
Information Sciences xxx (2011) xxx–xxx
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
The CASH algorithm-cost-sensitive attribute selection using histograms

Yael Weiss, Yuval Elovici, Lior Rokach ⇑
Department of Information Systems Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
Deutsche Telekom Laboratories at Ben-Gurion University, Israel
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Data mining
Cost-sensitive feature selection
Genetic search
Histogram comparison
Misclassification cost
Feature grouping
0020-0255/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.ins.2011.01.035

⇑ Corresponding author at: Department of Inform
E-mail addresses: wiessy@bgu.ac.il (Y. Weiss), el

Please cite this article in press as: Y. Weiss e
(2011), doi:10.1016/j.ins.2011.01.035
a b s t r a c t

Feature selection is an essential process for machine learning tasks since it improves gener-
alization capabilities, and reduces run-time and a model’s complexity. In many applications,
the cost of collecting the features must be taken into account. To cope with the cost prob-
lem, we developed a new cost-sensitive fitness function based on histogram comparison.
This function is integrated with a genetic search method to form a new feature selection
algorithm termed CASH (cost-sensitive attribute selection algorithm using histograms).
The CASH algorithm takes into account feature collection costs as well as feature grouping
and misclassification costs. Our experiments in various domains demonstrated the
superiority of CASH over several other cost-sensitive genetic algorithms.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Feature selection is essential in machine learning tasks, and feature selection algorithms usually select a feature subset for
optimizing the performance of the particular task at hand. However, in many domains the cost of obtaining the feature val-
ues cannot be neglected and must be taken into account in the feature selection process. For example, in medical diagnostics,
the physician may need to consider the costs involved prior to determining which tests to conduct.

In addition to the feature costs, it is also necessary to consider misclassification costs. Again citing the medical domain,
given the costs of false positive (FP) and false negative (FN) misclassification costs, physicians, many of whom are working in
tightly controlled business frameworks, might consider that further testing is not economically justified. This decision can-
not be made if the error misclassification costs are not available.

What these two examples demonstrate is that a cost must be assigned to both the tests and the misclassifications in order
to decide on the appropriate course of action. Unfortunately, in the majority of feature selection algorithms, feature and mis-
classification costs are not considered in practice.

Another important aspect involved in determining the suitability of one course of action rather than another is the
question of feature grouping, which arises occasionally when attribute costs vary with the choice of prior tests. For instance,
medical tests are generally not performed separately; when certain medical tests are performed together, it is cheaper than
when they are performed individually. Therefore, information about the feature grouping must be tailored into the feature
selection process.

In this study, we evaluate CASH, a cost-sensitive feature selection algorithm based on a genetic algorithm that considers
feature test and misclassification costs as well as feature grouping. Inherent in the algorithm is a new fitness function based
on comparing histograms. Extensive experiments were conducted to demonstrate the effectiveness of CASH compared to
other methods.
. All rights reserved.

ation Systems Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel.
ovici@bgu.ac.il (Y. Elovici), liorrk@bgu.ac.il (L. Rokach).

t al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.

http://dx.doi.org/10.1016/j.ins.2011.01.035
mailto:wiessy@bgu.ac.il
mailto:elovici@bgu.ac.il
mailto:liorrk@bgu.ac.il
http://dx.doi.org/10.1016/j.ins.2011.01.035
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
http://dx.doi.org/10.1016/j.ins.2011.01.035

2 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
The rest of the paper is organized as follows: Section 2 presents a review of the related literature. In Section 3 we intro-
duce the notation and the problem formulation. Then, in Section 4 we describe our new algorithm with a case study based on
a synthetic dataset. In Section 5 we review the experiments that were conducted in this study, the evaluation measures em-
ployed and the evaluation of the results of the new algorithm. Then, we discuss the study in Section 6. In Section 7, we dis-
cuss directions for future research.
2. Related work

2.1. Genetic algorithm for attribute selection

In attribute selection, the goal is to select, from the original set of attributes, a subset of attributes that are relevant for the
target data mining task [26,16,27]. The standard individual representation for attribute selection consists simply of a string of N
bits, where N is the number of original attributes and the ith bit, i = 1, . . . ,N, can take the value 1 or 0, indicating whether or not,
respectively, the ith attribute is selected. This individual representation is simple and traditional crossover and mutation oper-
ators can be easily applied. However, this representation has the disadvantage that it does not scale very well with a number of
attributes. In applications with many thousands of attributes (such as occurs in text mining and some bio-informatic problems)
an individual representation would have many thousands of genes. This slows the runtime of the genetic algorithm (GA).

An alternative individual representation, proposed by Cherkauer and Shavlik [6], consists of M genes (where M is a
user-specified parameter), where each gene can contain either the index (id) of an attribute or a flag – say 0 – denoting
no attribute. An attribute is considered selected if and only if it occurs in at least one of the M genes of the individual.
For instance, the individual ‘‘3 0 8 3 0’’, where M = 5, represents a candidate solution where only the 3rd and the 8th attri-
butes are selected. The fact that the 3rd attribute occurs twice in the previous individual is irrelevant for the purpose of
decoding the individual into a selected attribute subset. The advantage of this representation is that it scales up better with
respect to a large number of original attributes, since the value of M can be much smaller than the number of original attri-
butes. On the other hand, there is a disadvantage: the new parameter, M, that has been introduced is not necessary in cases
of standard individual representation.

With respect to the fitness function, the wrapper and filter approaches may be implemented in GAs for attribute selection.
In the wrapper approach the GA uses the classification algorithm to compute the fitness of individuals, whereas in the filter
approach the GA it does not. The vast majority of GAs for attribute selection follows the wrapper approach [28], and many of
these GAs use a fitness function involving two or more criteria to evaluate the quality of the classifier built from the selected
attribute subset [29].

GA-based attribute selection focuses mainly on classification tasks. GAs that perform attribute selection for clustering
were introduced, for example, by Kim et al. [21] and Jourdan et al. [19]. Moreover Jong et al. [18], used GA for attribute rank-
ing. Once the ranking has been done, one can select a certain number of top-ranked attributes; the number can be specified
by the user or computed in a more automated way [34].

Sharpe and Glover [35] and Kudo and Sklansky [23] present an empirical comparisons between GAs and other kinds of
attribute selection methods. In general these empirical comparisons show that GAs, with their associated global search in
the solution space, usually (though not always) obtain better results than local search-based attribute selection methods.
2.2. Cost-sensitive algorithms

Cost-sensitive learning is an essential task in several real-world applications. Turney [42] presented a taxonomy of the
main types of costs involved in inductive concept learning. Two costs, misclassification and test, are particularly relevant
to this paper.

Several researches have considered misclassification costs but not test costs [9,10,20]. Other papers focus on the cost of
tests, but fail to take into account misclassification costs. Yang and Honavar [45] offer a new subset feature selection method
that employs a genetic algorithm as its search method with the aim of finding a feature subset that minimizes the total fea-
ture test cost while maximizing accuracy. Iswandy and Koenig [17] present the effectiveness of a feature selection approach
that is sensitive to the feature test costs. In particular, they evaluated a genetic algorithm (GA) and particles swarm optimi-
zation (PSO). Paclik et al. [31] suggest a new approach for combining the measurement costs and feature grouping in the
feature selection process in the product analysis domain. Their method uses a greedy wrapper-based feature selection algo-
rithm that takes into account different groups of features that share computation costs.

In contrast to the abovementioned papers, the new feature selection algorithm that we present in this work is sensitive to
both test and misclassification costs. An overview of the most significant papers that take into account both costs is pre-
sented in the rest of this section.

Turney [41] was the first to consider both test and misclassification costs. Turney’s approach presents the inexpensive
classification with an expensive test (ICET) system. ICET uses a method that employs a hybrid approach, combining a greedy
search heuristic (decision tree) with a genetic algorithm for building a decision tree that minimizes the total cost objective,
which is composed of test and misclassification costs. Furthermore, ICET considers feature grouping. ICET is robust but its
execution time is rather long.
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 3
Several works use the Markov decision process to handle the cost-sensitive problem. Unfortunately, these methods, like
the ICET system, require a time-consuming search procedure. Zubek and Dietterich [46] obtained an optimal solution by exe-
cuting the search process in a state space until an optimal policy is attained. Taking into account the record values that were
achieved for each new record, the optimal policy suggests which action should be carried out to minimize the total cost. In
order to reduce computational complexity, Arnt and Zilberstein [2] extended the last model by including the ability to han-
dle time-sensitive utility costs that consider the time needed to obtain the results of a test.

Chai et al. [4] offered csNB, a new cost-sensitive classifier based on a naı̈ve Bayes algorithm. Several researchers, such as
Sheng et al. [37] and Freitas et al. [14], use a cost-sensitive decision tree for the classification task. Ling et al. [24] proposed a
decision tree algorithm which applies a new splitting criterion, minimal total cost, to training data instead of the well known
minimum entropy measurement. Ling et al. [25] subsequently updated their strategy for building cost-sensitive decision
trees by incorporating possible discounts when obtaining the values of a group of attributes with missing values in the tree
building algorithm. Sheng et al. [38] improve the above-mentioned algorithm by incorporating possible discounts when
obtaining values of a group of attributes with missing values in the tree building algorithm.

In another paper, Sheng et al. [38] offered a framework where a decision tree is built for each new test case. Sheng and
Ling [36] then suggested a hybrid cost-sensitive decision tree, DTNB, that reduces the minimum total cost by integrating the
advantages of a cost-sensitive decision tree and those of the cost-sensitive Naı̈ve Bayes. While it uses the cost-sensitive deci-
sion tree in order to decide which tests to choose, for the classification task it uses the cost-sensitive Naı̈ve Bayes. Freitas
et al. [14] suggest a new splitting criterion in building decision trees that considers different aspects of test costs. They exam-
ine several cost-scale factors that regulate the influence of test costs as it can make trees more sensitive to test costs. They
also suggest how to embed the risk cost for performing the test in the new cost-sensitive splitting criterion. The risk cost
captures the change in the quality of life due to performing these tests on the patient. However, no experiments were carried
out with regard to risk cost. Esmeir and Markovitch [11] introduced a new algorithm, the anytime cost-sensitive tree learner
(ACT), which is sensitive to the test and misclassification costs. It constructs a decision tree in a top-down fashion. Moreover,
since ACT is an anytime algorithm, it offers a tradeoff between the computation time and classification costs.

Vidrighin et al. [43,44] used a cost-sensitive decision tree to improve the ICET algorithm [41]. The new modified algo-
rithm they developed is termed the ProICET algorithm. There are a number of differences between ICET and ProICET algo-
rithms that mostly derive from the genetic components of the algorithms, such as, as a replacement strategy: while ICET
has used the multiple populations’ technique, ProICET uses a single population. Moreover, the percentage of training exam-
ples in evaluating the fitness score of an individual changed (in ProICET it is set to 70% as opposed to 50% in ICET). Chen et al.
[5] also developed a cost-sensitive decision tree, however their algorithm support multiple condition attributes. A cost is
paid to obtain the values of the decision attribute and that an instance must be classified without exceeding the spending
cost threshold.

3. Notations and problem formulation

We present here common notations, and a real-world application involving heart disease diagnosis to illustrate them. The
application was taken from the UCI ML repository [3].

3.1. The classification task

In a typical classification problem, a training set of labelled examples is given. The training set can be described in a vari-
ety of languages, most frequently as a collection of records that may contain duplicates. A vector of feature values describes
each record. The notation A denotes the set of input features containing n features: A = {a1, . . . ,ak, . . . ,an}-and y represents the
class variable or the target feature whose domain is a set of K classes: Y = {1,2, . . . ,K}.
Table 1
Training dataset.

