
22
nd

 International Workshop on Principles of Diagnosis

 1

Sensor fault detection and diagnosis for autonomous systems

Eliahu Khalastchi,Meir Kalech ,Lior Rokach, Yotam Shicel and Gali Bodek

Ben-Gurion University of the Negev, Be'er-Sheva, Israel, 84105, Israel

{eli.kh81,kalechm, liorrk}@gmail.com

ABSTRACT

Autonomous systems are usually equipped

with sensors to sense the surrounding

environment. The sensor readings are

interpreted into beliefs upon which the robot

decides how to act. Unfortunately, sensors are

susceptible to faults. These faults might lead

to task failure. Detecting these faults and

diagnosing a fault's origin is an important task

that should be performed quickly online.

While other methods require a high fidelity

model that describes the behavior of each

component, we present a method that uses a

structural model to successfully detect and

diagnose sensor faults online. We experiment

our method with a laboratory robot

Robotican1 and a flight simulator FlightGear.

We show that our method outperforms

previous methods in terms of fault detection

and provides an accurate diagnosis.

1 INTRODUCTION

The use of robots in our daily civilian and military life

is increasing. Robots can replace humans in certain

tasks that are too boring or too dangerous. However,

these sophisticated and sometimes very expensive

machines are susceptible to faults. A fault has the

potential to cause mission failure or even to endanger

the system itself or its surrounding e.g. a UAV

(unmanned aerial vehicle) can crash due to a fault.

 Faults are not restricted just to hardware wear and

tear. Long before a robot tries to activate some actuator

it should sense the ever changing dynamic environment

and compute its beliefs over the world. It then needs to

make choices of how to behave, and send the command

to the relevant controllers to activate the actuators.

Based on its actions, the world changes; thus the

described operation proceeds iteratively. For example,

a robot's laser distance sensor returns a reading. This

reading derives a belief – the distance to a target object.

The decision making process of the robot might decide

to move towards the target object. This decision is

translated to the execution of a set of commands from

the robot's API. Each command activates some

actuators, like the robot's wheels. As the robot is

getting closer to the target the sensors react accordingly

and the belief is updated.

 At each step of this cycle a fault might occur. Either

due to false sensing or runtime errors (in the operating

system of the robot) or due to a hardware failure. These

faults need to be detected quickly and diagnosed. For

example, if the code that computes the distance to the

target crashes, then the robot might continue to move

forever. The same can happen if the laser sensor returns

a constant value or deviated from the target, or if the

wheels are spinning in place.

 Steinbauer et al. conducted a survey on the nature of

faults of autonomous robot systems (Steinbauer,

website). The survey participants are the developers

competing in the different leagues of the Robocup

competition (Robocup, website). Steinbauer et al.

concluded that internal hardware components such as

batteries and motors are most affected by faults to

connectors or communication, and are critical to

mission success. They categorize these faults as

platform faults. Furthermore, configuration problems

greatly affect sensors, and sensors faults have similar

frequency but a higher negative impact than platform

faults. We propose a Model-Based approach that

detects and diagnoses sensors faults, and relates sensors

to internal hardware components to enable diagnosis of

these platform related faults.

 In this paper we propose a fault detection method in

which an autonomous system can detect that there is a

failure in the system. In addition, we propose a

diagnosis method which isolates the faulty

component/sensor. In our fault detection method we

recognize correlations between data readings online

and track them to detect correlation breaks along time.

For the diagnosis process, we use a structural model

that indicates sensors dependency on hardware

components, and thus enables the isolation of the faulty

sensor or component.

 In previous work (Khalastchi, 2011), we introduced

a successful model free, unsupervised and online

approach for anomaly detection. In this paper, we

present two contributions: (1) we use a structural model

to isolate the faulty component or sensor and thus

provide diagnosis, and (2) we address faults that can be

detected over time.

mailto:author1@academic.edu

22
nd

 International Workshop on Principles of Diagnosis

 2

 There are two faults in particular that are hard to

detect (Varun, 2009): (1) Stuck – the sensor returns the

same reading regardless the real state, and (2) Drift –

the sensor returns values which continually drift

upwards (or downwards) from the real state.

