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Abstract

Data mining methods can be used for discoverirgrasting patterns in manufacturing
databases. These patterns can be used to improudanturing processes. However, data
accumulated in manufacturing plants usually suffiens the "Curse of Dimensionality”, i.e.
relatively small number of records comparing t@é&anumber of input features. As a result,
conventional data mining methods may be inaccunaiieese cases. This paper presents a new
feature set decomposition approach that is basegtoetic algorithm. For this purpose a new
encoding schema is proposed and its propertiegdiscassed. Moreover we examine the
effectiveness of using a Vapnik-Chervonenkis din@nbound for evaluating the fitness
function of multiple oblivious trees classifiersh@ new algorithm was tested on various real-
world manufacturing datasets. The obtained resalt® been compared to other methods,
indicating the superiority of the proposed algarith

1. I ntroduction and Motivation

Data mining is a collection of tools that exploegalin order to discover previously unknown
patternsThe accessibility and abundance of information yonakes data mining a matter of
considerable importance and necessity. One of tiet practical techniques used in data mining
is classification. The aim of classification ishtoild a classifier (also known as a classification
model) by induction from a set of pre-classifiedtances. The classifier can be then used for
classifying unlabelled instances. Given the lorggdry and recent growth of the field, it is not
surprising that several mature approaches to immtuetre now available to the practitioner.
Decision tree induction is one of the most widedged approaches in data mining and machine
learning for classification problems (see for ing& Quinlan, 1993). Decision Trees are
considered to be self-explained models and eafylbav when compacted.

In many modern manufacturing plants, data thatasttarize the manufacturing process are
electronically collected and stored in the orgamires databases. Thus, data mining tools can be
used for automatically discovering interesting asdful patterns in the manufacturing

processes. These patterns can be subsequentlytedpmenhance the whole manufacturing
process in such areas as defect prevention andtidetereducing flow-time, increasing safety,
etc. The literature presents several studies tteahae the implementation of data mining tools

in manufacturing (Gardner and Bieker, 2000; Foumédial., 2000; Kusiak and Kurasek, 2001;
Kusiak, 2001 and Last and Kandel, 2001, Kusiakkamesek, 2005, Rokach and Maimon,

2006).



This paper focuses on mining quality-related dataanufacturing. Quality can be measured in
many different ways. Usually the quality of batcleéproducts is measured and not that of a
single product. The quality measure can either maweinal values (such as "Passed"/"Not
Passed") or continuously numeric values (Sucheasitimber of good chips obtained from
silicon wafer or the pH level in a cream cheeseggrf the measure is numeric, it can still be
reduced to a sufficiently discrete set of interggtianges. In the cases that we examined, the
goal was to find the relation between the qualigasure (target attribute) and the input
attributes (the manufacturing process data).

Several researchers have shown that the decongposigthodology can be appropriate for
mining manufacturing data (see for instance Kus28K0). In our previous paper (Rokach and
Maimon, 2006) we have examined the idea of featatelecomposition for generalizing the task
of feature selection. Feature selection aims twigeoa single representative set of features from
which a classifier is constructed. On the otherdh&eature set decomposition decomposes the
original set of features into several subsets,lanlds a classifier for each subset. Thus, a set of
classifiers are trained such that each classifigleys a different subset of the original features
set. Subsequently, an unlabelled instance is Gkedsily combining the classifications of all
classifiers. This method potentially facilitateg ttreation of a classifier for high dimensionality
data sets without the above mentioned drawbacteatidire selection.

In our previous work (Rokach and Maimon, 2006) \aeehexamined a simple hill-climbing
algorithm called BOW (Breadth-Oblivious-Wrapperatisearches for the optimal
decomposition. One limitation with the BOW algoniths that it has no backtracking capabilities
(for instance, removing a single feature from asgtilor removing an entire subset).
Furthermore, the search of BOW begins from an emdptpmposition structure, which may lead
to subsets with relatively small number of featuiiésgs paper suggests a more profound
exploration of the search space. Because perforexhgustive search is intractable for large
problems, we decided to employ genetic algorithm.

Evolutionary Algorithms (EAs) are stochastic seaatdorithms inspired by the process of
Darwinian evolution (Goldberg, 1989). The motivatior applying EAs to data mining tasks is
that they are robust, adaptive search techniqugtrform a global search in the solution space
(Freitas, 2005). Genetic algorithm is a populaetpf evolutionary algorithm and was
successfully used for feature selection (SharpeGader, 1999; Kudo and Skalansky, 2000;
Hsu, 2004). In general GAs, with their associatietba search in the solution space, usually
(though not always) obtain better results thanlleearch-based attribute selection methods.

Feature set decomposition is closely related temabse methods that manipulate the input
attribute set for creating the ensemble membeth Betomposition methodology as well as
ensemble methodology applies the multiple clagsitg@proach for solving a classification task.
However, Sharkey (1996) distinguishes between thetbodologies in the following way: The
main idea of ensemble methodology is to combinet afsclassifiers, each of which solves the
same original task. In a typical ensemble settagh classifier is trained on data taken or re-
sampled from a common data set or randomly selg@gdions. On the other hand, the purpose
of decomposition methodology is to break down aglemproblem into several manageable
problems, such that each inducer aims to solvéfereint task or has been applied to a different
training set.



Opitz and Shavlik (1996) applied GAs to ensembitEsvever its genetic operators were
designed explicitly for hidden nodes in knowledgedd neural networks and the algorithm does
not work well with problems lacking prior knowledda a later research Opitz (1999) uses
genetic search for ensemble feature selection Géreetic Ensemble Feature Selection strategy
begins with creating an initial population of clifiess where each classifier is generated by
randomly selecting a different subset of featufé®n, new candidate classifiers are continually
produced by using the genetic operators of crossamwe mutation on the feature subsets. The
final ensemble is composed of the most fitted diass.

In this paper we are interested in decomposingtiggnal feature set into several mutually
exclusive subsets. Feature set decomposition caedreas a generalization of the feature
selection task. Moreover it can be seen as spa@fe of ensemble methodology in which
members are using disjoints feature subsets. Gheepositive evidence of using genetic
algorithm for feature selection tasks from one hand for creating ensemble of classifiers from
the other hand, using genetic algorithm in thisdastherefore, self-evident. In fact Hsu et al.
(1999) have brought up this idea as part of pasipaper. However there is no report whether
this idea was implemented and whether it can impdassification performance in general and
in manufacturing databases in particularly.

Moreover all the abovementioned genetic algoritfongeature selection or feature ensemble
have used the wrapper approach for evaluatingtiimest function. In this approach a certain
solution is evaluated by repeatedly sampling thimiing set and measuring the accuracy of the
inducers obtained for feature subsets over a holklidation data set. The main advantages of
this approach are the fact that it generates flelieolutions and that it can be used for any
induction algorithm. Nevertheless the fact thatwhapper procedure repeatedly executes the
inducer is considered major drawback. For thisoeaarappers may not scale well to large
datasets containing many features.

