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ABSTRACT 

The problem of fault diagnosis in the domains 

of robotics and autonomous systems are 

unique and interesting. A hidden internal fault 

affects not only other hardware components, 

as in any other machine, but also the different 

layers of abstraction and control in the sense-

think-act cycle that the robot carries. We 

propose to implement a model-based diagnosis 

approach by utilizing the robot's control-

architecture as a model to detect faults and to 

associate high-level abstractions with low-

level hardware components. Furthermore, 

other approaches use behavioral models by 

representing the models with analytical 

equations, making it impractical to construct 

for very complex robots. We propose a 

structural model   by representing only the 

dependencies in the model, which is 

significantly easier to construct. We 

demonstrate the feasibility of our approach by 

diagnosing high fidelity faults in a simulated 

Unmanned Aerial Vehicle (UAV) and a 

laboratory robot. 

1 INTRODUCTION 

Robots are susceptible to different types of faults, 

hardware wear and tear, false sensing, software bugs, 

environmental causes etc. Such failures can cause 

mission failure or even endanger the robot or its 

surrounding environment (for example a UAV crash). 

When a fault is detected it is important to know which 

internal components are involved (if any). This 

diagnostic information can be used for recovery or for 

decision-making purpose, for example, switching to 

undamaged redundant systems or re-planning. 

 The domain of robotics offers unique aspects to the 

problem of diagnosis. Robots are more than simply 

reactive machines. They sense the world using a 

different variety of external and internal sensors (e.g. 

camera, laser, sonar, infrared, accelerometer, etc.). 

They process these readings into abstract 

representations called beliefs (e.g. image processing to 

calculate the angle of the road related to the robot's 

position).  Then a robot can apply a high level decision-

making process (e.g. by using decision tree, automaton, 

planner, human operator) that according to the state of 

the beliefs the robot chooses a set of actions which will 

be referred as a task. The task's actions activate 

actuators (e.g. wheels, arms) which in turn, influence 

the world. These changes are sensed again making it 

the sense-think-act cycle (Brooks, 1986). Thus, when a 

task is executed, beliefs may be changed. 

 During task execution, faults might occur. These 

faults are expressed not only in the hardware 

components, but also in the sense-think-act control 

cycle.  If a fault influences sensors then the beliefs 

might report incorrect readings and thereby the goal 

might be not achieved. If a fault influences an actuator 

then the correct process of the action is not guaranteed; 

thereby disrupting the execution of the task. 

 For example, consider the robot has a belief of its 

distance to a target, and during a task that aims to reach 

the target, we observe that the belief is unchanged. This 

observation can be explained by a fault to the wheels 

(actuators) or a fault to the wheels' power supplier 

(internal component that the actuators are dependent 

on). This observation can also be explained by a fault in 

the infrared sensors that are used to calculate the belief. 

Finally, the observation can be explained by a bug in 

the belief calculation. 

 In this paper, we model the different layers of the 

robot: the low level of the components, actuators and 

sensors and the high level of the beliefs, tasks and 

actions. In addition, we model the connections between 

the layers. Based on this model, we describe a fault 

detection and diagnosis techniques. As opposed to 

previous model-based approaches, no construction is 

needed for this model; it is always given to the robot's 

programmer. Previous model-based approaches in 

Robotics usually model only one layer of control 

(Isermann, 2005). We propose a multi-layer model 

which reflects the associations between the high level 

beliefs, tasks and actions to the low-level sensors and 

actuator hardware components. In addition, to deepen 

the diagnosis we suggest the use of a dependency 

model, which is very easy to construct compared to 

models that rely on analytical equations. 
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 We demonstrate the feasibility of our approach by 

diagnosing high fidelity faults in a simulated 

Unmanned Aerial Vehicle (UAV) (FlightGear, website) 

and a laboratory robot (Robotican, website). We show 

that faults that are detected on high-level beliefs can 

implicate relevant low-level hardware components such 

as sensors and actuators. 

The contributions of this paper are the follows: 1. 

Define a model-based approach for fault-detection and 

diagnosis. 2. Present a multi-layer model of the robot 

which enables to diagnose hardware faults by 

monitoring the beliefs of the robot 3. Present different 

types of faults related to the different layers of the 

robot. 4. Demonstrate several types of faults in 

simulated UAV and a laboratory robot. 

