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Abstract— Recently, a new type of mobile malware applications 

with self-updating capabilities was found on the official Google 

Android marketplace. Malware applications of this type cannot 

be detected using the standard signatures approach or by 

applying regular static or dynamic analysis methods. In this 

paper we first describe and analyze this new type of mobile 

malware and then present a new network-based behavioral 

analysis for identifying such malware applications. For each 

application, a model representing its specific traffic pattern is 

learned locally on the device. Machine-learning methods are used 

for learning the normal patterns and detection of deviations from 

the normal application's behavior. These methods were 

implemented and evaluated on Android devices. 

Index Terms—network traffic, anomaly-detection, machine-

learning, Android malware, smart-phones security. 

I.  INTRODUCTION 

Recently, a new type of mobile malware hosted on the 
official Google Android marketplace, the Google Play Store, 
was detected. The main feature which distinguishes this Trojan 
(named Android.Dropdialer) from earlier known malware, is its 
self-updating capabilities. Applications infected by this Trojan 
and hosted on the Google Play Store were absolutely benign by 
themselves and did not contain any malware. The package 
containing malicious payload was downloaded from the 
Internet sometime after the market application was installed on 
the device. This allowed the applications to stay undiscovered 
on the market for several weeks and to generate tens of 
thousands of installations. In general, any malware can be 
downloaded and executed on a device using such a "remote 
payload" technique. The download action can be scheduled for 
any specific or random time in the future, or even be initiated 
remotely by sending a command message to the devices.  

Such self-updating malware cannot be detected by standard 
static code analysis techniques as the original version of the 
application is absolutely benign by itself. Detection by dynamic 
analysis techniques can be simply avoided by using a time 
delayed or filtered deployment of the malicious payload. It is 
also difficult to identify this type of emerging malware since 
the self updating technique is often used by legitimate 
applications for the benign purposes as well (upgrade installed 
games with new levels, bug fixes etc.) A recent survey shows 
that 70% of known mobile malware steals user information or 
credentials [1]. Therefore, in this paper we aim to detect the 
self-updating malware types which steal user data or allow 
spying on users, and thus we focus on monitoring applications 
network behavior. 

II. SELF-UPDATING MALWARE TYPES 

Four main techniques can be used to create self-updating 
applications for Android that download new pieces of software 
stored remotely. These techniques are especially attractive for 
malware developers: (1) offer the user an update (i.e. complete 
replacement) to the original application; (2) dynamic loading of 
a compiled Android code (i.e., executable DEX files) using 
Android's DexClassLoader class and allowing the execution of 
code not installed as part of the application; (3) dynamic 
loading of a binary shared object file (also called .so library) or 
an executable file containing native (i.e., machine) code which 
can be executed using Java's Runtime class; and (4) dynamic 
loading of a certain file (e.g., mp3, jpg, flash, and pdf) 
containing a malicious payload (i.e., shellcode) and executing it 
by exploiting vulnerabilities in the system libraries or external 
applications handling the file type. 

Contrary to the earlier proposed methods our method 
performs anomaly detection using only application-level 
network traffic features. In addition, both the learning and the 
detection processes utilize the machine-learning algorithms 
that are performed locally on the device by a stand-alone 
application which works from the regular user space and can be 
simply installed on a device at any time. The anomalous 
behavior of an application is detected in real time on the device 
and is based on the observed network traffic patterns. This 
approach is justified by the fact that many malware use 
network communication for their needs, such as sending a 
malicious payload or a command to a compromised device or 
getting user data from the device. Such types of behavior 
influence the regular network traffic patterns of the application 
and can be identified by learning the application's "normal" 
patterns and further monitoring network events. 

III. PROPOSED METHOD 

The proposed method uses several network-based features 
that are collected during the application runtime. Feature 
measurements are performed at fixed time intervals (of 5 
seconds) and then various aggregation functions are computed 
over these measurements at each specified time interval (set to 
1 minute). Based on the results of our previous work [2] a 
subset of nine most useful features is used. 

