
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Ensemble of Feature Chains for Anomaly Detection

Lena Tenenboim-Chekina, Lior Rokach, Brach Shapira

Department of Information Systems Eng. and Telekom Innovation Laboratories at

Ben-Gurion University of the Negev, Israel

Abstract. Along with recent technological advances more and more new threats

and advanced cyber-attacks appear unexpectedly. Developing methods which

allow for identification and defense against such unknown threats is of great

importance. In this paper we propose new ensemble method (which improves

over the known cross-feature analysis, CFA, technique) allowing solving anom-

aly detection problem in semi-supervised settings using well established super-

vised learning algorithms. Theoretical correctness of the proposed method is

demonstrated. Empirical evaluation results on Android malware datasets

demonstrate effectiveness of the proposed approach and its superiority against

the original CFA detection method.

Keywords: ensemble methods, machine learning, anomaly detection, probabil-

istic methods, network monitoring, Android, malware

1 Introduction

Anomaly detection refers to the problem of findings patterns in data that do not con-

form to expected behavior [1]. Numerous anomaly detection techniques have been

developed over the years and implemented in various domains, such as fault-

detection, healthcare applications, and intrusion detection systems. Different types of

anomaly detection methods exist depending on application domain, problem and data

types, system location etc. The prime differentiation between various techniques is

according to the type of utilized detection algorithm: supervised, semi-supervised or

unsupervised.

Anomaly detection methods based on supervised learning algorithms can be used

when the training data includes instances labeled as either `normal' or `abnormal'.

Then, a learning algorithm can be applied to distinguish between these types of data,

and hence discover anomalies. The major shortcoming of this approach is that it re-

quires examples of anomalous data, which often do not exist or are very scarce (lead-

ing to imbalance class distributions, a known machine learning problem). Further-

more, it requires manual labeling of instances. Moreover, it mainly allows detection

of known attack patterns. In the case of semi-supervised problem settings, only `nor-

mal' instances are available for training, and thus, only the normal behavior can be

learned and modeled. Instances that deviate from the learned 'normal' models can then

be considered as anomalous. Unsupervised anomaly detection techniques detect

anomalies in an unlabeled dataset under the assumption that the typical normal in-

stances will be much more common than abnormal ones and are looking for instances

with less fit to the rest of the data.

In this paper we propose a new technique allowing solving semi-supervised

anomaly detection problem using supervised learning methods for which numerous

well established and quick algorithms exist. The idea of this technique was inspired

by two existing methods: cross-feature analysis [2] and Classifier Chains [3]. Similar-

ly to cross-feature analysis (CFA) the new technique estimates the probability of a

feature getting a certain value, given the values of other features. The estimated prob-

abilities of all the features are then combined into the entry vector's probability fol-

lowing the chaining approach, initially suggested in [3] for solving multi-label classi-

fication problems. The proposed approach is theoretically justified and hence is ex-

pected to improve the accuracy performance over the original CFA mrthod.

We evaluate the proposed method experimentally on 15 datasets representing net-

work behavior of five real and ten self-developed mobile malware applications and

there benign versions. Specifically, we aim to detect mobile malware applications of a

new recently appeared self-updating type [4]. The initial version of such malware

applications which is hosted on official marketplace sites is absolutely benign and

does not contain any malware by itself. Instead after the application is downloaded

and installed on end user device the update procedure is initiated and the package

containing actual malicious payload is downloaded from the attacker's server insensi-

bly to the user. The update action can be scheduled for any specific or random time in

the future, or even be initiated remotely by sending a command message to the devic-

es, using, for instance, Google's push notification service. This new technique allows

malware applications to stay undiscovered on the market despite recently deployed

scanning service [5] designed to flag malicious applications before they can be down-

loaded by end users. Additionally, such a self-updating capability makes it possible

for malware developers to simultaneously penetrate new threats into numerous devic-

es. The new threats can even exploit system vulnerabilities which were unknown at

the time of the development of the initial application version. Developing methods

which allow for identification and defense against this new emerging malware type is

of great importance. Malware activities of this type and most others regularly affect

the application's network behavior and can be detected by monitoring network behav-

ior patterns. Thus, we focus on monitoring applications network behavior and aim to

detect its unexplained changes any time they occur. Evaluation results demonstrate

that deviations from an application's normal behavior can be detected quickly and

accurately. In addition, the proposed ensemble algorithm allows for better detection

and lower false positive rates.

