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ABSTRACT 

Autonomous systems are usually equipped 

with sensors to sense the surrounding 

environment. The sensor readings are 

interpreted into beliefs upon which the robot 

decides how to act. Unfortunately, sensors are 

susceptible to faults. These faults might lead 

to task failure. Detecting these faults and 

diagnosing a fault's origin is an important task 

that should be performed quickly online. 

While other methods require a high fidelity 

model that describes the behavior of each 

component, we present a method that uses a 

structural model to successfully detect and 

diagnose sensor faults online. We experiment 

our method with a laboratory robot 

Robotican1 and a flight simulator FlightGear. 

We show that our method outperforms 

previous methods in terms of fault detection 

and provides an accurate diagnosis. 

1 INTRODUCTION 

The use of robots in our daily civilian and military life 

is increasing.  Robots can replace humans in certain 

tasks that are too boring or too dangerous. However, 

these sophisticated and sometimes very expensive 

machines are susceptible to faults. A fault has the 

potential to cause mission failure or even to endanger 

the system itself or its surrounding e.g. a UAV 

(unmanned aerial vehicle) can crash due to a fault. 

 Faults are not restricted just to hardware wear and 

tear. Long before a robot tries to activate some actuator 

it should sense the ever changing dynamic environment 

and compute its beliefs over the world. It then needs to 

make choices of how to behave, and send the command 

to the relevant controllers to activate the actuators. 

Based on its actions, the world changes; thus the 

described operation proceeds iteratively. For example, 

a robot's laser distance sensor returns a reading. This 

reading derives a belief – the distance to a target object. 

The decision making process of the robot might decide 

to move towards the target object. This decision is 

translated to the execution of a set of commands from 

the robot's API. Each command activates some 

actuators, like the robot's wheels. As the robot is 

getting closer to the target the sensors react accordingly 

and the belief is updated. 

 At each step of this cycle a fault might occur. Either 

due to false sensing or runtime errors (in the operating 

system of the robot) or due to a hardware failure. These 

faults need to be detected quickly and diagnosed.  For 

example, if the code that computes the distance to the 

target crashes, then the robot might continue to move 

forever. The same can happen if the laser sensor returns 

a constant value or deviated from the target, or if the 

wheels are spinning in place.  

 Steinbauer et al. conducted a survey on the nature of 

faults of autonomous robot systems (Steinbauer, 

website). The survey participants are the developers 

competing in the different leagues of the Robocup 

competition (Robocup, website). Steinbauer et al. 

concluded that internal hardware components such as 

batteries and motors are most affected by faults to 

connectors or communication, and are critical to 

mission success. They categorize these faults as 

platform faults. Furthermore, configuration problems 

greatly affect sensors, and sensors faults have similar 

frequency but a higher negative impact than platform 

faults. We propose a Model-Based approach that 

detects and diagnoses sensors faults, and relates sensors 

to internal hardware components to enable diagnosis of 

these platform related faults. 

 In this paper we propose a fault detection method in 

which an autonomous system can detect that there is a 

failure in the system. In addition, we propose a 

diagnosis method which isolates the faulty 

component/sensor. In our fault detection method we 

recognize correlations between data readings online 

and track them to detect correlation breaks along time.  

For the diagnosis process, we use a structural model 

that indicates sensors dependency on hardware 

components, and thus enables the isolation of the faulty 

sensor or component. 

 In previous work (Khalastchi, 2011), we introduced 

a successful model free, unsupervised and online 

approach for anomaly detection. In this paper, we 

present two contributions: (1) we use a structural model 

to isolate the faulty component or sensor and thus 

provide diagnosis, and (2) we address faults that can be 

detected over time.  
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 There are two faults in particular that are hard to 

detect (Varun, 2009): (1) Stuck – the sensor returns the 

same reading regardless the real state, and (2) Drift – 

the sensor returns values which continually drift 

upwards (or downwards) from the real state. 

 The stuck fault may indicate data that is in a range 

of the truthful readings, and the drift may change very 

slowly maintaining the correct range of the sensor. 