The aim of this work is to examine whether genaljorithm-based feature set decomposition
can improve the classification performance. Fas thirpose a new encoding schema is
proposed. Using theoretical results it is explaiwbg this new encoding is more suitable than
more straightforward encoding schema. Moreoverdeoto avoid the abovementioned
drawback of the wrapper approach, we employ Vagtikrvonenkis dimension bound for
multiple oblivious trees to evaluate the fitnessdlion. A caching mechanism is suggested in
order to additionally reduce the computational claxipy of the genetic algorithm.

The rest of the paper is organized as follows.dati®n 2 we present a formal formulation of the
feature set decomposition problem. Section 3 ptese®A framework for solving the problem.
Section 4 presents an experimental study that coeaphe performance of a certain
implementation of the suggested GA framework teotion-GA methods. Finally, we describe
conclusion and future work in Section 5.

2. Problem For mulation

In a typical classification problem, a training sétabelled examples is given and the goal is to
form a description that can be used to predictiptsly unseen examples. The training set can
be described in a variety of languages, most frethyieas a collection of records that may



contain duplicates. Each record is described bgcsov of attribute values. The notatidn
denotes the set of input attributes contaimragtributes:A={a,,...,a,...,a, rand y represents

the class variable or the target attribute. Attirdisu'sometimes referred to as fields, variables or
features) are typically one of two types: categir{galues are members of a given set), or
numeric (values are real numbers). When the at&ibuis categorical, it is useful to denote its

domain values bylom(a,) ={V;;,V; 5,V jaona,y} » Where|dom(a, )| stands for its finite cardinality.
In a similar way,don(y) :{cl,...,qdon(y)‘} represents the domain of the target attribute. Nieme
attributes have infinite cardinalities.

The instance space (the set of all possible exan@elefined as a Cartesian product of all the
input attributes domainsX = dom(a,) xdom(a,) x...xdom(a, .)rhe Universal Instance Space
(or the Labelled Instance Spate)s defined as a Cartesian product of all inputlaite

domains and the target attribute domain, Le= X xdonm(y).

The training set consists of a senhofecords and is denoted &= (< X,, ¥ >,....< X.,, ¥, >)

where x, X andy, Udon(y) .

Usually, it is assumed that the training set res@e generated randomly and independently
according to some fixed and unknown joint prob&pdiistributionD overU. Note that this is a
generalization of the deterministic case when &sugor classifies a record using a function

y= f(x).

The notationl represents a probabilistic inducer (i.e. an atbarithat generates classifiers that
also provide estimates to the conditional probghbdf the target feature given the input
features), and (S) represent a probabilistic classifier which was eetliby activating the

induction method onto datase®. In this case it is possible to estimate the doomial
probability B ¢, (y = ¢; ‘ g = %, ; i=1,..., nof an observation,. Note the addition of the “hat” -

A - to the conditional probability estimation isedsfor distinguishing it form the actual
conditional probability.

Consider a set of examples labeled positive andtneg and a classifier predicting the label for
each example (the choice as to which class isccplbsitive is usually arbitrary. In this case the
"not passed QA" class will be considered as pasiti positive (negative) example that is
correctly classified by the classifier is calleti@e positive (true negative); a positive (negdtive
example that is incorrectly classified is callefhlae negative (false positive). These numbers
can be organized in a confusion matrix shown inldab

Table 1. Confusion Matrix for Binary Classification Problem

Actual \ Classification Classified as Positive Classified as Negative
Actually Positive True Positive False Negative
Actually Negative False Positive True Negative




The accuracy measure that is usually employedvaiuating the performance of classifiers is
defined as:
True Positivet True Negative

True Positiver False Positivie True Negative $@Negative

(1)

Accuracy=

The problem of decomposing an input feature sttas of finding the best decomposition, such that i

specific inducer is run on each feature subset, da¢m the combination of the generated classifiglis

have the highest possible accuracy. Consequemlgrttblem can be formally phrased as follows:
Given an inducer I, a combination method C, andraning set S with input feature set

A={a,a,,...,a,} and target featurey from a distribution D over the labeled instancesp, the goal
is to find an optimal decompositiad,, ={G,...G..., G,} of the input feature set A int@ mutually
exclusive subset@k:{aak(j)“ =1...1.} ; k=1...,w that are not necessarily exhaustive such that the

generalization error of the induced cIassifieleTGkDyS) ; k=1,...,cwo combined using method C, will
be minimized over the distribution D.

whereG,={a, ])| j =1...1,} indicates thd&'th subset that contaihsinput attributes such that
a{L.. 1} - {L...,n} is a function that maps the attribute inglex the subsek to the original
attribute index in the sét R, :{i|Ej L...1,} st.a,(]) =i} denotes the corresponding indexes
of subsek in the complete attribute satand 7z; ,, S represents the corresponding projection of
S

It should be noted that the optimal is not necégsamique. Furthermore it is not obligatory that
all input features will actually belong to one bétsubsets.

This paper focuses on feature set decompositioigries for decision trees which are combined
using the Naive Bayes combination, namkeig any decision tree inducer a@dis the Naive
Bayes combination. In the Naive Bayes combinatiahaasification of a new instance is based
on the product of the conditional probability okttarget feature, given the values of the input
features in each subset. Mathematically it carobmdilated as follows:

I(nGkDyS)(y C ‘a| qu I g Rk)

= argmax P C 2
Viap (%) = Cug m: P (Y = )Eﬂ Bo(y=0) (2)
PI(S)(y c;)>0
or:
[ AI(rer]yS)(yzcj‘ai =%, 1OR)
Vyap(X,) = argmax == = - 3)
MAP Xq o, Cdon(y) P|(3)(y — Cj)w 1
P|(3>(y c;)>0

Recall thatR, denotes the correspondence indexes of slbsethe complete feature sAt In
case of decision tree® S)(y: cj‘q = x,; iU R)can be estimated by using the appropriate

1 (7,
frequencies in the relevant leaf. However usingftbquency as is will typically over-estimate
the probability. In order to avoid this phenomeiitois useful to perform the Laplace correction



(Domingos and Pazzani, 1997According to Laplace's law of succession, thebphility of the
eventy=c; wherey is a random variable arglis possible outcome gfwhich has been observed
m; times out ofm observations igm + kQ._ i, ) /( M+ K. Wherepa.priori iIs an a-priori probability

estimation of the event ardis theequivalent sample sizbat determines the weight of the a-
priori estimation relative to the observed data.

3. A Genetic Algorithm Framework for Feature Set Decomposition

3.1 Overview

In order to solve the problem defined in Sectiow@,suggest using a genetic algorithm search
procedure. Figure 1 presents a high level pseudoobdsA adapted from Freitas (2005).

