which is affected

by the ratio between the normal and faulty samples. The

lower faulty samples the higher information gain. If a

portion of samples are misclassified as "fault" then this

might reduce the information gain of a node. However, if

the degree of reduction is small enough the construction of

the tree is unaffected.

The degree of information gain reduction due to falsely

classified training examples is dependent on several factors.

Let

 be the training set.

 be the size of examples of which

attribute has the value and the classification is

"Fault" (i.e. some diagnosis classification of a fault)

when all examples are classified correctly by an oracle.

 be the size of examples of

which attribute has the value and the classification

is "Normal" when all examples are classified correctly

by an oracle.

 be the number of samples from |
|, that were

falsely classified as "Fault" due to false positives of the

unsupervised approach (note that |
|).

The effect of the misclassified samples on the

information gain of attribute is the new (affected)

information gain minus the original information gain

 :

 ∑
|

|

 ()

 ∑
|

|

 (

)

Where is the entropy function and is the entropy

affected by falsely classified examples. For given falsely

classified samples in
 the affected entropy is:

 (
)

. Note that

 samples that are falsely added to are in the expense of

 . After some

algebra

can be presented

for given

falsely classified

examples in

 as:

Figure 2: The negative effect on
information gain

(

)

We can see that when then . When

grows, decreases. This affect is depicted in Figure 2.

Figure 2 illustrates an example for this effect on the

information gain where .

As grows, the information gain decreases. The negative

effect will eventually return to 0 as grows. When

 the number of samples for each classification

is the same as the original, only with opposite

classifications; the entropy is the same as the original

entropy and thus the information gain is unaffected.

If the information gain of some attribute is greater

than the information gain of another attribute () when

all training set examples are classified correctly by an

oracle, then for a small enough number of falsely classified

examples the effect of will not change the decision

tree construction ()

In some cases the number of falsely classified examples

will affect the decision tree construction

 (). This might lead to the appearance of false positives

when using the resulted fault detection and diagnosis model.

When compared to a model that was constructed of

correctly classified training examples this approach has

more false positives due to the effect of . However, this

approach has significant less false positives than the original

unsupervised approach, as we show in the results section.

3.4.2 Using the FDDM online

When given a new online input, we consume it in a

sliding window fashion . We transform the time-

series data in to a line of categorical data in the same

manner we used in the original unsupervised approach. Only

when the new line is different than the previous line (i.e.

some attribute changed its state) the new line is fed into the

offline-learnt fault detection and diagnosis model - .

The decides (online) whether or not it is a fault. In

case of a fault the returns a diagnosis as the

classification.

For example, consider a static-system failure. One of the

expressions of this failure is the frozen value of the

altimeter. In the values of the altimeter attribute are

all equal, while the values of the GPS indicated altitude

attribute diverse. The equal values of the altimeter are

recognized as a suspicious pattern by the stuck-pattern

detector. Therefore, the corresponding categorical line to

 has the value "stuck" for the altimeter attribute and

the value "regular" for the GPS indicated altitude attribute

(other attributes also get their own categorical values) . This

line is fed into the that decides whether or not these

values express a fault. It is possible that the next categorical

line that corresponds to will not be different than

its predecessor. In this case, the is not triggered

again; only if at least one of the attributes changed its state

(e.g. from regular to stuck as the altimeter) then the

 is triggered.

To summarize our hybrid approach, in the first stage we

use an unsupervised fault detection and diagnosis algorithm

to label unlabeled training set. The suspicious pattern

detectors of the unsupervised approach are used to transform

the time-series data in each sliding window into categorical

data. Each sample is classified according to the

unsupervised decision (i.e. "Normal" or other fault modes).

Then, we apply a decision tree based learning algorithm on

the training data and produce a fault detection and diagnosis

model - that can be applied online. The online

process uses the same suspicious pattern detectors to

produce a categorical line for each sliding window. The line

is fed into the which was learnt offline. The

makes a choice whether or not the online input is an

expression of a fault. In case of a fault, the classification is

the diagnosis.

4. Experiment Setup

To examine our approach we tested the fault detection

accuracy as well as the diagnosis accuracy. We use three

domains to test the fault detection accuracy. The first is a

high fidelity flight simulator [FlightGear] the second is a

commercial UAV, and the third is a laboratory robot

Robtican1 [Robotican] (see Figure 3). In addition, we use

the FlightGear domain to test the diagnosis accuracy. We

expect our proposed hybrid approach to be more accurate in

fault detection and diagnosis than the original unsupervised

approach.

Flighgear domain: Flighgear is an open source flight

simulator designed for research purpose and is used for a

variety of research topics. FlightGear has built-in

realistically simulated instrumental and system faults. For

example, if the vacuum system fails, the HSI gyros spin

down slowly with a corresponding degradation in response

as well as a slowly increasing bias/error.

