
Abstract 

One of the challenges of fault detection in the domain of 

autonomous systems is the handling of unlabeled data, 

meaning, most data sets are not recognized as normal or 

faulty. This fact makes it very challenging to be used as a 

training set such that learning algorithms would produce a 

successful fault detection model. Traditionally unsupervised 

algorithms try to address this challenge. In this paper we 

present a hybrid approach that combines unsupervised and 

supervised methods. An unsupervised approach is utilized 

for labeling a training set, and then by a standard supervised 

algorithm we build a fault detection and diagnosis model 

that is much more accurate. We show promising results on 

simulated and real world domains. 

1. Introduction 

Autonomous systems such as Unmanned Vehicles (UVs) 

or robots are susceptible to a variety of hardware and 

software faults. These faults might lead to mission failure or 

even endanger the safety of the expensive system or its 

environment. For example, a pitot-static system failure in an 

Unmanned Aerial Vehicle (UAV) might lead to a crash. 

To continue operate autonomously, the system must have 

an accurate fault detection mechanism. Upon fault detection 

a diagnosis process can be triggered and a decision on how 

to continue can be made. An accurate fault detection 

mechanism presents several challenges in the domain of 

autonomous systems: (1) there is a great variety of faults, 

such as stuck value, drift or abrapt, (2) a fault expression 

can span over time, (3) a fault should be detected as quickly 

as possible, online, and with high accuracy, (4) a fault 

detection mechanism should be kept light, finally (5) this 

domain is also characterized for having unlabeled data.  

The Diagnosis should be accurate as well. A diagnosis 

report should return a minimal set of components that 

includes the root cause of the fault. 

Three general approaches are usually used for fault 

detection and diagnosis: Knowledge-Based systems, Model-

Based, and Data Driven approaches [Isermann 2005]. 

Knowledge based systems typically associates recognized 

behaviors with predefined known faults and hence, are less 

likely to detect an unknown fault. Model-based approaches 

are potentially very accurate. The correct behavior of each 

component is modeled analytically. The system output is 

compared to the modeled output and a high residual 

indicates a fault.  The diagnosis can be deduced from the 

information the model provided. In complex autonomous 

systems, the task of modeling the behavior of components is 

very hard or even impossible. Data driven approaches are 

model free. The online data is usually used to statistically 

differentiate a fault from a normal behavior. However, this 

task may be not as light as the system requires. 

In our previous work [Khalastchi et al., 2013] we 

presented an unsupervised approach for fault detection in 

the domain of autonomous systems. This approach 

combines model based and data driven approaches, and 

shows a high rate of detection and a low rate of false 

positives. In this paper we aim to show a hybrid approach 

that uses an accurate unsupervised approach for fault 

detection similar to our previous approach, to create more 

accurate and light fault detection and diagnosis model in a 

supervised manner. 

Empirical evaluation on simulated and real word domains 

show that the learnt fault detection model is more accurate 

than the original unsupervised approach.  Finally, we argue 

that this hybrid approach can be generalized to a 

classification problem with an unlabeled training set.  

2. Related work 

Steinbauer conducted a survey on the nature of faults of 

autonomous robot systems [Steinbauer 2011]. The survey 

participants are developers competing in different leagues of 

the Robocup competition ‎[Robocop]. The reported faults 

were categorized as hardware, software, algorithmic and 

interaction related faults. The survey concludes that 

hardware faults have a high negative impact on mission 

success. In this paper we focus on detecting such faults. 

 We presented an unsupervised approach for sensor fault 

detection that combines model-based and data driven 

techniques to achieve greater accuracy [Khalastchi et al, 

2013]. The hybrid approach presented in this paper utilizes 

this unsupervised approach. 

The chosen unsupervised approach has a high detection 

rate for single dimension faults such as "drift" and "stuck". 

These types of faults appear in a variety of related domains. 

For example, the Advanced Diagnostics and Prognostics 

Testbed  [ADAPT] depicts the following faults to sensors on 

an electrical circuit. This testbed is used for the diagnosis 

competition [DXC,2011]. Another example is the work of 

[Hashimoto et al., 2005] that uses kalman filters along with 

kinematical models to detect sensor faults such as "stuck", 
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"abrupt" and "scale" on a mobile robot. Our hybrid approach 

relies on a function that returns the state of the sensor (i.e. 

abrupt, drift, stuck,  etc.). 