Genetic algorithms begin by randomly generatingpuation ofL candidate solutions. Given
such a population, a genetic algorithm generatemsaacandidate solution (population element)
by selecting two of the candidate solutions agiment solutions. This process is termed
ReproducitonGenerally, parents are selected randomly fronptpilation with a bias toward
the better candidate solutions. Given two paremts,or more new solutions are generated by
taking some characteristics of the solution fromnfthst parent (the "father") and some from the
second parent (the "mother"). This Process is téi@ressover For example, in genetic
algorithms that use binary encodingndbits to represent each possible solution, we might
randomly select a crossover bit location denoteal asvo descendants’ solutions could then be
generated. The first descendant would inherit itls&d string characteristics from the father and
the remainingn-o characteristics from the mother. The second delsggrwould inherit the first

0 string characteristics from the mother and theaiemgn-o characteristics from the father.
This is type of crossover is the most common amitérmed One-Point Crossover. Crossover is
not necessarily applied &l pairs of individuals selected for matingP&ossoveforobability is

used in order to decide whether crossover willfiggiad. If crossover is not applied, the
offspring are simply duplications of the parents.

Finally, once descendant solutions are genera@ttg algorithms allow characteristics of the
solutions to be changed randomly in a process kasMutation In the binary encoding
representation, according to a certain probahiRty,) each bit is changed from its current value
to the opposite value. Once a new population haa generated, it is decoded and evaluated.
The process continues until some termination doiteis satisfied.

To implement a genetic algorithm one is requiredrtivide a schema for encoding,
manipulating and evaluating the solution. The fellay sections present the schemes suitable to
the problem discussed in this paper.



Create initial population of individuals
(candi date sol utions)
Conpute the fitness of each individual
REPEAT
Sel ect individuals based on fitness
Apply genetic operators to sel ected individuals,
creating new individual s
Conpute fitness of each of the new individuals
Update the current popul ation
(new i ndividual s replace ol d individuals)
UNTIL (stopping criteria)

Figure 1: A Pseudocode for GA

3.2 Encoding and Genetic Operators

A candidate solution consists mainly of values afiables - in essence, data. In particular, GA
individuals are usually represented by a fixed-tarigpear genome. The following subsection
presents two alternative encoding for the problechtaeir properties.

3.2.1 Simple Encoding

A straight forward individual representation foafere set decomposition consists simply of a
string ofn integers. Recall thatis the number of features. The il integerj=1,..., n, can

take the valu®,...,n indicating to which subset (if any) th¢h attribute belongs. A value of 0
indicates that the corresponded attribute is nettesd and filtered out. For instance, in a
10-attribute data set, the individual '1 0 2 0330 1' represents a candidate solution where the
1st, 5th and 10th attributes are located in the¢ §ubset. The 3rd and 8th are located in the
second subset. The 6th and the 7th are locatdwbithird group. All other attributes are filtered
out. This individual representation is simple, aradlitional one-point crossover operator can be
easily applied. As to the mutation operator, acicgydo a certain probabilityPqy) each integer

is changed from its current value to a differeridvaalue.

The last representation has redundancy, i.e. tne salution can be represented in several ways.
For instance the illustrated solution '1 0 2 0380 1' can be also represented as
‘301032210 3'. Moreover similar solutioas te represented in quite different ways. This
property can lead to situations in which the offsgprare dissimilar to their parents. For instance
if we perform the one-point crossover operatortenttvo above equal solutions: '10201332
01'and '301032210 3 we may obtain tlewing descendant solution' 102035510
3'. Because the two parents are equal we expddhthdescendant (before mutation) should be
also equal. However this is not the case herel@descendant represent quite different
solution. Although the above case is rare, it 8hilstrates the problematic character of the above
representation. Besides being not compact, theeabowoding may result in a slow

convergence of the genetic algorithm. A GA convengben most of the population is identical,
or in other words, the diversity is minimal (Loaisd Rawlins, 1993). Louis and Rawlins (1993)
analyzed the convergence of binary strings usiagHimming distance and showed that
traditional crossover operators (such as one-moodsover operator) does not change the
average Hamming distance of a given populatiofad¢hselection is responsible to the

Hamming distance convergence. Thus, we shouldflmo&ncoding with similar properties. The
next subsection proposes such encoding.



3.2.2 Adjacency Matrix Encoding
We begin by defining a measure called Decompos#imactural Distance. This measure can be
used to determine the distance of two decomposttiuttures as following:

Definition 1: Decomposition Structural Distance (DSD):

=t & 20(a,8,,24,2%)

NZ"zH)=> >

i=Lj=i+1 ni{n-1) (4)

where7(a, ! ,Z',Z%) is a binary function that returns the value "Othié features, & belong to the

same subset in both decompositicfis Z>or if &, & belong to different subsets in both decompositions.
In all other cases the function returns the valije "

@ @ @ 2
0 iDURGiDYUR and jOJRL:jOYUR?

k=1 ky=1 k=1 kp=1

o
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iDUR&l;iDURkZ2 and jDUR,il;jDURkZ2
k=1 k=1 k=1 ky=1

@22 2920 n(riio(R ad o joUR ©

2

k=1 k,=1 k=1 k,=1
0 [k, Ky, JORE i, jORE
0 Ky #Kp, Ky ZKypsi O Rim, jd R&Lz;i O R,fm, jd szz.z
1 otherwise

For example, given thah={a,,a,,a,,8,,a,,8; ,}Z* ={{ a,,a,};{a,a,}} and
Z* ={{ a, &, a} {a,,a,}} then:

ol o 2[h(a,a,,2,2%) 2

521'22 — ] = ' '21'22 + ' '21'22

(24,27 Z:,le =D s 72 ) +n(ay,a )
+n(a,,a,,2",2%) +n(ay,a,, 2", 2%) +n(ay,8,, 2", 2%) +1(a,,8,, 2", Z°)
+1(a,,a,,2",2%) +n(a,,a,,2*,2*) +n(a,,a,, 2", 2%) +n(a,,a,,2*,Z%)
+1(ay,85,2",2%) +11(8g,85,2",2°%) +11(2,,85, 2", Z%) +11(a,, 85, 2", Z%)

5

+/7(as,a6’zl’22)) :3£0(1+1+1+1+1+0+O+0+0+O+O+O+O+O+O) :1_5

It is important to note that the Structural DistarMeasure is an extension of the Rand index
(Rand 1971) developed for evaluating clusteringhoes.



Lemma 1: Structural Distance Measur e Properties

The Structural Distance Measure has the followiraperties:
1. Symmetryd(Z*,2%) = 0(Z%,Z")

2. Positivity: 5(z2*,2%) =0lIif z'=2Z?

3. Triangular Inequality 5(Z*,Z2%) <d(Z*',Z°) + 6(Z%,Z3)

Pr oof

The proof of the first property of Lemma 1 resdiplicitly from definition. So is the proof of
the first direction of property 2 of Lemma 1, naynél Z* = Z*then 5(Z*,Z?%) = 0.