2 RELATED WORK 

Steinbauer et al. conducted a survey on the nature of 

faults of autonomous robot systems (Steinbauer, 

website). The survey participants are developers 

competing in different leagues of the Robocup 

competition (Robotcup, website). The reported faults 

were categorized as hardware, software, algorithmic 

and interaction related faults.  We argue that these 

types of faults are the different locations in the sense-

think-act cycle of the robot in which faults might occur. 

A fault in each location might have an impact on the 

other elements in the sense-think-act cycle. The survey 

concluded that hardware faults such as sensors, 

actuators and platform related faults have a high 

negative impact on mission success. In this paper we 

focus on diagnosing these hardware related faults. 

 MBD methods differ in the fault detection process, 

the model they use and the diagnosis process. Fault 

detection methods are usually analytical, data-driven or 

knowledge-based approaches (for examples refer to 

(Isermann, 2005; Steinbauer, 2005; Gspandl, 2011)). 

Analytical approaches use mathematical models to 

compare expected outputs with observed outputs and 

derive a residual that is used to determine whether or 

not a fault has occurred.  However, expressing all the 

behavioral laws of every component in mathematical 

equations is a very hard task (Isermann, 2005; Varun, 

2009).  

 Data-driven approaches are model-free statistical 

methods. These methods face the challenge of 

dimension reduction and a dependency in the existence 

of quality information that can be extracted from the 

data (Isermann, 2005; Varun, 2009).  We propose to 

detect hardware related faults by monitoring the robot's 

beliefs, which is quality information already calculated, 

and simply compare them to their intended goals. Thus, 

not having to model each law mathematically nor 

having to know all faults a priori.  

 Steinbauer et al. (Steinbauer, 2010) recently 

suggested the diagnosis of robot's beliefs and 

emphasized its importance for coping with the real-

world dynamic environment of the robot. Beliefs are 

diagnosed for their binary truthfulness.  We monitor 

beliefs and how they differ from their intended goals.  

 Brandstötter et al. (Brandstötter, 2007) show a 

model-based diagnosis and reconfiguration framework 

which allows an autonomous robot to detect and 

compensate faults in a robot's drive. Their generic 

model should be implemented specifically to a given 

robot and take into account the dynamics and the 

kinematics of the drive. We argue that these types of 

faults will be expressed in the failure of beliefs to reach 

their intended goals and thus can be detected with an 

alternative implementation. Moreover, we show how to 

view the generic multilayered control architecture of 

the robot as a generic model that is able to associate 

faults detected on beliefs with low-level hardware 

components. 

3 ROBOT'S CONTROL-ARCHITECTURE AS 

A MODEL FOR DIAGNOSIS 

 In this section, we describe the general multi layered 

architecture of behavior based (Arkin, 1998) control for 

a robot and the relation between low-level hardware 

components and high-level abstractions. We then 

describe how this architecture can be viewed as a 

model which can be used for fault detection and 

diagnosis. 

3.1 General robot control-architecture 

A robot control-architecture is usually built of layers 

(see Fig.1). The lowest layer is the robot's hardware 

made up of actuators and sensors. Other internal 

components such as power suppliers also exist but are 

not a part of the control architecture. The actuators and 

sensors provide an interface of electrical signals for 

software drivers to perform sensor reading and 

actuators activation. These drivers act as a hardware 

abstraction were each instance of a driver directly 

relates to a sensor or an actuator. The next layer of 

abstraction is the robot's API (Application 

Programming Interface) which contains a set of high-

level commands. These commands provide a 

comfortable way to perform composite driver calls.  

 For example, a robot with a differential-drive would 

have a motor for its left wheel and another motor for its 

right wheel. These motors are part of the robot's 

actuators. A motor's driver would have two instances, 

left and right. A high-level command to move at a 

given speed and angle is defined in the robot's API and 

is implemented by setting different speed to each 

wheel. This high-level command invokes the drivers 
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which, in turn, invoke the actuators – the motors that 

cause the wheel spin and the robot to move. 

 The robot's movement affects the state of the robot 

and the state of the world. These states are the beliefs 

of the robot. The beliefs are constructed by the sensors 

readings of the environment. 