[Leeke et al, 2011] present a methodology for generating 

efficient error detection mechanisms. Their approach relies 

on injecting faults into data that is used as a training set for a 

learning algorithm. The learnt error detection model is of 

high accuracy. Our hybrid approach is similar in concept, 

but does not rely on fault injection.  

3. Decreasing the False Positive Rate 

In this section we describe the problem of fault detection 

in the domain of unmanned vehicles. We continue with 

demonstrating how the unsupervised labeling is done. 

Finally, we describe the learning process. 

3.1 Problem Description 
Let           be a set of attributes that are monitored 

in real time (e.g. air-speed, heading, pitch, altimeter, etc.) 

and let            be the set of values for attributes 

        at time   where      is the value assigned to    

at time  . Past data of m time units of these values       
                          is also available.       is a 

sliding window containing at time   the latest   values of 

the monitored attributes. In addition, unlabeled past 

recordings of the unmanned vehicle operations are also 

available. These recordings can be used as a training set for 

a machine learning algorithm if labeled. We denote this 

training set as       
        

          
      where    

is the length of operation   and   is the end time operation  , 
thus    

     denotes all the values recorded for the 

monitored attributes in   during operation     
Given                  the goal is to online recognize 

whether a fault has occurred to any of the attributes in  . 

This decision should be made as quick as possible after a 

fault has occurred, and should be as accurate as possible. By 

'accurate' we mean that a fault detector should have a high 

detection rate and a low false positive rate. In addition, a 

minimal set of diagnosis that includes the root cause of the 

fault should be returned. 

3.2 The Outline of the Approach 
We introduce a hybrid approach which consists of an 

offline preprocess and an online fault detection and 

diagnosis process.  The offline preprocess conducts an 

unsupervised algorithm to label an unlabeled training set. 

Then, a supervised learning algorithm is used to construct a 

fault detection and diagnosis model that can be used online 

with greater accuracy. Figure 1 depicts the outline of our 

approach. 

3.2.1 The offline preprocess 

The unlabeled past operations recordings  are delivered as 

an input to an unsupervised fault detection algorithm. This 

algorithm is described in section 3.3. In summary this 

algorithm translates the behavior of each attribute in each 

sliding window to normal or to one of pre-defined 

suspicious patterns (e.g. stuck, drift). In addition, each 

sliding window is labeled according to the unsupervised 

classification (i.e. "Normal", or the diagnosis of the fault). 

However, a small portion of the normal examples may be 

misclassified as faults; these are the false positives of the 

unsupervised fault detection. The resulted labeled data is fed 

into a decision-tree based leaning algorithm. The resulted 

fault detection and diagnosis model –      can be used 

online, and is more accurate than the original unsupervised 

fault detection and diagnosis approach as shown in the 

results section.  

3.2.2 The online fault detection process 

The online input is a time series confined into a sliding 

window         With each time step   the data in       is 

transformed into a categorical data which can be fed into the 

fault detection and diagnosis model -      (resulted by 

the offline preprocess). The fault detection and diagnosis 

model classifies the data presented in       as normal or as 

faulty by returning the fault diagnosis as a classification. In 

section 3.5 we describe the fault detection and diagnosis 

online process in detail. 

3.3 Unsupervised Labeling 
Each past operation of the autonomous system    

     

 is fed into an unsupervised diagnosis engine. This 

diagnosis engine uses a heuristic decision which is based on 

a prior knowledge of a structural model as well as the online 

consumed data       (sliding window) to determine an 

occurrence of a fault and its diagnosis. We chose this 

approach due to its very low rate of false positives and the 

high fault detection rate which usually is 1 or very close to 

1. Note that any unsupervised fault detection and diagnosis 

approach can be used to label the unlabeled training set.  

Being online and unsupervised, the approach relies on 

correlated attributes to provide the necessary comparison 

between expected and unexpected behavior of attributes. 