The opposite direction, namelyd(Z*,Z?) = thenZ' =Z?, is proved by contradiction. We
assume that there are cases Whkiz',Z%) = bu0zZ'# Z>. If Z' # Z*then without loss of
generality 3G, 0 Z* such that there is nG,” 0 Z* which fulfills G =G,*. Consequently

[, a, such that(a;, a, ,Z',Z?) =1, which contradict the assumption and thereforeooiginal

assumption thad(Z*',Z%) = ®ut Z' # Z°must be false.
In order to prove property 3 of Lemma 1, note that:

n-1 n . a.,z,Z2+n(a,a,z2%2?
5(21'23)_'_5(22,23) :Z Z 2[,‘,7(81 j ) ,7(81 j )
=1 j=i+1 n{n-1)
Because the following arguments hold:

1. If n(a,a;,2",2%) +n(a,a;,2%,2%) =0 thenn(a,a,,2*,2%) =0
2. If n(a,a,,2",Z2% +n(a,a;,2%,2% =2 thenn(a,a,,2*,2%) =0
3. If n(a,a,,2",2%) +n(a,a;,2%,2%) =1 thenn(a,a,,2",2%) =1

Then also the triangular inequality is true

By using an adjacency matrix like encoding, oneregmesent any decomposition structure as
x nmatrix in which cell (i , J) gets the value "1"attributess; andg; are located in the same
group, cell (i, j) gets the value "-1" if attritesa, andg; are both filtered out and it gets the
value "0" otherwise. The values on the diagonaldatdi whether each attribute filtered out (-1)

or not (1). For example, Table 2 illustrates the@epntation oZ' ={{ a,,a,};{a;,a, }}given
that A={a,a,,a,,8,,a;,38, }. Note that because the above matrix is always sstnenwe can
specify only the upper triangle.



Table 2: Illustration of adjacency matrix like encoding

A || B | N ||
a|-1/0/0/0]0| 1
|0]1]0]1]0]O0
/00|12 /0|10
a|/0]|1/0(1]0|O0
&|0]|0]1]0]1]O0
%|-1/0/0/0]0]-1

Definition 2: Encoding Matrix A issaid to be well-defined if:

1. Commutative:tDi # j;cell (i,j) =cell (j i)
2. Transitive:Oi # j #Kk;if cell (i,j) # Oand cell (i,k) # Othen cell( j, k)# O
3. Sign Propertyti # j;if cell (,j) # Othen cell (i,j)=cell (,)

We now suggest a new crossover operator call "Gvaap Crossover" (GWC) that works in the
following way. We select one anchor subset fromsthigsets that define the first parent
decomposition and one anchor subset from the suitisstdefine the second parent
decomposition (the selected subset can be alddtdred out subset). The anchor subsets are
used as-is without any addition or diminution dfiatites.

The first offspring is created by copying the cohsrand rows of the attributes that belong to the
first selected anchor subset from the first par&httemaining cells are filled in with the
corresponding values that are obtained from therskparent. The second offspring is similarly
created using the second anchor subset by copyegdpropriate columns and the rows from
the second parent and then fill in the remainirts eeith the corresponding values from the first

parent.

Example: Assuming that two decompositio@s ={{ a,,a,};{a,a,}} and

Z*={{a, a}:{ 3 a ¥ ¥ aregiven over the feature ¢et{a,,a,,a,,a,,a,a, . Ih order to
perform GWC operator, two anchor subsets are sgleone from every decompositions:
{a, a} from Z* and{a, a, a} from Z. Figure 2 illustrates representations of Zh@ndz* and

their offspringZ® andz*. Z®is obtained by keeping the grofi@, a} and the remaining cells
are copied fronz?. Z* is obtained by keeping the grofa, a,, &} and the remaining cells are
copied fromz". Thus,Z° ={{a, a}{ & &( X Pa andZ’={a a a&{ &{ R

The highlighted cells indicate the selected grdwgt was copied into the offspring.

10
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a|-1]/0[0]0]0] 1 al1|lo|1]1]0] 0
x|0]1]0]1]0]0 Ao0[1/0]0] 0] 1
a|0]0][1]0]1]0 a1/o|l1|1] 0] 0
al0]1]0]1]0]0 a1lol1l1]0]o0
a|/0]/0][1]0] 1] 0 ao0[olo|lo0] 1] 0
a&|-1/0]/0]0]0] 1 al0|1]/0]0] 0] 1

z z
AN ENEIED IEAEIENEIEY
all1lol1lolo]o0 all1]/ol1]1]0]0
xl0l1/0|1]0]0 alol1]ofo|o]oO
xll1lo0l1]l0l0]o0 al1]/ol1]1]0]0
al0l1/ol10]o0 alt(of1]1]o]o0
al0l0o/olol1]0 alo|o]0]0|1]0
al0l0l/o0ololo0]1 alo|o]0]0|0]-1

Figure 2: lllustration of GWC operator

Lemma 2: A projection of well-defined encoding matrix iswell-defined encoding matrix.

Pr oof

A projection of matrix is obtained by removing @éntattributes (i.e. removing their
corresponding rows and columns). Without the Idggenerality we assume that the removed
attributes are the lashttributes. Let assume by contradiction that tlogegted matrix is not
well-defined but the original matrix is well-defitheBecause the projected matrix is not well-
defined then(d, j k <n -t that violates one of the constraints specifiedafirdgtion 2. However

because the original matrix is well-defined therifg j ,k <n or more specifically for
i, j,k £n -t the above constraints hold. Thus, we have reatthadontradiction and
therefore our original assumption is not true.

Lemma 3: Performing GWC operator on two well-defined encoding matrices generates a

new well-defined encoding matrix

Pr oof

The way in which the GWC operator is defined the oéfspring are obtained by diagonally
concatenating the projections of the anchor subset one parent and the remaining attributes
from the second parent. Based on Lemma 2, bechagmtents were well-defined so are their

11



projections. It remains to show that the cells #ratnot obtained from the projection do nor
violate definition 2.

We denote byR the original attribute index of the anchor subise¢he sefA. Because the rows

and columns of the anchor subRatre copied as-is, theell(i,j)= cell(j,i))=0 for Ui UR; jIR.
Therefore constrain 1 in definition 2 is alwaysetand constraints 2 and 3 are not relevant in this
case.

Lemma 4: Operator GWC creates offspring that their distanceisnot greater than the
distance of their parents.