Record 1 2 3 4 5 6 7
Age 35 32 30 33 64 67 66
Sex M F F M F F F
Cp 4 4 4 4 1 1 1
Trestbps 94 96 95 97 196 194 195
Restecg 0 0 0 0 2 2 2
Ca 0 0 0 0 3 3 3
Chol 126 500 303 476 205 400 562
Fbs 0 0 0 0 1 1 1
Thalach 71 73 72 75 197 198 196
Thal 3 3 3 3 6 7 7
Exang 0 1 1 1 0 1 0
Oldpeak 0.2 1.6 2.4 1.2 0.6 4.5 5.6
Slope 1 1 1 1 3 3 3
Class Negative Negative Negative Negative Positive Positive Positive

Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

4 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
The heart disease diagnosis application presents a learning task: predicting coronary artery disease based on 13 tests car-
ried out on patients. Although there are 303 records in this dataset, we used only 7 artificial records for the sake of simplicity
in explaining the algorithm. Table 1 presents the training dataset with the 7 records and the 13 features. Each patient can be
classified into two classes: healthy (negative), which indicates a narrowing of less than 50% of the artery, and sick (positive)
which indicates more than 50%.

The instance space (the set of all possible examples) is denoted by X while the universal instance space (or the labelled
instance space) U is defined as a Cartesian product of the input instance space and the target feature domain, i.e., U = X � Y.
The training set consists of a set of m records and is denoted as S = (hx1,y1i, . . . , hxm,ymi) where xi 2 X and yi 2 Y. It is assumed
that the training set records are generated randomly and independently according to some fixed and unknown joint prob-
ability distribution p(x,y) over U.

The notation IS : X ? Y represents a classifier (such as classification tree) that was trained using inducer I on the training
dataset S.

3.2. Feature subset

Let B # A be a subset of features. We denote the projection of an instance xi 2 X onto a subset of features B as pBxi. Sim-
ilarly, the projection of a training set S onto B is denoted aspBS. Therefore the notation IpBS : pBX ! Y stands for a classifier
trained on the projection of the training set S using only the features in B.

3.3. Misclassification cost matrix

Let C be the misclassification cost matrix. Each entry Ci,j specifies the price to be paid when misclassifying an i-class in-
stance as class j. Usually, Ci,i = 0. Therefore the expected misclassification cost of classifier IpBS trained on a new example
drawn at random from the p(X,Y) distribution is:
Please
(2011
MCðBÞ ¼
X
8ðx;yÞ2U

Cy;IpBSðpBxÞ � pðx; yÞ: ð1Þ
Table 2 presents the false positive (FP) and false negative (FN) misclassification cost values for the heart disease dataset. The
UCI ML repository does not supply the misclassification costs. The costs of the false positive (FP) and false negative (FN) were
chosen to be $600 and $1000, respectively as proposed by Sheng et al. [38]. These assignments were chosen after consulting a
researcher from the Heart-Failure Research Group at the local medical school.

3.4. Test costs

We assume that a certain acquisition cost is associated with each attribute. Following Turney [41], we assume that attri-
butes are partitioned into mutually exclusive groups, such that the attributes that belong to the same group share a common
setup cost. Once the common cost is paid by one of the attributes in the group, the remaining attributes get a discount.
Therefore the cost of acquiring an attribute in this group is conditional on whether another attribute of the group has already
been chosen.

Let G be the group affinity vector. Each entry in the vector G specifies for each feature ak the group l(1 6 l 6 n) to which it
belongs. Table 3 presents the features group assignment indication.

Let Tb
k specifies the cost of conducting a test on feature ak (i.e., acquiring its value), without taking into consideration the

cost spent on testing other features that belong to the same group (i.e., without a group discount). Let Ta
k specify the cost of

performing a test on feature ak, while taking into consideration the group discount. The difference Tb
k � Ta

k represents the
group discount and is equal for all attributes in the same group.

Table 4 indicates the test costs in dollars ($), with and without group discount, of each feature in the heart disease diag-
nosis application. These test costs were obtained from the Ontario Health Insurance Program’s fee schedule. The cost of
obtaining several of the attributes (age, sex and cp) is as low as $1. Tests carried out on a group are discounted in terms
of costs. For example, the tests in group 7 (chol and fbs) are blood tests that can indicate the presence of coronary artery
disease; they share the common cost of $2.10 for the blood collecting procedure. Additional examples of groups in this appli-
cation are the tests in groups 8 and 9 that involve heart measurements during exercise. Tests in group 9 (exang, oldpeak, and
slope) are electrocardiograph tests which are usually performed simultaneously while the patient runs on a treadmill.

The acquisition cost of all features in subset B is:
Table 2
Misclassification costs.

Prediction:Negative Prediction:Positive

Relatiy:Negative 0 FP cost = $600
Reality:Positive FN cost = $1000 0

cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Table 3
Features Group.

Feature Before discount cost After discount cost

Age $1 $1
Sex $1 $1
Cp $1 $1
Tresbps $1 $1
Restecg $15.5 $15.5
Ca $100.9 $100.9
Chol $7.27 $5.17
Fbs $5.2 $3.1
Thal $102.9 $1
Thalach $102.9 $1
Exang $87.3 $1
Oldpeak $87.3 $1
Slope $87.3 $1

Age $1 $1
Sex $1 $1
Cp $1 $1
Tresbps $1 $1
Restecg $15.5 $15.5
Ca $100.9 $100.9
Chol $7.27 $5.17
Fbs $5.2 $3.1
Thal $102.9 $1
Thalach $102.9 $1
Exang $87.3 $1
Oldpeak $87.3 $1
Slope $87.3 $1

Table 4
Test costs.

Group Feature

1 Age
2 Sex
3 Cp
4 Trestbps
5 Restecg
6 Ca
7 Chol
7 Fbs
8 Thalach
8 Thal
9 Exang
9 Oldpeak
9 Slope

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 5

Please
(2011
TCðBÞ ¼
X
ai2B

Ta
i þ

X
ai2B:ð9jÞðj<i:GðiÞ¼GðjÞ:aj2BÞ

Tb
i � Ta

i : ð2Þ
The augend represents the post-discount cost of all features included in subset B. The addend specifies a group’s common
costs; they are taken into consideration only once for each group (by the group’s member with the smallest index).

For example the cost of subset B = {Thalach, Thal, Exang, Oldpeak} in our example is:
TCðfThalach; Thal; Exang; OldpeakgÞ ¼ 1þ 1þ 1þ 1þ 102:9� 1þ 87:3� 1 ¼ 192:2
Following Turney [41], we assume that both types of cost, of the features and of misclassification, are given in the same cost
scale (in dollars).Therefore, the summing together of these two cost types in order to get the total cost is feasible.

However, there are many real-world applications where these two costs do not share the same cost scale. Hence, the deci-
sion about how to combine the two cost types is a domain-dependent issue. For instance, contrary to our study, Kim and Kim
[22] deal with a multi-objective optimization problem instead of a single optimum. Their aim is to minimize two factors: the
number of features and the error rate of the classifier. Another possible approach to deal with applications where these costs
are given in a different scale was introduced by Qin et al. [32]. They offer a method that sets a maximal budget for one objec-
tive while minimizing the other.
cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

6 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
3.5. The goal

Given the abovementioned notations, we are now ready to state our main goal. In this study the problem that we are aim-
ing to solve is how to select a subset of features that minimizes the total of the misclassification and test costs. Consequently,
the problem can be formally phrased as follows:

Given an induction Algorithm 1, a training set S with input feature set A, test cost before and after discount vectors Tb and
Ta, respectively, and the group affinity vector G, find an optimal features subset B # A such that MC(B) + TC(B) is minimized.

Since finding an optimal set case is computationally difficult (given n such features, there are 2n possible feature subsets)
and the probability p(x,y) is unknown, we limit ourselves to finding an approximate solution.

4. CASH: Cost-sensitive attribute selection using histograms

In order to solve the problem defined in Section 3, we propose CASH, a cost-sensitive feature selection method which uses
a new fitness function based on comparing histograms. This algorithm follows the filter approach, where a certain metric
ranks each feature subset. Unlike the wrapper approach, it is not associated with a particular classifier. It is important to note
that in the literature most works in this domain combine the feature selection procedure in the process of building the learn-
ing model. The proposed algorithm employs a genetic algorithm as a search method. In this research study we consider only
the case where the target feature is binary. However, the algorithm can be extended easily to deal with multivariate class
variables.

Algorithm 1 presents the proposed CASH algorithm. The CASH algorithm consists of four main steps: preprocessing; cre-
ating initial population of individuals; computing the fitness of each individual; and applying a genetic algorithm to the ini-
tial population. In the following subsections we describe each one of the above steps, together with a case based on a real
application involving the heart disease diagnosis taken from the UCI ML repository mentioned above.

Through the various steps of CASH algorithm we followed a simple cost-sensitive heuristic rule: given a set of records
(which might be the entire records in the dataset or only a partial set), classify these records according to the class that
brings to a minimum the average total cost from among all the possible classes.

Algoritm 1: The CASH pseudo-code

Input:

D: Training set

C: misclassification cost matrix

T
b
: test-cost before discount

T
a
: test-cost after discount

G: group affinity

Output:

Result_Subset: Near optimal group of features

Step 1: Preprocessing steps.

Compute the a priori cost of the datasets.

For each feature:

Construct the feature’s histograms.

For each record in D

Compute how it classifies the record

Estimate the misclassification cost ratio of the record

Step 2: Create initial population of individuals.

Step 3: Compute the fitness of each individual.

Step 4: Apply genetic algorithm on the initial population.

REPEAT

Select individuals.

Apply genetic operators to selected individuals. Create new individuals.

Compute fitness of each of the new individuals.

Update the current population (new individuals replace old individuals).

UNTIL (stopping criteria).
4.1. Step 1: Preprocessing steps

The preprocessing performed in step 1 is described below:

4.1.1. Calculate the average a priori cost of the training dataset
By following the cost-sensitive heuristic rule, the average a priori cost is computed as follows:
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 7
For each class i compute the potential misclassification cost when classifying all records in the training dataset to class i as
shown in Eq. (3):
Please
(2011
MCSi ¼
X
8ðx;yÞ2S

Cy;i: ð3Þ
The CASH algorithm assumes that the values of the classes are available for free. Most of the related work in this domain is
based on this assumption. Therefore, when computing the average cost, since no feature has yet been purchased, the test cost
is equal to zero. Consequently, when computing the average a priori cost, the misclassification cost is equal to the average
total cost.

Then, the minimal potential misclassification cost from the n potential average misclassification costs is regarded as the a
priori cost as shown in Eq. (4):
argmini½MCSi�: ð4Þ
The average a priori cost is subsequently computed by dividing the a priori cost by the number of records in the training
dataset.

The motivation for computing the average a priori cost is that it serves as an indication as to when a features subset
should not be obtained. That is to say, if the average a priori cost that is computed based on the classes is lower than the
average total cost achieved by the features subset, CASH will not move this subset to the next generation.

Using the synthetic training dataset (see Table 1) as an example, we calculate its average a priori cost as follows:
First, the algorithm calculates the potential misclassification cost caused by classifying all the records in the dataset as

negative. The negative misclassification cost is computed by multiplying the false negative (FN) misclassification cost
($1000) by the number of records in the training dataset with positive class variable values (3). Therefore, the potential mis-
classification cost is $3000 when classifying all the records in the dataset as negative.

The algorithm calculates the potential misclassification cost caused by classifying all the records in the dataset as positive
in the same manner. The positive misclassification cost is computed by multiplying the false positive (FP) misclassification
cost ($600) by the number of records in the training dataset with negative class variable values (4). Therefore, the potential
misclassification cost when classifying all the records in the dataset as positive is $2400. Since the cost caused by classifying
all the records in the dataset as positive ($2400) is smaller than the cost caused by classifying all the records in the dataset as
negative ($3000), the algorithm sets the a priori cost at $2400. Then, the average a priori cost is computed by dividing the a
priori cost ($2400) by the number of the records in the training dataset (7), which is equal to $342.85.