For the detection a model representing the monitored 
application specific network traffic patterns is derived using the 
cross-feature analysis approach [3]. The basic idea of the 
cross-feature analysis method is to explore the correlation 
between one feature and all the other features. It assumes that 
in normal behavior patterns strong correlations between 
features exist which can be used for detecting deviations 
caused by abnormal activities. Formally, cross-feature analysis 



 

 

approach tries to solve the classification problem   : 
{                   }  {  }, where {          } is the 
features vector and   is the total number of features. Such a 
classifier is learned for each feature  , where       . Thus, 
an ensemble of learners for each one of the features represents 
the model through which each new vector of features is tested 
for "normality". For the online analysis, each one of the 
instance features is predicted by the corresponding 
classification\regression model    using the values of all other 
features. The more different the predictions are from the true 
values of the corresponding features, the more likely that the 
observed instance comes from a different distribution than the 
training set (i.e., represents an anomaly event). Thus, the 
probability of the value to come from a normal event is 
calculated as the following: 

                                              
where       is the predicted value and       is the actual 
observed value. The distance between two values for a single 
numeric feature is the difference in actual and predicted values 
divided by the mean of the observed values for that feature. If 
the difference is higher than the mean value, the distance is 
assigned with a constant large value (such as 0.999). The 
distance for a discrete feature is the Hamming distance (i.e., 1 
if the feature values are different and 0 if they are identical). To 
calculate the total probability of a vector   to represent an 
abnormal event, we make a naïve assumption about the sub-
model’s independence and multiply all the individual 
probabilities computed for each one of the feature values. Note 
that we utilize this method, despite the known incorrectness of 
the underlying independence assumption, as it has 
demonstrated sufficient performance in our previous 
experiments [2]. A threshold distinguishing between normal 
and anomalous vectors is learned during algorithm calibration 
on the data sets with labeled samples. 

IV. EVALUATION 

For the evaluation of the proposed system we experimented 
with 5 real and 10 self-written Trojan malware. Each evaluated 
application has two versions: the original benign application 
and a repackaged version of the original application with 
injected malware code. These settings represent a regular 
infection case where malware developers use existing popular 
applications for quick spread of their malware. All real 
applications used: Fling, CrazyFish (PJApps Trojan), Squibble 
Lite, ShotGun (Geinimi Trojan), and OpenSudoku 
(DroidKungFu-B), exploit network communication for various 
purposes. Additionally we have created the malware packages 
using types 1 and 2 of the "self-updating" behavior described 
above and infected several open-source applications with these 
packages. The utilized open-source applications are: APG, K-9 
Mail, Open WordSearch, Rattlesnake Free and Ringdroid. To 
simulate malicious behavior we choose to implement malicious 
behavior of known malware: (1) an application infected with 
the malware component of type 1 steals the user's contacts list 
and sends it to a remote server; and (2) an application infected 
with the malware component of type 2 first steals the user's 
contacts list, sends it to a remote server and then continue to 
report the user's location and recent call details to the server 
every two minutes. The malware and their benign counterparts 
were executed on a specially designated device and their 

behavior was collected and analyzed. The traffic patterns 
observed from the benign and malicious versions of the 
ShotGun application are presented in Fig. 1. As can be seen 
from the graphs, the distinguishable patterns of different 
application versions can be clearly identified on most of the 
compared dimensions. Such distinguishable patterns were 
identified for all other evaluated applications.  

 
Fig. 1. Traffic patterns of the ShotGun application. 

The results for all the evaluated benign\malware 
applications pairs are presented in Table 1. It can be seen that 
in most cases the threat was identified and reported within the 
first five minutes after the infection occurred (detection time 
column). Also a very low level of wrongly raised alerts (last 
column) to the user was achieved due to the selected alerting 
strategy (raise the anomaly alert if at least three abnormal 
instances are detected among the ten consecutive observations) 
- only two false alerts were fired during the two evaluation days 
among all 15 of the applications. In addition, the estimation of 
the consumed CPU and memory indicates low overhead 
comparable with other popular Android applications. 

TABLE I.  MALWARE DETECTION RESULTS 
Application TPR (%) Detection time FPR (%)   Wrong alerts 

Real malware 

Fling 64.7 30 min. 2.8 0 

OpenSudoku 100.0 2 min. 0.0 0 

ShotGun 100.0 5 min. 4.8 0 

Squibble 95.0 9 min. 15.8 1 

Crazy Fish 100.0 5 min. 7.7 0 

Self-updating malware – type 1 

APG 84.6 3 min. 0.0 0 

K-9 Mail 100.0 3 min. 4.1  0 

WordSearch 100.0 3 min. 6.3  0 

Rattlesnake 92.3 3 min. 9.8 0 

Ringdroid 80.0 5 min. 0.0  0 

Self-updating malware – type 2 

APG 46.7 16 min. 0.0  0 

K-9 Mail 91.7 4 min. 5.7 0 

WordSearch 100.0 4 min. 8.3 0 

Rattlesnake 83.3 6 min. 12.0 1 

Ringdroid 92.3 4 min. 0.0 0 
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