Pr oof

We denote by Zand Z the parent solutions and by @Znd 7 the offspring. Because each cell of
the offspring are obtained from one of the parkanht

323,74+ (28,20 = 6( 24, 22)
3(Z%, 7Y + 3(Z*, 22) = 5( 2, Z27)

The last equation is true because in Equatiortité)terms(a , & ,Z", Z%) = 0if cells (i,j) in
both matrices are equal.
Using the triangular inequality we obtain that:

328,72 < 8(Z8, 2+ 3(Z%, 2
3(Z8,2%) < 8(Z8, %)+ 3( 2%, 22)

Thus:

20(2%,2°)<0(Z3,Z)+0(Z2*, ZHY+ 0 (22, )+ o ( Z', D))

or:

0(z%,2°) < 8(2", 7%

Lemma 4 indicates that the GWC operator togethtr thie proposed encoding does not slow
down the convergence of the genetic algorithm. Trogrewith the selection process that prefers
solutions with higher fitness values, one can emghat the algorithm does converge (Louis and

Rawlins, 1993). As to the mutation operator, actwydo a certain probabilityPq,) each
attribute can be cut off from its original groupdgoin another randomly selected group.
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3.3 Fitness Function

In each iteration, we have to create a new popudtom the current generation. The selection
operation determines which parent chromosomescigaate in producing offspring for the next
generation. Usually, members are selected for matith a selection probability proportional to
their fitness values. The most common way to imjelenthis method is to set the selection
probabilityp; equal to:

(6)

For a classification problem, the fitness vdiugf theith member can the complement to 1 of the
generalization error Note that using training error as-is is not sught for evaluating
classifiers due to over-fitting phenomena.

The following subsections present two evaluatiothoas for the generalization error. The first
method utilizes the Wrapper methodology. The seenathod uses a new VC-Dimension bound
developed for this purpose.

3.3.1 Wrapper Approach

The most straightforward to estimate generalizagioor is to use the wrapper procedure. In this
approach the decomposition structure is evaluaga@reatedly sampling the training set and
measuring the accuracy of the inducers obtainethferdecomposition on an unused portion of
the training set. This is the most common apprdackvaluate the fitness function in attribute
selections problems.

3.3.2VC-Dimension Framewor k

An alternative approach for evaluating performaisde use the generalization error bound in
terms of the training error and concept size. mlibok “Mathematics of Generalization”,
Wolpert (1995) discuss four theoretical framewddtsestimating the generalization error,
namely: PAC, VC and Bayesian, and Statistical Risydll these frameworks combine the
training error (which can be easily calculated}wgbme penalty function expressing the
capacity of the inducers. In this paper we decitdeaase the VC theory for evaluating the
generalization error bound. According to the VE€dty the bound on the generalization error of
hypothesis spadd with finite VC-Dimensiond is given by:

2m o
dEQInF+1)—InZ OhOH

l£(h,D) - &(h,S)| < — 520 -
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with probability of1-d. where&(h, S)represents the training error of classifiemeasured on
training setS of cardinalitym and £(h, D) represents the generalization error of the cliassif
over the distributiom.

In order to use the bound (Equation 7), one nemdssiasure the VC-Dimension. The VC
dimension for a set of indicator functions is defims the maximum number of data points that
can be shattered by the set of admissible functiBpslefinition, a set ofn points is shattered
by a concept class if there are concepts (funclionthe class that split the points into two
classes in all of th2™ possible ways. The VC dimension might be diffidolcompute
accurately and it depends on the induction algorith

In this paper concentrates on decision tree indueed more specifically on Oblivious
Decision Trees. Oblivious Decision Trees are fotmbe effective for feature selection which is
a simplified case of the problem solved here. Gdlis Decision Trees are decision trees, for
which all nodes at the same level test the samariea

Figure 3 demonstrates a typical ODT with three infleatures: the slicing machine model
used in the manufacturing process; the rotatiorde the slicing machine and the shift (i.e.
when the item was manufactured); and the Booleegetaattribute representing whether that
item passed the quality assurance test. The aatstimnect the hidden terminal nodes and the
nodes of the target layer are labeled with the remalb records that fit this path. For instance,
there are twelve items in the training set whiclteygroduced using the old slicing machine that
was setup to rotate at a speed greater than 1000 &@ that were classified as “good” items

(i.e. passed the QA test).
S

New Slicing
Machine

Old Slicing
Machine

Night

Slicing Rotation Shift Target
Machine Speed Layer Layer
Layer Layer

Figure 3: Oblivious Decision Treefor Quality Assurance

The principal difference between the oblivious dexi tree and a regular decision tree
structure is the constant ordering of input featua¢ every terminal node of the oblivious
decision tree, the property which is necessaryrfimimizing the overall subset of input features
(resulting in dimensionality reduction). Therefatespite its restriction, an oblivious decision
tree is found to be effective as a feature selegtiocedure. Almuallim and Dietterich (1994), as
well as Schlimmer (1993), have proposed forwardufeaselection procedure by constructing
oblivious decision trees while Langley and Sage9f)%uggested backward selection using the
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same means. Recently Last al. (2002) have suggested a new algorithm for conistgic
oblivious decision trees, called IFN (Info-FuzzytiNerk) which is based on information theory.

In the case of feature set decomposition each sigsepresented by an oblivious decision
tree and each feature is located on a differemtrlads a result, adding a new feature to a subset
is performed by adding a new layer and connectitg the nodes of the last layer. The nodes of
a new layer are defined as the Cartesian produmbgwtions of the previous layer's nodes with
the values of the new added feature. In order tadavnnecessary splitting, the algorithm splits a
node only if it is useful. In this paper we splihade, if the information gain of the new feature
in this node is strictly positive.

The unique structure of oblivious decision tree/esy convenient to our genetic algorithm
approach. Moving from one generation to the otlseraily require a small changes on the subset
structures. Because each feature is located offieaethit layer, it relatively easy to add or remove
features incrementally; As opposed to regular datitree inducers in which each iteration of
the search may require generating the decisiorfriveescratch.

As stated before, using an oblivious decision tn@g be attractive in this case as it adds features
to a classifier in an incremental manner. Oblividesision trees can be considered as restricted
decision trees. For that reason any generalizatiaor bound that has been developed for
decision trees in the literature (Mansour and Mestr, 2000) can be used in this case also.
However, there are several reasons to developafisgeound. First, by utilizing the fact that

the oblivious structure is more restricted, it migh possible to develop a tighter bound. Second,
in this case it is required to extend the boundséwverabblivious trees combined using the

Naive Bayes combination.

The following theorem introduces an upper boundafwver bound of the VC dimension that
was recently proposed by us in the hill-climbingaailthm for feature set decompositidRokach
and Maimon, 2005) The hypothesis class of multiple mutually exslablivious decision trees

can be characterized by two vectors and one sdalarl,,...| ) , T = (t,...,t, Jandn, wherely

is the numbers of layers (not including the roat target layers) in the tréety is the number of
terminal nodes in the tréeandn is the number of input features.

For the sake of simplicity, the bound describethia section is developed assuming that the
input features and the target feature are bothrpifdis bound can be extended for other cases
in a straightforward manner. Note that each obligidecision tree with non-binary input
features can be converted to a corresponding boiaiyious decision tree by using appropriate
artificial features.