 

 

  

 The beliefs and a goal state i.e. a goal value per 

each belief, are the input of a decision-making process 

(the highest level). This process can be viewed as a 

planner, which issues tasks that supposed to achieve the 

goal state. A task is an algorithmic collection of actions 

from the robot's API which affect the robot's actuators. 

These actions are chosen by the planner to affect the 

world in such a way that the goal will be achieved. 

Each task is issued with a sub-goal state which is 

applied on beliefs. Upon achieving a task sub-goal state 

a new task is issued to fulfill the sub-goal. This process 

repeats until the robot's goal is achieved. 

 For example, assume a robot's goal is collecting 10 

objects. The decision-making process maintains the 

belief of the number of objects the robot collected. 

While this number is less than 10, the decision-making 

process issues a task to locate an object which includes 

moving in a search pattern until an object is insight 

(task's sub-goal state). This belief is constructed by 

processing the readings of the camera sensor. Next, the 

decision-making process issues a task to approach the 

object. This task includes movement towards the object 

while keeping it insight until the belief of the distance 

to the object is 30cm (task's sub-goal state). Then, a 

task to pick up the object is issued etc. 

 Consider that during the task to approach the target 

object the distance belief is unchanged. If everything 

was healthy then it should have decreased as the task 

performs. Therefore, this event might express a fault 

somewhere in the sense-think-act cycle of the robot. 

Possible explanations can be relevant actuators - wheels 

that have not turned, relevant sensors – an infrared 

sensor that is stuck, software faults such as the 

movement action was not called, or the distance belief 

calculation has crashed. 

 We aim, in this paper, to diagnose faults in 

hardware components such as sensors and actuators. 

The beliefs that supposed to be influenced by the task 

and their goal state are provided by the control model. 

Therefore, fault detection with respect to the task's goal 

state can be made. The control model provides us with 

the knowledge of which sensors are used to construct 

the beliefs. Therefore, we can relate relevant sensors to 

the beliefs that are suspected of faulty behavior. The 

control model also provides us with the knowledge of 

which actions were called during the task and which 

actuators are invoked by each action. Therefore, we can 

point the relevant actuators as suspects as well. 

3.2 The Control-Model 

Let    {  
      

 }   
    be the set containing the 

sensors values at time  . Let   {       } be the set 

of the robot's beliefs. A belief’s value at time t is 

derived by a subset of the sensors. 

Definition 1: [belief construction] Given a set of 

sensors       , the function   
 (   )    

  

calculates the value of the belief    at time   .We 

denote   
  as abbreviation and    {  

      
 } as 

the set of the beliefs' values at time  . 

To conclude the sensor set that influence a given belief, 

we define the following mapping: 

Definition 2: [belief-sensors mapping] Given belief 

   the function  (  )     returns the set of sensors 

that are used to construct the belief   . 

 Let   {       } be the set of actuators and let 

    {         } be the set of the robot's high-level 

actions. An action causes the activity of a subset of 

actuators. 

Definition 3: [action-actuators mapping] The 

function  (  )     returns the set of actuators 

     that are invoked by action   . 

Figure 1: The Generic Control Architecture for 

Robots 
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A task is the main building block of the control model 

of the robot. A task dictates the activity of a set of 

actions based on the current beliefs to fulfill a goal 

belief. 

Definition 4: [task] The task  

            
    (  

      )      is a tuple, 

where:  

     is a set of beliefs,  

   is a set of goal values of the beliefs in   , 

         is a set of actions invoked by the task, 

    
          is a transition function which 

obtains the values of the current beliefs    and by 

invoking the actions in      it transitions to the goal 

values    of the beliefs. 

 For example, consider a UAV's takeoff task. This 

task includes accelerating on the runway, and after 

gaining enough speed, elevating the aircraft and 

maintaining attitude position until the desired altitude is 

achieved.    {                       }    

{                       } 
     {                                   }. The 

takeoff task uses the actions in an algorithmic fashion:  

1. accelerate 

2. wait until speed > 64kias 

3. elevate 

4. while altitude < 1500feet 

5.      maintain attitude(leveled) 

 In addition, the control model provides the relevant 

actuators such as  (          )  {               } 
or   (                 )   

{                             }, and relevant 

sensors such as  (     )  {                  } or 

 (        )  {         }. 
 The control model can be constructed automatically. 

Each sensor, actuator and action registers upon 

invoking, then all associations can be registered when 

calculating each belief or calling an action from a task. 

3.3 Using the Control-Model for Diagnosis 

The focus of this paper is about diagnosis, but first let 

us describe briefly our fault detection method. As 

explained in subsection 3.1, the decision-making 

process of the robot chooses an executing task to 

achieve a goal state. We expect the values of the 

associated beliefs with the current task to be affected by 

the actions taken through the task and gradually get 

closer to their goal condition values. 

 For example, as the robot moves towards a target 

object, the infrared distance sensor returns decreasing 

values which update the belief of object's distance to be 

closer and closer to the goal value of 30cm. 

 The values of the task’s beliefs will get closer to 

their goal values only upon nominal behavior. 

Therefore, if the values of the task’s beliefs    are not 

getting closer to their goal condition values    as the 

robot's operates then we report a fault. For this paper 

we used linear regression to measure the trend of the 

beliefs progress and compared it to the goal beliefs. 

However, there are two aspects which should be 

investigated: (1) the smoothing function of the beliefs 

progress and (2) the distance measures between the 

current beliefs and the goal beliefs. Since the focus of 

this paper is on diagnosis we leave them for future 

work.  

 We define       as the set of beliefs that 

triggered the fault detection. When a fault is detected it 

could be the result of the following general cases: (1) 

hardware faults (2) software faults (3) environmental 

aspects. For example, consider the robot is trying to 

approach its target object. If the belief of the distance to 

the object is not getting smaller over time then it might 

be the result of hardware faults such as: 

1. Faulty actuators – the motors gears are worn 

and therefore one or more wheels are not 

spinning correctly and the robot cannot get 

closer to the object. 

2. Faulty internal component – a power supplier 

fails to deliver power to the motors of the 

wheels 

3. Faulty sensors – the infrared distance sensor is 

stuck on its last reading, making the belief to 

appear unchanged even though the robot is 

approaching towards its target object. 

 It can also be the result of software faults. For 

example, the process that calculates the belief has 

crashed, therefore, the believed distance remains 

unchanged even though the robot is progressing and 

sensing correctly. 

 It can also be the result of environmental aspects. 

For example, the robot is stuck in front of a step. The 

wheels are spinning in place, and the distance is 

unchanged. However, nothing is wrong with the robot 

or its control software. 

 In this paper, we focus on hardware faults and how 

they are related to the control layer of the robot such as 

beliefs and tasks. The control-model provides us with 

the means to diagnose the relevant sensors and 

actuators. Since the fault is detected with respect to task 

   we logically assume that this is due to a fault in 

hardware components that are related to the currently 

executing task  .  

 Definition 5: [suspected hardware component] a 

suspected hardware component is either: a sensor, 

an actuator or an internal component which sensors 

or actuators are dependent on. The hardware 

component is suspected if its faultiness could explain 

the observed detected fault. 
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 The diagnosis procedure marks the relevant sensors 

and actuators as suspects. The suspected actuators are 

the set of the activated actuators by the actions that are 

called by the executing task: {       (  )     

    }. We also mark the sensor set used to calculate a 

beliefs that caused the fault detection (i.e. did not get 

closer to its goal value): {  |    (  )       }.  

 The control-model provides the means to reduce the 

diagnosis search space (i.e. all actuators and sensors) to 

the hardware components that are associated with the 

high level execution. However, this model does not 

cover the possibility that an internal component that is 

not a sensor or an actuator (e.g. a power supplier) has 

failed. 

 For that reason we also use a structural model that 

we describe in the following section. Once the list of 

suspects is provided the structural model is used to 

further diagnose whether additional internal hardware 

components should be suspected. 

4 INTERNAL HARDWARE COMPONENTS 

DIAGNOSIS 

In this section we describe the structural model and 

how it is used to diagnose faults in internal hardware 

components. 

4.1 The structural-Model 

 In a robot's hardware structure there are hardware 

components that are neither actuators nor sensors, and 

thus not a part of the control-architecture. But these 

components play an important role in the healthy 

operation of the robot. For example, if a power supplier 

fails to deliver power to an actuator then the actuator 

cannot function (even though the actuator is healthy). 