4.1.2. Compute histograms for each feature in the training dataset
For each feature in the training dataset, compute a histogram for each class value.
Each feature’s histogram indicates into which bin the records in the database falls.
The number and size of the bins is determined as follows:
For numerical features, the intervals are determined using Fayyad and Irani [12] MDL discretization. For nominal features,

each interval is associated with one value.
With regard to the synthetic training dataset, for each one of the 13 predictive features the algorithm constructs two his-

tograms: one for the records whose true class is positive and the other for the records whose true class is negative. For exam-
ple, Fig. 1 presents Oldpeak’s histograms. Oldpeak represents the ST depression induced by exercise relative to rest. Oldpeak
is a continuous feature whose values range between 0 and 5.6. Since Oldpeak’s values are continuously changing, we applied
Fayyad and Irani’s MDL discretization algorithm to it. The MDL discretization algorithm divides Oldpeak values into two
bins: one from minus infinity to 1.9, the other from 1.9 to infinity. In the same manner we constructed the Exang’s histo-
grams as illustrated in Fig. 2. Exang represents exercise induced angina. Since Exang is a category feature, it does not go
Fig. 1. Oldpeak’s constructed histograms.

cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Fig. 2. Exang’s constructed histograms.

8 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
through the MDL discretization algorithm and its bin number is decided based on its distinct values. Exang has two values,
and therefore it has two bins.

4.1.3. Compute for each feature how it classifies the records in the training dataset
For each feature ak, compute how it classifies the training dataset’s records.
For each bin s in the a0ks histograms:

� Compute for each class i, the misclassification cost that is caused by classifying all the records in the s bin of a0ks histo-
grams to class i as shown in Eq. (5):
Please
(2011
MCSis ¼
X
8ðx;yÞ2s

Cy;i: ð5Þ
� Based on the cost-sensitive majority rule, classify all the records in bin s to the class i which minimizes the misclassifi-
cation cost.

4.1.4. Calculate for each feature the misclassification cost ratio it assigns to each record in the training dataset
Calculate the misclassification cost ratio of a record, whose true class is i, in the sth bin by feature ak as shown in Eq. (6).

Let MCSRak ;s;i be the misclassification cost ratio caused by classifying to class i all the records in the s’th bin of feature ak

whose real class is not class i. The denominator of Eq. (6) represents the potential misclassification cost caused by classifying
all the records whose class is not i to classi. The numerator of Eq. (6) represents the potential misclassification cost caused by
not classifying all of the records to their true class. When we averaged the misclassification cost, which was caused by clas-
sifying all the records whose real class is i falsely, an equal weight was assigned to each one of the classes. However, a dif-
ferent weight could be assigned to correspond to the class distribution in that bin.

For the binary class problem, the misclassification cost ratio can be also be computed as shown in Eq. (7), where, for the
sake of simplicity, we refer to the class that was not picked as class �y.
MCSRak ;s;i ¼
P
8ðx;yÞ2sCy;iP

8ðx;yÞ2sCy;i þ
PK

j¼1

P
8ðx;yÞ2s^y¼iCy;j

� �
� 1

K�1

; ð6Þ

MCSRak ;s;i ¼
P
8ðx;yÞ2sCy;iP

8ðx;yÞ2sCy;i þ
P
8ððx;yÞ2s^y¼iCy;�y

 !
: ð7Þ
The misclassification cost ratio by feature ak of each one of the records in the sth bin that has not been classified to its true
class is the complementary misclassification cost ratio which is calculated in Eq. (7).

The motivation for calculating the misclassification cost ratio of a certain feature is to supply the algorithm with the
knowledge of whether or not the decision is sufficiently distinctive. That is to say, based on the distribution of the classes
in a certain bin of an attribute, the CASH algorithm tries to estimate what is the likelihood that the algorithm’s classification
was correct. For example, if all the classes in a certain bin have the same value (same class), the likelihood that the algorithm
has classified these records correctly is high. However, if the classes are distributed equally between all the classes, the like-
lihood that the algorithm classified these records to their true class is low.

Therefore, CASH prefers to select a feature’s classification of a record with a small misclassification cost ratio in order to
minimize the misclassification cost.

For example, let’s examine how the feature Oldpeak classifies the misclassification cost ratio which it assigns to all the
records in the training dataset that fall into the first bin ([�1� 1.9]).
cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 9
The misclassification cost caused by classifying all the records in that bin as positive is computed by multiplying the false
positive (FP) misclassification cost ($600) by the number of records in the bin [�1� 1.9] of Oldpeak features with a negative
class variable value (4) which is $1800. Then, the algorithm calculates in the same manner the misclassification cost caused
by classifying all the records in that bin as negative. The misclassification cost caused by classifying all the records in that bin
as negative is computed by multiplying the false negative (FN) misclassification cost ($1000) by the number of records in
that bin with a positive class variable value (1), which is $1000. Therefore, the class that is chosen is negative since it leads
to lower misclassification costs. Moreover, the misclassification cost ratio of each one of the records whose true class is neg-
ative in bin [�1� 1.9] is 1000/ (1000 + 1800) = 0.35. Those records whose true class is positive are set to the complemen-
tary value, 0.65(1 � 0.35).

In a similar manner, we check how the Oldpeak feature classifies all the records in the synthetic training dataset that fall into
the second bin ([1.9 �1]). The misclassification cost caused by classifying all the records in that bin as positive is computed by
multiplying the false positive (FP) misclassification cost ($600) by the number of records in the bin [1.9 �1] of Oldpeak fea-
tures with a negative class variable value (1), which is $600. Then, the misclassification cost caused by classifying all the records
in that bin as negative is computed by multiplying the false negative (FN) misclassification cost ($1000) by the number of re-
cords in the training dataset with a positive class variable value (2), which is $2000. Therefore, the class that is chosen is po-
sitive. Moreover, the misclassification cost ratio of each one of the records whose true class is positive in bin [1.9 �1] is
computed by Eq. (7), and it is 600/ (600 + 2000) = 0.23; those records whose true class is negative are set to 0.77(1 � 0.23).

Now let us examine how the feature Exang classifies all the records in the synthetic training dataset that fall into the first
bin ([0]).The misclassification cost caused by classifying all the records in that bin as positive is computed by multiplying the
false positive (FP) misclassification cost ($600) by the number of records in the bin [0] of the Exang feature with a negative
class variable value (1), which is $600. The misclassification cost caused by classifying all the records in that bin as negative
is computed by multiplying the false negative (FN) misclassification cost ($1000) by the number of records in the training
dataset with a positive class variable value (2), which is $2000. Therefore, the class that is chosen is positive since it leads
to a lower misclassification cost. Moreover, the misclassification cost ratio of each one of the records whose true class is po-
sitive in bin [0] is 600/(600 + 2000) = 0.23; those records whose true class is negative are 0.77(1 � 0.23).

In a similar manner, we check how the feature Exang classifies all the records in the synthetic training dataset that fall
into the first bin ([1]). The misclassification cost caused by classifying all the records in that bin as positive is computed by
multiplying the false positive (FP) misclassification cost ($600) by the number of records in bin [1] of the Exang feature with
a negative class variable value (3), which is $1800. The misclassification cost caused by classifying all the records in that bin
as negative is computed by multiplying the false negative (FN) misclassification cost ($1000) by the number of records in the
training dataset with a positive class variable value (1), which is $1000. Therefore, the class that is chosen is negative. More-
over, the misclassification cost ratio of each one of the records whose true class is negative in bin [1.9] is 1000/
(1000 + 1800) = 0.357; those records whose true class is positive are set to 0.643(1 � 0.357).

4.2. Step 2: Create initial population of individuals

Given a population size of s, construct s chromosomes in a random fashion and insert them into the initial population.
Each chromosome is represented as a bit string of dimension n, where n is the number of the features in the training dataset.
Each chromosome in the population represents a candidate solution to the feature subset selection problem. If a bit is set to
1, it means that the corresponding feature is selected. However, if the feature’s value is set to 0, it indicates that the corre-
sponding feature is not chosen.

We added the following improvement to this phase: each randomly constructed chromosome undergoes an inspection
before it is added to the initial population. If the total cost of this chromosome is larger than the average a priori cost, it
is discarded and a new one created. Continue this process until a chromosome with a total cost that is smaller than the aver-
age a priori cost is created. It is then inserted into the initial population.

4.3. Step 3: Compute the fitness of each individual

For each feature’s subset B in the population, compute the average total cost as follows:

4.3.1. Calculate the average misclassification cost
For each record i in the training dataset, calculate the average misclassification cost assigned by B and add it to B0s mis-

classification cost. Eq. (8) presents the calculation of the misclassification cost of a record by the feature’s subset. Let MCSRak ;i

be the misclassification cost ratio which was assigned to the record r when classifying it to class i by featureak 2 B. Again,
when averaging the misclassification cost, which was caused by classifying the record falsely whose real class is y, an equal
weight was assigned to each one of the classes.
Please
(2011
minarg
ak2B

1
K � 1

�
XK

j¼1

MCSRak
� Cyi ;j

� �
: ð8Þ
Then, the record’s misclassification cost is added to the total misclassification cost of subset B.
cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

10 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
The average misclassification cost of the subset is computed by dividing the total misclassification cost of subset B by the
number of features in the dataset.

The motivation for this calculation derives from the fact that CASH follows an optimistic approach. Given a feature’s sub-
set, CASH assigns to each record the classification with the highest confidence level that was assigned to it by one of the fea-
ture’s subset.

4.3.2. Calculate the feature test cost of subset B
Calculate the test cost of subset B as presented in Eq. (2).

4.3.3. Compute the average total cost of subset B
The average total cost will be assigned the sum of the average misclassification cost and the features test costs. If the aver-

age total cost is larger than the average a priori cost of the training dataset, assign M to the total cost where M is a large con-
stant. The motivation to assign a very large number is due to the assumption that we would not want the algorithm to
sample any feature in case the average total cost is larger than the average a priori cost, and thus the classification decision
would be based only on the distribution of the classes. In the selection method, a subset would not be picked to move to the
next generation if its average total cost was equal to M.

Using the synthetic database, let us demonstrate this step on the subset which is composed of features Exang and
Oldpeak.

Table 5 shows how each one of these two features has classified each one of the records in the training dataset. Addition-
ally, Table 5 presents the misclassification cost ratio that was assigned in step 4.1.4 to each one of the records by each fea-
ture. The first column represents the features in the subset. The second column represents the records in the training dataset.
The third and fourth represent the classification and the misclassification cost ratio that the feature assigned to the record.

First, the algorithm computes the average misclassification cost of this subset. In order to demonstrate the average mis-
classification cost calculation, first let us see how it operates on record 1. While the misclassification cost ratio for Oldpeak is
0.35, for Exang it is 0.77. Therefore, the estimated misclassification cost of this subset is calculated by multiplying the min-
imum misclassification cost ratio of these two features (0.35) with the FP misclassification cost ($600) {since record 1’s real
class is negative}, which is equal to $350. Then, the misclassification cost of all the records in the training dataset will be
calculated in the same manner as follows:

Since the real class of records 2–4 is negative, their misclassification cost is the FP cost ($600). Since the minimum mis-
classification cost of these three records is 0.35, the misclassification cost that this subset assigns to them is the product of
the FP cost ($600) and the minimum misclassification cost ratio (0.35), which is 350$.

Now let’s examine how this subset classifies records 5–7. Since the true class of these records is positive, their misclassi-
fication cost is the FN cost ($1000). Since the minimal misclassification cost ratio of these three records is 0.23, the misclassi-
fication cost that this subset assigns to each of these records is the multiplication of the FN cost ($1000) and the
misclassification cost ratio (0.23) which is $230.