Theorem 1. Upper and Lower Bound for VC dimension of Multiple Oblivious Decision
Trees Combined with Naive Bayes

The VC-Dimension ofv mutually exclusive oblivious decision trees onimaky input features
that are combined using the Naive Bayes combinaimh that havel = (y,...1,) layers and
- F +logU w=1
T =(t,...,t,) terminal nodes is not greater than; J

2(F +1)log(2)+ 2logu w> ]
and at leastF —w+1
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where:F =Zw:ti U= n — 7 & |_ 4)! .
i=1 w!mn_zli)! 4t —2)It —2)!

The proof of the Theorem can be foundRoKach and Maimon, 2005).

3.4 Caching M echanism

The Achilles heel of using genetic algorithm inttea set decomposition problem is that it
requires the creation of a classifier for each stibseach solution candidate. Assuming that
there ares generations, the population sizé jsand that each solution has on aveagribsets,
then G L [D classifiers are created. Recall that by using adalis’ decision trees we might not
need to create from scratch each classifier bigerelassifiers that have already created. It is
well know fact that one can trade computational plaxity with storage complexity. Thus we
suggest using the following caching mechanism.

First of all when moving from one generation to o@sequent generation, we can use all
subsets that have remained without any change sByuhe GWC operator and ignoring the
mutation, each member in the new population h#saat one subset (the anchor subset) that has
not been changed at all. Moreover all other subds@te some common members. In that case
we can not use the oblivious decision tree asisiree the original tree might use attributes that
are not used in the inherited subset. For thisgaepve eliminate attributes from the oblivious
tree, layer by layer until we obtain an obliviowecsion tree that all its attributes are used e th
inherited subset.

Example: Assuming that two decompositioZs ={{ a, a};{ a # and

Z*={{a, a}:{ 3 3 ¥ ¥ aredgiven over the feature get{a,a,,a,,a,,a,3, . We also
assume that in the previous generation the follgvaittribute order has been used in the created
oblivious decision treesa, —» &,;& — &;8, - 8,8 — & — 8, &

Recall that by using the GWC operator (and igrgtite mutation operator), the following

subsets may be obtained® ={{ a, a};{ a &{ ¥ }Na andzZ’={{a a a{ & B
Thus in order to create the oblivious decisiongre® andz*, we can use the following
oblivious decision trees as-ia; —» a,; & — 8, — a,, &. The oblivious tree fofag will be
created from scratch. The remaining subsets cdpavgally or completely) obtained by
removing attributes from the existing oblivious idé&mn trees. The tree ffa,, a} can be

obtained by removing attribut®, from a, - a,. This removal is possible &g is located last.
The tree fofa} can be obtained by removing attribigfrom a, - a, - a,.

Additionally to using the oblivious decision tredfsthe previous generations, we can use the
existing resemble in different subset of the curgameration. While generating a decision tree,
we check at the end of each iteration (i.e. aftigliray a new attribute to the decision tree) if ¢gher
is another solution in the current generation #sd group these features together in the same
subset. If this is the case, we store the cudeaision tree in the memory cache for future use.
Later on when time has come to generate the dedisee for the solution with the common
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subset, instead of creating the tree from scrailise the tree that was stored in the caching
mechanism. For example if in the first generati@have the following members:

Z={a,a,aah{adaak{ al
Z,={a, a3 ah{aa a &F{ ala

Z,={a, 3,8 ah{a 3 &{ a R

Assuming that we are evaluating the members oranbyaccording to the above order and that
while creating the tree for the first subset infihg solution we got a decision tree with the

following ordera, — a — & then we might want to store this tree in the cagh
mechanism, and use it also in members 2 and 3.

It should be noted that using this caching mecmamesiuce the search space, because it dictates
the order in which the features are located indiéhasion tree. For instance in the last example

the first tree of solution 2 could have the follogistructurea, - & -~ a — @. However by
using the treea;, — & — @, that was stored in the cache we ignore this stragh advance. In

order to solve this dilemma we decided no to ssonall trees (in this paper less than 3
attributes). In these cases the saving in compun@ticomplexity is not worth the loss in
generalization capability.

Obviously we would like to store in the cache thiegest common subset. Thus in each iteration
we check if the current tree still can be usedngydame number of solutions. If this is the case
the current tree will replace the older one.

4. Experimental Study

41  Overview

The aim of this experimental study is to examinethhbr the genetic algorithm framework for
feature set decomposition approach can improvel#ssification performance in mining quality
assurance problems. For this purpose, a comparatiperiment was conducted on three real-
life datasets obtained from two manufacturers &ithaverage yearly income of more than 1
billion dollars. The first dataset was obtainedira manufacturer of dairy products. The last
two datasets were obtained from a wafer manufacture

This study examines an implementation of genegorithm to feature set decomposition using
the suggested adjacency matrix encoding, GWC apeaat fithess function that is based on the
VC dimension of multiple oblivious decision treesmbined with Naive Bayes. This algorithm

is called GOV (Genetic algorithm for Oblivious d&on tree using VC-dimension estimation).
The performance of GOV algorithm is compared witln previous feature set decomposition
(BOW), Naive Bayes and C4.5 (Quinlan, 1993) al¢pon$. The Naive Bayes was chosen since it
represents a specific point in the search spatteed&OV algorithm. The C4.5 algorithm was
selected because it is considered as a state-@irtlikecision tree algorithm which is widely
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used in many other comparative studies. The folgveiubsections describe each one of the case
studies and the results.

4.2  Manufacturing Cottage Cheese

4.2.1 Objective

Manufacturing cottage cheese is one of the mosptioated processes in producing dairy
products. The process, which may take up to 20hasually involves many stages. During
this long process, a few hundred parameters candasured or adjusted. As in every dairy
product, there is a chance that a specific batdrb@ifound sour when consumed by the
customer, prior to the end of the product’s shi&f-During its shelf-life, the product’'s pH
value normally drops. When it reaches a certainejaghe consumer reacts to it as a spoiled
product; even though there is no any bacterioldgiczblem. For every batch manufactured,
the dairy department performs randomly tests foraghivell organoleptic (taste) at the end of
the shelf-life. The samples are kept in the lalmyaat a temperature of 7°C, compared to
4°C, which is the recommended storage temperatuadiome refrigerator. The higher
laboratory temperature simulates abuse handlirigeoproduct along the cooling chain. The
product shelf-life is determined by the dairy depent (generally 12-14 days), assuming that
the product retains its organoleptic propertiethtoend of its shelf-life.

The aim of this experiment was to identify batcivith a high probability of becoming sour
(at the end of shelf-life) based on the procesglibes. For this purpose we built a
classification model that is capable to classifghebatch into its anticipated quality level. By
having the ability to identify in advance manufagtg patterns with impact on the quality,
the manager can replace low quality anticipatedufsamuring setting with a better setting.