The approach assumes that correlated attributes behave as 

redundant to one another. This is usually the case for the 

domain of unmanned vehicles with a rich array of sensors 

and modeled variables.  

Each attribute is subjected to tests by suspicious pattern 

recognizers. A suspicious pattern recognizer is a part of the 

fault detection system input and is domain specific. The 

latest   values of an attribute extracted from       are 
Figure 1: The Outline of the Approach 



tested. For example, we use a drift test and a stuck test. 

However, when an attribute shows a suspicious pattern it 

does not necessarily suggest a fault; it could be a reaction to 

a normal action of the unmanned vehicle. For example, 

maintaining altitude may appear as stuck, and altitude 

climbing may appear as a drift. 

To differentiate between a normal reaction and a fault, the 

approach uses a heuristic decision based on a structural 

model. A structural model depicts components dependency. 

The heuristic decision compares an attribute that shows a 

suspicious pattern with an attribute that used to be correlated 

to it in the previous sliding window.  If they do not share 

component dependency and show different patterns then this 

is due to a fault. Otherwise, it might be a reaction to a 

normal action of the unmanned vehicle. 

For example, if the altimeter is suspected for a drift, and 

the GPS indicated altitude is also drifting then this is 

probably due to the altitude climbing action of the UAV 

(and not a fault). If the altimeter is stuck while the GPS 

indicated altitude is not, then it is probably due to a fault. 

Furthermore, these attributes are dependent on different 

subsystems. This fact makes these attributes less likely to be 

affected by the same fault. 

The data of each sliding window,                 

   
      , is transformed into a line of categorical data 

with the addition of the classification made by the 

unsupervised fault detection algorithm. A recognized 

suspicious pre-defined pattern is replaced by its class. We 

use a drift and a stuck pattern recognizers which correspond 

to "drift" and "stuck" categories. An additional "regular" 

category is given to an attribute which is not suspected by 

any suspicious pattern recognizer.  

For example, assume a sliding window of size   
  containing the values of 3 attributes at a time step  : 

Time step          

t-4 0.9 1 3 

t-3 0.1 2.5 3 

t-2 0.05 3 3 

t-1 0.15 3.1 3 

t 0.05 3.9 3 

Assume that the unsupervised diagnosis engine reported a 

fault for this time step including diagnosis components 
                   . The data of the sliding window will 

be registered as one training sample, where     is 

categorized as "regular",    is categorized as "drift", and    

is categorized as "stuck". In addition, this sample is 

classified by the diagnosis of the fault -         . Thus, the 

registered training sample for this time step is:  

Regular,Drift,Stuck,         . Note that the fact that this 

sample contains drift and stuck does not necessarily entail a 

fault. In some cases it may indicate a normal behavior. 

The “Fault” classification (e.g.         ) may be correct or 

not; it depends on the accuracy level of the unsupervised 

approach.  The next section will discuss how this inaccuracy 

affects the constructed decision tree. 

3.4 A Decision Tree Based Fault Detection Model 
3.4.1 The effect of falsely classified training examples 

Decision trees have some tolerance towards falsely 

labeled examples in their training set. During the model 

construction, the algorithm grows a decision tree. In each 

step the algorithm computes the information gain obtained 

by selecting each attribute and chooses the one with the 

highest information gain (  (  )). The information gain is 

determined by the entropy of the attribute which is affected 

by the ratio between the normal and faulty samples. The 

lower faulty samples the higher information gain. If a 

portion of samples are misclassified as "fault" then this 

might reduce the information gain of a node. However, if 

the degree of reduction is small enough the construction of 

the tree is unaffected.  

The degree of information gain reduction due to falsely 

classified training examples is dependent on several factors.  

Let  

   be the training set. 

    be                       the size of examples of which 

attribute   has the value    and the classification is 

"Fault" (i.e. some diagnosis classification of a fault) 

when all examples are classified correctly by an oracle. 

    be                        the size of examples of 

which attribute   has the value    and the classification 

is "Normal" when all examples are classified correctly 

by an oracle. 

    be the number of samples from |     
|, that were 

falsely classified as "Fault" due to false positives of the 

unsupervised approach (note that  |     
|       ). 