The sum of all the misclassification costs of all the records assigned by this subset is:
$210 � 4 + $230 � 3 = $1530. However, since the CASH algorithm uses the average total cost as an evaluation measure-

ment, we need the average misclassification cost. Hence, we divide the misclassification cost that was assigned by this subset
to all the training dataset’s records ($1530) by the number of records in the training dataset (7), which is equal to $218.57.

After calculating the average misclassification cost, the test cost of this subset is calculated. By following Eq. (2) we can
see that this feature’s subset test cost is computed as follows: 1 + 1 + 87.3 � 1 = 88.3. In other words, since Oldpeak and Ex-
ang belong to the same group, the test cost before discount will only be assigned to Oldpeak ($87.3), while the test cost after
Table 5
Oldpeak and Exang: classification and misclassification cost ratio of the record in the
training dataset.

Feature Record Classification class Misclassification cost ratio

Oldpeak 1 Negative 0.35
2 Negative 0.35
3 Positive 0.77
4 Negative 0.35
5 Negative 0.65
6 Positive 0.23
7 Positive 0.23

Exang 1 Positive 0.77
2 Negative 0.35
3 Negative 0.35
4 Negative 0.35
5 Positive 0.23
6 Negative 0.54
7 Positive 0.23

Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 11
discount will be assigned to Exang ($1).Therefore, the test cost which is assigned by this subset is the sum of these two test
costs, which is equal to $88.3($87.3 + $1).

Consequently, the average total cost of this subset is set to the summation of the average misclassification cost and the
costs of the subset’s features, which is $306.87($218.57 + $88.3).

In this above example, the contribution of the group cost is significant. Let’s compute the average total cost of this subset
while ignoring the group cost, and assume therefore that these two features have no common cost. This means that Exang’s
cost value does not depend on whether the Oldpeak test is in the same subset with it, and vice versa. In this scenario, the test
costs of this subset will be the sum of the ‘‘before discount costs’’ of both of these features, which is $174.6 (the sum of Old-
peak’s cost ($87.3) and Exang’s cost ($87.3)). Therefore, the average total cost of this subset, when the group cost was not
considered, is the sum of the average misclassification cost ($218.57) and the test cost (which is now equal to $174.6), which
is $393.17. Since the database’s average a priori cost ($342.85) is smaller than the average total cost of this subset ($393.17),
the algorithm will set the average misclassification cost of this subset to a big number, M. Moreover, the algorithm assigns
zero probability to be picked in the selection method of the genetic algorithm for the next generation.

Therefore, as this example demonstrates, when group cost is not taken into account, the result of the CASH algorithm is
different.

4.4. Step 4: Apply genetic algorithm to the initial population

The traditional crossover and mutation operators have be applied. (See Section 5.1 for more details of the implementation
setting.).

5. Experiments

A variety of experiments were conducted to compare the overall performance of the CASH algorithm with existing state-
of-the-art algorithms. Table 6 shows a summary of all of the runs that were executed in these experiments.

In this section we first discuss the general implementation and the evaluation measurements that were used in the exper-
iments. Subsequently, we describe the methodology we implemented in the experiments. Finally, we present and discuss the
results of the experiments..

5.1. Implementation setting

CASH was implemented in Java using the Weka framework. We used Fayyad and Irani’s MDL descretization algorithm
(1993) for the feature discretization assignment in its Weka implementation [13]. Since we used the filter approach, which
is not associated with any particular classifier, we had to choose a classifier for the classification assignment. We chose a
decision tree as the classifier since cost-sensitive decision tree classifiers are used by the majority of the related studies
(see Section 2.2 for the literature survey of cost-sensitive algorithms). Specifically, decision tree classifiers were used in
the research studies to which we compare our algorithm’s performance [14,43,44]. We used the J48 classifier, a Java imple-
mentation in WEKA data mining applications of the C4.5 decision tree algorithm that Quinlan [33] introduced. In order to
make our classifier cost-sensitive to misclassification costs, we used a meta-learner implemented in Weka MetaCostClassi-
fier [9] since the J48 Weka implementation does not take into account the misclassification cost in the classification task.

Another important decision determined the genetic algorithm’s configuration. We decided to base the majority of the
parameter settings on those that were used by Vidrighin et al. [43,44]. The motivation for choosing nearly the same config-
uration was to show that the superiority of the new algorithm’s performance over previous algorithms was due to its new
fitness function rather than the genetic algorithm’s parameters. Table 7 presents the parameters that were used by all the
algorithms that utilized a genetic algorithm as their search method.

5.2. Experiment setting

Typically, machine learning researchers use datasets from the UCI repository. Table 8 presents the 11 datasets from the
UCI datasets that were used in previous research studies for comparing cost-sensitive algorithms. Following previous re-
search studies, the cost of each attribute was uniformly distributed between $0 and $100. We compared the six algorithms
(CASH, ProICET GA + META, GA + META + CS � ID3, csDT:csf = 0 and csDT:csf = 1) on the training set. It should be noted that
the group discount of attributes is not considered since the ProICET algorithm does not support this type of cost. Missing
values were replaced with the most frequent attribute’s value of the instance’s class. The datasets are originally binary or
converted to binary classification problems in a ‘‘one against all’’ fashion, such that the value ‘‘positive’’ is assigned to the
Table 6
Summary of the experiments that were conducted.

Number of algorithms Dataset Number of iterations Cost matrix Total number of runs

6 11 10 17 11,220

Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Table 7
The parameters used by all the algorithms that implemented the genetic algorithm as
their search method.

Parameter Value

Replacement strategy Single population technique
Selection method Elitism selection and rank selection
Population size 50
Number of generations 200
Probability of crossover 0.6
Probability of mutation 0.2
Number of crossover points 4
Size of elitism 4

Table 8
The properties of the datasets.

Dataset Application area Number of attribute Number of records Class dist. (N/P) Missing values

Pima Life 8 + 1 768 500/268 None
Bupa Life 5 + 1 345 169/176 None
Thyroid Life 24 + 1 3726 3488/238 None
Hepatitis Life 20 + 1 155 32/123 Yes
Breast Life 10 + 1 699 458/241 Yes
SPECT Life 22 + 1 267 55/212 None
Kr-Vs-Kp Games 36 + 1 3196 1534/ 1662 None
Cars Manufacturing 6 + 1 1728 1210/384/69/65 None
Voting Social 16 + 1 435 267/168 288
Tic-Tac-Toc Games 9 + 1 958 333/625 None
Ecoli Life 7 + 1 336 230/102 None

12 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
most frequent class and ‘‘negative’’ to all other classes. Additionally, we compare the algorithms’ performances on 17 cost
matrices. We assume that the diagonal entries of the misclassification cost matrices are zeros and the FP and FN costs vary
in the different experiments. Specifically, we differentiate between two cases. In the first case, the FP cost is equal to the FN
cost and it varies from 10 to 1000. In the second case we examine the following FP to FN ratios: 1/2, and 1/3.

In this experiment, we used the 2 � 5 cross validation method as proposed by Dietterich [8]. The 2 � 5 CV procedure is
known to have a smaller type I error than the 10 CV procedure. Each split was conducted as follows: we randomly chose 50%
of the records in the database as the training set; the remaining 50% of the records were added to the testing set. For each
split, we switched between the training set and the testing set. Therefore, each dataset was examined a total of 10 times.

5.3. Algorithms used for comparison

In order to evaluate the performance of CASH, we compared it to three algorithms:

1. csDTy [14] is sensitive to both test and misclassification costs. It employs a cost-sensitive decision tree to obtain a setting
for the cost-scale factor (csf) that adjusts the strength of the bias towards lower cost attributes. The cost-scale factor will
usually assume a value between 0.0 and 1.0. With the cost-scale factor increasing, the impact of the test costs on the fea-
tures that will be picked by the decision tree will also increase. When the cost-scale factor is set to zero, the costs are
ignored and the model selection is equivalent to the model selection of the (non cost-sensitive) C4.5. In this study we
compared CASH’s performance to csDT with a cost-scale factor of 0.0 and 1.0. The reason for not considering all the other
values in the range is that, from the results that were published by Freitas [14], the best result for all the misclassification
cost matrices was always obtained when the cost-scale factor was set to either 0.0 or 1.0. Since csDT’s code is not avail-
able to the public, and we could not get it, we implemented it. In order to verify the correctness of our implementation,
we compared our results with those originally published by Freitas [14]. It is important to note that we used the same
dataset (Pima dataset) and cost matrices as well as the same cost and group files. Moreover, the same cross-validation
folds are implemented. The results were similar to the published results. Unfortunately, we do not have access to the ori-
ginal implementation of the csDT_csf1 and csDT_csf0 or to their detailed accuracy performance in each fold. Therefore,
we cannot use paired t-test. Alternatively, we could use the reported confidence interval as a basis to verify our imple-
mentation. However, simply checking that the two 95% confidence intervals do not overlap is not sufficient. Instead, we
use the procedure developed by Afshartous and Preston [1] and conclude that, with reference to the csDT_csf1 algorithm,
in 10 out of 13 cases the null hypothesis that the two implementations are identical cannot be rejected. In the remaining
cases our implementation reports better results, i.e., the mean of our algorithm is at least as good as the originally
reported mean. With reference to the csDT_csf0 algorithm, in 11 out of 13 cases the null hypothesis that the two imple-
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 13
mentations are identical cannot be rejected. In the remaining cases our implementation reports better results. Using this
conservative approach ensures that we do not unfairly downgrade the reference algorithms. Thus any results that indi-
cate that our new algorithm outperforms the reference algorithm will still hold even if we used the original
implementation.

2. ProICET [43,44] was used in the second sub-experiment. Although it is also sensitive to both test and misclassification
costs, it does not take into account the group cost. ProICET is a modified version of the ICET algorithm [41]. As noted pre-
viously, ICET is a cost-sensitive algorithm that uses a genetic algorithm as its search method. Also, it uses the EG2 algo-
rithm [30], which is a modified version of C4.5. EG2 uses the information cost function (ICF) as its splitting criterion.
Moreover, in ICET, the n costs, Ci, are bias parameters and do not represent the true test cost of the attribute. The n cost’s
role is to prevent the decision tree classifier from becoming trapped in local optimum by assigning a different cost to each
feature based on past trial performances. There are a number of differences between the ICET and ProICET algorithms,
such as replacement strategy, that stem mainly from the genetic components of the algorithms. For example, while ICET
uses the multiple population technique, ProICET uses a single population. Moreover, the percentage of training examples
in evaluating the fitness score of an individual was changed (in ProICET it was set to 70% as opposed to 50% in ICET).

3. GA + META is a wrapper feature selection method that uses the decision tree as the fitness function. The decision tree that
is employed is a J4.8 classifier, which is a Java implementation of the C4.5 DT algorithm introduced by Quinlan. As a
search method it uses a genetic algorithm. However, while GA + META is sensitive to misclassification costs, it is not sen-
sitive to test costs.

4. GA + META + CS-ID3 is similar to the GA + META algorithm since it is also a wrapper feature selection method that uses a
decision tree algorithm as the fitness function and a genetic algorithm as a search method. However, while the splitting
criterion used by GA + META is the traditional information gain, the splitting criterion of GA + META + CS was modified
according to the CS-ID3 algorithm, which makes this algorithm also sensitive to test costs. CS-ID3 [39,40] is a cost-sen-
sitive decision tree algorithm with the following splitting criterion, ðDIiÞ2

Ci
, where DIi is the information gain (or gain ratio)

for attribute i and Ci is the cost of attribute i.

We implemented GA + META + CS-ID3 by modifying C4.5 so that it selects the attribute that maximizes the CS-ID3’s split-
ting criterion. As CASH, all of the five algorithms in this study consider the misclassification costs by using a meta-learner
implemented in Weka MetaCostClassifier [9].