The rest of the paper is organized as follows. Section 2 describes the existing

methods for anomaly detection. Section 3 presents our new method. Section 4 pre-

sents the conducted experiments and their results. Lastly, Section 5 concludes the

paper and outlines future research.

2 Related Work

Our task relates to the family of semi-supervised anomaly detection methods which

assume that the training data consists of "normal" instances only (or mainly from

normal instances while abnormal instances are negligible). These types of problems

can be solved, for example, with one-class support vector machines (SVMs), the local

outlier factor (LOF) method or clustering based techniques [1, 6]. In the literature

there are several attempts to use probabilistic methods for anomaly detection. In par-

ticular, Bayesian networks [7] and cross feature analysis [2, 6]. Generally speaking all

these methods are based on the notion of likelihood. The idea is to evaluate the likeli-

hood of getting a current behavior given the historical behavior of the application.

Formally, it can be defined as follows

 () ()

where { } is the features vector, is the total number of features and is a

training set of normal events. If the estimated likelihood is relatively low then we

define the current behavior as abnormal and we suspect that it might be due to mali-

cious activity. In order to estimate the likelihood we utilize probabilistic supervised

learning methods. Given a training set, these methods can induce a model that esti-

mates the probability of a feature getting a certain value, given the values of all other

features. We examine two different ways to estimate the likelihood using probabilistic

supervised learning methods: original cross-feature analysis [2] (CFA) and its im-

proved versions referred to as Feature Chains (FC) and Ensemble of Feature Chains

(EFC).

2.1 Cross-Feature Analysis

The cross-feature analysis approach was initially presented by Huang et al. [2] and

then further analyzed by Noto et al. [6]. Both of these works have found this approach

successful and useful for anomalies detection. Differently from Huang et al. [2] which

consider discrete features only and from Noto et al. [6] who mainly focus on methods

for measuring and combining the contributions of each feature predictor, we devel-

oped an improved version of cross-feature analysis technique which can handle both

numeric and nominal features and is suitable for running on mobile devices. As well,

we precisely implemented the original CFA version for comparison purposes. In the

following the general idea of cross-feature analysis and the original CFA technique

are presented followed by the description of the proposed improvements.

The main assumption underling the cross-feature analysis approach is that in nor-

mal behavior patterns, strong correlations between features exist and can be used to

detect deviations caused by abnormal activities. The basic idea of a cross-feature

analysis method is to explore the correlation between one feature and all the other

features. Formally, cross-feature analysis approach tries to solve the classification

problem : { } { }, where { } is the features vector

and is the total number of features. Such a classifier is learned for each feature ,

where . Thus, an ensemble of learners for each one of the features represents

the model through which each features vector will be tested for "normality". The pro-

cedure utilized for online analysis of each individual instance is described below.

When a features vector representing a normal event is tested against there is a

higher probability for the predicted value to match (for discrete features) or be very

similar (for numeric features) to the observed value. However, in the case of a vector

representing abnormal behavior, the probability of such a match or similarity is much

lower. Thus, by applying all the features models to a tested vector and combining

their results, a decision about vector normality can be derived. The more different the

predictions are from the true values of the corresponding features, the more likely that

the observed vector comes from a different distribution other than the training set

(i.e., represents an anomaly event). A threshold distinguishing between normal and

anomalous vectors can be can be computed by calculating the lower bound of output

values from normal events.

For each predictor the probability of the corresponding feature value of a vector

 to come from a normal event is computed. For numeric features this probability,

noted (()) is calculated as the following:

 (()) (
 ()

 ()
) (1)

where, () is the predicted value and () is the actual observed value. Note that if

the result of the logarithm function above is greater than one, it is converted to one.

Thus, the calculated probability is always in the range [0, 1]. For the nominal features

the estimated probability for the true class is utilized. In [2] two options for combin-

ing predictions of all features into the final decision are examined: Average Match

Count and Average Probability. The second option which computes the average of

probabilities over all classifiers, as follows

∑ ()

 ()

was found by the authors as providing better performance results than Average Match

Count. Thus, we evaluate this approach in our experiments. Events with the Average

Probability below the threshold learned on normal data are classified as anomaly.