4.2.2 Data

The training data set includes 800 records. Eapbrdehas 70 input attributes representing
various manufacturing variables. Most of the partamsefall into one of the following classes:
temperature, duration, raw material quantities maghines. For example we have used the
following attributes: average cooling temperatwieglding duration, calcium quantity, culture
quantity, etc. The target attribute representptheralue after two weeks. It can have two
values: "Tasty" (pH 4.9-5.3) and "Sour" (below pl9)4

4.2.3 Results

In order to compare the results of GOV to otheoathms, we used the 10-fold cross-
validation procedure. According to this procedtine, training set was randomly partitioned
into 10 disjoint instance groups. Each instanceigneas used once in a test set and nine
times in a training set. Since the accuracy orv#iielation instances is a random variable, the
confidence interval was estimated by using the abapproximation. Table 3 shows the
overall accuracy obtained by using 10-fold crosédation along with their confidence
interval. A paired two-sample student's t-testlbeesn performed in order to determine
whether a sample's means are distinct. The sug#rset indicates that the accuracy rate of
GOV was significantly higher than the correspondafgprithm at confidence level of 5%. It
should be noted that both feature set decompostiethods have improved accuracy.
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However the exhaustive search of GOV has resutiégiter performance than the BOW
algorithm.

Table 3 also shows the number of features anduhear of subsets used by each algorithm.
The GOV algorithm obtained six ODTs using totally@fferent attributes. The BOW
algorithm obtained four ODTs using totally 24 diffat attributes. This table indicates that
the GOV employed a much greater number of featinaas a single decision tree and even
greater than the BOW algorithm. This implies it proposed decomposition method can
address high dimension problems by letting moreviit input features affect the
classification model. The Naive Bayes classifiersugll available input features including
irrelevant features. Naive Bayes can been refersddature set decomposition such that for
each attribute it builds a separate single nodesidectree.

Table 3. The accuracy performancefor the Cottage-Cheese dataset

Criterion Naive Bayes C4.5 BOW GOV
Accuracy T77.81%+2.8% |[77.52%+2.8 |'85.92%+0.5% | 89.54%+1.3%
# of Features 70 12+3.1 24+4.8 31+7.2
Used
# of Subsets 70 1 4 6

4.3  Yied of IC manufacturing

4.3.1 Objective

An integrated circuit (IC) is a miniature electdiccuit containing large numbers of electronic
devices packaged on a single chip made of semicbodonaterial. Manufacturing an IC
begins with the production of a semiconductor waker area on the wafer containing a
single discrete device or IC is called a chip. Dejyeg on the dimensions of the wafer and
the dies, several hundred chips are formed ongheswmafer.

While the number and variety of process steps rhanpge from manufacturer to
manufacturer, fabricating a wafer usually contaimse than 100 steps (Van Zant, 1997). The
wafer manufacturing process is largely mechanMaksurements (for instance flatness,
surface quality verification, visual inspectiong daken at various stages of the process to
identify defects induced by the manufacturing psscéo eliminate unsatisfactory wafer
materials and to sort the wafers into batches dbum thickness to increase productivity.

After the wafer is manufactured, integrated cirgaite fabricated on its surface with a single
wafer bearing several integrated circuits, all mazb at the same time. Each lot undergoes
hundreds of individual processing steps, in whidfeent parts of the ICs are etched in thin
layers of material grown or deposited on the waglsarface of the wafers. Each process step
must be tightly controlled to ensure dimensionldremces. After a high-precision diamond
saw cuts the wafers into chips, they are mountéd packages.
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Fabrication of a single lot requires several monite data are accumulated for each
fabrication tool at both the wafer and lot leveding an information system known as
“manufacturing execution system”. IC manufacturings provide many data-mining
opportunities. In IC manufacturing, data-mining kcbliave tremendous economic impact,
raising profitability by increasing throughput ariucing costs, consequently (Fountain et
al., 2000).

For this paper we examined two different datasktained from a wafer manufacturer
providing design support, manufacturing and turngernwices for integrated ICs on silicon
wafers in geometries from 1.0 to 0.18 microns.

The main goal of data mining in IC manufacturingatbases is to understand how different
parameters in the process affect the line throughphe throughput of IC manufacturing
processes is measured by “yield,” which is the nemab good products (chips) obtained
from a silicon wafer. Since the capability of yexpensive microelectronics equipment
usually limits the number of wafers processed jpee unit , the yield is the most important
criterion in determining the effectiveness of anpl@cess.

4.3.2 Data

The training dataset includes only 70 records. Hacbrd represents a single wafer and has
257 input attributes labelled p1,...,p257 that repnéshe setting of various parameters used
in the manufacturing process of this wafer. Thgedaattribute represents the yield, which the
manufacturer's quality engineer has manually diviohto two groups: High and Low. More
than half of the attributes are numeric. The inptiributes specify several machine
parameters (for instance, the rotation speed ofstitteng machine or the slicing machine
model ) that may affect the yield. A distinctivelwa (in case of categorical attributes) or the
mean value (in case of numeric values) replaceingsslues. Due to the high commercial
confidentiality of the process data, we will notpiain here the specific meaning of the
measured parameters.

4.3.3 Results

Table 4 presents the overall accuracy. The resuisate that both BOW and GOV achieved
better results in accuracy compared to the C4.5Naigte Bayes. GOV has slightly better
results. However as opposed to the first case dtuel\difference between GOV and BOW
mean accuracy is not statistically significant. rBtaver, as in the first case study, the BOW
and GOV algorithms employed a greater number dtifea than C4.5.

Table4: Theaccuracy for theyield dataset

Criterion Naive Bayes C4.5 BOW GOV
Accuracy *84.28%+2.1% |778.85%+3.6% | 92.86%5.3%| 93.17%4.6%
# of Features Used 257 4+1.4 16+7.9 22+7.2
# of Subsets 70 1 5 5
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44  ThelC test

4.4.1 Objectives

The fabricated ICs undergo two series of exhaugtieetric tests that measure the operational
quality. The first series of tests, which is used feducing costs by avoiding packaging
defective chips, is performed while ICs are stillwafer form. The second series of tests,
which is used for quality assurance of the finalpchs carried out immediately after the

wafers are cut into chips and mounted onto packages

The electric tests are performed by feeding varmmmbinations of input signals into the IC.

The output signal is measured in each case andarechpio the expected behaviour. There
are wafers that perform well on the first seriesfhil later in the second series. The goal is to
check whether the results of the first series carfusther analyzed in order to predict the
outcome of the second series. This can be usedduace the number of wafers that are
unnecessarily sliced and packed, eliminating thedn®r a second series of exhaustive
electric tests for most of the devices.

4.4.2 Data

The training data set includes 395 records. Eanbrdehas 220 input attributes labeled
pl,...,p220 representing the electric result valusained in the first series of tests. Most of
the input features represent voltage levels. Tigetattribute is binary representing "pass”
and "not pass" devices according to the functioyali the device in the second testing series.
Similar to the yield problem, a distinctive valuetibe average value replaces missing values
depending on the data type.