5.4. Evaluation measurement

In order to compare the different feature selection algorithms, we employed as the evaluation measurement the one com-
monly used in this domain: the average total cost, which is composed of the sum of the average misclassification cost and the
test cost of the tests. We decided to average the calculation for each instance in the database since the evaluation measure-
ment, used by the majority of the related studies, is the average total cost. In particular, the average total cost measurements
were used in the research studies [14,43,44], to which we compared CASH’s performance.

The lower the evaluation measure value is, the better the algorithm performs. Based on the training set, the feature selec-
tion algorithms select a subset of features. Then, features that were not selected were eliminated from the corresponding
training and testing set. Afterward, a cost-sensitive decision tree was induced on each of the training sets and its perfor-
mance was evaluated on the corresponding test set.

Additionally, we compared the execution time of each algorithm.

5.5. Statistical analysis

We used hypothesis tests in order to examine if CASH performs best over multiple datasets. As Garcı́a et al. [15] have
suggested, we used the Friedman aligned ranks for testing the differences among the total cost means that were obtained
by each algorithm. A value of location is computed as the average performance achieved by all algorithms in each dataset
and misclassification cost matrix. The null-hypothesis is that all of the algorithms perform the same and the observed dif-
ferences are merely random. Once the Friedman aligned rank test rejects the hypothesis of equivalent algorithms, the spe-
cific differences among the algorithms are examined using Finner’s step-down procedure. In the case of only two classifiers,
we use the Wilcoxon signed ranks test in order to reject the null hypothesis as proposed by Demsar [7].

5.6. Experiment results

Table 9 presents the average total cost obtained in all of the runs. The first column represents the datasets that were
examined. The second column represents the algorithms that were compared. Then, each of the next 17 columns shows
the average total cost on different cost matrices. As can be seen from Table 9, the average total cost of the CASH algorithm
tends to be better than that of all the other algorithms. There are 14 misclassification cost matrices in which the CASH algo-
rithm outperforms ProICET and GA + META on all datasets in terms of total cost. There are only two datasets (Breast and
Bupa) in which ProICET or GA + META achieved lower average total costs in three out of 17 misclassification cost matrices
(200–600, 600–200 and 400–200). In addition, we can see from Table 9 that in comparison to GA + META + CS-ID3 algorithm,
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Table 9
Comparing cost-sensitive algorithms: summary of experimental results.

Dataset Algorithms Misclassification Cost Matrices (FP cost – FN cost)

10 20 50 100 200 400 500 10 100 50 150 100 200 200 400 200 600
– – – – – – – – – – – – – – – – –
10 20 50 100 200 400 500 100 10 150 50 200 100 400 200 600 200

Pima csDT:csf = 0 232.5 234.8 241.8 253.3 276.4 322.7 345.8 207.1 3.6 251.3 120.0 282.7 168.3 319.3 194.8 315.6 162.5
csDT:csf = 1 3.2 6.4 16.0 33.6 69.2 176.0 159.7 6.7 3.5 18.7 33.5 68.1 31.9 136.1 63.9 136.1 79.9
ProICET 136.0 145.0 153.0 136.0 149.2 195.0 263.1 153.0 120.0 146.0 122.0 132.0 148.4 195.0 194.0 186.9 221.4
CASH 0.9 1.8 4.6 33.6 69.2 176.0 145.0 6.7 3.3 17.0 33.5 56.3 33.0 93.2 79.0 110.0 69.8
GA + META 141.0 145.0 153.0 165.0 189.5 239.0 280.9 93.0 37.3 151.0 166.0 201.0 167.0 237.0 269.0 234.9 210.7
GA + CS-ID3 3.2 6.4 16.0 33.6 69.2 176.0 159.7 6.7 3.3 17.0 33.5 84.0 49.1 133.5 81.1 136.1 73.9

Bupa csDT:csf = 0 121.7 125.8 138.2 158.8 199.9 282.2 323.4 67.1 48.0 164.1 110.3 180.3 171.6 261.3 252.8 345.9 315.8
csDT:csf = 1 5.0 9.8 24.6 49.2 98.5 197.0 246.2 52.0 48.0 78.0 72.0 104.0 96.0 208.1 196.0 312.1 287.9
ProICET 101.0 114.0 123.0 139.0 187.6 244.0 274.5 121.0 125.0 147.0 125.0 153.0 169.8 199.0 136.0 260.1 246.4
CASH 3.5 7.0 17.4 34.9 69.8 146.0 192.8 6.5 3.5 17.0 32.6 66.8 34.9 138.0 196.0 306.1 293.9
GA + META 112.0 115.0 121.0 133.0 155.4 201.0 223.3 44.0 26.8 55.0 100.0 138.0 104.3 183.0 152.0 216.2 169.9
GA + CS-ID3 5.0 10.1 24.6 50.5 101.0 201.9 252.4 52.0 48.0 78.0 72.0 104.0 96.0 208.1 196.0 312.1 287.9

Thyroid csDT:csf = 0 112.6 112.6 112.7 113.0 113.4 114.3 114.8 102.5 145.3 106.0 128.9 108.7 121.6 109.4 122.8 108.0 131.5
csDT:csf = 1 105.3 105.4 105.6 106.0 1.0 108.0 108.6 7.5 137.7 109.4 124.2 104.2 108.0 105.4 118.2 111.8 127.7
ProICET 116.0 111.0 110.0 110.0 112.0 112.0 112.3 112.0 110.0 111.0 111.0 110.0 110.5 118.0 89.0 110.5 112.2
CASH 0.8 1.5 3.8 7.5 15.1 30.1 37.6 7.5 0.8 3.8 11.3 15.1 7.5 30.1 15.0 45.2 15.1
GA + META 111.0 111.0 111.0 112.0 112.2 113.0 114.1 111.0 107.0 108.0 108.0 111.0 109.9 112.0 112.0 113.1 110.5
GA + CS-ID3 109.9 110.6 113.5 111.1 111.8 112.2 112.3 101.9 132.9 104.9 122.8 108.1 117.2 109.1 118.6 107.0 125.8

Hepatitis csDT:csf = 0 105.7 106.8 110.1 115.6 126.5 148.3 159.2 14.0 140.0 73.1 150.1 109.6 150.7 127.6 172.0 114.6 190.9
csDT:csf = 1 106.4 108.0 113.0 121.2 137.5 170.3 186.6 14.0 211.7 29.7 210.5 74.2 189.5 101.5 216.6 92.4 280.1
ProICET 95.8 91.3 97.6 96.4 97.5 115.0 108.1 98.0 104.0 107.0 119.0 107.0 102.9 109.0 109.0 106.3 104.8
CASH 1.4 2.8 7.0 9.2 18.5 36.9 55.8 7.5 8.5 12.0 8.4 13.1 16.2 26.3 33.0 42.3 46.2
GA + META 102.0 104.0 111.0 123.0 146.0 193.0 215.7 115.0 133.0 132.0 111.0 136.0 139.7 173.0 177.0 214.1 219.2
GA + CS-ID3 105.1 108.1 112.9 122.6 142.0 195.9 200.4 27.8 117.8 112.7 150.3 121.0 162.7 146.0 197.5 162.7 225.3

Voting csDT:csf = 0 137.7 140.7 149.9 165.0 195.4 256.2 286.6 2.8 62.1 86.0 13.9 27.9 120.6 55.7 152.9 58.8 167.7
csDT:csf = 1 104.1 107.1 116.2 131.3 161.6 222.1 252.3 2.8 33.9 78.9 13.9 27.9 111.4 55.7 145.6 55.7 135.1
ProICET 91.5 98.5 107.0 121.0 132.4 191.0 218.8 111.0 95.2 107.0 112.0 116.0 132.3 139.0 169.0 208.4 208.4
CASH 2.7 5.6 13.9 27.9 55.7 111.0 139.3 2.8 7.2 38.0 13.9 27.9 55.7 55.7 116.0 55.7 144.8
GA + META 65.4 68.4 77.3 92.2 122.0 182.0 211.4 163.0 30.6 74.0 22.3 44.5 91.8 72.9 128.0 73.5 129.1
GA + CS-ID3 93.2 98.5 100.6 115.8 146.2 207.0 242.2 2.8 52.2 38.0 75.6 27.9 93.4 55.7 127.4 60.0 167.5

Car csDT:csf = 0 216.1 216.4 217.1 218.3 220.7 225.5 227.9 153.7 284.5 196.7 253.8 253.8 196.7 256.2 202.0 194.9 256.2

14
Y.W

eiss
et

al./Inform
ation

Sciences
xxx

(2011)
xxx–

xxx

Please
cite

this
article

in
press

as:
Y

.
W

eiss
et

al.,
The

CA
SH

algorithm
-cost-sensitive

attribute
selection

using
histogram

s,
Inform

.
Sci.

(2011),doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

csDT:csf = 1 297.6 298.3 300.4 303.9 310.8 324.6 331.5 66.4 293.9 253.7 299.2 273.0 313.7 286.7 316.3 273.0 303.5
ProICET 136.0 131.0 136.0 142.0 152.3 177.0 185.1 141.0 138.0 140.0 146.0 155.0 144.3 173.0 173.0 160.1 185.3
CASH 3.0 6.0 15.0 30.0 60.0 120.0 149.9 3.0 7.0 35.0 15.0 30.0 7.0 60.0 120.0 60.0 140.0
GA + META 176.0 177.0 182.0 189.0 203.8 234.0 248.3 59.0 152.0 183.0 187.0 194.0 192.5 211.0 210.0 216.8 211.3
GA + CS-ID3 191.6 187.7 197.6 205.0 219.9 249.7 264.6 114.2 223.0 175.2 238.4 195.9 239.3 222.3 245.8 235.5 250.6

Kr-Vs-Kp csDT:csf = 0 264.7 264.7 265.0 265.3 266.1 267.6 268.3 220.9 256.0 263.3 227.3 268.5 251.7 269.9 252.9 266.3 230.6
csDT:csf = 1 493.7 494.2 495.8 498.4 493.2 506.8 493.2 244.1 378.7 459.1 423.0 496.0 442.6 449.4 503.8 473.9 435.0
ProICET 217.0 222.0 223.0 205.0 200.7 217.0 221.8 226.0 225.0 221.0 216.0 212.0 213.7 229.0 229.0 222.0 223.9
CASH 4.8 9.6 23.9 47.8 95.6 190.0 239.2 4.8 5.2 26.0 23.9 47.8 52.2 95.6 104.0 95.6 104.4
GA + META 260.0 259.0 259.0 260.0 260.3 262.0 262.5 260.0 236.0 260.0 251.0 258.0 260.3 260.0 262.0 253.7 262.7
GA + CS-ID3 238.6 258.1 259.4 261.7 266.3 275.4 257.8 186.1 206.2 197.7 212.3 239.1 236.7 246.5 247.1 210.5 218.1

Tic-Tac-Toc csDT:csf = 0 229.2 229.8 231.6 234.7 240.7 252.8 258.9 118.9 171.8 217.1 237.6 224.7 239.8 233.6 249.9 20.6 257.7
csDT:csf = 1 267.2 267.2 277.3 289.9 315.2 365.7 391.0 3.5 53.9 35.0 288.0 121.5 333.6 156.1 370.3 107.2 354.7
ProICET 127.0 125.0 120.0 137.0 172.6 222.0 240.8 134.0 134.0 140.0 132.0 156.0 166.0 212.0 186.0 194.1 193.1
CASH 3.5 6.9 17.3 34.7 69.3 139.0 173.3 3.5 6.5 33.0 17.3 34.7 65.3 69.3 129.0 69.8 130.2
GA + META 191.0 193.0 199.0 209.0 228.4 268.0 287.3 122.0 122.0 224.0 153.0 198.0 224.6 221.0 256.0 190.5 283.3
GA + CS-ID3 196.9 202.8 206.6 218.7 242.9 291.4 315.6 3.5 114.2 77.0 220.5 155.4 252.9 183.9 287.1 123.9 288.9

