
Detecting Application Update Attack on Mobile

Devices through Network Features

L.Tenenboim-Chekina, O. Barad, A. Shabtai, D. Mimran, L.Rokach, B. Shapira, Y. Elovici

Department of Information Systems Engineering and Telekom Innovation Laboratories

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract— Recently, a new type of mobile malware applications

with self-updating capabilities was found on the official Google

Android marketplace. Malware applications of this type cannot

be detected using the standard signatures approach or by

applying regular static or dynamic analysis methods. In this

paper we first describe and analyze this new type of mobile

malware and then present a new network-based behavioral

analysis for identifying such malware applications. For each

application, a model representing its specific traffic pattern is

learned locally on the device. Machine-learning methods are used

for learning the normal patterns and detection of deviations from

the normal application's behavior. These methods were

implemented and evaluated on Android devices.

Index Terms—network traffic, anomaly-detection, machine-

learning, Android malware, smart-phones security.

I. INTRODUCTION

Recently, a new type of mobile malware hosted on the
official Google Android marketplace, the Google Play Store,
was detected. The main feature which distinguishes this Trojan
(named Android.Dropdialer) from earlier known malware, is its
self-updating capabilities. Applications infected by this Trojan
and hosted on the Google Play Store were absolutely benign by
themselves and did not contain any malware. The package
containing malicious payload was downloaded from the
Internet sometime after the market application was installed on
the device. This allowed the applications to stay undiscovered
on the market for several weeks and to generate tens of
thousands of installations. In general, any malware can be
downloaded and executed on a device using such a "remote
payload" technique. The download action can be scheduled for
any specific or random time in the future, or even be initiated
remotely by sending a command message to the devices.

Such self-updating malware cannot be detected by standard
static code analysis techniques as the original version of the
application is absolutely benign by itself. Detection by dynamic
analysis techniques can be simply avoided by using a time
delayed or filtered deployment of the malicious payload. It is
also difficult to identify this type of emerging malware since
the self updating technique is often used by legitimate
applications for the benign purposes as well (upgrade installed
games with new levels, bug fixes etc.) A recent survey shows
that 70% of known mobile malware steals user information or
credentials [1]. Therefore, in this paper we aim to detect the
self-updating malware types which steal user data or allow
spying on users, and thus we focus on monitoring applications
network behavior.

II. SELF-UPDATING MALWARE TYPES

Four main techniques can be used to create self-updating
applications for Android that download new pieces of software
stored remotely. These techniques are especially attractive for
malware developers: (1) offer the user an update (i.e. complete
replacement) to the original application; (2) dynamic loading of
a compiled Android code (i.e., executable DEX files) using
Android's DexClassLoader class and allowing the execution of
code not installed as part of the application; (3) dynamic
loading of a binary shared object file (also called .so library) or
an executable file containing native (i.e., machine) code which
can be executed using Java's Runtime class; and (4) dynamic
loading of a certain file (e.g., mp3, jpg, flash, and pdf)
containing a malicious payload (i.e., shellcode) and executing it
by exploiting vulnerabilities in the system libraries or external
applications handling the file type.

Contrary to the earlier proposed methods our method
performs anomaly detection using only application-level
network traffic features. In addition, both the learning and the
detection processes utilize the machine-learning algorithms
that are performed locally on the device by a stand-alone
application which works from the regular user space and can be
simply installed on a device at any time. The anomalous
behavior of an application is detected in real time on the device
and is based on the observed network traffic patterns. This
approach is justified by the fact that many malware use
network communication for their needs, such as sending a
malicious payload or a command to a compromised device or
getting user data from the device. Such types of behavior
influence the regular network traffic patterns of the application
and can be identified by learning the application's "normal"
patterns and further monitoring network events.

III. PROPOSED METHOD

The proposed method uses several network-based features
that are collected during the application runtime. Feature
measurements are performed at fixed time intervals (of 5
seconds) and then various aggregation functions are computed
over these measurements at each specified time interval (set to
1 minute). Based on the results of our previous work [2] a
subset of nine most useful features is used.