We recorded 32 flights. Each flight had duration of 5

minutes, and included a take-off and left and right turns. 23

attributes were sampled in 4Hz. Each flight was injected

with a different type of fault. Each fault had duration of 35

seconds and was injected twice to the same flight at random

times. In total, we tested 11 different types of instrumental

and system failures. In total, the test set contains 25,977

examples out of which 5,880 are expressions of faults.

 The unsupervised process applied on the training set

achieved a detection rate of 1 (all faults were detected). The

resulted categorical and classified data was used as a

training set.

In addition, due to its richness of data and deep level of

components dependencies, we use the FlightGear domain to

further test the diagnosis accuracy of the proposed hybrid

approach. We tested two types of system failures and 4

types of instrumental failures. In total, 6 flights were used

as a training set and 12 flights were used as a testing set.

The goal was to accurately detect and diagnose the faulty

components out of 40 possible components.

Commercial UAV domain: The real UAV domain

consists of 6 recorded real flights of a commercial UAV. 53

attributes were sampled in 10Hz. The attributes consists of

telemetry, inertial, engine and servos data. Flights duration

varies from 37 to 71 minutes. The UAV manufacture

injected a synthetic fault to two of the flights. The first

scenario is a value that drifts down to zero. The second

scenario is a value that remains frozen (stuck). The detection

of these two faults were challenging for the manufacture

since in both scenarios the values are in normal range. These

two flights were used as a test set. The remaining four

flights were used as a training set where into two flights we

injected similar synthetic faults. In total, the test set contains

65,741 examples out of which 1,593 are expression of

faults.

Laboratory robot domain: Robotican1 is a laboratory

robot that has 2 wheels, 3 sonar range detectors in the front,

and 3 infrared range detectors which are located right above

the sonars, making the sonars and infrareds redundant

systems to one another. This redundancy reflects real world

domains such as unmanned vehicles. In addition, the

Robotican has 5 degrees of freedom arm. Each joint is held

by two electrical engines. These engines provide a sensed

reading of the voltage applied by their action.

We devised 10 different

scenarios that included

different injected faults while

the robot performed different

tasks. Faults were injected to

each type of sensor (motor

voltage, infrared and sonar).

The injected faults to the

sensors were of type stuck or

drift. These faults were injected

to one or more sensors in

different time intervals. 15

attributes were sampled in 8Hz.

Scenarios duration lasted 10 seconds where the last 5

seconds expressed a fault. 4 scenarios were used as an

unlabeled training set and the other 6 were used as a test set.

Note that in this domain, the training set did not cover all

the examples included in the test set.

For the supervised learning we have experimented with

several decision tree algorithms: ID3, J48, and a Random

Tree [Breiman, 2001]. As expected the Random Tree

performed better and

its results on the

three domains are

shown in the next

section.

5. Results

Figure 4 illustrates

the average false

positive rate of the

hybrid vs. the

original unsupervised approach, taken over the 21 test

flights of the FlightGear domain, using a sliding window

size of 250. The hybrid approach significantly improved the

false positive of the unsupervised algorithm.

To demonstrate the degree of reduction of the false

positive rate by the suggested hybrid approach we used

different sizes of sliding windows during the offline training

phase. Smaller sizes create more opportunities for reports

and thus more opportunities for false positives. Figure 5

illustrates the degree of reduction in the average false

positive rate over

the 21 test flights

in the FlightGear

domain. Note that

the false positive

rate is in

logarithmic scale.

We can see that

with each size of

sliding window

the false positive

rate of the hybrid approach is significantly lower than the

original unsupervised approach.

The different parameters used by the unsupervised

approach during the offline phase can be viewed as different

unsupervised approaches; each with its own rate of false

positives. The hybrid approach contributes to the reduction

of false positive rate for each of these unsupervised

approaches.

Satisfied by

the very low

rate of false

positives, we

decreased the

sliding window

size used

online. It is

suggestible to

use a smaller

for when classifying an online input than the used

during the offline training. This increases the number of

reports, and since the false alarm rate is very low, we can

Figure 3: Robotican1

Figure 4: FP rate,unsupervised vs. hybrid

Figure 5: FP rate vs. s.window size

Figure 7: UAV, unsupervised vs. hybrid

Figure 6: ROC - Hybrid vs. Unsupervised

tolerate an increase of false positives in return for a higher

true positives rate.

Figure 6 illustrates the ROC of false alarm rates and the

detection rates of the unsupervised approach verses the

hybrid approach under the influence of a changing size of

the online sliding window (62sec – 47sec). Note that scale

of Figure 6 zooms in on high detection rate (close to 1) and

low false alarm rate (close to 0). The added of false

positives to the hybrid approach is of little significance

while the effect on the unsupervised approach is apparent.

In addition, the detection rate of the hybrid approach is

getting higher as the size of the sliding window decreases.