 The stuck fault may indicate data that is in a range

of the truthful readings, and the drift may change very

slowly maintaining the correct range of the sensor.

Both kinds of fault express abnormal behavior. On the

other hand, even a healthy sensor can sometimes

produce values that appear to be stuck or drifting as a

reaction to the robot's current action. Thus, these faults

are challenging to detect.

 We evaluate our method in two domains. The first is

a laboratory robot (Robotican, website) that applied

different behaviors upon which faults were injected to

its sensor readings. The second domain is a high

fidelity flight simulator – FlightGear (FlightGear,

website). This simulator presents a more rich and

complex environment to test our method. The system

and instrumental faults which are already built-in and

realistically mimic faults that occur in real flights

present a very suitable domain to test our fault

detection and diagnosis methods.

 We compare our fault detection method to the

algorithm presented in our previous work and to LOF

(Pokrajac, 2007) and show that the method proposed in

this paper is more accurate. In addition, we show the

high success rates of detecting and diagnosing faults in

both domains.

2 Related Work

 There are diverse fault detection approaches as

analytical methods, data-driven or knowledge-based

systems (Isermann, 2005). Analytical approaches use

mathematical models to compare expected outputs with

observed outputs and derive a residual that is used to

determine whether or not a fault has occurred.

However, expressing all the behavioral laws of every

component in mathematical equations is a very hard

task (Varun, 2009).

 Data-driven approaches are model-free statistical

methods. These methods face the challenge of

dimension reduction and a dependency in the existence

of quality information that can be extracted from the

data (Isermann, 2005; Varun, 2009).

 We propose the use of a structural model which

depicts sensors dependencies on internal hardware

components. As opposed to other analytical models, the

structural model does not include a mathematical

representation of components behavior and thus is

easier to construct. Thus, the proposed approach is not

driven by data alone, and is not dependent on the

existence of quality information and has no need for

dimension reduction.

 We put our focus on one-dimensional sensors.

Faults to these types of sensors may appear in a variety

of forms. For example, the ADAPT system (ADAPT,

website) in the DXC (DXC, website) industrial track

depicts the following faults to sensors on an electrical

circuit: "stuck" where all values produced by the sensor

are the same, "drift" where the values show a

movement towards higher (or lower) values, and

"abrupt" where there is a sudden large increase (or

decrease) in the sensor's values. Hashimoto et al.

(Hashimoto, 2005) used kalman filters along with

kinematical models to diagnose "stuck" and "abrupt"

faults to sensors of a mobile robot, as well as "scale"

faults, where the (gain) scale of the sensor output

differs from the normal. Our diagnosis algorithm relies

on a function that returns the state of the sensor (i.e.

abrupt, drift, stuck, scale etc.).

 When a sensor has a state such as stuck or drift it

might be the result of the robot's action and not a fault

(e.g. a UAV climb might appear as an altitude drift). To

tell a sensor's reaction apart from a fault, we apply a

similar technique to our previous work on online

anomaly detection in unmanned vehicles (Khalastchi,

2011). Since only the robot's perception is available, we

use correlated sensors for comparison. In our previous

work we determined which sensors are correlated, and

per each correlated set of sensors we measured their

current-input's degree of being an outlier with respect

to previous inputs using the Mahalanobis Distance

(Mahalanobis, 1936). Our current approach compares

the state of correlated sensors which do not share

component dependency. The same logical assumption

is applied in both approaches. If two sensors are

correlated they should react in the same manner to the

robot's behavior. However, if the two sensors show

different behaviors then it might be due to a fault.

3 PROBLEM DESCRIPTION

We define an autonomous system with a structural

model that represents the sensors dependency of

internal hardware components. The most fundamental

entities are the sensors and components. The set of the

sensors is . Each sensor reports online

readings – a single value that is changed over time as

the system operates. The second set represents

hardware components which we denote as
 . The structural model maps internal

components to their dependent sensors denoted as M:

 Definition 1: [dependency set] M is a set of tuples of

the form
 > where is

considers sensors that are dependent on the

hardware componen . Given the healthy predicate

 denotes the health of

 .