 When we receive a list of suspected sensors and 

actuators that were extracted from the control-model 

we need to check whether their suspected faulty 

behavior is the result of their dependency to a faulty 

internal component. For that matter we use a structural 

model. 

 Let   {       } be the set of hardware 

components that are not actuators or sensors     
       . The structural model defines the 

dependencies between the internal components and the 

sensors and actuators.  

Definition 5 [structural model] Given the set of 

sensors   and the set of actuators   and the set of 

internal components       is a set of tuples of the 

form         where       .  Given the healthy 

predicate  ( ) denotes the health of        

     (  )    (  ).  

 If a component    is faulty then all of its dependent 

sensors and actuators (       ) will report faulty 

data. However, if    or    are faulty it does not imply 

that    is faulty;       can be faulty themselves. We 

define mapping functions to conclude the actuators and 

sensors dependent on a given component, and the 

components associated with a given actuator or sensor: 

 Definition 6: [mapping functions] Given a 

component      the function  (  )     returns the 

set of sensors and actuators that are dependent on 

component   . Given a sensor or actuator        

the function  (  )     returns the set of the 

components that the sensor or actuator    is 

dependent on.  

 Figure 2 illustrates our model. It presents a partial 

structural model of the cockpit panel of a Cessna 172p 

airplane. The dark rectangles represent the components 

and the bright rectangles represent sensors. For 

instance, to enable the speed indicator to return a 

correct reading both the pitot system and the static 

system need to be operating correctly. The altimeter is 

dependent only on the static system.  The altimeter 

returns two data readings - altitude and pressure, each 

is considered as a one dimensional sensor that is 

dependent on the static system. The same is applied for 

the attitude indicator that returns the values of the 

Pitch, Roll and Yaw, which are all dependent on the 

vacuum system. The GPS is a redundant sensor that 

besides position values it also returns the speed and the 

altitude of the aircraft. Since the GPS is dependent only 

on the electrical system, it will still work in case of a 

static system failure. 

 

 

Figure 2: a partial structural model of a cessna172p 

aircraft 

 When sensor    or actuator    is suspected, we also 

return as a part of the diagnosis  (  )  (  ) the set of 

internal components which the sensor or actuator is 

dependent on since a failure to these internal 

components can also explain the detected fault. 



23
rd

 International Workshop on Principles of Diagnosis 

 

 6  

4.2 Isolating the Faults 

When a fault is detected it is due to some beliefs that 

did not get closer to their goal value as the robot 

operates. The other beliefs that are monitored by the 

current executing task are considered healthy. 

Therefore, we can mark each of the sensors that are 

used to construct these healthy beliefs - healthy as well.  

These healthy sensors can clear internal components' 

suspicion. If an internal component    is suspected then 

if a healthy sensor    has a dependency on    then we 

can clear    of its suspicion:        (  )        (  )  

 (  ). 

 For example, consider a UAV is taking off the 

runway. The task contains the following actions: (1) set 

the throttle to full (2) wait until correct speed is 

achieved (3) elevate the aircraft (4) maintain aircraft 

roll, pitch and yaw angles and the aircraft's heading 

until desired altitude is achieved. Now, consider after 

some point in time during this task execution the belief 

of the aircraft altitude is unchanged – the aircraft does 

not get closer to its goal altitude.  

 Using the control-model we know that the actuators 

invoked by this task's actions are {throttle, aileron, 

elevation, rudder} and they are all reported as 

suspected. We also know that the sensors that are used 

to calculate the monitored beliefs are {airspeed 

indicator, altimeter, attitude indicator, heading 

indicator}. However, only the altimeter is reported as 

suspected since only the altitude belief is responsible 

for the fault detection. The rest of the sensors are 

healthy. The static system (in Figure 2) is a set of 

internal components that the altimeter is dependent on 

and therefore is suspected for a fault as well. However, 

since other sensors that are dependent on the static 

system (e.g. airspeed indicator) are healthy, we 

conclude that the static system is clear of suspicion. 