For the detection a model representing the monitored
application specific network traffic patterns is derived using the
cross-feature analysis approach [3]. The basic idea of the
cross-feature analysis method is to explore the correlation
between one feature and all the other features. It assumes that
in normal behavior patterns strong correlations between
features exist which can be used for detecting deviations
caused by abnormal activities. Formally, cross-feature analysis

approach tries to solve the classification problem :
{ } { }, where { } is the
features vector and is the total number of features. Such a
classifier is learned for each feature , where . Thus,
an ensemble of learners for each one of the features represents
the model through which each new vector of features is tested
for "normality". For the online analysis, each one of the
instance features is predicted by the corresponding
classification\regression model using the values of all other
features. The more different the predictions are from the true
values of the corresponding features, the more likely that the
observed instance comes from a different distribution than the
training set (i.e., represents an anomaly event). Thus, the
probability of the value to come from a normal event is
calculated as the following:

 
where is the predicted value and is the actual
observed value. The distance between two values for a single
numeric feature is the difference in actual and predicted values
divided by the mean of the observed values for that feature. If
the difference is higher than the mean value, the distance is
assigned with a constant large value (such as 0.999). The
distance for a discrete feature is the Hamming distance (i.e., 1
if the feature values are different and 0 if they are identical). To
calculate the total probability of a vector to represent an
abnormal event, we make a naïve assumption about the sub-
model’s independence and multiply all the individual
probabilities computed for each one of the feature values. Note
that we utilize this method, despite the known incorrectness of
the underlying independence assumption, as it has
demonstrated sufficient performance in our previous
experiments [2]. A threshold distinguishing between normal
and anomalous vectors is learned during algorithm calibration
on the data sets with labeled samples.

IV. EVALUATION

For the evaluation of the proposed system we experimented
with 5 real and 10 self-written Trojan malware. Each evaluated
application has two versions: the original benign application
and a repackaged version of the original application with
injected malware code. These settings represent a regular
infection case where malware developers use existing popular
applications for quick spread of their malware. All real
applications used: Fling, CrazyFish (PJApps Trojan), Squibble
Lite, ShotGun (Geinimi Trojan), and OpenSudoku
(DroidKungFu-B), exploit network communication for various
purposes. Additionally we have created the malware packages
using types 1 and 2 of the "self-updating" behavior described
above and infected several open-source applications with these
packages. The utilized open-source applications are: APG, K-9
Mail, Open WordSearch, Rattlesnake Free and Ringdroid. To
simulate malicious behavior we choose to implement malicious
behavior of known malware: (1) an application infected with
the malware component of type 1 steals the user's contacts list
and sends it to a remote server; and (2) an application infected
with the malware component of type 2 first steals the user's
contacts list, sends it to a remote server and then continue to
report the user's location and recent call details to the server
every two minutes. The malware and their benign counterparts
were executed on a specially designated device and their

behavior was collected and analyzed. The traffic patterns
observed from the benign and malicious versions of the
ShotGun application are presented in Fig. 1. As can be seen
from the graphs, the distinguishable patterns of different
application versions can be clearly identified on most of the
compared dimensions. Such distinguishable patterns were
identified for all other evaluated applications.

Fig. 1. Traffic patterns of the ShotGun application.

The results for all the evaluated benign\malware
applications pairs are presented in Table 1. It can be seen that
in most cases the threat was identified and reported within the
first five minutes after the infection occurred (detection time
column). Also a very low level of wrongly raised alerts (last
column) to the user was achieved due to the selected alerting
strategy (raise the anomaly alert if at least three abnormal
instances are detected among the ten consecutive observations)
- only two false alerts were fired during the two evaluation days
among all 15 of the applications. In addition, the estimation of
the consumed CPU and memory indicates low overhead
comparable with other popular Android applications.

TABLE I. MALWARE DETECTION RESULTS
Application TPR (%) Detection time FPR (%) Wrong alerts

Real malware

Fling 64.7 30 min. 2.8 0

OpenSudoku 100.0 2 min. 0.0 0

ShotGun 100.0 5 min. 4.8 0

Squibble 95.0 9 min. 15.8 1

Crazy Fish 100.0 5 min. 7.7 0

Self-updating malware – type 1

APG 84.6 3 min. 0.0 0

K-9 Mail 100.0 3 min. 4.1 0

WordSearch 100.0 3 min. 6.3 0

Rattlesnake 92.3 3 min. 9.8 0

Ringdroid 80.0 5 min. 0.0 0

Self-updating malware – type 2

APG 46.7 16 min. 0.0 0

K-9 Mail 91.7 4 min. 5.7 0

WordSearch 100.0 4 min. 8.3 0

Rattlesnake 83.3 6 min. 12.0 1

Ringdroid 92.3 4 min. 0.0 0

[1] A.P. Felt, et al., “A Survey of Mobile Malware In The Wild,” 1st
Workshop on Sec. & Privacy in Smartphones and Mobile Devices, 2011.

[2] L. Chekina, et al., “Detection of Deviations in Mobile Applications
Network Behavior,” available on http://arxiv.org/corr/home

[3] Y.-A. Huang, et al., “Cross-feature analysis for detecting ad-hoc routing
anomalies,” Int. Conf. on Distributed Computing Systems, 2003.