This is explained by the fact that a smaller size of a sliding

window increases the frequency of state changes and hence

the total amount of reports. Therefore, there is a greater

chance for detection as well as some false positives. The

hybrid approach gets a lower rate of false alarms and a

higher rate of fault detection than the original unsupervised

approach.

In the UAV domain the hybrid approach keeps a similar

trend. In the two examined scenarios, both the hybrid and

unsupervised approaches had a detection rate of 1. However,

the hybrid approach had a significantly lower false positive

rate than the unsupervised approach as figure 7 shows.

In the Robotican1 domain, even though the training set

did not include all possible faults that were included in the

test set, the detection rate of the learnt fault detection model

was 1. Being online and unsupervised, it is not surprising

that the unsupervised approach also scored a detection rate

of 1 on the test set. However, it is interesting to note that the

offline learnt FDDM of the hybrid was able to generalize the

heuristic decision of the unsupervised approach such that

unseen faults were detected.

The average false alarm rate of the unsupervised approach

on the 6 tested scenarios was 0.067 while the hybrid

approach scored 0.041. Again, the hybrid approach reduced

the false positive rate.

We also tested the diagnosis of the proposed approach on

the FlightGear domain as table 1 depicts.

The unsupervised approach produced very good results: A

detection rate of 1, false alarm rate of 0.0086, and the

diagnosis set contained an average of 2.88 components out

of 40 possibilities, and always included the single root

cause, making the diagnosis false positive rate as 0.048. But

still, the hybrid approach is able to improve the results. The

hybrid approach got a detection rate of 1, a false alarm rate

of 0.0077, and an average diagnosis set size of 2.14 out of

40 possible components that included the single root cause,

making the diagnosis false positive rate 0.029.

Table 1:diagnosis results, FlightGear domain

Approach

Fault

Detection

rate

False

alarm

rate

Diagnosis

true positive

rate

Diagnosis

false
positive rate

Unsupervised 1 0.0086 1 0.048

Hybrid 1 0.0077 1 0.029

6. Discussion

The offline step labels the data with an unsupervised

approach. An alternative approach for labeling the data is a

clustering algorithm (e.g. K-means where k=2). However,

an unsupervised fault detection approach is more specific to

the fault detection problem and thus expected to be more

accurate than the general clustering algorithm.

We chose to demonstrate the hybrid approach with the use

of our previous unsupervised approach [Khalastchi et al.

2013] since it showed a high detection rate and a very low

false positive rate. Any other highly accurate unsupervised

approach could have been used for that matter. The high

detection rate is very important since all faults should be

labeled as such.

The learnt FDDM generalized the original heuristic

decision of the unsupervised approach. The model is

independent of online correlation calculations and thus is

lighter and less susceptible to false positives than the

original unsupervised approach. Moreover, The FDDM

returned less diagnosis candidates than the original

unsupervised approach, further isolating the root cause

possibilities. Finally, we argue that the hybrid approach

could be generalized to any classification problem when the

training data is unlabeled.

References

[ADAPT] http://ti.arc.nasa.gov/tech/dash/diagnostics-and-

prognostics/adapt-diagnostics/

[Breiman, 2001] Breiman L. "Random forests." Machine

learning 45.1 : 5-32.

[DXC, 2011] International Diagnostic Competition -

website, http://sites.google.com/site/dxcompetition2011/

[FlightGear] website, http://www.flightgear.org/

 [Hashimoto, 2005] Hashimoto M. A multi-model based

fault detection and diagnosis of internal sensors for mobile

robot. Intelligent Robots and Systems ,pp.3787- 3792.

[Isermann 2005] Isermann R. Model-based fault-

detection and diagnosis—Status and applications. Annual

Reviews in Control, 29(1), 71–85.

 [Khalastchi et al, 2013] Khalastchi E., Kalech M.,

Rokach L. Sensor fault detection and diagnosis for

autonomous systems. In proceedings: The Twelfth

International Conference on Autonomous Agents and Multi-

Agent Systems.

[Leeke et al, 2011] Leeke M, Saima A, Arshad J, and

Sarabjot S.A., A methodology for the generation of efficient

error detection mechanisms." In Dependable Systems &

Networks (DSN), 2011 IEEE/IFIP 41st International

Conference on, pp. 25-36.

 [Robocop] Robotcup competition, website,

http://www.robocup.org/

[Robotican] website, http://www.robotican.net/

[Steinbauer 2011] Steinbauer G. a survey on the nature of

faults of autonomous robot systems. website,

http://www.ist.tugraz.at/rfs/index.php/Main_Page

http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://sites.google.com/site/dxcompetition2011/
http://www.flightgear.org/
http://www.robocup.org/
http://www.robotican.net/
http://www.ist.tugraz.at/rfs/index.php/Main_Page