3 Feature Chains

In this section we describe the proposed improvement over the original CFA method

which is referred to as Feature Chains. First we describe a single feature chain model.

Then we show how to build an ensemble of feature chains.

3.1 A Single Feature Chain Model

This new method for likelihood estimation of an observed features vector

{ } was inspired by a successful algorithm for multi-label classification

called Classifier Chains [19]. Classifier Chains method was recently proposed for

solving multi-label classification problem using binary classifiers in a way that over-

comes the label independence assumption. According to the Classifier Chains algo-

rithm, a single binary classifier is associated with each one of the predefined labels in

the dataset and all these classifiers are linked in an ordered chain. The feature space of

each classifier in the chain is extended with the 0/1 label associations of all previous

classifiers. Following this idea we suggest to perform the chaining on the input fea-

tures (as opposed to the labels chain that was performed in the original Classifier

Chains algorithm), for estimating likelihood of the observed features vector in the

following way:

 () ∏ ()

 ()

Note that Equation (3) is justified by the following equivalence which can be de-

rived by applying Bayes rule (()
 ()

 ()
) on the features conditional probabili-

ties, calculated at the right side term of the equation (3):

 () () () ()

 ()
 ()

 ()

 ()

 ()

 ()

 ()
 ()

By reducing the corresponding denominator and numerator in Equation (4) we will

be left by only the last term () which is equivalent to the left side of

Equation (3). Differently, from the equation (2) used in the original version of Cross-

Feature Analysis method the Equation (3) used by Feature Chains approach has a

theoretical justification. Thus, it potentially can be used for the likelihood estima-

tion of () and we expect for a practical improvement in the anomaly

detection accuracy.

Similarly to the Cross Features Analysis method, every conditional probability

term in Equation (3) is estimated using any probabilistic supervised learning algo-

rithms that can provide the conditional probability of the target feature given the input

features. If the examined feature is nominal then classification methods (such as

SVM or classification trees) should be used and if the target feature is numeric, then

regression methods should be used. Certain methods such as Neural Networks and

Classification and Regression tree (e.g., CART) can be used for both nominal and

numeric target features.

In the case of numeric features, the distance between actual and predicted values is

used as a proxy to the estimated probability for getting the actual value. Various scal-

ing methods can be used to convert the distance to a probability. For example, one of

the options is the log distance approach as proposed by [2] and presented in Equation

(1). Another approach followed by [6] is to calculate the distance as the difference in

actual and predicted values divided by the range of that feature’s value (i.e., the max-

imum distance is 1.0). Yet, another option is to divide the difference in value by the

mean of the observed values for that feature.

One concern about the proposed feature chain algorithm is the low dimensionality

of the data used at the beginning of chaining process. It is true that using only a few

attributes in the beginning is oversimplification. But on the other hand the probability

can be estimated more accurately due to the low number of parameters to estimate. In

addition we try to overcome this oversimplification by using ensemble of Feature

Chains as explained below, thus allowing averaging over numerous different chains.

3.2 Ensemble of Feature Chains

It should be noted of course that the order of features in the chain may have an ef-

fect on the model's accuracy. As with any learning algorithm, some models may over-

estimate the probability value and others underestimate the probability value. A con-

venient option for solving this issue is using an ensemble of Feature Chain models

where each of the models is learned on a different chain of randomly ordered features.

This approach was proved successful in the case of Classifier Chains method [3].

Additionally, it is known that ensemble methods are able to improve the prediction

performance over a single classifier [8]. Note that Feature Chains method can occa-

sionally be referred to as ensemble method because it involves multiple models.

However, none of these models is capable for predicting the likelihood of the entry

instance and therefore we use the term ensemble strictly in the sense of combining the

final (i.e. instance-related) predictions of multiple models. Below the learning

process is described.