22
nd

 International Workshop on Principles of Diagnosis

 3

 If component is faulty then all of its dependent

sensors () will report faulty data. However, if

sensor is faulty it does not imply that is faulty;

can be faulty itself.

To formally represent the mapping between

components and sensors we define the sensor mapping

function and its inverse component function:

Definition 2: [mapping functions] Given a

component , is a function that

returns the set of sensors that are dependent on the

component . Given a sensor is a

function that returns the set of the components that

the sensor is dependent on.

 Figure 1 illustrates our model. It presents a partial

structural model of the cockpit panel of a Cessna 172p

airplane. The dark rectangles represent the components

and the bright rectangles represent sensors. For

instance, to enable the speed indicator to return a

correct reading both the pitot system and the static

system need to be operating correctly. The altimeter is

dependent only on the static system. The altimeter

returns two data readings - altitude and pressure, each

is considered as a one dimensional sensor that is

dependent on the static system. The same is applied for

the attitude indicator that returns the values of the

Pitch, Roll and Yaw, which are all dependent on the

vacuum system. The GPS is a redundant sensor that

besides position values it also returns the speed and the

altitude of the aircraft. Since the GPS is dependent only

on the electrical system, it will still work in case of a

static system failure.

 The goal is to report, for each online reading of the

sensors, whether the reading indicates a fault (fault

detection), and upon a detected fault to diagnose which

of the internal components or sensors caused the

fault.(diagnosis).

4 FAULT DETECTION AND DIAGNOSIS

We present an online and unsupervised approach for

fault detection and diagnosis. Besides consuming the

input in an online fashion, the approach is applicable

online; meaning that (1) fault detection and diagnosis

are returned quickly after the fault occurs, and that (2)

all calculations are applicable on a computationally

weak robot. Furthermore, only the online consumed

data is available; no other past records of offline data

are used. Supervised approaches require labeled data of

both normal and faulty observations. These labeled

observations are not always available and cannot hope

to cover every possible scenario. Our unsupervised

approach has no need for labeled data of any sort.

 Our approach proceeds as follow: (1) The consumed

inputs of the sensors readings are subjected to a

correlation test that determines which sensors are

correlated to each other. (2) Each sensor is subject to an

abnormal behavior detection test, where the suspected

sensors are inserted to a suspect set. (3) The fault

detection and diagnosis use the structural model to

determine whether a fault has occurred and to diagnose

the root cause of the fault.

Parts (1) and (2) are described in the following

subsection, and part (3) is described in sections 4.2 and

4.3.

4.1 Online Preprocess

In our approach we propose to store the online

consumed data in a sliding window.

Definition 3: [sliding window] A sliding window of

size m is an matrix denoted as , stores the

latest readings of sensors ending at time . Each

cell
 stores the value of sensor at time step

 .

With each incoming input, is updated, keeping the

current data of the last time steps for each sensor.

The data of is used to both check which sensors are

correlated and which sensors are suspected of acting

faulty.

 We expect that redundant sensors that measure the

same thing or sensors that are affected by the same

action of the robot will show the same behavior during

their last values and return a high rate of correlation.

Therefore, sensors that used to be correlated and now

show a different behavior might indicate that a fault has

happened. Since there is no external observation to

compare to in the domain of autonomous systems but

only the system’s perception is available, the

knowledge of which sensors are correlated is very

important.

 We divide to two parts. The first (oldest)

rows and the second (newest)

) rows. The

first

 values of each sensor denoted as

 are used for a correlation test. The last

values (newer) of sensor denoted as

Figure 1: Partial structural model of a Cessna

172p airplane.

22
nd

 International Workshop on Principles of Diagnosis

 4

 is subjected to an abnormal behavior

detection test, as will be described later.

 The correlation detection algorithm uses the

Pearson Correlation Coefficient calculation with

respect to every two sensors in

 , thereby determining their rate of

correlation.