The effect of the misclassified    samples on the 

information gain of attribute   is the new (affected) 

information gain        minus the original information gain 

     : 
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Where   is the entropy function and    is the entropy 

affected by falsely classified examples. For given    falsely 

classified samples in      
 the affected entropy is: 
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   samples that are falsely added to    are in the expense of 

  . After some 

algebra       

can be presented 

for given    

falsely classified 

examples in 

     
 as: 

Figure 2: The negative effect on 
information gain 
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We can see that when      then        . When    

grows,       decreases. This affect is depicted in Figure 2. 

Figure 2 illustrates an example for this effect on the 

information gain where                     . 

As    grows, the information gain decreases. The negative 

effect will eventually return to 0 as    grows. When  

         the number of samples for each classification 

is the same as the original, only with opposite 

classifications; the entropy is the same as the original 

entropy and thus the information gain is unaffected. 

If the information gain of some attribute        is greater 

than the information gain of another attribute   (  ) when 

all training set examples are classified correctly by an 

oracle, then for a small enough number of falsely classified 

examples   the effect of      will not change the decision 

tree construction                       (  )  

In some cases the number of falsely classified examples   

will affect the decision tree construction             

  (  ). This might lead to the appearance of false positives 

when using the resulted fault detection and diagnosis model. 

When compared to a model that was constructed of 

correctly classified training examples this approach has 

more false positives due to the effect of     . However, this 

approach has significant less false positives than the original 

unsupervised approach, as we show in the results section. 

3.4.2 Using the FDDM online 

When given a new online input, we consume it in a 

sliding window fashion      . We transform the time-

series data in       to a line of categorical data in the same 

manner we used in the original unsupervised approach. Only 

when the new line is different than the previous line (i.e. 

some attribute changed its state) the new line is fed into the 

offline-learnt fault detection and diagnosis model -     . 

The      decides (online) whether or not it is a fault. In 

case of a fault the      returns a diagnosis as the 

classification. 

For example, consider a static-system failure. One of the 

expressions of this failure is the frozen value of the 

altimeter. In       the values of the altimeter attribute are 

all equal, while the values of the GPS indicated altitude 

attribute diverse. The equal values of the altimeter are 

recognized as a suspicious pattern by the stuck-pattern 

detector. Therefore, the corresponding categorical line to 

      has the value "stuck" for the altimeter attribute and 

the value "regular" for the GPS indicated altitude attribute 

(other attributes also get their own categorical values) . This 

line is fed into the      that decides whether or not these 

values express a fault. It is possible that the next categorical 

line that corresponds to         will not be different than 

its predecessor. In this case, the      is not triggered 

again; only if at least one of the attributes changed its state 

(e.g. from regular to stuck as the altimeter) then the 

    is triggered. 

To summarize our hybrid approach, in the first stage we 

use an unsupervised fault detection and diagnosis algorithm 

to label unlabeled training set. The suspicious pattern 

detectors of the unsupervised approach are used to transform 

the time-series data in each sliding window into categorical 

data. Each sample is classified according to the 

unsupervised decision (i.e. "Normal" or other fault modes). 

Then, we apply a decision tree based learning algorithm on 

the training data and produce a fault detection and diagnosis 

model -      that can be applied online. The online 

process uses the same suspicious pattern detectors to 

produce a categorical line for each sliding window. The line 

is fed into the      which was learnt offline. The      

makes a choice whether or not the online input is an 

expression of a fault. In case of a fault, the classification is 

the diagnosis. 

4. Experiment Setup 

To examine our approach we tested the fault detection 

accuracy as well as the diagnosis accuracy. We use three 

domains to test the fault detection accuracy. The first is a 

high fidelity flight simulator [FlightGear] the second is a 

commercial UAV, and the third is a laboratory robot 

Robtican1 [Robotican]  (see Figure 3). In addition, we use 

the FlightGear domain to test the diagnosis accuracy. We 

expect our proposed hybrid approach to be more accurate in 

fault detection and diagnosis than the original unsupervised 

approach. 

Flighgear domain: Flighgear is an open source flight 

simulator designed for research purpose and is used for a 

variety of research topics. FlightGear has built-in 

realistically simulated instrumental and system faults.  For 

example, if the vacuum system fails, the HSI gyros spin 

down slowly with a corresponding degradation in response 

as well as a slowly increasing bias/error. 