E. coli csDT:csf = 0 130.2 130.6 131.8 133.8 137.9 146 184.5 127.1 88.6 134.4 146.6 140.6 151.7 145 156.8 143.3 155.6
csDT:csf = 1 4.3 8.7 21.3 43.6 87.1 174.3 217.9 5.7 4.3 21 28.7 56 44.6 112.9 87.1 112.9 87.1
ProICET 128 120 129 129 126.9 137 136.8 122 128 124 118 130 122.5 130 123 129.8 138.5
CASH 4.3 5.7 21.3 41 80.5 136 182 5.7 4.3 21 28.7 56 42.6 100 85 108.6 85.4
GA + META 136 136 139 141 147 158 164 123 124 133 131 143 150 151 160 146.1 150.6
GA + CS-ID3 84.3 85.7 89.7 96.5 98.5 136 150.5 85.7 86.2 92.9 91.7 101.8 98.5 120.7 114 122.7 117.9

Spect csDT:csf = 0 241.7 243.1 247.5 254.8 319.1 298.3 312.8 1.5 355.8 42.3 351.6 187.5 337.7 187.5 337.7 68.1 399.8
csDT:csf = 1 1.5 3.1 8 18 30.7 61.4 76.8 1.5 8.5 24.9 8 15.4 30.7 30.7 69.4 30.7 91.7
ProICET 154 139 124 133 162.5 161 173.2 153 147 146 122 157 176.1 177 140 173.5 149
CASH 1.5 3.1 8 15.7 41.3 101 130.5 1.5 8.5 23 8 15.4 30.7 30.7 61 54.6 102.4
GA + META 178 177 185 193 209.6 239 262.5 59 252 241 189 198 245.6 217 270 224.5 292.2
GA + CS-ID3 84.2 85.3 89.4 95.4 107.9 137.9 145.2 85.6 85.2 92.5 91.8 98.2 101.8 120.6 133.5 120.8 118.1

Breast csDT:csf = 0 8 168.9 170.7 173.8 180 192.3 198.5 93.9 153.2 166.3 150.3 152.1 152.7 161.7 163.3 191.6 176.7
csDT:csf = 1 31 32.1 35.2 40.4 70.9 71.8 82.2 36.9 96 244 58.2 44.2 48.9 106.7 48.9 106.7 85.4
ProICET 116 110 114 105 131 115 128.1 110 120 120 123 97.5 112.5 106 116 117.5 126
CASH 3.4 6.9 16.4 65.5 65.2 114 122.4 35 65.5 90 47.7 41.9 101.7 73.5 166 166.8 196.4
GA + META 132 133 134 137 143.5 156 161.7 126 138 144 136 137 142 146 152 154.1 165
GA + CS-ID3 150.1 105.7 152.6 155.7 161.7 173.5 179.9 98.3 87.6 137.2 142.9 44.2 83.5 150 61.8 169.9 180

Y.W
eiss

et
al./Inform

ation
Sciences

xxx
(2011)

xxx–
xxx

15

Please
cite

this
article

in
press

as:
Y

.
W

eiss
et

al.,
The

CA
SH

algorithm
-cost-sensitive

attribute
selection

using
histogram

s,
Inform

.
Sci.

(2011),doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

16 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
there are 168 cases out of 187 cases where CASH outperformed the GA + META + CS-ID3 algorithm and 14 cases when the
two algorithms achieved the same average total cost. Also, CASH outperformed csDT with csf = 1 in 141 cases; in 29 cases
they showed the same performances. Moreover, compared to csDT where csf = 0, CASH outperformed in all of the cases ex-
cept 3 where csDT with csf = 0 outperformed CASH. In 5 cases they both showed the same performances.

Additionally, Figs. 3 and 4 represent the performance of each algorithm in each of the datasets, given misclassification
matrix cost when FP cost and FN cost are equal to 200 and when the FP cost is equal to 200 and FN cost is equal to 100,
respectively. We can see visually from these graphs that the CASH algorithm outperforms the rest of the algorithms with
significant differences in the majority of the datasets.

In the statistical tests, the null-hypothesis that all algorithms perform the same and the observed differences are merely
random was rejected with T(5) = 365.2 and p < 1%. Once the Friedman aligned ranks test rejects the hypothesis of equivalent
algorithms, the specific differences among the algorithms are examined using Finner’s step-down procedure. The results
indicated that CASH outperforms all other five algorithms with p < 1%.

Analysis of the number of features in each chosen subset indicates that the CASH algorithm tends to pick smaller subsets
than the other algorithms. Since CASH is sensitive to the ratio between the misclassifications and tests costs, when the mis-
classification costs are lower compared to the test costs, the CASH algorithm does not pick features at all. And as the ratio
gets higher, the number of chosen features increases. These results are consistent with those obtained in the first set of
experiments.
5.7. The effect of the average a priori cost

In this section we compare two variations of the proposed algorithm. We explored the effect of the average a priori cost on
CASH’s performance by removing all of the average a priori cost considerations in the algorithm. CASH usage of the average a
priori cost is twofold, firstly, because the average a priori cost serves as an indication of when a feature’s subset should not be
obtained. That is to say, if the average a priori cost is lower than the average total cost achieved by a feature’s subset, CASH
will not be interested in moving this subset to the next generation. Secondly, in generating the initial population, each ran-
Fig. 3. The total cost that was obtained for each algorithm in each dataset, given a misclassification cost matrix of FP cost = FN cost = 10.

Fig. 4. The total cost that was obtained for each algorithm in each dataset, given a misclassification cost matrix where FP = 200 and FN = 10.

Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Table 10
Comparing the CASH algorithm with two different average total cost computation methods: summary of experimental results.

Dataset Algorithms Misclassification cost matrices (FP cost – FN cost)

10 20 50 100 200 400 500 10 100 50 150 100 200 200 400 200 600
– – – – – – – – – – – – – – – – –
10 20 50 100 200 400 500 100 10 150 50 200 100 400 200 600 200

Pima CASH – original 0.9 1.8 4.6 33.6 69.2 176.0 145.0 6.7 3.3 17.0 33.5 56.3 33.0 93.2 79.0 110.0 69.8
CASH –modified 21.2 20.3 29.1 17.6 73.4 170.3 205.5 2.9 29.5 16.0 34.0 65.9 31.9 137.9 68.9 161.6 63.9

Bupa CASH – original 3.5 7.0 17.4 34.9 69.8 146.0 192.8 6.5 3.5 17.0 32.6 66.8 34.9 138.0 196.0 306.1 293.9
CASH – modified 78.0 82.1 96.7 117.4 176.5 258.8 300.0 58.0 47.0 77.0 95.9 141.0 135.7 242.1 227.3 335.8 288.7

Thyroid CASH – original 0.8 1.5 3.8 7.5 15.1 30.1 37.6 7.5 0.8 3.8 11.3 15.1 7.5 30.1 15.0 45.2 15.1
CASH – modified 0.8 1.6 3.9 27.7 93.6 102.3 105.6 7.8 0.8 3.9 31.5 99.6 28.0 96.9 105.5 105.5 100.5

Hepatitis CASH – original 1.4 2.8 7.0 9.2 18.5 36.9 55.8 7.5 8.5 12.0 8.4 13.1 16.2 26.3 33.0 42.3 46.2
CASH – modified 45.4 46.9 86.4 111.2 123.6 133.0 145.2 58.8 78.9 92.3 96.5 108.3 117.0 123.3 139.6 137.5 151.5

Voting CASH – original 2.7 5.6 13.9 27.9 55.7 111.0 139.3 2.8 7.2 38.0 13.9 27.9 55.7 55.7 116.0 55.7 144.8
CASH – modified 2.7 5.6 13.9 27.9 55.7 111.4 139.3 2.8 7.2 37.5 13.9 27.9 67.0 55.7 114.1 55.7 133.5

Car CASH – original 3.0 6.0 15.0 30.0 60.0 120.0 149.9 3.0 7.0 35.0 15.0 30.0 7.0 60.0 120.0 60.0 140.0
CASH – modified 3.0 6.0 15.0 30.0 60.0 119.9 149.9 3.0 7.0 35.0 15.0 30.0 63.9 60.0 127.5 60.0 138.6

Kr-Vs-Kp CASH – original 4.8 9.6 23.9 47.8 95.6 190.0 239.2 4.8 5.2 26.0 23.9 47.8 52.2 95.6 104.0 95.6 104.4
CASH – modified 17.7 57.7 65.9 68.5 166.9 303.2 273.8 22.5 10.0 81.5 226.2 118.7 83.8 217.4 202.6 202.7 138.6

Tic-Tac-Toc CASH – original 3.5 6.9 17.3 34.7 69.3 139.0 173.3 3.5 6.5 33.0 17.3 34.7 65.3 69.3 129.0 69.8 130.2
CASH – modified 3.5 7.0 17.5 34.9 69.8 169.9 240.2 3.5 6.5 32.5 17.5 34.9 66.0 69.8 131.0 69.8 145.1

E. coli CASH – original 4.3 5.7 21.3 41.0 80.5 136.0 182.0 5.7 4.3 21.0 28.7 56.0 42.6 100.0 85.0 108.6 85.4
CASH – modified 4.4 8.7 24.0 50.1 91.1 166.8 196.4 5.6 4.4 21.8 28.2 58.5 43.6 108.8 91.9 112.0 92.9

Spect CASH – original 1.5 3.1 8.0 15.7 41.3 101.0 130.5 1.5 8.5 23.0 8.0 15.4 30.7 30.7 61.0 54.6 102.4
CASH – modified 3.5 3.1 7.7 15.7 41.4 83.6 87.6 1.5 8.5 23.0 47.3 15.4 34.9 34.9 91.0 35.3 112.5

Breast CASH – original 3.4 6.9 16.4 65.5 65.2 114.0 122.4 35.0 65.5 90.0 47.7 41.9 101.7 73.5 166.0 166.8 196.4
CASH – modified 7.4 8.4 11.6 16.9 39.1 75.7 84.0 7.4 10.4 89.9 48.0 23.6 21.6 50.6 62.9 62.1 80.8

Y.W
eiss

et
al./Inform

ation
Sciences

xxx
(2011)

xxx–
xxx

17

Please
cite

this
article

in
press

as:
Y

.
W

eiss
et

al.,
The

CA
SH

algorithm
-cost-sensitive

attribute
selection

using
histogram

s,
Inform

.
Sci.

(2011),doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Table 11
Comparing the CASH algorithm with two different average total cost computation methods: summary of experimental results.