 Definition 4: [correlated sensors set] given sensor

 and sliding window , the set contains

the sensors that are correlated to based on :

 (

) *
. We

define .

 The knowledge of the correlated sensors will be

used to determine whether an abnormal behavior of a

sensor is due to a fault or it is a normal reaction to the

system's behavior. But first, we define an abnormal

behavior for a single dimension sensor. In this paper we

focus on three sensor states:

Definition 5 [sensor state] a sensor can be in one

of the following states:

1. "stuck" -

2. "drift" – the values in
 show a movement

towards higher values or a movement towards

lower values
†
.

3. "ok" – otherwise.

The function returns

the state of according to its latest values ().

 The reason we focus on stuck and drift faults is that

these are common to single dimensional sensors

(ADAPT, website; DXC website; Varun, 2009) and yet

are hard to be classed as faults. For example, the

altimeter gage in a UAV might appear to be stuck when

the UAV is maintaining its altitude, or appear to be

drifting when the UAV is gaining altitude; both are

reactions to the UAV's normal behavior. However, if

the altimeter gage appears to be drifting while the UAV

is maintaining altitude or the altitude gage is stuck

while the UAV is gaining altitude, then these are the

expressions of a fault.

 If a sensor's state is changed to "stuck" or to "drift"

we cannot conclude that it is due to a fault, since the

values could still be expressing a reaction to the

system's normal behavior. However, the sensor is

considered to be a suspect.

* The pearson function returns a value (-1..1), the threshold is

a user defined value (0..1) e.g. 0.9.
† Since sensors are noisy, a drift is not necessarily a smooth

movement towards higher or lower values. A simple linear

regression can be used to indicate the slope of the drift.

 Definition 6: [suspect sensor] given the sensor state

of at time , then if ()

=”stuck” or “drift” and

 then is declared as a

suspected sensor. We use the set to denote the set

of suspected sensors at time . In addition

⋃
 contains all sensors that were suspected in

the last time steps.

 By extracting information out of the correlations

between sensors in and the system's structural

model , we can conclude whether or not the abnormal

behavior of the sensor is due to a fault.

 In the next subsection we describe how the online

preprocessing we described is used in the fault

detection and diagnosis procedures.

4.2 Fault Detection

Following the previous subsection, a detection of an

abnormal behavior in a sensor is not sufficient to

implicate the sensor as faulty. We should still

investigate whether it reflects a normal behavior or a

fault. We propose to use the correlated sensor set to

indicate a failure. A high correlation rate between two

sensors dependent on two different components in the

structural model can be the result of: (1) Redundant

sensors (dependent on different internal components)

that measure the same thing. For example, the altimeter

and the GPS indicated altitude. If one system fails the

other can be used as a backup. (2) Sensors that react to

the same action of the robot. For example the Pitch

angle and the climb rate indicator are correlated as the

UAV's elevator is invoked.

 In these two cases one sensor can either implicate or

clear a suspected correlated sensor. If one sensor is

faulty or displays a faulty behavior due to a dependency

on a faulty component, then it is reasonable to assume

that the other sensor was not affected by the fault and

still reflects the robot's behavior. The same cannot be

said about two correlated sensors that share a

component dependency, since both sensors can be

affected by the same fault.

 For instance, consider that the altimeter is suspected

of drifting. If it is the result of the UAV's climbing then

the GPS indicated altitude (which is dependent on a

different component and was determined as correlated

to the altimeter) also changed its state to drift and the

altimeter is cleared of suspicion. However, if the drift

was a result of a fault, and not of the UAV's behavior,

then every other correlated sensor from another internal

component dependency should not be affected by the

fault, and therefore poses a different state than the

altimeter. In this case, we declare a fault.

 It is important to guarantee first that there is no

possibility to clear the suspected sensor of its suspicion

22
nd

 International Workshop on Principles of Diagnosis

 5

(i.e. look for another correlated sensor that do not share

component dependency but has the same state). Only

then we look for an implicating sensor (i.e. a correlated

sensor that does not share component dependency and

has a different state) in order to verify the failure of the

suspected sensor.