Both kinds of fault express abnormal behavior. On the 

other hand, even a healthy sensor can sometimes 

produce values that appear to be stuck or drifting as a 

reaction to the robot's current action. Thus, these faults 

are challenging to detect. 

 We evaluate our method in two domains. The first is 

a laboratory robot (Robotican, website) that applied 

different behaviors upon which faults were injected to 

its sensor readings. The second domain is a high 

fidelity flight simulator – FlightGear (FlightGear, 

website). This simulator presents a more rich and 

complex environment to test our method. The system 

and instrumental faults which are already built-in and 

realistically mimic faults that occur in real flights 

present a very suitable domain to test our fault 

detection and diagnosis methods. 

 We compare our fault detection method to the 

algorithm presented in our previous work and to LOF 

(Pokrajac, 2007) and show that the method proposed in 

this paper is more accurate. In addition, we show the 

high success rates of detecting and diagnosing faults in 

both domains. 

2 Related Work 

 There are diverse fault detection approaches as 

analytical methods, data-driven or knowledge-based 

systems (Isermann, 2005).  Analytical approaches use 

mathematical models to compare expected outputs with 

observed outputs and derive a residual that is used to 

determine whether or not a fault has occurred. 

However, expressing all the behavioral laws of every 

component in mathematical equations is a very hard 

task (Varun, 2009). 

 Data-driven approaches are model-free statistical 

methods. These methods face the challenge of 

dimension reduction and a dependency in the existence 

of quality information that can be extracted from the 

data (Isermann, 2005; Varun, 2009). 

 We propose the use of a structural model which 

depicts sensors dependencies on internal hardware 

components. As opposed to other analytical models, the 

structural model does not include a mathematical 

representation of components behavior and thus is 

easier to construct. Thus, the proposed approach is not 

driven by data alone, and is not dependent on the 

existence of quality information and has no need for 

dimension reduction. 

 We put our focus on one-dimensional sensors. 

Faults to these types of sensors may appear in a variety 

of forms. For example, the ADAPT system (ADAPT, 

website) in the DXC (DXC, website) industrial track 

depicts the following faults to sensors on an electrical 

circuit: "stuck" where all values produced by the sensor 

are the same, "drift" where the values show a 

movement towards higher (or lower) values, and 

"abrupt" where there is a sudden large increase (or 

decrease) in the sensor's values. Hashimoto et al. 

(Hashimoto, 2005) used kalman filters along with 

kinematical models to diagnose "stuck" and "abrupt" 

faults to sensors of a mobile robot, as well as "scale" 

faults, where the (gain) scale of the sensor output 

differs from the normal. Our diagnosis algorithm relies 

on a function that returns the state of the sensor (i.e. 

abrupt, drift, stuck, scale etc.).  

 When a sensor has a state such as stuck or drift it 

might be the result of the robot's action and not a fault 

(e.g. a UAV climb might appear as an altitude drift). To 

tell a sensor's reaction apart from a fault, we apply a 

similar technique to our previous work on online 

anomaly detection in unmanned vehicles (Khalastchi, 

2011). Since only the robot's perception is available, we 

use correlated sensors for comparison. In our previous 

work we determined which sensors are correlated, and 

per each correlated set of sensors we measured their 

current-input's degree of being an outlier with respect 

to previous inputs using the Mahalanobis Distance 

(Mahalanobis, 1936). Our current approach compares 

the state of correlated sensors which do not share 

component dependency. The same logical assumption 

is applied in both approaches. If two sensors are 

correlated they should react in the same manner to the 

robot's behavior. However, if the two sensors show 

different behaviors then it might be due to a fault. 