An Ensemble of Feature Chains trains m Feature Chain models . Each

of the is trained with a random features ordering in the chain. Hence predictions of

each model depend on underlying features order and are likely to be diverse in

border-line cases. For combining the predictions of all the models several approaches

exist. In this paper we examine a simple and popular majority voting approach, ac-

cording to which binary decisions (0 – for normal and 1 – for anomalous instance) of

all distinct models are summarized and divided by total number of models m, so

that the output, referred to as anomaly votes score is normalized into the range of [0,

1]. A threshold is used to derive the final decision such that an instance is marked as

anomaly if its anomaly votes score is above the defined threshold t.

4 Experimental Studies

This section presents the evaluation of the proposed detection methods. First, the data

aggregated from several real and self-developed malware applications utilized in this

experiment is described. Then, the system evaluation processes is described and the

observed results are presented.

4.1 Evaluated Malware

For the evaluation of the proposed methods we experimented with five real and ten

self-written Trojan malware. Each malware has two versions: the original benign

application requesting network access permission for various purposes (such as dis-

playing advertisements, high scores update, information or data sharing, etc.) and the

repackaged version of the original application with injected malware code utilizing

network communication for malicious purposes.

For the experiments with the real malware, five infected applications and their be-

nign versions were used. The infected applications and the corresponding versions of

the benign application were obtained from a repository collected by crawling the offi-

cial and various alternative Android markets for over a year and a half. We used two

applications injected with PJApps Trojan - Fling and CrazyFish; two applications

injected with Geinimi Trojan - Squibble Lite and ShotGun; and one sample of

DroidKungFu-B malware found within the OpenSudoku game. The PJApps Trojan

sends sensitive information containing the IMEI, Device ID, Line Number, Subscriber

ID, and SIM serial number to a web server, and retrieves commands from a remote

command and control server. Similarly, the Geinimi Trojan transmits information

from the device to the server and may be instructed to perform certain actions. The

DroidKungFu-B malware targets rooted phones and requests for the root privilege;

then, with or without the root privilege, it collects and steals the sensitive phone in-

formation, such as IMEI, phone model, etc. All the infected applications are mobile

games which exploit network communication for certain purposes, such as online

advertisements or score updates.

Malware applications with the advanced self-updating capabilities have just started

to appear and there are not yet enough known real malware samples of this type.

Thus, for the purposes of this paper, we have created the malware packages using two

different types of self-updating behavior (type 1, entry application update and type 2,

injection of compiled malicious component) and infected several open-source applica-

tions with these packages.

The utilized open-source applications are: APG, K-9 Mail, Open WordSearch, Rat-

tlesnake Free and Ringdroid. The APG, the Android Privacy Guard application, pro-

vides OpenPGP functionalities, such as encryption and signing of emails. It uses net-

work connections for public and secret keys management. K-9 Mail is an open source

email client for Android. Open WordSearch is a game application that uses network

connections to synchronize global high scores. Rattlesnake Free is also a game appli-

cation utilizing network connections for online advertisements. Ringdroid is an appli-

cation for recording and editing sounds and creating ringtones directly on the Android

phone. It uses network connections to share ringtones and other sounds created by

users. Each one of these applications was infected and evaluated using the created

malware of both types. To simulate malicious behavior within the created malware,

we choose to implement some simple malicious behavior patterns of known malware,

such as stealing a user's contacts list, recent calls details, and user's GPS location

which are sent out to a remote server.

An application infected with the malware component of type 1 will present an "up-

date is available" notification to the user when the corresponding command is re-

ceived by the device. When a user agrees to install the update, it will download a

malicious version of the same application from a remote server and replace the benign

version with the malicious one. At this stage the user is presented with a list of per-

missions to be granted to the new application version, which actually could differ

from those granted to the original application. Once installed, the new malicious ver-

sion will wait for an external command. When the command is received, it steals the

user's contacts list and sends it to a remote server.

An application infected with malware component of type 2 will silently download

a precompiled malicious payload when the corresponding command is received by the

device, and then continue to load and execute malicious code without any notification

to the user. The malicious payload will first steal the user's contacts list and send it to

a remote server and then continue to report the user's location and recent call details to

the server every specified time period (set to two minutes for our experiments).

For data aggregation all the malware applications and their benign counterparts

were executed on the specially designated devices and their network behavior features

were collected. The list of the utilized features is presented at Table 1. Initially, a

benign version of each evaluated application was installed and executed on a device

for two days. Then, it was injected\replaced by the malicious version, which was exe-

cuted for at least one hour.