 Consider, for instance, that a UAV is taking off the

runway. Before it gained altitude, the altimeter which is

dependent on the static system, and the heading

indicator which is dependent on the vacuum system,

were both correlated (since both were idle). But then

while taking off the altimeter appears to drift, while the

heading indicator does not. This case would have

implicated the altimeter unless the GPS indicated

altitude was also found drifting, thereby clearing the

altimeter of suspicion.

Fault Detection Algorithm

1. Input:

 sliding window at time

 - the sets of correlated sensors at time

 - the suspected sensors set at time

2. Output: a fault detection report

3. For each sensor

4.
5. For each sensor

6.

7. If () ⋀

8. Return;

9.

10. For each sensor

11.

12. If () ⋀

13.
14. Break;

15. If

16. Report "fault detected"

The fault detection algorithm is invoked with each

input reading of the sensors. The algorithm obtains as

an input the updated sliding window , the updated

set that contains per each sensor a set of 's

correlated sensors , and the updated suspect set .

 The algorithm iterates through every suspected

sensor (line 3). is the set of internal components that

 is dependent on (line 4). is extracted from the

structural model by using the mapping function

(Definition 2). Lines 5-8 try to find a sensor that clears

the suspicion of , i.e. whether there exist a sensor

correlated to that share the same state but is

dependent on different components. We check every

sensor in 's correlated set (line 5). is the set

of components that is dependent on (line 6). If and

 share the same state (()) and do

not share dependency () then is cleared of

suspicion (lines 7-8).

 If the algorithm did not return, then lines 9-14 check

if an implicating sensor exists, i.e. whether exist a

sensor correlated to that does not share the same

state and is dependent on different components. In the

same manner we iterate through each one of 's

correlated sensors (line 10). This time we search a

sensor that shares the same state as but does not

share component dependency (line 12). If such a sensor

is found then the search is stopped (line 14) and a fault

is reported (lines 15,16).

 Upon fault detection, the diagnosis procedure is

invoked. The diagnosis procedure is described next.

4.3 Diagnosis

In the previous subsection we described how a fault is

detected per each suspected sensor . The following

diagnosis algorithm is invoked upon fault detection.

The algorithm is invoked with the suspected sensor
as an input. The fact that is suspected and not any

other that was correlated to is because was the

sensor that changed its state to drift or stuck while the

other correlated sensors did not reflect the same state.

Since we concluded that the change of 's state was not

a reaction to the robot's behavior then we determine

that is suspected for a fault.

 When a sensor is reported of having a stuck or drift

state, it can either be a single sensor fault, or an

expression of a fault of an internal component that the

sensor is dependent on. If an internal component is

faulty then all of its dependent sensors should display a

faulty behavior (Definition 1). Therefore, we check for

each of the other sensors that are dependent on the

same internal component if they are suspected (i.e.

changed their state into drift or stuck). If so, we can

include the internal component in the report.

 For example, when the heading indicator was

reported for a fault, we check if the attitude indicator's

pitch, roll and yaw changed their state as well. If so,

then we also report the vacuum system as suspected of

having a fault.

Diagnosis Algorithm

1. Input:

 – the suspected sensor

 - the state of
 – the set of all suspected sensors from the last

 time steps

2. Output: a diagnosis report

3. Report is a candidate with a fault state
4.

5. For each

6.

7.
| |

8. Report is a candidate with probability

9. Return;

22
nd

 International Workshop on Principles of Diagnosis

 6

The diagnosis process reports as a faulty sensor (line

3). Then, it extracts from the structural model the

internal components that is dependent on (line 4).

For each of those internal components (line 5) the

diagnosis process determines their probability of being

faulty according to the number of their dependent

sensors that are suspicious (are in the suspect set).

 is a set containing the component 's dependent

sensors (line 6). We report as having the probability

of being faulty as the ratio between the number of its

dependent sensors that are suspected and the

total number of cx's dependent sensors (line 7).