3 PROBLEM DESCRIPTION 

We define an autonomous system with a structural 

model that represents the sensors dependency of 

internal hardware components. The most fundamental 

entities are the sensors and components. The set of the 

sensors is            . Each sensor    reports online 

readings – a single value that is changed over time as 

the system operates. The second set represents 

hardware components which we denote as   
         . The structural model maps internal 

components to their dependent sensors denoted as M:  

 Definition 1: [dependency set] M is a set of tuples of 

the form       
 > where                is 

considers sensors that are dependent on the 

hardware componen   . Given the healthy predicate 

     denotes the health of                    

      . 
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 If component    is faulty then all of its dependent 

sensors (      ) will report faulty data. However, if 

sensor    is faulty it does not imply that    is faulty;    

can be faulty itself.  

To formally represent the mapping between 

components and sensors we define the sensor mapping 

function and its inverse component function: 

Definition 2: [mapping functions] Given a 

component     ,          is a function that 

returns the set of sensors that are dependent on the 

component   . Given a sensor               is a 

function that returns the set of the components that 

the sensor    is dependent on. 

 Figure 1 illustrates our model. It presents a partial 

structural model of the cockpit panel of a Cessna 172p 

airplane. The dark rectangles represent the components 

and the bright rectangles represent sensors. For 

instance, to enable the speed indicator to return a 

correct reading both the pitot system and the static 

system need to be operating correctly. The altimeter is 

dependent only on the static system.  The altimeter 

returns two data readings - altitude and pressure, each 

is considered as a one dimensional sensor that is 

dependent on the static system. The same is applied for 

the attitude indicator that returns the values of the 

Pitch, Roll and Yaw, which are all dependent on the 

vacuum system. The GPS is a redundant sensor that 

besides position values it also returns the speed and the 

altitude of the aircraft. Since the GPS is dependent only 

on the electrical system, it will still work in case of a 

static system failure. 

 The goal is to report, for each online reading of the 

sensors, whether the reading indicates a fault (fault 

detection), and upon a detected fault to diagnose which 

of the internal components or sensors caused the 

fault.(diagnosis).   

4 FAULT DETECTION AND DIAGNOSIS 

We present an online and unsupervised approach for 

fault detection and diagnosis. Besides consuming the 

input in an online fashion, the approach is applicable 

online; meaning that (1) fault detection and diagnosis 

are returned quickly after the fault occurs, and that (2) 

all calculations are applicable on a computationally 

weak robot. Furthermore, only the online consumed 

data is available; no other past records of offline data 

are used. Supervised approaches require labeled data of 

both normal and faulty observations. These labeled 

observations are not always available and cannot hope 

to cover every possible scenario. Our unsupervised 

approach has no need for labeled data of any sort. 

 Our approach proceeds as follow: (1) The consumed 

inputs of the sensors readings are subjected to a 

correlation test that determines which sensors are 

correlated to each other. (2) Each sensor is subject to an 

abnormal behavior detection test, where the suspected 

sensors are inserted to a suspect set. (3) The fault 

detection and diagnosis use the structural model to 

determine whether a fault has occurred and to diagnose 

the root cause of the fault. 

Parts (1) and (2) are described in the following 

subsection, and part (3) is described in sections 4.2 and 

4.3. 

4.1 Online Preprocess 

In our approach we propose to store the online 

consumed data in a sliding window.  

Definition 3: [sliding window] A sliding window of 

size m is an     matrix denoted as   , stores the 

latest   readings of   sensors ending at time  . Each 

cell     
  stores the value of sensor    at time step 

   .  

With each incoming input,   is updated, keeping the 

current data of the last   time steps for each sensor. 

The data of   is used to both check which sensors are 

correlated and which sensors are suspected of acting 

faulty. 

 We expect that redundant sensors that measure the 

same thing or sensors that are affected by the same 

action of the robot will show the same behavior during 

their last   values and return a high rate of correlation. 

Therefore, sensors that used to be correlated and now 

show a different behavior might indicate that a fault has 

happened. Since there is no external observation to 

compare to in the domain of autonomous systems but 

only the system’s perception is available, the 

knowledge of which sensors are correlated is very 

important. 