We recorded 32 flights. Each flight had duration of 5 

minutes, and included a take-off and left and right turns. 23 

attributes were sampled in 4Hz. Each flight was injected 

with a different type of fault. Each fault had duration of 35 

seconds and was injected twice to the same flight at random 

times. In total, we tested 11 different types of instrumental 

and system failures.  In total, the test set contains 25,977 

examples out of which 5,880 are expressions of faults. 

 The unsupervised process applied on the training set 

achieved a detection rate of 1 (all faults were detected). The 

resulted categorical and classified data was used as a 

training set.  

In addition, due to its richness of data and deep level of 

components dependencies, we use the FlightGear domain to 

further test the diagnosis accuracy of the proposed hybrid 

approach. We tested two types of system failures and 4 

types of instrumental failures.  In total, 6 flights were used 

as a training set and 12 flights were used as a testing set. 

The goal was to accurately detect and diagnose the faulty 

components out of 40 possible components. 

Commercial UAV domain: The real UAV domain 

consists of 6 recorded real flights of a commercial UAV. 53 



attributes were sampled in 10Hz. The attributes consists of 

telemetry, inertial, engine and servos data. Flights duration 

varies from 37 to 71 minutes. The UAV manufacture 

injected a synthetic fault to two of the flights. The first 

scenario is a value that drifts down to zero. The second 

scenario is a value that remains frozen (stuck). The detection 

of these two faults were challenging for the manufacture 

since in both scenarios the values are in normal range. These 

two flights were used as a test set. The remaining four 

flights were used as a training set where into two flights we 

injected similar synthetic faults. In total, the test set contains 

65,741 examples out of which 1,593 are expression of 

faults. 

Laboratory robot domain: Robotican1 is a laboratory 

robot that has 2 wheels, 3 sonar range detectors in the front, 

and 3 infrared range detectors which are located right above 

the sonars, making the sonars and infrareds redundant 

systems to one another.  This redundancy reflects real world 

domains such as unmanned vehicles. In addition, the 

Robotican has 5 degrees of freedom arm. Each joint is held 

by two electrical engines. These engines provide a sensed 

reading of the voltage applied by their action.  

We devised 10 different 

scenarios that included 

different injected faults while 

the robot performed different 

tasks. Faults were injected to 

each type of sensor (motor 

voltage, infrared and sonar). 

The injected faults to the 

sensors were of type stuck or 

drift. These faults were injected 

to one or more sensors in 

different time intervals. 15 

attributes were sampled in 8Hz. 

Scenarios duration lasted 10 seconds where the last 5 

seconds expressed a fault. 4 scenarios were used as an 

unlabeled training set and the other 6 were used as a test set. 

Note that in this domain, the training set did not cover all 

the examples included in the test set. 

For the supervised learning we have experimented with 

several decision tree algorithms: ID3, J48, and a Random 

Tree [Breiman, 2001]. As expected the Random Tree 

performed better and 

its results on the 

three domains are 

shown in the next 

section. 

5. Results 

Figure 4 illustrates 

the average false 

positive rate of the 

hybrid vs. the 

original unsupervised approach, taken over the 21 test 

flights of the FlightGear domain, using a sliding window 

size of 250. The hybrid approach significantly improved the 

false positive of the unsupervised algorithm.  

To demonstrate the degree of reduction of the false 

positive rate by the suggested hybrid approach we used 

different sizes of sliding windows during the offline training 

phase. Smaller sizes create more opportunities for reports 

and thus more opportunities for false positives. Figure 5 

illustrates the degree of reduction in the average false 

positive rate over 

the 21 test flights 

in the FlightGear 

domain. Note that 

the false positive 

rate is in 

logarithmic scale. 

We can see that 

with each size of 

sliding window 

the false positive 

rate of the hybrid approach is significantly lower than the 

original unsupervised approach. 

The different parameters used by the unsupervised 

approach during the offline phase can be viewed as different 

unsupervised approaches; each with its own rate of false 

positives. The hybrid approach contributes to the reduction 

of false positive rate for each of these unsupervised 

approaches. 

Satisfied by 

the very low 

rate of false 

positives, we 

decreased the 

sliding window 

size used 

online. It is 

suggestible to 

use a smaller   

for       when classifying an online input than the   used 

during the offline training. This increases the number of 

reports, and since the false alarm rate is very low, we can 

Figure 3: Robotican1 
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tolerate an increase of false positives in return for a higher 

true positives rate. 

Figure 6 illustrates the ROC of false alarm rates and the 

detection rates of the unsupervised approach verses the 

hybrid approach under the influence of a changing size of 

the online sliding window (62sec – 47sec). Note that scale 

of Figure 6 zooms in on high detection rate (close to 1) and 

low false alarm rate (close to 0). The added of false 

positives to the hybrid approach is of little significance 

while the effect on the unsupervised approach is apparent. 

In addition, the detection rate of the hybrid approach is 

getting higher as the size of the sliding window decreases. 

This is explained by the fact that a smaller size of a sliding 

window increases the frequency of state changes and hence 

the total amount of reports. Therefore, there is a greater 

chance for detection as well as some false positives. The 

hybrid approach gets a lower rate of false alarms and a 

higher rate of fault detection than the original unsupervised 

approach. 

In the UAV domain the hybrid approach keeps a similar 

trend. In the two examined scenarios, both the hybrid and 

unsupervised approaches had a detection rate of 1. However, 

the hybrid approach had a significantly lower false positive 

rate than the unsupervised approach as figure 7 shows. 

In the Robotican1 domain, even though the training set 

did not include all possible faults that were included in the 

test set, the detection rate of the learnt fault detection model 

was 1. Being online and unsupervised, it is not surprising 

that the unsupervised approach also scored a detection rate 

of 1 on the test set. However, it is interesting to note that the 

offline learnt FDDM of the hybrid was able to generalize the 

heuristic decision of the unsupervised approach such that 

unseen faults were detected. 

The average false alarm rate of the unsupervised approach 

on the 6 tested scenarios was 0.067 while the hybrid 

approach scored 0.041. Again, the hybrid approach reduced 

the false positive rate. 

We also tested the diagnosis of the proposed approach on 

the FlightGear domain as table 1 depicts.  

The unsupervised approach produced very good results: A 

detection rate of 1, false alarm rate of 0.0086, and the 

diagnosis set contained an average of 2.88 components out 

of 40 possibilities, and always included the single root 

cause, making the diagnosis false positive rate as 0.048. But 

still, the hybrid approach is able to improve the results. The 

hybrid approach got a detection rate of 1, a false alarm rate 

of 0.0077, and an average diagnosis set size of 2.14 out of 

40 possible components that included the single root cause, 

making the diagnosis false positive rate 0.029.  

Table 1:diagnosis results, FlightGear domain 

Approach 

Fault 

Detection 

rate 

False 

alarm 

rate 

Diagnosis 

true positive 

rate 

Diagnosis 

false 
positive rate 

Unsupervised 1 0.0086 1 0.048 

Hybrid 1 0.0077 1 0.029 

 

6. Discussion 

The offline step labels the data with an unsupervised 

approach. An alternative approach for labeling the data is a 

clustering algorithm (e.g. K-means where k=2). However, 

an unsupervised fault detection approach is more specific to 

the fault detection problem and thus expected to be more 

accurate than the general clustering algorithm.  

We chose to demonstrate the hybrid approach with the use 

of our previous unsupervised approach [Khalastchi et al. 

2013] since it showed a high detection rate and a very low 

false positive rate. Any other highly accurate unsupervised 

approach could have been used for that matter. The high 

detection rate is very important since all faults should be 

labeled as such.  

The learnt FDDM generalized the original heuristic 

decision of the unsupervised approach. The model is 

independent of online correlation calculations and thus is 

lighter and less susceptible to false positives than the 

original unsupervised approach. Moreover, The FDDM 

returned less diagnosis candidates than the original 

unsupervised approach, further isolating the root cause 

possibilities. Finally, we argue that the hybrid approach 

could be generalized to any classification problem when the 

training data is unlabeled.  
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