Table 1. The list of utilized features.

No. Feature Brief Description

1 avg_sent_bytes Represent the average amount of data sent or received by an ap-

plication at the observed time interval (of 1 min.) 2 avg_rcvd_bytes

3 avg_sent_pct Represent the average portion of sent and received amount of data

at the observed time interval (of 1 min.) 4 avg_rcvd_pct

5 pct_avg

rcvd_bytes

Represents the portion of average received amount of data at the

observed time interval (of 1 min.) 6 inner_ sent Average time intervals between send\receive events occurring

within the time interval of less than 30 seconds. 7 inner_ rcvd

8 outer_ sent Average time intervals between send\receive events occurring

within the time interval above or equal to 30 seconds. 9 outer_ rcvd

4.2 Experimental Setup

We implemented all the evaluated methods in Java using Weka [9] open source li-

brary. The Decision/Regression tree (REPTree Weka's implementation) algorithm

was used as base learning algorithm for CFA and FC methods, as it is can handle both

nominal and numeric target features. The decision threshold values were learned on a

separate set of labeled data examples during the calibration experiments. The values

allowing preserving an acceptably low level of false positive alarms (below 20%)

were determined as follows: 0.7 for CFA method and 0.001 for FC method.

The ensemble methods are known for their capability to improve the prediction

performance over a single classifier in exchange for more computational resources

and longer execution times. Thus, for the sake of a fair comparison, we compare the

EFC, utilizing the REPTree method as the base learner of each single chain model,

with CFA and FC methods set to use Rotation Forest [10] ensemble as their base

learner. The versions of CFA and FC methods utilizing the ensemble algorithm as

their base learner are denoted CFA-IE and FC-IE correspondingly (IE stands for In-

ternal Ensemble). Rotation Forest is a recently proposed but already well-known suc-

cessful method for building classifier ensemble using independently trained decision

trees. The Rotation Forest was set to use the REPTree algorithm as its base learner.

The majority voting threshold of the EFC method was set to a commonly used intui-

tive value of 0.5. Influence of the ensemble models number on the performance accu-

racy was analyzed on the calibration datasets and m=50 was selected as always

providing stable optimal results. Respectively, the number of iterations for the Rota-

tion Forest was set to 50, also.

For learning the "normal" patterns first 30 records (not counting a few bootstrap-

ping records) of each benign application were used. The rest of the normal data and

observed traces of malicious versions were used for testing the methods detection

performance. To evaluate the detection capabilities of the proposed methods the fol-

lowing standard measures were employed: True Positive Rate (TPR) measure (also

known as detection rate), which determines the proportion of correctly detected in-

stances relating to application's malicious behavior and the False Positive Rate (FPR)

measure (also known as false alarm rate), which determines the proportion of mistak-

enly detected anomalies in an actually normal application behavior. Note that some-

time significant deviations in normal application's behavior can be caused by changes

in user's behavior. Thus a certain level of false alarms might be acceptable especially

for applications with diverse network functionality.

4.3 Results

Initially we compare the new methods, FC and EFC, to the original CFA method.

Results of these algorithms for all the evaluated benign\malware application pairs are

presented in Table 2. The best result for each evaluation measures on a particular

application dataset is marked in bold separately for the FC vs. CFA and EFC vs. CFA

pair-wised comparisons.
Table 2. Malware Detection Results – New Methods vs. Original CFA.

Application

name

TPR (%) FPR (%)

CFA FC EFC CFA FC EFC

R
e
a

l

m

a
lw

a
r
e Fling 66.8 69.0 67.9 0 4.2 3.5

OpenSudoku 100 100 100 0 0.0 0

ShotGun 100 100 100 0 4.8 4.8

Squibble 77.5 95.0 97.5 15.8 15.8 15.8

Crazy Fish 90.6 100 100 0 7.7 7.7

S
e
lf

-u
p

d
a

te
 1

 APG 100 92.3 92.3 0 0.0 0

K-9 Mail 91.7 100 100 0 2.0 0

WordSearch 100 100 100 6.3 6.3 6.3

Rattlesnake 92.3 92.3 92.3 8.1 12.2 6.5

Ringdroid 100 100 100 0 0.0 0

S
e
lf

-u
p

d
a

te
 2

 APG 100 100 92.9 0 4.3 0

K-9 Mail 66.7 83.3 91.7 0 2.9 0

WordSearch 100 100 100 8.3 8.3 8.3

Rattlesnake 83.3 100 100 8 16.0 8.0

Ringdroid 92.3 100 100 0 0.0 0

Additionally, we perform an experiment comparing EFC with CFA and FC meth-

ods utilizing ensemble algorithm as their base learner. Results of these algorithms are