 We divide    to two parts. The first (oldest)     
 

 
  

rows and the second (newest)  
 

 
      ) rows. The 

first 
 

 
 values of each sensor    denoted as   

   

    
      

  are used for a correlation test. The last 
 

 
 

values (newer) of sensor    denoted as   
   

Figure 1: Partial structural model of a Cessna 

172p airplane. 
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      is subjected to an abnormal behavior 

detection test, as will be described later. 

 The correlation detection algorithm uses the 

Pearson Correlation Coefficient calculation with 

respect to every two sensors in            

            
     

    , thereby determining their rate of 

correlation.  

 Definition 4: [correlated sensors set] given sensor 

   and sliding window   , the set          contains 

the sensors that are correlated to    based on   : 

                 (  
     

  )            *
. We 

define                    . 

 The knowledge of the correlated sensors will be 

used to determine whether an abnormal behavior of a 

sensor is due to a fault or it is a normal reaction to the 

system's behavior. But first, we define an abnormal 

behavior for a single dimension sensor. In this paper we 

focus on three sensor states:  

Definition 5 [sensor state] a sensor    can be in one 

of the following states: 

1. "stuck" -            
           

2. "drift" – the values in   
   show a movement 

towards higher values or a movement towards 

lower values
†
. 

3. "ok" – otherwise. 

The function                             returns 

the state of    according to its latest     values (   ). 

  

 The reason we focus on stuck and drift faults is that 

these are common to single dimensional sensors 

(ADAPT, website; DXC website; Varun, 2009) and yet 

are hard to be classed as faults. For example, the 

altimeter gage in a UAV might appear to be stuck when 

the UAV is maintaining its altitude, or appear to be 

drifting when the UAV is gaining altitude; both are 

reactions to the UAV's normal behavior. However, if 

the altimeter gage appears to be drifting while the UAV 

is maintaining altitude or the altitude gage is stuck 

while the UAV is gaining altitude, then these are the 

expressions of a fault. 

 If a sensor's state is changed to "stuck" or to "drift" 

we cannot conclude that it is due to a fault, since the 

values could still be expressing a reaction to the 

system's normal behavior. However, the sensor is 

considered to be a suspect. 

                                                           
* The pearson function returns a value (-1..1), the threshold is 

a user defined value (0..1) e.g. 0.9. 
† Since sensors are noisy, a drift is not necessarily a smooth 

movement towards higher or lower values. A simple linear 

regression can be used to indicate the slope of the drift. 

 Definition 6: [suspect sensor] given the sensor state 

of    at time             , then if   (          ) 

=”stuck” or “drift” and 

                           then    is declared as a 

suspected sensor. We use the set    to denote the set 

of suspected sensors at time  . In addition    

⋃    
       contains all sensors that were suspected in 

the last   time steps. 

 By extracting information out of the correlations 

between sensors in    and the system's structural 

model  , we can conclude whether or not the abnormal 

behavior of the sensor is due to a fault. 

 In the next subsection we describe how the online 

preprocessing we described is used in the fault 

detection and diagnosis procedures. 

4.2 Fault Detection 

Following the previous subsection, a detection of an 

abnormal behavior in a sensor is not sufficient to 

implicate the sensor as faulty. We should still 

investigate whether it reflects a normal behavior or a 

fault. We propose to use the correlated sensor set to 

indicate a failure. A high correlation rate between two 

sensors dependent on two different components in the 

structural model can be the result of: (1) Redundant 

sensors (dependent on different internal components) 

that measure the same thing. For example, the altimeter 

and the GPS indicated altitude. If one system fails the 

other can be used as a backup. (2) Sensors that react to 

the same action of the robot. For example the Pitch 

angle and the climb rate indicator are correlated as the 

UAV's elevator is invoked. 

 In these two cases one sensor can either implicate or 

clear a suspected correlated sensor. If one sensor is 

faulty or displays a faulty behavior due to a dependency 

on a faulty component, then it is reasonable to assume 

that the other sensor was not affected by the fault and 

still reflects the robot's behavior. The same cannot be 

said about two correlated sensors that share a 

component dependency, since both sensors can be 

affected by the same fault.  

 For instance, consider that the altimeter is suspected 

of drifting. If it is the result of the UAV's climbing then 

the GPS indicated altitude (which is dependent on a 

different component and was determined as correlated 

to the altimeter) also changed its state to drift and the 

altimeter is cleared of suspicion. However, if the drift 

was a result of a fault, and not of the UAV's behavior, 

then every other correlated sensor from another internal 

component dependency should not be affected by the 

fault, and therefore poses a different state than the 

altimeter. In this case, we declare a fault. 

 It is important to guarantee first that there is no 

possibility to clear the suspected sensor of its suspicion 
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(i.e. look for another correlated sensor that do not share 

component dependency but has the same state). Only 

then we look for an implicating sensor (i.e. a correlated 

sensor that does not share component dependency and 

has a different state) in order to verify the failure of the 

suspected sensor.  

 Consider, for instance, that a UAV is taking off the 

runway. Before it gained altitude, the altimeter which is 

dependent on the static system, and the heading 

indicator which is dependent on the vacuum system, 

were both correlated (since both were idle). But then 

while taking off the altimeter appears to drift, while the 

heading indicator does not. This case would have 

implicated the altimeter unless the GPS indicated 

altitude was also found drifting, thereby clearing the 

altimeter of suspicion.  

Fault Detection Algorithm 

1. Input: 

       sliding window at time   

    - the sets of correlated sensors at time   

  - the suspected sensors set at time   

2. Output: a fault detection report 

3. For each sensor       

4.              
5.     For each sensor          

6.                  

7.         If              (      ) ⋀        

8.             Return; 

9.                     

10.     For each sensor            

11.                  

12.         If              (      ) ⋀        

13.                             
14.             Break; 

15.     If           

16.         Report "fault detected" 

The fault detection algorithm is invoked with each 

input reading of the sensors. The algorithm obtains as 

an input the updated sliding window   , the updated 

set     that contains per each sensor    a set of   's 

correlated sensors      , and the updated suspect set   . 

 The algorithm iterates through every suspected 

sensor (line 3).    is the set of internal components that 

   is dependent on (line 4).    is extracted from the 

structural model   by using the mapping function   

(Definition 2). Lines 5-8 try to find a sensor that clears 

the suspicion of   , i.e. whether there exist a sensor    

correlated to    that share the same state but is 

dependent on different components. We check every 

sensor    in   's correlated set       (line 5).    is the set 

of components that    is dependent on (line 6). If    and 

   share the same state (             (      )) and do 

not share dependency (       ) then    is cleared of 

suspicion (lines 7-8).  

 If the algorithm did not return, then lines 9-14 check 

if an implicating sensor exists, i.e. whether exist a 

sensor    correlated to    that does not share the same 

state and is dependent on different components. In the 

same manner we iterate through each one of   's 

correlated sensors (line 10). This time we search a 

sensor    that shares the same state as   but does not 

share component dependency (line 12). If such a sensor 

is found then the search is stopped (line 14) and a fault 

is reported (lines 15,16). 

 Upon fault detection, the diagnosis procedure is 

invoked. The diagnosis procedure is described next. 

4.3 Diagnosis 

In the previous subsection we described how a fault is 

detected per each suspected sensor   . The following 

diagnosis algorithm is invoked upon fault detection. 

The algorithm is invoked with the suspected sensor    
as an input. The fact that    is suspected and not any 

other    that was correlated to    is because    was the 

sensor that changed its state to drift or stuck while the 

other correlated sensors did not reflect the same state. 

Since we concluded that the change of   's state was not 

a reaction to the robot's behavior then we determine 

that    is suspected for a fault.  

 When a sensor is reported of having a stuck or drift 

state, it can either be a single sensor fault, or an 

expression of a fault of an internal component that the 

sensor is dependent on. If an internal component is 

faulty then all of its dependent sensors should display a 

faulty behavior (Definition 1). Therefore, we check for 

each of the other sensors that are dependent on the 

same internal component if they are suspected (i.e. 

changed their state into drift or stuck). If so, we can 

include the internal component in the report. 

 For example, when the heading indicator was 

reported for a fault, we check if the attitude indicator's 

pitch, roll and yaw changed their state as well. If so, 

then we also report the vacuum system as suspected of 

having a fault. 

Diagnosis Algorithm 

1. Input: 

   – the suspected sensor 

  - the state of     
   – the set of all suspected sensors from the last 

  time steps 

2. Output: a diagnosis report 

3. Report    is a candidate with a fault state     
4.          

5. For each       

6.              

7.       
|     |

    
 

8.     Report    is a candidate with probability   

9. Return; 
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The diagnosis process reports    as a faulty sensor (line 

3). Then, it extracts from the structural model the 

internal components that    is dependent on (line 4). 

For each of those internal components (line 5) the 

diagnosis process determines their probability of being 

faulty according to the number of their dependent 

sensors that are suspicious (are in the suspect set   ). 

   is a set containing the component   's dependent 

sensors (line 6). We report    as having the probability 

of being faulty as the ratio between  the number of its 

dependent sensors that are suspected         and the 

total number of cx's dependent sensors      (line 7). 

 Since an internal component fault might be 

expressed by its dependent sensors in different time 

intervals, we use the suspected set   , and return a 

probability of being fault. If we were to use    rather 

than   , then only sensors that changed their state 

during this particular time frame could have implicate 

the component   . However, some of the sensors might 

have already changed their state and hence are not 

suspected during this particular time frame. This would 

result in a low probability of    faultiness. Therefore, 

we use    where suspected sensors remain for several 

time frames.  

 For example, a static system failure causes the 

altimeter to be stuck immediately and the vertical speed 

indicator to drift downwards a few seconds later. Since 

both sensors are in   , the static system is reported at a 

probability of 1. If we were to use   , the static system 

would have a probability of 0.5 for being faulty. 

 The reason for returning a probability rather than 

determine    faultiness only if all its dependent sensors 

are suspected is due to the fact that some sensors might 

take very long time to react to   's failure while all 

others are already suspected. In this case we wish to 

report    and give an indication about how faulty it is.  

 For example, when the electrical system fails, some 

instruments such as the GPS fail immediately, but the 

turn indicator in particular, will take 30-60 seconds to 

start drifting downwards. This is due to the fact that the 

unpowered gyro still spins, though slowly loosing 

speed. Hence the turn indicator's drift effect is yet to 

show. In this case we would not like to clear the 

electrical system from all suspicion just because one 

instrument is yet to show suspicion. Therefore, we 

return the probability, which in this particular example 

is above 0.9. 

5 EXPERIMENT SETUP 

To evaluate our fault detection and diagnosis 

algorithms we use two domains.  The first domain is 

laboratory robot called Robotican1 (see Figure 2) 

(Robotican, website). The robotican1 has two wheels, 3 

sonar range detectors in the front, and 3 infrared range 

detectors which are located right above the sonars, 

making the sonars and infrareds redundant systems to 

one another.  

 This redundancy reflects real world domains such as 

unmanned vehicles (aerials, ground underwater etc.) in 

which fault tolerance is very important for mission 

successful completion.  When a sensor is damaged then 

another sensor can be used to fulfill the perception. 

Such is the case with UAVs where a set of different 

sensors measure the UAV's 3D location. If the GPS 

fails, other altitude gages, accelerometers and attitude 

gages can be used.  

 Robotican1 also has 5 

degrees of freedom arm. 

Each joint is held by two 

electrical engines. These 

engines provide a sensed 

reading of the voltage 

applied by their action. To 

mimic some internal 

component depths we 

defined 3 abstract internal 

components: 1) sonar 

power supplier, 2) infrared 

power supplier, 3) arm 

power supplier. 

 We devised 17 different scenarios, which included a 

scenario without injected faults and scenarios that 

included different injected faults while the robot 

performed different tasks. Faults were injected to each 

type of sensor (motor voltage, infrared and sonar).The 

injected faults to the sensors were of type stuck or drift. 

These faults were injected to one or more sensors in 

different time intervals. We covered cases of faults to 

sensors that are dependent on the same components and 

on different internal components. Failing one of the 

three power suppliers described above causes each of 

the dependent sensors to fail. The robot's behavior was 

either to move, to stand still, or to move its arm to a 

given position.  

 

Figure 3: FlightGear Simulator Screenshot 

 The second domain is the FlightGear (FlightGear 

research, website) high fidelity flight simulator (see 

Fig.3). This open source simulator is built for and used 

in academic research (FlightGear research, website). 

Furthermore, it realistically simulates flight 

instrumental faults such as an altimeter stuck, or system 

Figure 2: Robotican1 
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faults. For example, if the vacuum system fails, then 

the gyros responsible for the attitude indicator and the 

heading indicator slowly lose their spin speed, causing 

the indicators to drift slowly and deviate from the 

readings of the turn indicator and compass. These 

features make the FlightGear simulator to be very 

suitable to test our method.  

 We implemented an autopilot, which flies the 

aircraft according to its sensor readings. We used 16 

flights that included 4 to 6 instrumental failures at 

different times while the UAV takes off and makes a 

few turns. We failed the altimeter, airspeed indicator 

and compass. On this data set of flights we compared 

our current approach to our old approach presented in 

(Khalastchi, 2011) and to another competing method 

for fault detection Local Outlier Factor (LOF) 

algorithm (Pokrajac, 2007). 1. Our previous approach 

also utilizes a sliding window technique and pearson 

correlation. However, to detect faults it uses 

Mahalanobis Distance (Mahalanobis, 1936) to compare 

the online input to the current data in the sliding 

window.  2. The LOF algorithm is also an online 

density based outlier detection algorithm which uses 

the K nearest neighbor to compare local density to the 

expected density and calculate the data instance 

measure of being an outlier accordingly. 

 In addition we tested two scenarios – a takeoff and a 

free flight. For each scenario we tested every possible 

instrumental or system failure, and a combination of 

multiple faults. There are 8 types of instruments and 4 

types of systems that can be failed. In total, we 

examined 16 flights for each scenario. We used these 

two data sets to test the diagnosis accuracy of our 

current approach. 

 To evaluate the fault detection of each approach, we 

calculated the detection rate and the false alarm rate.  

The best possible result for the detection rate is 1 

indicating that all faults were detected. The best 

possible result for the false alarm rate is 0 indicating 

that no false alarms were raised. 

6 RESULTS 

The evaluation of the fault detection over the 16 flights 

produced the following results: (1) All algorithms had a 

detection rate of 1 – all faults were detected (2) Our 

proposed approach also diagnosed the failing sensor 

correctly (3) The false positive rates are shown in 

Figure 4. 

 The proposed approach has a false alarm rate of 

0.028. This rate is less than half of the false alarm rate 

of our previous approach. Moreover, most of the false 

reports of our proposed approach were produced by the 

same sensor. When this sensor is suppressed there are 

virtually no false alarms. The lower false alarm rate is 

explained by the fact that the proposed approach uses 

the additional knowledge of component dependency to 

clear or implicate a suspected sensor.  

 
Figure 4: The False Alarm Rates for the approaches 

The LOF algorithm returns the degree of a data 

instance being an outlier. Thus, a threshold is needed to 

label a data instance as faulty or healthy. Since the LOF 

algorithm does not have a policy to set these thresholds, 

we chose these thresholds in such a way that the results 

of the LOF algorithm will be optimized. Offline, 

considering the reports of an entire flight, we set the 

threshold as high as possible such that all faults are 

detected and thus false positives are minimized. The 

false alarm rate of our proposed approach is lower than 

the optimized false alarm rate of the LOF algorithm. 

In the Robotican domain we tested 17 diagnosis 

scenarios. The results are a fault detection rate of 0.96 

and a false alarm rate of 0.013. One fault out of 26 

faults was not detected. The faulty sensor was 

suspected but was cleared after another correlated 

sensor of a different component dependency shared the 

same state. All detected faults were diagnosed 

correctly, i.e. the sensors and internal components that 

were reported matched the injected faults and the report 

was given at the time of the fault injection.  

Figure 5 illustrates the proposed approach results 

of the two domains in an ROC chart
‡
. 

ROC chart describes the entire space of fault 

Detection: the X-axis is the false alarm rate and the Y-

axis is the detection rate. A classifier is expressed as a 

2D point. The perfect anomaly detector is located at 

point (0,1). In both domains the proposed approach is 

very close to the perfect fault detector (theoretically 

with a detection rate of 1 and a false alarm rate of 0).  

In the FlightGear domain we evaluated two more 

scenarios, a takeoff and a free flight, 16 flights per each 

scenario. These scenarios were used to further evaluate 

the diagnosis aspect of the proposed approach. All 

instrumental failures and system failures were 

diagnosed. We would like to elaborate on the following 

study cases which show the need for various aspects of 

the diagnosis algorithm, advantages and disadvantages. 

                                                           
‡ Note that to produce a better view the scale of the false 

alarm rate reach 0.1 (and not 1) 
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Figure 5: ROC chart of the two domains 

Case 1: a static system failure causes the altimeter 

to be stuck, and the airspeed indicator to drift down to 0 

a few seconds later. The static system was suspected at 

a probability of 1 due to the fact that suspected sensors 

remain suspected for a given time (a few seconds). The 

drift of the airspeed indicator caused the pitot system to 

be suspected as well and included in the diagnosis. 

Case 2: a failure to the pitot system causes the 

airspeed indicator to drift upwards, unless there is a 

failure to the static system as well, which causes the 

airspeed indicator to be stuck. Note that the proposed 

approach is unaware of these rules, but still recognizes 

these effects as suspected faults and reports the pitot 

system as suspect when needed. 

Case 3: a failure to the electrical system causes 

many instruments to fail immediately. But the turn 

indicator starts to drift downwards only after 30 

seconds to 1 minute and is yet to be detected. This case 

justifies the use of probability to determine a suspected 

internal component. The electrical system is suspected 

in a probability greater than 0.9. 

Case 4: a failure to the attitude indicator (and not 

the vacuum system) causes some sensors to fail i.e. 

pitch, roll and yaw angles. The proposed approach 

reported that the vacuum system is suspected at a 

probability of 0.8. The heading indicator which is also 

dependent on the vacuum system is healthy. If the 

proposed approach was not to use a probability then the 

heading-indicator's health would have cleared the 

vacuum system suspicion. This case does not justify the 

use of a probability. However, the heading indicator 

may yet fail as in case 3 and thus a probability is used. 

To summarize, the proposed approach gives 

sensors an even weight when implicating a suspected 

component. Different weights can be used in the model 

according to the sensor's ability to indicate that the 

internal component is failing. In the FlightGear domain 

we did not monitor sensors that would have made the 

fault detection and diagnosis too easy. The vacuum 

intake sensor could easily implicate the vacuum 

system, and the voltmeter and ampermeter sensors 

could easily implicate the electrical system. We suggest 

modeling these kinds of sensors with a high weight. 

7 CONCLUSION and FUTURE WORK  

We showed an approach that when given a 

structural model and sensor readings it can detect 

sensor related faults that occur over time and diagnose 

them online with high precision. We showed how a 

structural model is used diagnose internal components. 

We evaluated the approach on physical and simulated 

domains. We described study cases which show the 

advantages and disadvantages of the different aspects 

of the proposed approach. We believe that further 

optimizations can be made. 

We modeled components to sensors dependencies. 

There could be a case where there are more levels of 

depth i.e. sensors that are dependent on components 

that are dependent on other components etc. The 

diagnosis algorithm suggested here can be modified to 

work recursively, implicating a component if all its 

dependent components are suspected.   
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