Dataset Algorithms Misclassification cost matrices (FP cost – FN cost)

10 20 50 100 200 400 500 10 100 50 150 100 200 200 400 200 600
– – – – – – – – – – – – – – – – –
10 20 50 100 200 400 500 100 10 150 50 200 100 400 200 600 200

Pima CASH original 0.9 1.8 4.6 33.6 69.2 176.0 145.0 6.7 3.3 17.0 33.5 56.3 33.0 93.2 79.0 110.0 69.8
CASH modified 6.8 6.4 19.5 19.4 74.9 133.6 163.0 3.2 29.4 16.0 34.0 89.3 31.9 150.8 63.9 168.3 63.9

Bupa CASH original 3.5 7.0 17.4 34.9 69.8 146.0 192.8 6.5 3.5 17.0 32.6 66.8 34.9 138.0 196.0 306.1 293.9
CASH modified 5.0 44.8 67.5 89.5 138.8 225.0 268.1 52.0 48.0 72.0 78.0 104.0 117.6 208.1 212.4 312.1 287.9

Thyroid CASH original 0.8 1.5 3.8 7.5 15.1 30.1 37.6 7.5 0.8 3.8 11.3 15.1 7.5 30.1 15.0 45.2 15.1
CASH modified 0.8 1.6 3.9 7.8 15.5 31.0 105.6 7.8 0.8 3.9 11.6 15.5 7.8 31.0 15.5 46.6 15.5

Hepatitis CASH original 1.4 2.8 7.0 9.2 18.5 36.9 55.8 7.5 8.5 12.0 8.4 13.1 16.2 26.3 33.0 42.3 46.2
CASH modified 1.4 2.8 7.0 14.0 28.0 55.9 69.9 30.9 78.2 18.5 21.0 28.0 14.0 55.9 28.0 83.9 50.4

Voting CASH original 2.7 5.6 13.9 27.9 55.7 111.0 139.3 2.8 7.2 38.0 13.9 27.9 55.7 55.7 116.0 55.7 144.8
CASH modified 2.7 5.6 13.9 27.9 55.7 111.4 139.3 2.8 7.2 37.5 13.9 27.9 55.7 55.7 114.1 55.7 150.0

Car CASH original 3.0 6.0 15.0 30.0 60.0 120.0 149.9 3.0 7.0 35.0 15.0 30.0 7.0 60.0 120.0 60.0 140.0
CASH modified 3.0 6.0 15.0 30.0 60.0 119.9 167.6 30.0 7.0 35.0 15.0 30.0 68.5 60.0 125.4 60.0 139.5

Kr-Vs-Kp CASH original 4.8 9.6 23.9 47.8 95.6 190.0 239.2 4.8 5.2 26.0 23.9 47.8 52.2 95.6 104.0 95.6 104.4
CASH modified 4.8 13.8 27.0 49.1 99.2 191.4 255.5 4.8 5.2 29.5 23.9 48.3 59.8 98.6 108.0 95.6 104.2

Tic-Tac-Toc CASH original 3.5 6.9 17.3 34.7 69.3 139.0 173.3 3.5 6.5 33.0 17.3 34.7 65.3 69.3 129.0 69.8 130.2
CASH modified 3.5 7.0 17.5 34.9 87.0 201.8 233.7 3.5 8.5 32.5 17.5 34.9 66.9 69.8 155.4 69.8 130.2

E. coli CASH original 4.3 5.7 21.3 41.0 80.5 136.0 182.0 5.7 4.3 21.0 28.7 56.0 42.6 100.0 85.0 108.6 85.4
CASH modified 4.3 8.7 21.8 43.6 87.1 174.3 217.9 5.6 4.4 21.8 28.2 58.0 43.6 107.9 87.1 110.6 87.1

Spect CASH original 1.5 3.1 8.0 15.7 41.3 101.0 130.5 1.5 8.5 23.0 8.0 15.4 30.7 30.7 61.0 54.6 102.4
CASH modified 1.5 3.1 8.0 15.7 30.7 61.4 76.8 1.5 8.5 23.0 8.0 15.4 30.7 30.7 61.4 30.7 108.8

Breast CASH original 3.4 6.9 16.4 65.5 65.2 114.0 122.4 35.0 65.5 90.0 47.7 41.9 101.7 73.5 166.0 166.8 196.4
CASH modified 4.0 8.1 8.2 13.4 23.9 44.8 55.2 34.5 10.4 15.2 48.0 17.7 20.5 32.4 37.9 119.2 51.9

18
Y.W

eiss
et

al./Inform
ation

Sciences
xxx

(2011)
xxx–

xxx

Please
cite

this
article

in
press

as:
Y

.
W

eiss
et

al.,
The

CA
SH

algorithm
-cost-sensitive

attribute
selection

using
histogram

s,
Inform

.
Sci.

(2011),doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 19
domly constructed chromosome undergoes an inspection before it is added to the initial population. If the average total cost
of this chromosome is larger than the average a priori cost, it is discarded and a new one created.

Table 10 presents the average total cost obtained in all of the runs. The first column represents the datasets for which we
examined the average total cost computation method of chromosomes. The second column represents the two versions of
the CASH algorithm that were compared: a CASH algorithm when the average a priori cost was taken into account and a
CASH algorithm when the average a priori cost was not considered. Each of the next 17 columns shows the average total cost
on different cost matrices of these two versions of CASH.

As can be seen from Table 10, the average total cost of the CASH algorithm when the average a priori cost was taken into
account tends to be better than when it was not. In 100 out of the 187 cases, CASH showed a better performance when the
average a priori cost was considered than when it was not. In 51 cases there was no difference in the performance and in only
36 cases did a superior performance occur as a result of not considering the average a priori cost. Moreover, the null-hypoth-
esis that the two alternatives perform the same is rejected using the Wilcoxon test with z = �6.9 and p < 1%. Thus, we con-
clude that the average a priori cost feature is required.

5.8. The effect of the average total cost computation of chromosomes

We explored the effect of the average total cost computation method of chromosomes on CASH’s performance by altering
the average total cost computation of the chromosomes. CASH computes the average total cost of chromosomes in the fol-
lowing way: given a features’ subset, CASH assigns for each record the classification with the highest confidence level that
was assigned to it by one of the features in the chromosomes. In order to investigate the effect of the average total cost com-
putation method of chromosomes, we modified this computation as follows: given a feature’s subset, to each record the algo-
rithm assigns the classification which was assigned by the majority of the features in the chromosome.

Table 11 presents the average total cost obtained in all of the runs. The first column represents the datasets where we
examined the average total cost computation method of chromosomes on them. The second column represents the two ver-
sions of CASH that were compared: ‘‘CASH original’’ represents the algorithm with the average total cost computation before
the alteration, while ‘‘CASH modified’’ represents with the modified average total cost computation method. Each of the next
17 columns shows the average total cost on different cost matrices of these two versions of CASH. As can be seen from Table
11, the results indicate that in the majority of cases, CASH with the original average total cost computation method has a
lower average total cost than CASH with the modified method. In 116 of the 187 cases, CASH performed better with the ori-
ginal computation method than CASH with the modified computation method. In 37 cases the two versions performed the
same; in only 34 cases was CASH with the modified computation superior to CASH with the original computation method.
Moreover, the null-hypothesis that the two alternatives perform the same is rejected using the Wilcoxon test with z = �4.8
and p < 1%. Thus, we conclude that the proposed total cost computation method should be.

5.9. Analysis of computational cost

The aim of this section is to compare the computational cost of the various methods by measuring the running time. Table
12 presents the actual time (in milliseconds) required for the feature selection and classification task. We conducted all of
our experiments with the following hardware configuration: a desktop computer implementing a Microsoft Windows Server
2003 operating system with Intel (R) Core (TM) 2 Quad CPU Q6600 @ 2.40 GHz 2.39 GHz, and 7.70 GB of physical memory.

As we can see from Table 12, CASH is consistently faster than all of the genetic search-based algorithms (ProICET, GA + -
META and GE + META + CS-ID3). The savings in time becomes more significant when the data dimensionality increases.
These results might be due to two different properties of the CASH algorithm. First, instead of using the wrapper approach,
which requires several repetitions of the decision tree training, we used the filter approach. Second, most of the processing
time of the algorithm is in the preprocessing step of the algorithm, which is performed only once. In all the generation and
the evaluation of each subset only a simple calculation is conducted.
Table 12
Comparing the execution time (in ms).

Datasets csDT ProICET CASH GA + META + CS-ID3 GA + META

Pima 453 2,796,497 2034 1,851,003 1,849,345
Bupa 172 2,613,000 759 56,978 56,128
Thyroid 1375 3,676,000 2892 2,993,444 2,981,315
Hepatitis 285 2,618,009 1066 5,852,784 5,851,617
Voting 188 2,816,510 956 7,568,562 7,567,410
Car 255 3,512,691 1014 61,777 60,987
Tic-Tac-Toc 265 2,801,360 1013 1,963,509 1,962,079
E. coli 188 2,808,469 635 261,731 260,937
Spect 250 3,091,197 3765 17,021,432 17,019,530
Breast 187 2,796,000 1683 17,282,630 17,280,467
Kr-Vs-Kp 656 3,460,278 5652 50,567,486 50,565,860

Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

20 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
Since CASH is a filter-based feature selection, we regarded its execution time as the summation of the execution time in
the feature selection phase and the execution time of the classifier construction and classification phase. On the other hand,
csDT is a classification algorithm, which does not use a feature selection algorithm. Therefore, as expected, csDT is faster than
CASH. However, when CASH’s feature selection algorithm is applied to the dataset before the construction and classification
phase, this phase is 25–50% faster compared to the construction and classification phase execution time of csDT. The reason
for this is that CASH removes features from the dataset and therefore the classification task is performed on a dataset with
fewer features. Therefore, if the feature selection is conducted offline, it can more rapidly conduct the classifier construction
and classification phase after CASH has been applied to the dataset.
6. Discussion

The advantages of the new CASH algorithm, as the experimental study indicated, can be summarized as follows:

1. Compared to state-of-the-art cost-sensitive algorithms, CASH displayed lower average total costs in processing the major-
ity of misclassification cost matrices and datasets. Moreover, CASH chooses fewer features which is considered to be a
benefit since users generally regard smaller decision trees as more comprehensible. As we can see from the experimental
results, CASH’ performance is superior in most of the cases to the other five algorithms to which it was compared. Let’s
now try to explore why CASH is superior to other algorithms
1. GA + META and csDT (when the csf equals zero): While CASH takes into account both misclassification and test

costs, GA + META takes only the misclassification cost into consideration. Therefore, we expect that, if GA + META
and csDT (when the csf equals zero) will be modified to consider the tests’ cost too, their performances will be
improved.

2. GA + META + CsId3 algorithm follows the wrapper feature selection method. Therefore, it uses a classifier to assess the
features’ subsets. It is important to mention that the classifier that is used in the feature selection process is not the
same classifier as is used in the classification task. The genetic search algorithm’s configurations were set to be the
same in GA + META + CsId3 and CASH algorithms. Moreover, the classifier that is used in the classification was the
same chosen to perform the same task (the C4.5 decision tree) in both of the algorithms. Therefore, the major differ-
ence between CASH and GA + META + CsId3 algorithms lie in their different fitness function. Therefore, since CASH’s
performance is superior to GA + META + CsId3’s and the major difference between the two algorithms lies in their fit-
ness function, we believe that CASH’s fitness function balances better between the two types of costs units than
GA + META + CsId3’s fitness function.

3. ProICET and csDT algorithms (when the csf equals 1): ProICET and csDT (when the csf equals 1) algorithms follow the
embedded approach since it incorporates the feature selection as part of the classifier construction in the training pro-
cess. Since CASH algorithm shows a better performance compared to these two algorithms, we can assume that this is
due to the superiority of CASH’s fitness function to the splitting criterion of ProICET and csDT algorithms, respectively.
Moreover, in Section 5.7 we examine the effect of the consideration of the average a priori cost on CASH’s perfor-
mance. The a priori cost serves as an indication of when a features subset should not be obtained. The results of
the examination have shown that the average total cost of the CASH algorithm, when the average a priori cost was
taken into account, tends to be better than when CASH did not consider the average a priori cost in a significant
way. Moreover, in many cases csDT (when csf is equal 1) tends to be better than CASH’s performance, when it does
not take into consideration the average a priori cost. Therefore, we believe that CASH’s superiority in this study to the
other algorithms, and particularly to csDT (when csf is equal to one), is due to the superiority of the method of indi-
cating when a feature’s subset should not be obtained.

2. Since CASH follows the filter approach, it can be used in conjunction with any classification algorithm and not only deci-
sion tree classifiers. Possibly there might be domains where other classifiers will dramatically reduce the average total
cost.

3. The new algorithm is faster than existing cost-sensitive methods, which use a genetic algorithm as their search algorithm,
mainly because we use a simple histogram-based fitness function that is faster than the wrapper estimation. Moreover,
most of the histogram computations are performed only once as a preprocessing step. The GA algorithm then uses these
pre-computed values to calculate the fitness function. Consequently, during the GA generations we perform a relatively
low volume of computations.