5 EXPERIMENT SETUP AND RESULTS 

To demonstrate the feasibility of our approach we use 

two domains. A high fidelity flight simulator – 

FlightGear (FlightGear, website) (see figure 3) and the 

Robotican1 laboratory robot (Robotican, website) (see 

figure 4). The simulator provides realistic physical 

behavior of aircrafts. FlightGear provides an interface 

for reading aircraft's sensors and activating different 

actuators that control the flight. Thus, aircrafts can be 

controlled by software as a robotic UAV. Moreover, 

FlightGear has built-in realistically simulated 

instrumental and system failures and offers dependency 

depth between internal components of an aircraft.  

 We used the FlightGear to simulate a UAV.  The 

UAV enables the reading of 75 different sensors and 

the control of 32 different actuators. We implemented a 

set of high-level actions such as accelerate action 

which releases the breaks and push the throttle all the 

way, or turn action which invokes the aileron and 

rudder actuators to turn the UAV to a given heading in 

flight. We calculated abstract beliefs from raw sensors 

readings. For instance, the flown distance from the 

airport uses data samples from the GPS's readings.  

 We implemented a control model that enables the 

association of the different elements. We constructed a 

structural model that links the actuators, sensors and 

other internal hardware components according to their 

dependencies. Figure 2 illustrates a partial picture of 

the model we used.  

 We demonstrate different diagnosed failures 

occurred during a take-off task. In order to show the 

advantages and disadvantages of our proposed 

approach we compare it to sensor-based fault detection 

and diagnosis approach (SFDD).  

 SFDD does not use the control model of the robot’s 

beliefs and actions but relies on the existence of 

redundant sensors. Redundant sensors do not share 

component dependency but measure the same thing for 

backup purposes, e.g. altimeter and GPS indicated 

altitude. These sensors should react to the robot's 

behavior in the same way. However, if a fault has 

occurred to one of these sensors then the sensors should 

behave differently. This provides the knowledge 

whether a sensor is faulty or just reacts to the robot's 

actions.  

 We tested 20 takeoff flights; with each flight faults 

of different types were injected. These faults caused the 

belief of the UAV's altitude to be stuck or to drift 

downwards. Upon fault detection the diagnosis reported 

the relevant suspected sensors, actuators and internal 

components. In addition, we injected faults that are not 

relative to the task's beliefs in order to expose the 

disadvantages of the proposed approach. 

Figure 3: FlightGear Simulator Screenshot 
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 We would like to elaborate on the following study 

cases which show the advantages and disadvantages of 

the proposed approach. 

 Case 1: sensor failure (altimeter). The altitude 

belief is a function of the altimeter's readings. When 

failed, the altitude belief triggered a fault alarm. Since 

            and            (        ) the 

altimeter was included in the diagnosis report. The 

static system was suspected as well, but was cleared 

since the speed indicator which is also dependent on the 

static system is healthy:                 
 (     )   (               )  
 (             ). 
 Case 2: internal component failure (static system). 

When we failed the static system the belief of speed 

also triggered a fault alarm (        ). This was 

caused by the fact that the speed belief is a function of 

the speed indicator's readings, and this sensor has failed 

(due to the static system failure). In this case the 

diagnosis report included the static system as a suspect. 

 (             )  (     )    
  (             )  
 In both above cases, the SFDD detected a fault 

related to the altimeter sensor since it had a different 

state than the redundant GPS indicated altitude sensor. 

The static system failure caused all the dependent 

sensors to be stuck or to drift down. Therefore, all the 

static system's dependent sensors were suspected, and 

thus the static system was reported by the SFDD.  

 Case 3: actuator failure (throttle, aileron). When 

we failed the actuators throttle or aileron, the UAV 

could not climb and started to drop; this triggered the 

alarm. The diagnosis report included these actuators 

since                   (    ) . The SFDD 

justifiably did not report anything since all the sensors 

reflected the UAV's behavior and redundant sensors 

had no contradicting states. This case presents the 

benefit of using a control model which can also 

implicate actuators. 

 Case 4: software faults. We tested faults like a 

software crash that stops the calculation of the altitude, 

and a wrong choice taken by the decision-making 

process that causes the UAV to stall and to drop 

altitude. These faults were detected since the altitude 

belief did not get closer to its goal value. However, as 

expected, the diagnosis report suspected the hardware 

components and not the software. The SFDD algorithm 

justifiably did not suspect the sensors since redundant 

sensors did not have contradicting states. 