presented in Table 3. The best result for each evaluation measures on a particular

dataset is marked in bold separately for the FC-IE vs. CFA-IE and EFC vs. CFA-IE

pair-wised comparisons.

Table 3. Malware Detection Results – Ensemble Methods.

 Application
TPR (%) FPR (%)

CFA-IE FC-IE EFC CFA-IE FC-IE EFC

R
ea

l

m
al

w
ar

e
 Fling 65.8 68.5 67.9 0.7 2.8 3.5

OpenSudoku 100 100 100 0 0 0

ShotGun 99.3 100 100 0 7.1 4.8

Squibble 82.5 92.5 97.5 0 15.8 15.8

Crazy Fish 94.9 100 100 0 0 7.7

S
el

f-
u

p
d

at
e

1
 APG 100 100 92.3 0 0 0

K-9 Mail 100 100 100 38.8 0 0

WordSearch 100 100 100 6.3 6.3 6.3

Rattlesnake 92.3 100 92.3 36.6 9.8 6.5

Ringdroid 80.0 100 100 16.7 0 0

S
el

f-
u

p
d

at
e

2
 APG 92.9 100 92.9 0 0 0

K-9 Mail 25 83.3 91.7 40 0 0

WordSearch 100 100 100 8.3 8.3 8.3

Rattlesnake 100 100 100 32 9.3 8.0

Ringdroid 100 100 100 16.7 0 0

Lastly, we evaluate detection performance of EFC method with respect to the

number of ensemble models. The TPR and FPR results on two of the evaluated appli-

cations are presented in Fig. 1. For all other evaluated applications similar results

were observed.

Statistical significance of the difference between algorithms' results was deter-

mined by Wilcoxon signed-ranks test [11]. The exact confidence level is mentioned

specifically for each comparison at the results discussion.

Generally, it can be seen that for almost all malicious applications, the high level of

deviation (80-100% of anomalous instances) from the normal network behavior was

detected by all the evaluated methods. Additionally, it can be seen that the FPR of all

the detection algorithms is below 10% in most cases.

Comparing the performance of the proposed Feature Chain and the original CFA

approaches, it can be seen that FC significantly outperforms the CFA in terms of TPR

(the difference is statistically significant at 0.05 confidence level). It provides higher

detection rate on 7 datasets and lower detection rate on 1 dataset only. However, at

the same time it suffers from much higher false alarms rate than CFA method (the

difference is also statistically significant at 0.05 confidence level). Yet, the EFC ap-

proach successfully overcomes this drawback: aggregation of numerous FC models

into a composite ensemble model allows reduction of FPR to statistically indistin-

guishable difference comparing to CFA method, while preserving the very high detec-

tion rate on all the datasets.

We continue by comparing the performance of the EFC, FC-IE and CFA-IE meth-

ods. As can be seen (in Table 3) both EFC and FC-IE methods provide the highest

detection rate on most datasets. There are slight differences between TPR results of

these two methods on a few datasets, however this difference is statistically insignifi-

cant. On the other hand, it can be seen that CFA-IE method archives lower TPR on 8

and 6 datasets comparing with FC-IE and EFC methods correspondingly. In some of

these cases the difference in the achieved detection rates is very meaningful and could

lead to much later identification of the malware. At the same time, the CFA-IE meth-

od outperforms (in terms of TPR) the FC-IE and EFC methods in 0 and 1 cases, only,

correspondingly. The difference between CFA-IE and FC-IE detection rate is statisti-

cally significant at 0.01 confidence level. Additionally, considering the FPR of the

ensemble algorithms, it can be seen that CFA-IE method has unexpectedly high level

(above 20%) of false alarms on several datasets, while both EFC and FC-IE preserve

relatively low FPR values.