 Since an internal component fault might be

expressed by its dependent sensors in different time

intervals, we use the suspected set , and return a

probability of being fault. If we were to use rather

than , then only sensors that changed their state

during this particular time frame could have implicate

the component . However, some of the sensors might

have already changed their state and hence are not

suspected during this particular time frame. This would

result in a low probability of faultiness. Therefore,

we use where suspected sensors remain for several

time frames.

 For example, a static system failure causes the

altimeter to be stuck immediately and the vertical speed

indicator to drift downwards a few seconds later. Since

both sensors are in , the static system is reported at a

probability of 1. If we were to use , the static system

would have a probability of 0.5 for being faulty.

 The reason for returning a probability rather than

determine faultiness only if all its dependent sensors

are suspected is due to the fact that some sensors might

take very long time to react to 's failure while all

others are already suspected. In this case we wish to

report and give an indication about how faulty it is.

 For example, when the electrical system fails, some

instruments such as the GPS fail immediately, but the

turn indicator in particular, will take 30-60 seconds to

start drifting downwards. This is due to the fact that the

unpowered gyro still spins, though slowly loosing

speed. Hence the turn indicator's drift effect is yet to

show. In this case we would not like to clear the

electrical system from all suspicion just because one

instrument is yet to show suspicion. Therefore, we

return the probability, which in this particular example

is above 0.9.

5 EXPERIMENT SETUP

To evaluate our fault detection and diagnosis

algorithms we use two domains. The first domain is

laboratory robot called Robotican1 (see Figure 2)

(Robotican, website). The robotican1 has two wheels, 3

sonar range detectors in the front, and 3 infrared range

detectors which are located right above the sonars,

making the sonars and infrareds redundant systems to

one another.

 This redundancy reflects real world domains such as

unmanned vehicles (aerials, ground underwater etc.) in

which fault tolerance is very important for mission

successful completion. When a sensor is damaged then

another sensor can be used to fulfill the perception.

Such is the case with UAVs where a set of different

sensors measure the UAV's 3D location. If the GPS

fails, other altitude gages, accelerometers and attitude

gages can be used.

 Robotican1 also has 5

degrees of freedom arm.

Each joint is held by two

electrical engines. These

engines provide a sensed

reading of the voltage

applied by their action. To

mimic some internal

component depths we

defined 3 abstract internal

components: 1) sonar

power supplier, 2) infrared

power supplier, 3) arm

power supplier.

 We devised 17 different scenarios, which included a

scenario without injected faults and scenarios that

included different injected faults while the robot

performed different tasks. Faults were injected to each

type of sensor (motor voltage, infrared and sonar).The

injected faults to the sensors were of type stuck or drift.

These faults were injected to one or more sensors in

different time intervals. We covered cases of faults to

sensors that are dependent on the same components and

on different internal components. Failing one of the

three power suppliers described above causes each of

the dependent sensors to fail. The robot's behavior was

either to move, to stand still, or to move its arm to a

given position.

Figure 3: FlightGear Simulator Screenshot

 The second domain is the FlightGear (FlightGear

research, website) high fidelity flight simulator (see

Fig.3). This open source simulator is built for and used

in academic research (FlightGear research, website).

Furthermore, it realistically simulates flight

instrumental faults such as an altimeter stuck, or system

Figure 2: Robotican1

22
nd

 International Workshop on Principles of Diagnosis

 7

faults. For example, if the vacuum system fails, then

the gyros responsible for the attitude indicator and the

heading indicator slowly lose their spin speed, causing

the indicators to drift slowly and deviate from the

readings of the turn indicator and compass. These

features make the FlightGear simulator to be very

suitable to test our method.

 We implemented an autopilot, which flies the

aircraft according to its sensor readings. We used 16

flights that included 4 to 6 instrumental failures at

different times while the UAV takes off and makes a

few turns. We failed the altimeter, airspeed indicator

and compass. On this data set of flights we compared

our current approach to our old approach presented in

(Khalastchi, 2011) and to another competing method

for fault detection Local Outlier Factor (LOF)

algorithm (Pokrajac, 2007). 1. Our previous approach

also utilizes a sliding window technique and pearson

correlation. However, to detect faults it uses

Mahalanobis Distance (Mahalanobis, 1936) to compare

the online input to the current data in the sliding

window. 2. The LOF algorithm is also an online

density based outlier detection algorithm which uses

the K nearest neighbor to compare local density to the

expected density and calculate the data instance

measure of being an outlier accordingly.