4. Although CASH, ProICET and GA + META use the same genetic representation, genetic operators, population size and
number of generations, CASH nevertheless outperforms ProICET and GA + META. We conclude from this observation that
the proposed fitness function selects offspring better than existing GA algorithms.

The CASH algorithm also has a major drawback. The current implementation of the algorithm deals only with binary class
problems. This drawback can be alleviated by converting the multi-class task into a set of binary classification tasks. There
are several alternatives for performing this transformation, such as ‘‘one-against-all’’, ‘‘one-against-one’’ and the error-cor-
recting output codes (ECOC) methods.
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx 21
7. Conclusion and future research

This study presents a novel cost-sensitive fitness function based on histogram comparison. It is integrated together a ge-
netic search method to form a new feature selection algorithm termed CASH (cost-sensitive attribute selection algorithm
using histograms). CASH takes into account both test and error misclassification costs as well as feature grouping. This paper
examines whether the CASH algorithm outperforms other cost-sensitive algorithms in terms of average total costs and exe-
cution time.

The algorithm was evaluated on a wide range of standard datasets. The results show that CASH outperforms other cost-
sensitive algorithms in that it has a lower average total cost. Moreover, it is also consistently faster than the other genetic
search-based algorithms..

With regard to future research, several possible enhancements come to mind. First, the current implementation of the
algorithm deals only with binary class problems. However, extending the algorithm to cope with multivariate class problems
is not a complicated task. Secondly, in this study we assumed that, while the feature value measurement process of the in-
stances in the testing set has a cost, the feature value measurement process of the records in the training set is available for
free. It would be interesting to integrate into the algorithm sensitivity to the feature value cost during the learning phase
similarly to active learning algorithms. A third point to be considered in future research is the application of the algorithm
to the security domain in order to deploy host-based intrusion detection systems (HIDS) for mobile phones. By using the
combination of the new cost-sensitive feature selection algorithm with the HIDS, we can supply a suitable security solution
for mobile devices that takes into consideration the mobile phone’s resource limitations, such as: CPU processing power and
battery power. The new feature selection algorithm would be able to decide which features the agent would collect from the
mobile device in relation to the mobile device’s resources.
Acknowledgments

The authors gratefully thank the action editor and the anonymous reviewers whose constructive comments helped in
improving the quality and accuracy of this paper.
References

[1] D. Afshartous, R.A. Preston, Confidence intervals for dependent data: equating non-overlap with statistical significance, Computational Statistics and
Data Analysis 54 (10) (2010) 2296–2305.

[2] Arnt, S. Zilberstein, Attribute measurement policies for cost-effective classification, in: Workshop Data Mining in Resource Constrained Environments,
4th International Conference on Data Mining, 2004.

[3] Blakem, C.J. Merz, UCI Repository of Machine Learning Databases, 1998. Available from: <http://www.ics.uci.edu/	mlearn/MLRepository.html>
(accessed 19.01.10).

[4] X. Chai, L. Deng, Q. Yang, C.X. Ling, Test-cost sensitive Naive Bayes classification, in: Proceedings of 4th International Conference on Data Mining, 2004,
pp. 51–58.

[5] Y. Chen, C.C. Wu, K. Tang, Building a cost-constrained decision tree with multiple condition attributes, Information Sciences 179 (7) (2009) 967–979.
[6] K. Cherkauer, J.W. Shavlik, Growing simpler decision trees to facilitate knowledge discovery, in: Proceedings of 2nd International Conference on

Knowledge Discovery and Data Mining (KDD-96), 1996, pp. 315–318.
[7] J. Demšar, Statistical comparison of classifiers over multiple datasets, Journal of Machine Learning Research 7 (2006) 1–30.
[8] T. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Computation 10 (7) (1998) 1895–1992.
[9] P. Domingos, MetaCost: a general method for making classifiers cost-sensitive, Proceedings of the Fifth International Conference on Knowledge

Discovery and Data Mining (1999) 155–164.
[10] P. Domingos, Metacost: a general method for making classifiers cost-sensitive, Knowledge Discovery and Data Mining (1999) 155–164.
[11] S. Esmeir, S. Markovitch, Anytime learning of decision trees, Journal of Machine Learning Research (JMLR) 8 (2007) 891–933.
[12] U. Fayyad, K.B. Irani, Multi-interval discretization of continuous valued attributes for classification learning, in: Thirteenth International Joint

Conference on Artificial Intelligence, 1993, pp. 1022–1027.
[13] E. Frank, M.A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I.H. Witten, Weka: a machine learning workbench for data mining, in: O.Z. Maimon, L. Rokach

(Eds.), Data Mining and Knowledge Discovery Handbook, Springer, 2005, pp. 1305–1314.
[14] Freitas, A. da Costa-Pereia, P. Brazdil, Cost-sensitive decision trees applied to medical data, in: DaWak, Lecture Notes in Computer Science, 2007, pp.

303–312.
[15] S. Garcı́a, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: experimental analysis of power, Information Sciences 180 (10) (2010) 2044–2064.
[16] Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research 3 (2005) 1157–1182.
[17] K. Iswandy, A. Koenig, Feature selection with acquisition cost for optimizing sensor system design, Advances in Radio Science 4 (2006) 135–141.
[18] K. Jong, E. Marchiori, M. Sebag, Ensemble learning with evolutionary computation: application to feature ranking, Proceedings of Parallel Problem

Solving from Nature VIII (PPSN-2004), LNCS 3242, Springer, 2004, pp. 1133–1142.
[19] L. Jourdan, C. Dhaenens-Flipo, E.G. Talbi, Discovery of genetic and environmental interactions in disease data using evolutionary computation, in: G.B.

Fogel, D.W. Corne (Eds.), Evolutionary Computation in Bioinformatics, Morgan Kaufman, 2003, pp. 297–316.
[20] M. Kai, Inducing cost-sensitive trees via instance weighting, in: Principles of Data Mining and Knowledge Discovery, Second European Symp, 1998, pp.

139–147.
[21] Y. Kim, W.N. Street, F. Menczer, Feature selection in unsupervised learning via evolutionary search, in: Proceedings of 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD-2000), 2000, pp. 365–369.
[22] G. Kim, S. Kim, Feature selection using genetic algorithms for handwritten character recognition, in: Proceedings of the Seventh International

Workshop on Frontiers in Handwriting Recognition, 2000, pp. 103–112.
[23] M. Kudo, J. Sklansky, Comparison of algorithms that select features for pattern classifiers, Pattern Recognition 33 (2000) 25–41.
[24] C. Ling, Q. Yang, J. Wang, S. Zhang, Decision trees with minimal costs, in: Proceedings of 21st International Conference Machine Learning, 2004, p. 69.
[25] C. Ling, V.S. Sheng, Q. Yang, Test strategies for cost-sensitive decision trees, IEEE Transactions on Knowledge and Data Engineering 18 (8) (2006) 1055–

1067.
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://dx.doi.org/10.1016/j.ins.2011.01.035

22 Y. Weiss et al. / Information Sciences xxx (2011) xxx–xxx
[26] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic, Dordrecht, 1998.
[27] S. Maldonado, R. Weber, J. Basak, Simultaneous feature selection and classification using kernel-penalized support vector machines, Information

Sciences 181 (1) (2011) 115–128.
[28] S. Maldonado, R. Weber, A wrapper method for feature selection using support vector machines, Information Sciences 179 (13) (2009) 2208–2217.
[29] N. Matatov, L. Rokach, O. Maimon, Privacy-preserving data mining: a feature set partitioning approach, Information Sciences 180 (14) (2010) 2696–

2720.
[30] M. Núñez, The use of background knowledge in decision tree induction, Machine Learning 6 (1991) 231–250.
[31] P. Paclik, R.P.W. Duin, G.M.P. van Kempen, R. Kohlus, On feature selection with measurement cost and grouped features, Lecture Notes in Computer

Science 2396 (2002) 461–469.
[32] S. Qin, S. Zhang, C. Zhang, Cost-sensitive decision trees with multiple cost scales, Lecture Notes in Computer Science, AI 3339 (2004) 80–390.
[33] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, San Francisco, 1993.
[34] L. Rokach, Ensemble-based classifiers, Artificial Intelligence Review 33 (1) (2010) 1–39.
[35] P. Sharpe, R.P. Glover, Efficient GA based techniques for classification, Applied Intelligence 11 (1999) 277–284.
[36] S. Sheng, C.X. Ling, Hybrid cost-sensitive decision tree, PKDD (2005) 274–284.
[37] S. Sheng, C.X. Ling, Q. Yang, Simple test strategies for cost-sensitive decision trees, in: Proceedings 16th European Conference Machine Learning, 2005,

pp. 365–376.
[38] S. Sheng, C.X. Ling, A. Ni, and S. Zhang, Cost-sensitive test strategies, in: Proceedings of 21st National Conference on Artificial Intelligence (2006).
[39] M. Tan, J. Schlimmer, Cost-sensitive concept learning of sensor use in approach and recognition, in: Proceedings of the Sixth International Workshop on

Machine Learning, 1989, ML-89, pp. 392–395.
[40] M. Tan, Cost-sensitive learning of classification knowledge and its applications in robotics, Machine Learning 13 (1993) 7–33.
[41] P. Turney, Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal on Artificial Intelligence

Research 2 (1995) 369–409.
[42] P. Turney, Types of cost in inductive concept learning, Proc. Workshop Cost-Sensitive Learning, in: 17th International Conference on Machine Learning,

2000, pp. 15–21.
[43] C. Vidrighin, C. Savin, R. Potolea, A hybrid algorithm for medical diagnosis, in: Proceedings of the International Conference on Computer as a Tool,

(EUROCON 2007), Warsaw, 2007, pp. 668–673.
[44] C. Vidrighin, R. Potolea, I. Giurgiu, M. Cuibus, ProICET case study on prostate cancer data, in: Proceedings of the 12th International Symposium of

Health Information Management Research, 2007, pp. 237–244.
[45] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm, IEEE Transactions on Intelligent Systems 13 (1998) 44–49.
[46] V. Zubek, T.G. Dietterich, Pruning improves heuristic search for cost-sensitive learning, in: Proceedings of 19th International Conference on Machine

Learning, 2002, pp. 27–34.
Please cite this article in press as: Y. Weiss et al., The CASH algorithm-cost-sensitive attribute selection using histograms, Inform. Sci.
(2011), doi:10.1016/j.ins.2011.01.035

http://dx.doi.org/10.1016/j.ins.2011.01.035

	The CASH algorithm-cost-sensitive attribute selection using histograms
	Introduction
	Related work
	Genetic algorithm for attribute selection
	Cost-sensitive algorithms

	Notations and problem formulation
	The classification task
	Feature subset
	Misclassification cost matrix
	Test costs
	The goal

	CASH: Cost-sensitive attribute selection using histograms
	Step 1: Preprocessing steps
	Calculate the average a priori cost of the training dataset
	Compute histograms for each feature in the training dataset
	Compute for each feature how it classifies the records in the training dataset
	Calculate for each feature the misclassification cost ratio it assigns to each record in the training dataset

	Step 2: Create initial population of individuals
	Step 3: Compute the fitness of each individual
	Calculate the average misclassification cost
	Calculate the feature test cost of subset B
	Compute the average total cost of subset B

	Step 4: Apply genetic algorithm to the initial population

	Experiments
	Implementation setting
	Experiment setting
	Algorithms used for comparison
	Evaluation measurement
	Statistical analysis
	Experiment results
	The effect of the average a priori cost
	The effect of the average total cost computation of chromosomes
	Analysis of computational cost

	Discussion
	Conclusion and future research
	Acknowledgments
	References