 Besides having some false negatives that are 

described in the above study cases, the SFDD has some 

false positives as well. The SFDD false positive rate is 

0.028. The proposed approach in this paper has no false 

positives since the fault detection is goal oriented and 

applied on beliefs. However, faults that are injected to 

sensors that are unrelated to the task's beliefs are 

undetectable by the proposed approach, but are 

detectable by the SFDD. 

 The second domain is the Robotican1 laboratory 

robot. Robotican1 has two wheels, 3 sonar range 

detectors in the front, and 3 infrared range detectors 

which are located right above the sonars, making the 

sonars and infrareds redundant systems to one another. 

Robotican1 also has 5 degrees of freedom arm. Each 

joint is held by two electrical engines. These engines 

provide a sensed reading of the voltage applied by their 

action.  

 To mimic some internal component depths we 

defined 4 abstract internal components: 1) sonar power 

supplier, 2) infrared power supplier, 3) arm power 

supplier 4) motors power supplier. We implemented 

high-level actions such as move(speed,angle) which 

invokes the motor actuators to spin the wheels in 

different speeds such that the robot moves at the given 

speed and angle. We calculated abstract beliefs from 

raw sensors readings. For instance, the distance to an 

obstacle is calculated over the filtered readings of the 

sonar sensors. 

 We evaluated our proposed approach on two tasks 

performed by Robotican1. The first task is to approach 

an object until the distance is within Robotican1's arm 

reach. The second task is to pick up the object. For each 

task we tested four scenarios: (1) no faults (2) actuator 

faults (i.e. wheels, arm joints) (3) sensor faults (i.e. 

infrared, arm joint feedback) (4) internal component 

faults (i.e. sensor power supplier). 

Figure 4: Robotican 1 
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 The first task invoked a belief of the distance 

covered by the robot. The belief was calculated over 

filtered readings of the infrared sensor. An injected 

fault to the wheels or to the power supplier of the 

wheels' motors causes the robot to stop. An injected 

fault to the infrared sensor or to the infrared power 

supplier causes it to be drop to 0. These faults triggered 

the fault alarm as the distance belief did not get closer 

to its intended goal value. 

 The second task invoked a belief of the arm's grabber 

3D position. This belief was calculated by the feedback 

values that the arm's joints motors returned. An injected 

fault to a joint motor or to the arm power supplier 

causes the relevant joints to stop. An injected fault to 

the joint motor feedback causes it to be stuck on the 

same value. These faults triggered the fault alarm as the 

grabber's 3D position belief did not get closer to its 

intended goal value. 

 In both tasks in every scenario the correct actuators 

and sensors were returned by the proposed approach 

due to the knowledge provided by the control model. 

However, power suppliers were always a part of the 

diagnosis repot even when the fault was not injected to 

an internal component. 

 The infrared power supplier was included in the 

diagnosis report of the first task scenarios since there 

are no other sensors, dependent on the infrared power 

supplier, that are associated with an invoked belief. 

Thus, there is no healthy sensor that can clear the 

power supplier of suspicion. Suspected actuators 

always implicate the internal components that these 

actuators are dependent on since the proposed approach 

has no policy on how to clear an actuator invoked by an 

executing task. Thus, the wheels power supplier was 

always included in the diagnosis reports of the first task 

scenarios, and the arm power supplier was always 

returned in the second task scenarios. 

6 CONCLUSION and FUTURE WORK  

In this paper we defined a model-based approach for 

fault-detection and diagnosis and presented a multi-

layer model of the robot which enables to diagnose 

low-level hardware faults by monitoring the high-level 

beliefs of the robot. We present different types of faults 

related to the different layers of the robot and 

demonstrated these types of faults in simulated UAV 

and a laboratory robot and how they are detected and 

diagnosed by the proposed approach. We compared the 

proposed approach to the SFDD algorithm and 

discussed the advantages and disadvantages of each 

approach. 

 Preliminary tests of a combined approach define our 

future work. Initiating the SFDD when a fault is 

detected by the proposed approach might further isolate 

the diagnosis i.e. if the fault is not sensor related then it 

might be actuator related. We also wish to investigate a 

less than obvious approach for belief fault detection 

with respect to its intended goal value. 
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