 In addition we tested two scenarios – a takeoff and a

free flight. For each scenario we tested every possible

instrumental or system failure, and a combination of

multiple faults. There are 8 types of instruments and 4

types of systems that can be failed. In total, we

examined 16 flights for each scenario. We used these

two data sets to test the diagnosis accuracy of our

current approach.

 To evaluate the fault detection of each approach, we

calculated the detection rate and the false alarm rate.

The best possible result for the detection rate is 1

indicating that all faults were detected. The best

possible result for the false alarm rate is 0 indicating

that no false alarms were raised.

6 RESULTS

The evaluation of the fault detection over the 16 flights

produced the following results: (1) All algorithms had a

detection rate of 1 – all faults were detected (2) Our

proposed approach also diagnosed the failing sensor

correctly (3) The false positive rates are shown in

Figure 4.

 The proposed approach has a false alarm rate of

0.028. This rate is less than half of the false alarm rate

of our previous approach. Moreover, most of the false

reports of our proposed approach were produced by the

same sensor. When this sensor is suppressed there are

virtually no false alarms. The lower false alarm rate is

explained by the fact that the proposed approach uses

the additional knowledge of component dependency to

clear or implicate a suspected sensor.

Figure 4: The False Alarm Rates for the approaches

The LOF algorithm returns the degree of a data

instance being an outlier. Thus, a threshold is needed to

label a data instance as faulty or healthy. Since the LOF

algorithm does not have a policy to set these thresholds,

we chose these thresholds in such a way that the results

of the LOF algorithm will be optimized. Offline,

considering the reports of an entire flight, we set the

threshold as high as possible such that all faults are

detected and thus false positives are minimized. The

false alarm rate of our proposed approach is lower than

the optimized false alarm rate of the LOF algorithm.

In the Robotican domain we tested 17 diagnosis

scenarios. The results are a fault detection rate of 0.96

and a false alarm rate of 0.013. One fault out of 26

faults was not detected. The faulty sensor was

suspected but was cleared after another correlated

sensor of a different component dependency shared the

same state. All detected faults were diagnosed

correctly, i.e. the sensors and internal components that

were reported matched the injected faults and the report

was given at the time of the fault injection.

Figure 5 illustrates the proposed approach results

of the two domains in an ROC chart
‡
.

ROC chart describes the entire space of fault

Detection: the X-axis is the false alarm rate and the Y-

axis is the detection rate. A classifier is expressed as a

2D point. The perfect anomaly detector is located at

point (0,1). In both domains the proposed approach is

very close to the perfect fault detector (theoretically

with a detection rate of 1 and a false alarm rate of 0).

In the FlightGear domain we evaluated two more

scenarios, a takeoff and a free flight, 16 flights per each

scenario. These scenarios were used to further evaluate

the diagnosis aspect of the proposed approach. All

instrumental failures and system failures were

diagnosed. We would like to elaborate on the following

study cases which show the need for various aspects of

the diagnosis algorithm, advantages and disadvantages.

‡ Note that to produce a better view the scale of the false

alarm rate reach 0.1 (and not 1)

22
nd

 International Workshop on Principles of Diagnosis

 8

Figure 5: ROC chart of the two domains

Case 1: a static system failure causes the altimeter

to be stuck, and the airspeed indicator to drift down to 0

a few seconds later. The static system was suspected at

a probability of 1 due to the fact that suspected sensors

remain suspected for a given time (a few seconds). The

drift of the airspeed indicator caused the pitot system to

be suspected as well and included in the diagnosis.