4.4.3 Results

Running the GOV algorithm on the above data haatede®9 ODTs containing 34 electronic
tests that can be used as indicators for the sestithe second series of tests. Table 5 shows
the mean accuracy obtained by using 10-fold cradiglation along with their confidence
interval (with a confidence level of 95%). As iretbase of the yield dataset, the GOV
algorithm obtained the most encouraging results.

Table5: Theaccuracy for the | C-Test dataset

Criterion Naive Bayes C4.5 BOW GOV
Accuracy 792.82%+2.5% ['89.24%+1.9% | 96.81%+0.6% | 97.17%1.39
# of Features Used 220 9+3.2 26+2.7 34+3.1
# of Subsets 220 1 7 9

5. Conclusion

Classification problems in quality assurance aw@gatterized by many contributing features
relative to the training set size. This paper presa new, mutually exclusive feature set
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decomposition methodology designed specificallytii@se circumstances. The basic idea is
to decompose the original set of features into redweibsets, build a decision tree for each
projection, and then combine them.

This paper examine if genetic algorithm can beuldef discovering the appropriate
decomposition structure. For this purpose we haggested a new encoding schema and
fitness function that was specially designed fatidiee set decomposition with oblivious
decision trees. Additionally a caching mechanisslbeen implemented in order to reduce
computational complexity.

The proposed framework was tested with over theaklife datasets. The results show that
this framework tends to outperform other comparafd¢hods in the accuracy. The above
leads to the conclusion that feature set decomposiain be used for solving classification
problems in quality assurance and that using geaéjorithm can lead better results than
hill-climbing methods.

Additional issues to be further studied includeamining how the feature set decomposition
concept can be implemented using other induceesndural networks and by examining
other techniques to combine the generated class{fike voting).

Refer ences

1. Almuallim, H. and Dietterich, T.G. (1994) 'LearniBgolean concepts in the presence of
many irrelevant featuregrtificial Intelligence 69: 1-2, 279-306.

2. Domingos, P. and Pazzani, M. (1997) 'On the Opttgnalf the Naive Bayes Classifier
under Zero-One LossVlachine Learning29: 2, 103-130.

3. Fountain, T. Dietterich T. and Sudyka B. (2000inMg IC Test Data to Optimize VLSI
Testing",Proc. 6th ACM SIGKDD Conferenc8imoff J., Zaiane O., eds., Boston, MA,
USA, pp. 18-25.

4. Freitas, A. (2005) 'Evolutionary Algorithms for @aMining’, The Data Mining and
Knowledge Discovery Handbookaimon O. and Rokach L., eds., Springer, pp. 435-
467.

5. Gardner, M. and Bieker, J. (2000) 'Data mining eslvtough semiconductor
manufacturing problemsProc. 6th ACM SIGKDD Conferenc&imoff J., Zaiane O.,
eds., Boston, MA, USA, pp. 376-383.

6. Goldberg, D. (1989) 'Genetic Algorithms in SeardDptimization, and Machine
Learning. Reading’, MA: Addison-Wesley.

7. Hsu, W.H., Welge M., Wu J. and Yang T. (1999) 'Genalgorithms for selection and
partitioning of attributes in large-scale data miiproblems'Proc. of the Joint AAAI-
GECCO Workshop on Data Mining with Evolutionary étithms Freitas A., edt.
Orlando, FL, July, pp. 1-6.

8. Hsu, W. H. (2004) 'Genetic wrappers for featured@n in decision tree induction and
variable ordering in Bayesian network structureriesy’, Information Sciencesl63(1-
3):103-122.

9. Kudo, M. and Sklansky J. (2000) 'Comparison of atgms that select features for
pattern classifiersRattern Recognition33: 25-41.

10. Kusiak, A. (2000) 'Decomposition in Data Mining: Andustrial Case StudylEEE
Transactions on Electronics Packaging Manufactuyi2g(4) pp. 345-353.

22



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.
25.
26.

27.

Kusiak, A. (2001) 'Rough Set Theory: A Data Minifigpol for Semiconductor
Manufacturing'|EEE Transactions on Electronics Packaging Manufeoy, 24(1) pp.
44-50.

Kusiak, A. and Kurasek, C. (2001) 'Data Mining einked-Circuit Board DefectdEEE
Transactions on Robotics and Automatidrv(2) pp. 191-196.

Langley, P. and Sage, S. (1994) 'Induction of seledayesian classifierdroc. of the
Tenth Conference on Uncertainty in Artificial Intgénce Seattle, WA: Morgan
Kaufmann, pp. 399-406.

Last, M. and Kandel, A. (2001) 'Data Mining for Bess and Quality Control in the
Semiconductor IndustryData Mining for Design and Manufacturing: Methodsda
Applications Braha D., ed., Kluwer Academic Publishers, p¥-264.

Louis, S. J. and Rawlins G. J. E. (1993), 'Predlicticonvergence time for
genetic algorithmsFoundations of Genetic Algorithn2s Whitley L. D., editor, Morgan
Kaufmann, pp. 141-161.

Maimon, O., and Rokach, L. (2001) 'Data Mining bytribute Decomposition with
semiconductors manufacturing case studgta Mining for Design and Manufacturing:
Methods and Applicationg8raha D. ed., Kluwer Academic Publishers, pp.-33&.
Mansour, Y. and McAllester, D. (2000). GeneralizatBounds for Decision TreeBroc.
of the 13th Annual Conference on Computer Learflihgory San Francisco, Morgan
Kaufmann, pp. 69-80.

Opitz, D., and Shavlik, J. (1996) 'Actively searmhifor an effective neural-network
ensemble'Connection Scien¢&(3/4):337-353.

Opitz, D. (1999), 'Feature Selection for EnsemplBsbc. 16th National Conf. on
Atrtificial Intelligence Orlando, Florida , pp. 379-384.

Quinlan, J. R. (1993) 'C4.5: Programs for Machiearhing', Morgan Kaufmann
Rokach, L. and Maimon O., 'Feature Set Decompasitio Decision TreesJournal of
Intelligent Data Analysis9(2):131-158.

Rokach, L. and Maimon O. (2006) 'Data mining forpmoving the quality of
manufacturing: a feature set decomposition apptpadburnal of Intelligent
Manufacturing(Accepted for publication).

Schlimmer, J. C. (1993) 'Efficiently inducing deteénations: A complete and systematic
search algorithm that uses optimal prunifyoc. of the International Conference on
Machine LearningSan Mateo, CA, Morgan Kaufmann, pp 284-290.

Sharkey, A. (1996) 'On combining artificial neunats',Connection Scien¢®: 299-313.
Sharpe, P.K. and Glover, R.P. (1999) 'Efficient Ga#sed techniques for classification’,
Applied Intelligencell: 277-284,.

Van Zant, P. (1997) 'