
23
rd

 International Workshop on Principles of Diagnosis

 1

Multi-Layered Model Based Diagnosis in Robots

Eliahu Khalastchi, Meir Kalech and Lior Rokach

Ben-Gurion University of the Negev, Be'er-Sheva, Israel, 84105, Israel

{eli.kh81,kalechm, liorrk}@gmail.com

ABSTRACT

The problem of fault diagnosis in the domains

of robotics and autonomous systems are

unique and interesting. A hidden internal fault

affects not only other hardware components,

as in any other machine, but also the different

layers of abstraction and control in the sense-

think-act cycle that the robot carries. We

propose to implement a model-based diagnosis

approach by utilizing the robot's control-

architecture as a model to detect faults and to

associate high-level abstractions with low-

level hardware components. Furthermore,

other approaches use behavioral models by

representing the models with analytical

equations, making it impractical to construct

for very complex robots. We propose a

structural model by representing only the

dependencies in the model, which is

significantly easier to construct. We

demonstrate the feasibility of our approach by

diagnosing high fidelity faults in a simulated

Unmanned Aerial Vehicle (UAV) and a

laboratory robot.

1 INTRODUCTION

Robots are susceptible to different types of faults,

hardware wear and tear, false sensing, software bugs,

environmental causes etc. Such failures can cause

mission failure or even endanger the robot or its

surrounding environment (for example a UAV crash).

When a fault is detected it is important to know which

internal components are involved (if any). This

diagnostic information can be used for recovery or for

decision-making purpose, for example, switching to

undamaged redundant systems or re-planning.

 The domain of robotics offers unique aspects to the

problem of diagnosis. Robots are more than simply

reactive machines. They sense the world using a

different variety of external and internal sensors (e.g.

camera, laser, sonar, infrared, accelerometer, etc.).

They process these readings into abstract

representations called beliefs (e.g. image processing to

calculate the angle of the road related to the robot's

position). Then a robot can apply a high level decision-

making process (e.g. by using decision tree, automaton,

planner, human operator) that according to the state of

the beliefs the robot chooses a set of actions which will

be referred as a task. The task's actions activate

actuators (e.g. wheels, arms) which in turn, influence

the world. These changes are sensed again making it

the sense-think-act cycle (Brooks, 1986). Thus, when a

task is executed, beliefs may be changed.

 During task execution, faults might occur. These

faults are expressed not only in the hardware

components, but also in the sense-think-act control

cycle. If a fault influences sensors then the beliefs

might report incorrect readings and thereby the goal

might be not achieved. If a fault influences an actuator

then the correct process of the action is not guaranteed;

thereby disrupting the execution of the task.

 For example, consider the robot has a belief of its

distance to a target, and during a task that aims to reach

the target, we observe that the belief is unchanged. This

observation can be explained by a fault to the wheels

(actuators) or a fault to the wheels' power supplier

(internal component that the actuators are dependent

on). This observation can also be explained by a fault in

the infrared sensors that are used to calculate the belief.

Finally, the observation can be explained by a bug in

the belief calculation.

 In this paper, we model the different layers of the

robot: the low level of the components, actuators and

sensors and the high level of the beliefs, tasks and

actions. In addition, we model the connections between

the layers. Based on this model, we describe a fault

detection and diagnosis techniques. As opposed to

previous model-based approaches, no construction is

needed for this model; it is always given to the robot's

programmer. Previous model-based approaches in

Robotics usually model only one layer of control

(Isermann, 2005). We propose a multi-layer model

which reflects the associations between the high level

beliefs, tasks and actions to the low-level sensors and

actuator hardware components. In addition, to deepen

the diagnosis we suggest the use of a dependency

model, which is very easy to construct compared to

models that rely on analytical equations.

mailto:author1@academic.edu

23
rd

 International Workshop on Principles of Diagnosis

 2

 We demonstrate the feasibility of our approach by

diagnosing high fidelity faults in a simulated

Unmanned Aerial Vehicle (UAV) (FlightGear, website)

and a laboratory robot (Robotican, website). We show

that faults that are detected on high-level beliefs can

implicate relevant low-level hardware components such

as sensors and actuators.

The contributions of this paper are the follows: 1.

Define a model-based approach for fault-detection and

diagnosis. 2. Present a multi-layer model of the robot

which enables to diagnose hardware faults by

monitoring the beliefs of the robot 3. Present different

types of faults related to the different layers of the

robot. 4. Demonstrate several types of faults in

simulated UAV and a laboratory robot.

2 RELATED WORK

Steinbauer et al. conducted a survey on the nature of

faults of autonomous robot systems (Steinbauer,

website). The survey participants are developers

competing in different leagues of the Robocup

competition (Robotcup, website). The reported faults

were categorized as hardware, software, algorithmic

and interaction related faults. We argue that these

types of faults are the different locations in the sense-

think-act cycle of the robot in which faults might occur.

A fault in each location might have an impact on the

other elements in the sense-think-act cycle. The survey

concluded that hardware faults such as sensors,

actuators and platform related faults have a high

negative impact on mission success. In this paper we

focus on diagnosing these hardware related faults.

 MBD methods differ in the fault detection process,

the model they use and the diagnosis process. Fault

detection methods are usually analytical, data-driven or

knowledge-based approaches (for examples refer to

(Isermann, 2005; Steinbauer, 2005; Gspandl, 2011)).

Analytical approaches use mathematical models to

compare expected outputs with observed outputs and

derive a residual that is used to determine whether or

not a fault has occurred. However, expressing all the

behavioral laws of every component in mathematical

equations is a very hard task (Isermann, 2005; Varun,

2009).

 Data-driven approaches are model-free statistical

methods. These methods face the challenge of

dimension reduction and a dependency in the existence

of quality information that can be extracted from the

data (Isermann, 2005; Varun, 2009). We propose to

detect hardware related faults by monitoring the robot's

beliefs, which is quality information already calculated,

and simply compare them to their intended goals. Thus,

not having to model each law mathematically nor

having to know all faults a priori.

 Steinbauer et al. (Steinbauer, 2010) recently

suggested the diagnosis of robot's beliefs and

emphasized its importance for coping with the real-

world dynamic environment of the robot. Beliefs are

diagnosed for their binary truthfulness. We monitor

beliefs and how they differ from their intended goals.

 Brandstötter et al. (Brandstötter, 2007) show a

model-based diagnosis and reconfiguration framework

which allows an autonomous robot to detect and

compensate faults in a robot's drive. Their generic

model should be implemented specifically to a given

robot and take into account the dynamics and the

kinematics of the drive. We argue that these types of

faults will be expressed in the failure of beliefs to reach

their intended goals and thus can be detected with an

alternative implementation. Moreover, we show how to

view the generic multilayered control architecture of

the robot as a generic model that is able to associate

faults detected on beliefs with low-level hardware

components.

3 ROBOT'S CONTROL-ARCHITECTURE AS

A MODEL FOR DIAGNOSIS

 In this section, we describe the general multi layered

architecture of behavior based (Arkin, 1998) control for

a robot and the relation between low-level hardware

components and high-level abstractions. We then

describe how this architecture can be viewed as a

model which can be used for fault detection and

diagnosis.

3.1 General robot control-architecture

A robot control-architecture is usually built of layers

(see Fig.1). The lowest layer is the robot's hardware

made up of actuators and sensors. Other internal

components such as power suppliers also exist but are

not a part of the control architecture. The actuators and

sensors provide an interface of electrical signals for

software drivers to perform sensor reading and

actuators activation. These drivers act as a hardware

abstraction were each instance of a driver directly

relates to a sensor or an actuator. The next layer of

abstraction is the robot's API (Application

Programming Interface) which contains a set of high-

level commands. These commands provide a

comfortable way to perform composite driver calls.

 For example, a robot with a differential-drive would

have a motor for its left wheel and another motor for its

right wheel. These motors are part of the robot's

actuators. A motor's driver would have two instances,

left and right. A high-level command to move at a

given speed and angle is defined in the robot's API and

is implemented by setting different speed to each

wheel. This high-level command invokes the drivers

23
rd

 International Workshop on Principles of Diagnosis

 3

which, in turn, invoke the actuators – the motors that

cause the wheel spin and the robot to move.

 The robot's movement affects the state of the robot

and the state of the world. These states are the beliefs

of the robot. The beliefs are constructed by the sensors

readings of the environment.

 The beliefs and a goal state i.e. a goal value per

each belief, are the input of a decision-making process

(the highest level). This process can be viewed as a

planner, which issues tasks that supposed to achieve the

goal state. A task is an algorithmic collection of actions

from the robot's API which affect the robot's actuators.

These actions are chosen by the planner to affect the

world in such a way that the goal will be achieved.

Each task is issued with a sub-goal state which is

applied on beliefs. Upon achieving a task sub-goal state

a new task is issued to fulfill the sub-goal. This process

repeats until the robot's goal is achieved.

 For example, assume a robot's goal is collecting 10

objects. The decision-making process maintains the

belief of the number of objects the robot collected.

While this number is less than 10, the decision-making

process issues a task to locate an object which includes

moving in a search pattern until an object is insight

(task's sub-goal state). This belief is constructed by

processing the readings of the camera sensor. Next, the

decision-making process issues a task to approach the

object. This task includes movement towards the object

while keeping it insight until the belief of the distance

to the object is 30cm (task's sub-goal state). Then, a

task to pick up the object is issued etc.

 Consider that during the task to approach the target

object the distance belief is unchanged. If everything

was healthy then it should have decreased as the task

performs. Therefore, this event might express a fault

somewhere in the sense-think-act cycle of the robot.

Possible explanations can be relevant actuators - wheels

that have not turned, relevant sensors – an infrared

sensor that is stuck, software faults such as the

movement action was not called, or the distance belief

calculation has crashed.

 We aim, in this paper, to diagnose faults in

hardware components such as sensors and actuators.

The beliefs that supposed to be influenced by the task

and their goal state are provided by the control model.

Therefore, fault detection with respect to the task's goal

state can be made. The control model provides us with

the knowledge of which sensors are used to construct

the beliefs. Therefore, we can relate relevant sensors to

the beliefs that are suspected of faulty behavior. The

control model also provides us with the knowledge of

which actions were called during the task and which

actuators are invoked by each action. Therefore, we can

point the relevant actuators as suspects as well.

3.2 The Control-Model

Let {

 }
 be the set containing the

sensors values at time . Let { } be the set

of the robot's beliefs. A belief’s value at time t is

derived by a subset of the sensors.

Definition 1: [belief construction] Given a set of

sensors , the function
 ()

calculates the value of the belief at time .We

denote
 as abbreviation and {

 } as

the set of the beliefs' values at time .

To conclude the sensor set that influence a given belief,

we define the following mapping:

Definition 2: [belief-sensors mapping] Given belief

 the function () returns the set of sensors

that are used to construct the belief .

 Let { } be the set of actuators and let

 { } be the set of the robot's high-level

actions. An action causes the activity of a subset of

actuators.

Definition 3: [action-actuators mapping] The

function () returns the set of actuators

 that are invoked by action .

Figure 1: The Generic Control Architecture for

Robots

23
rd

 International Workshop on Principles of Diagnosis

 4

A task is the main building block of the control model

of the robot. A task dictates the activity of a set of

actions based on the current beliefs to fulfill a goal

belief.

Definition 4: [task] The task

 (

) is a tuple,

where:

 is a set of beliefs,

 is a set of goal values of the beliefs in ,

 is a set of actions invoked by the task,

 is a transition function which

obtains the values of the current beliefs and by

invoking the actions in it transitions to the goal

values of the beliefs.

 For example, consider a UAV's takeoff task. This

task includes accelerating on the runway, and after

gaining enough speed, elevating the aircraft and

maintaining attitude position until the desired altitude is

achieved. { }

{ }
 { }. The

takeoff task uses the actions in an algorithmic fashion:

1. accelerate

2. wait until speed > 64kias

3. elevate

4. while altitude < 1500feet

5. maintain attitude(leveled)

 In addition, the control model provides the relevant

actuators such as () { }
or ()

{ }, and relevant

sensors such as () { } or

 () { }.
 The control model can be constructed automatically.

Each sensor, actuator and action registers upon

invoking, then all associations can be registered when

calculating each belief or calling an action from a task.

3.3 Using the Control-Model for Diagnosis

The focus of this paper is about diagnosis, but first let

us describe briefly our fault detection method. As

explained in subsection 3.1, the decision-making

process of the robot chooses an executing task to

achieve a goal state. We expect the values of the

associated beliefs with the current task to be affected by

the actions taken through the task and gradually get

closer to their goal condition values.

 For example, as the robot moves towards a target

object, the infrared distance sensor returns decreasing

values which update the belief of object's distance to be

closer and closer to the goal value of 30cm.

 The values of the task’s beliefs will get closer to

their goal values only upon nominal behavior.

Therefore, if the values of the task’s beliefs are not

getting closer to their goal condition values as the

robot's operates then we report a fault. For this paper

we used linear regression to measure the trend of the

beliefs progress and compared it to the goal beliefs.

However, there are two aspects which should be

investigated: (1) the smoothing function of the beliefs

progress and (2) the distance measures between the

current beliefs and the goal beliefs. Since the focus of

this paper is on diagnosis we leave them for future

work.

 We define as the set of beliefs that

triggered the fault detection. When a fault is detected it

could be the result of the following general cases: (1)

hardware faults (2) software faults (3) environmental

aspects. For example, consider the robot is trying to

approach its target object. If the belief of the distance to

the object is not getting smaller over time then it might

be the result of hardware faults such as:

1. Faulty actuators – the motors gears are worn

and therefore one or more wheels are not

spinning correctly and the robot cannot get

closer to the object.

2. Faulty internal component – a power supplier

fails to deliver power to the motors of the

wheels

3. Faulty sensors – the infrared distance sensor is

stuck on its last reading, making the belief to

appear unchanged even though the robot is

approaching towards its target object.

 It can also be the result of software faults. For

example, the process that calculates the belief has

crashed, therefore, the believed distance remains

unchanged even though the robot is progressing and

sensing correctly.

 It can also be the result of environmental aspects.

For example, the robot is stuck in front of a step. The

wheels are spinning in place, and the distance is

unchanged. However, nothing is wrong with the robot

or its control software.

 In this paper, we focus on hardware faults and how

they are related to the control layer of the robot such as

beliefs and tasks. The control-model provides us with

the means to diagnose the relevant sensors and

actuators. Since the fault is detected with respect to task

 we logically assume that this is due to a fault in

hardware components that are related to the currently

executing task .

 Definition 5: [suspected hardware component] a

suspected hardware component is either: a sensor,

an actuator or an internal component which sensors

or actuators are dependent on. The hardware

component is suspected if its faultiness could explain

the observed detected fault.

23
rd

 International Workshop on Principles of Diagnosis

 5

 The diagnosis procedure marks the relevant sensors

and actuators as suspects. The suspected actuators are

the set of the activated actuators by the actions that are

called by the executing task: { ()

 }. We also mark the sensor set used to calculate a

beliefs that caused the fault detection (i.e. did not get

closer to its goal value): { | () }.

 The control-model provides the means to reduce the

diagnosis search space (i.e. all actuators and sensors) to

the hardware components that are associated with the

high level execution. However, this model does not

cover the possibility that an internal component that is

not a sensor or an actuator (e.g. a power supplier) has

failed.

 For that reason we also use a structural model that

we describe in the following section. Once the list of

suspects is provided the structural model is used to

further diagnose whether additional internal hardware

components should be suspected.

4 INTERNAL HARDWARE COMPONENTS

DIAGNOSIS

In this section we describe the structural model and

how it is used to diagnose faults in internal hardware

components.

4.1 The structural-Model

 In a robot's hardware structure there are hardware

components that are neither actuators nor sensors, and

thus not a part of the control-architecture. But these

components play an important role in the healthy

operation of the robot. For example, if a power supplier

fails to deliver power to an actuator then the actuator

cannot function (even though the actuator is healthy).

 When we receive a list of suspected sensors and

actuators that were extracted from the control-model

we need to check whether their suspected faulty

behavior is the result of their dependency to a faulty

internal component. For that matter we use a structural

model.

 Let { } be the set of hardware

components that are not actuators or sensors
 . The structural model defines the

dependencies between the internal components and the

sensors and actuators.

Definition 5 [structural model] Given the set of

sensors and the set of actuators and the set of

internal components is a set of tuples of the

form where . Given the healthy

predicate () denotes the health of

 () ().

 If a component is faulty then all of its dependent

sensors and actuators () will report faulty

data. However, if or are faulty it does not imply

that is faulty; can be faulty themselves. We

define mapping functions to conclude the actuators and

sensors dependent on a given component, and the

components associated with a given actuator or sensor:

 Definition 6: [mapping functions] Given a

component the function () returns the

set of sensors and actuators that are dependent on

component . Given a sensor or actuator

the function () returns the set of the

components that the sensor or actuator is

dependent on.

 Figure 2 illustrates our model. It presents a partial

structural model of the cockpit panel of a Cessna 172p

airplane. The dark rectangles represent the components

and the bright rectangles represent sensors. For

instance, to enable the speed indicator to return a

correct reading both the pitot system and the static

system need to be operating correctly. The altimeter is

dependent only on the static system. The altimeter

returns two data readings - altitude and pressure, each

is considered as a one dimensional sensor that is

dependent on the static system. The same is applied for

the attitude indicator that returns the values of the

Pitch, Roll and Yaw, which are all dependent on the

vacuum system. The GPS is a redundant sensor that

besides position values it also returns the speed and the

altitude of the aircraft. Since the GPS is dependent only

on the electrical system, it will still work in case of a

static system failure.

Figure 2: a partial structural model of a cessna172p

aircraft

 When sensor or actuator is suspected, we also

return as a part of the diagnosis () () the set of

internal components which the sensor or actuator is

dependent on since a failure to these internal

components can also explain the detected fault.

23
rd

 International Workshop on Principles of Diagnosis

 6

4.2 Isolating the Faults

When a fault is detected it is due to some beliefs that

did not get closer to their goal value as the robot

operates. The other beliefs that are monitored by the

current executing task are considered healthy.

Therefore, we can mark each of the sensors that are

used to construct these healthy beliefs - healthy as well.

These healthy sensors can clear internal components'

suspicion. If an internal component is suspected then

if a healthy sensor has a dependency on then we

can clear of its suspicion: () ()

 ().

 For example, consider a UAV is taking off the

runway. The task contains the following actions: (1) set

the throttle to full (2) wait until correct speed is

achieved (3) elevate the aircraft (4) maintain aircraft

roll, pitch and yaw angles and the aircraft's heading

until desired altitude is achieved. Now, consider after

some point in time during this task execution the belief

of the aircraft altitude is unchanged – the aircraft does

not get closer to its goal altitude.

 Using the control-model we know that the actuators

invoked by this task's actions are {throttle, aileron,

elevation, rudder} and they are all reported as

suspected. We also know that the sensors that are used

to calculate the monitored beliefs are {airspeed

indicator, altimeter, attitude indicator, heading

indicator}. However, only the altimeter is reported as

suspected since only the altitude belief is responsible

for the fault detection. The rest of the sensors are

healthy. The static system (in Figure 2) is a set of

internal components that the altimeter is dependent on

and therefore is suspected for a fault as well. However,

since other sensors that are dependent on the static

system (e.g. airspeed indicator) are healthy, we

conclude that the static system is clear of suspicion.

5 EXPERIMENT SETUP AND RESULTS

To demonstrate the feasibility of our approach we use

two domains. A high fidelity flight simulator –

FlightGear (FlightGear, website) (see figure 3) and the

Robotican1 laboratory robot (Robotican, website) (see

figure 4). The simulator provides realistic physical

behavior of aircrafts. FlightGear provides an interface

for reading aircraft's sensors and activating different

actuators that control the flight. Thus, aircrafts can be

controlled by software as a robotic UAV. Moreover,

FlightGear has built-in realistically simulated

instrumental and system failures and offers dependency

depth between internal components of an aircraft.

 We used the FlightGear to simulate a UAV. The

UAV enables the reading of 75 different sensors and

the control of 32 different actuators. We implemented a

set of high-level actions such as accelerate action

which releases the breaks and push the throttle all the

way, or turn action which invokes the aileron and

rudder actuators to turn the UAV to a given heading in

flight. We calculated abstract beliefs from raw sensors

readings. For instance, the flown distance from the

airport uses data samples from the GPS's readings.

 We implemented a control model that enables the

association of the different elements. We constructed a

structural model that links the actuators, sensors and

other internal hardware components according to their

dependencies. Figure 2 illustrates a partial picture of

the model we used.

 We demonstrate different diagnosed failures

occurred during a take-off task. In order to show the

advantages and disadvantages of our proposed

approach we compare it to sensor-based fault detection

and diagnosis approach (SFDD).

 SFDD does not use the control model of the robot’s

beliefs and actions but relies on the existence of

redundant sensors. Redundant sensors do not share

component dependency but measure the same thing for

backup purposes, e.g. altimeter and GPS indicated

altitude. These sensors should react to the robot's

behavior in the same way. However, if a fault has

occurred to one of these sensors then the sensors should

behave differently. This provides the knowledge

whether a sensor is faulty or just reacts to the robot's

actions.

 We tested 20 takeoff flights; with each flight faults

of different types were injected. These faults caused the

belief of the UAV's altitude to be stuck or to drift

downwards. Upon fault detection the diagnosis reported

the relevant suspected sensors, actuators and internal

components. In addition, we injected faults that are not

relative to the task's beliefs in order to expose the

disadvantages of the proposed approach.

Figure 3: FlightGear Simulator Screenshot

23
rd

 International Workshop on Principles of Diagnosis

 7

 We would like to elaborate on the following study

cases which show the advantages and disadvantages of

the proposed approach.

 Case 1: sensor failure (altimeter). The altitude

belief is a function of the altimeter's readings. When

failed, the altitude belief triggered a fault alarm. Since

 and () the

altimeter was included in the diagnosis report. The

static system was suspected as well, but was cleared

since the speed indicator which is also dependent on the

static system is healthy:
 () ()
 ().
 Case 2: internal component failure (static system).

When we failed the static system the belief of speed

also triggered a fault alarm (). This was

caused by the fact that the speed belief is a function of

the speed indicator's readings, and this sensor has failed

(due to the static system failure). In this case the

diagnosis report included the static system as a suspect.

 () ()
 ()
 In both above cases, the SFDD detected a fault

related to the altimeter sensor since it had a different

state than the redundant GPS indicated altitude sensor.

The static system failure caused all the dependent

sensors to be stuck or to drift down. Therefore, all the

static system's dependent sensors were suspected, and

thus the static system was reported by the SFDD.

 Case 3: actuator failure (throttle, aileron). When

we failed the actuators throttle or aileron, the UAV

could not climb and started to drop; this triggered the

alarm. The diagnosis report included these actuators

since () . The SFDD

justifiably did not report anything since all the sensors

reflected the UAV's behavior and redundant sensors

had no contradicting states. This case presents the

benefit of using a control model which can also

implicate actuators.

 Case 4: software faults. We tested faults like a

software crash that stops the calculation of the altitude,

and a wrong choice taken by the decision-making

process that causes the UAV to stall and to drop

altitude. These faults were detected since the altitude

belief did not get closer to its goal value. However, as

expected, the diagnosis report suspected the hardware

components and not the software. The SFDD algorithm

justifiably did not suspect the sensors since redundant

sensors did not have contradicting states.

 Besides having some false negatives that are

described in the above study cases, the SFDD has some

false positives as well. The SFDD false positive rate is

0.028. The proposed approach in this paper has no false

positives since the fault detection is goal oriented and

applied on beliefs. However, faults that are injected to

sensors that are unrelated to the task's beliefs are

undetectable by the proposed approach, but are

detectable by the SFDD.

 The second domain is the Robotican1 laboratory

robot. Robotican1 has two wheels, 3 sonar range

detectors in the front, and 3 infrared range detectors

which are located right above the sonars, making the

sonars and infrareds redundant systems to one another.

Robotican1 also has 5 degrees of freedom arm. Each

joint is held by two electrical engines. These engines

provide a sensed reading of the voltage applied by their

action.

 To mimic some internal component depths we

defined 4 abstract internal components: 1) sonar power

supplier, 2) infrared power supplier, 3) arm power

supplier 4) motors power supplier. We implemented

high-level actions such as move(speed,angle) which

invokes the motor actuators to spin the wheels in

different speeds such that the robot moves at the given

speed and angle. We calculated abstract beliefs from

raw sensors readings. For instance, the distance to an

obstacle is calculated over the filtered readings of the

sonar sensors.

 We evaluated our proposed approach on two tasks

performed by Robotican1. The first task is to approach

an object until the distance is within Robotican1's arm

reach. The second task is to pick up the object. For each

task we tested four scenarios: (1) no faults (2) actuator

faults (i.e. wheels, arm joints) (3) sensor faults (i.e.

infrared, arm joint feedback) (4) internal component

faults (i.e. sensor power supplier).

Figure 4: Robotican 1

23
rd

 International Workshop on Principles of Diagnosis

 8

 The first task invoked a belief of the distance

covered by the robot. The belief was calculated over

filtered readings of the infrared sensor. An injected

fault to the wheels or to the power supplier of the

wheels' motors causes the robot to stop. An injected

fault to the infrared sensor or to the infrared power

supplier causes it to be drop to 0. These faults triggered

the fault alarm as the distance belief did not get closer

to its intended goal value.

 The second task invoked a belief of the arm's grabber

3D position. This belief was calculated by the feedback

values that the arm's joints motors returned. An injected

fault to a joint motor or to the arm power supplier

causes the relevant joints to stop. An injected fault to

the joint motor feedback causes it to be stuck on the

same value. These faults triggered the fault alarm as the

grabber's 3D position belief did not get closer to its

intended goal value.

 In both tasks in every scenario the correct actuators

and sensors were returned by the proposed approach

due to the knowledge provided by the control model.

However, power suppliers were always a part of the

diagnosis repot even when the fault was not injected to

an internal component.

 The infrared power supplier was included in the

diagnosis report of the first task scenarios since there

are no other sensors, dependent on the infrared power

supplier, that are associated with an invoked belief.

Thus, there is no healthy sensor that can clear the

power supplier of suspicion. Suspected actuators

always implicate the internal components that these

actuators are dependent on since the proposed approach

has no policy on how to clear an actuator invoked by an

executing task. Thus, the wheels power supplier was

always included in the diagnosis reports of the first task

scenarios, and the arm power supplier was always

returned in the second task scenarios.

6 CONCLUSION and FUTURE WORK

In this paper we defined a model-based approach for

fault-detection and diagnosis and presented a multi-

layer model of the robot which enables to diagnose

low-level hardware faults by monitoring the high-level

beliefs of the robot. We present different types of faults

related to the different layers of the robot and

demonstrated these types of faults in simulated UAV

and a laboratory robot and how they are detected and

diagnosed by the proposed approach. We compared the

proposed approach to the SFDD algorithm and

discussed the advantages and disadvantages of each

approach.

 Preliminary tests of a combined approach define our

future work. Initiating the SFDD when a fault is

detected by the proposed approach might further isolate

the diagnosis i.e. if the fault is not sensor related then it

might be actuator related. We also wish to investigate a

less than obvious approach for belief fault detection

with respect to its intended goal value.

ACKNOWLEDGMENT

This research was supported in part by General Motors.

Thanks to Gali Bodek and Yotam Shichel for their

help.

REFERENCES

(Arkin, 1998) R. C. Behavior Based Robotics. New

York, NY: Cambridge University Press.

(Brandstötter, 2007) M. Brandstötter, M.

Hofbaur, G. Steinbauer, and F. Wotawa. fault

diagnosis and reconfiguration of robot drives. IEEE

International Conference on Intelligent Robots and

Systems.

(Brooks, 1986) R. A. Brooks. A robust layered

control system for a mobile robot. IEEE Journal of

Robotics and Automation.

(Gspandl, 2011) S. Gspandl, I. Pill, R. Michael and G.

Steinbauer. Belief Management for High-Level

Robot Programs - Proceedings of the Twenty-

Second International Joint Conference on Artificial

Intelligence.

(Isermann, 2005) R. Isermann. Model-based fault-

detection and diagnosis—Status and applications.

Annual Reviews in Control, 29(1), 71–85.

(Steinbauer, 2005) G. Steinbauer and F.

Wotawa. Detecting and locating faults in the

control software of autonomous mobile robots. 19th

International Joint Conference on Artificial

Intelligence (IJCAI-05).

(Steinbauer, 2010) G. Steinbauer and F.

Wotawa. On the Way to Automated Belief Repair

for Autonomous Robots. International Workshop on

Principles of Diagnosis (DX).

(Varun, 2009) C. Varun, B. Arindam and K. Vipin.

Anomaly detection: A survey. The Association for

Computing Machinery, Computing Surveys,

41(3):1–58.

(FlightGear, website) http://www.flightgear.org/

(Robotcup, website) Robotcup league

http://www.robocup.org/

(Robotican, website) http://www.robotican.net/

(Steinbauer, website) G. Steinbauer. a survey on

the nature of faults of autonomous robot systems.

http://www.ist.tugraz.at/rfs/index.php/Main_Page

http://www.flightgear.org/
http://www.robocup.org/
http://www.robotican.net/
http://www.ist.tugraz.at/rfs/index.php/Main_Page