Case 2: a failure to the pitot system causes the

airspeed indicator to drift upwards, unless there is a

failure to the static system as well, which causes the

airspeed indicator to be stuck. Note that the proposed

approach is unaware of these rules, but still recognizes

these effects as suspected faults and reports the pitot

system as suspect when needed.

Case 3: a failure to the electrical system causes

many instruments to fail immediately. But the turn

indicator starts to drift downwards only after 30

seconds to 1 minute and is yet to be detected. This case

justifies the use of probability to determine a suspected

internal component. The electrical system is suspected

in a probability greater than 0.9.

Case 4: a failure to the attitude indicator (and not

the vacuum system) causes some sensors to fail i.e.

pitch, roll and yaw angles. The proposed approach

reported that the vacuum system is suspected at a

probability of 0.8. The heading indicator which is also

dependent on the vacuum system is healthy. If the

proposed approach was not to use a probability then the

heading-indicator's health would have cleared the

vacuum system suspicion. This case does not justify the

use of a probability. However, the heading indicator

may yet fail as in case 3 and thus a probability is used.

To summarize, the proposed approach gives

sensors an even weight when implicating a suspected

component. Different weights can be used in the model

according to the sensor's ability to indicate that the

internal component is failing. In the FlightGear domain

we did not monitor sensors that would have made the

fault detection and diagnosis too easy. The vacuum

intake sensor could easily implicate the vacuum

system, and the voltmeter and ampermeter sensors

could easily implicate the electrical system. We suggest

modeling these kinds of sensors with a high weight.

7 CONCLUSION and FUTURE WORK

We showed an approach that when given a

structural model and sensor readings it can detect

sensor related faults that occur over time and diagnose

them online with high precision. We showed how a

structural model is used diagnose internal components.

We evaluated the approach on physical and simulated

domains. We described study cases which show the

advantages and disadvantages of the different aspects

of the proposed approach. We believe that further

optimizations can be made.

We modeled components to sensors dependencies.

There could be a case where there are more levels of

depth i.e. sensors that are dependent on components

that are dependent on other components etc. The

diagnosis algorithm suggested here can be modified to

work recursively, implicating a component if all its

dependent components are suspected.

REFERENCES

(Hashimoto, 2005) M.Hashimoto, A multi-model based

fault detection and diagnosis of internal sensors for

mobile robo. Intelligent Robots and Systems

,pp.3787- 3792.

(Isermann, 2005) R. Isermann. Model-based fault-

detection and diagnosis—Status and applications.

Annual Reviews in Control, 29(1), 71–85.

(Khalastchi, 2011) E. khalastchi, M. Kalech, R. lin and

G. kaminka. Online Anomaly Detection in

Unmanned Vehicles. The Tenth International

Conference on Autonomous Agents and Multi-

Agent Systems, p. 115-122.

(Mahalanobis, 1936) P. C. Mahalanobis. On the

generalized distance in statistics. The National

Institute of Science, pages 49–55.

(Pokrajac, 2007) D. Pokrajac. Incremental local outlier

detection for data streams. IEEE Symposium on

Computational Intelligence and Data Mining.

(Varun, 2009) C. Varun, B. Arindam. Anomaly

detection: A survey. The Association for Computing

Machinery, Computing Surveys, 41(3):1–58.

(ADAPT, website) ADAPT system

http://ti.arc.nasa.gov/tech/dash/diagnostics-and-

prognostics/adapt-diagnostics/

(DXC, website) International Diagnostic Competition -

http://sites.google.com/site/dxcompetition2011/

(FlightGear, website) http://www.flightgear.org/

 Research - http://www.flightgear.org/Projects/

(Robotican, website) http://www.robotican.net/

(Steinbauer, website) G. Steinbauer. a survey on the

nature of faults of autonomous robot systems.

http://www.ist.tugraz.at/rfs/index.php/Main_Page

(Robotcup, website) http://www.robocup.org/

http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://sites.google.com/site/dxcompetition2011/
http://www.flightgear.org/
http://www.flightgear.org/Projects/
http://www.robotican.net/
http://www.ist.tugraz.at/rfs/index.php/Main_Page
http://www.robocup.org/