Fig. 1. EFC performance with respect to number of models.

Considering, the EFC performance with respect to the number of ensemble models

(as depicted in Fig. 1) it can be seen that high and stable level of True Positive Rate is

achieved at relatively low number of models, . It can be seen also that larger

number of models leads to lower False Positive Rate. However, for achieving a stable

low FPR level, a larger number of models, regularly 30, is needed.

Summarizing the above comparison we conclude that the proposed Feature Chains

technique allows for significant improvement of the detection performance over the

original CFA method. However, it suffers from a higher False Positives Rate. At the

same time, the two evaluated ensemble versions of the new Feature Chains methods,

EFC and FC-IE, allow for significant reduction in the false alarms rate (the difference

is statistically significant at 0.05 confidence level), while preserving the high True

Positive Rate. Hence, the results justify using the proposed ensemble methods, FC-IE

or EFC, for anomaly detection.

0

20

40

60

80

100

2 3 5 7 10 15 19 20 25 30 35 40 45 50

D
e

te
ct

io
n

 R
at

e

Number of Models

K-9 mail client

TPR

FPR

0

20

40

60

80

100

2 3 5 7 10 15 19 20 25 30 35 40 45 50

D
e

te
ct

io
n

 R
at

e

Number of Models

Rattlesnake game

TPR

FPR

5 Summary and Conclusions

This paper presented a novel probabilistic method for solving semi-supervised

anomaly detection problems and its ensemble version. The new method is based on

the known cross-feature analysis and classifier chaining methods. It can handle nu-

meric and nominal features and is suitable for running on mobile devices. The pre-

sented method can be used for solving various semi-supervised anomaly detection

problems. Theoretical correctness of the proposed method was demonstrated.

Empirical evaluation of the proposed methods on the variety of datasets demon-

strated effectiveness of the proposed approach for the defined problem: a high TPR

along with low FPR could be achieved. The proposed Ensemble of Feature Chains

and Feature Chains using internal ensemble proved superior to the original CFA

method and its ensemble version.

Among our future research directions are evaluation of the present methods on

more datasets from different domains and comparison with other anomaly detection

methods.

References

1. V. Chandola, A. Banerjee and V. Kumar, “Anomaly detection: A survey,” ACM Comput.

Surv. 41(3):1–58, 2009.

2. Y.A. Huang, W. Fan, W. Lee and P.S. Yu, “Cross-feature analysis for detecting ad-hoc

routing anomalies,” In: IEEE 23rd Int. Conf. on Distributed Computing Systems, 478-487,

2003.

3. J. Read, B. Pfahringer, G, Holmes, and E. Frank, "Classifier Chains for Multi-label Classi-

fication," Proc. of 20th European Conference on Machine Learning and Knowledge Dis-

covery in Databases, 2, 254-269, 2009.

4. Symantec blog: http://www.symantec.com/connect/blogs/androiddropdialer-identified-

google-play

5. Google mobile blog, android and security:

http://googlemobile.blogspot.co.il/2012/02/android-and-security.html

6. K. Noto, C. Brodley and D. Slonim, “Anomaly detection using an ensemble of feature

models,” In: Proc. of the 10th IEEE International conf. on Data Mining, 953-958, 2010.

7. N. Ye, M. Xu, S.M. Emran, "Probabilistic networks with undirected links for anomaly de-

tection," In: Proceedings of the IEEE Systems, Man, and Cybernetics Information Assur-

ance and Security Workshop, West Point, NY, 175-179 , 2000

8. L. Rokach and O. Maimon, ”Ensemble Methods for Classifiers,” Data Mining and

Knowledge Discovery Handbook. Springer US, 2005.

9. Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/

10. J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso, ”Rotation Forest: A New Classifier En-

semble Method,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(10),1619-1630, 2006

11. J. Demsar, ”Statistical comparisons of classifiers over multiple data sets, ” Journal of Ma-

chine Learning Research, 7,1-30, 2006.

http://googlemobile.blogspot.co.il/2012/02/android-and-security.html
http://www.cs.waikato.ac.nz/ml/weka/

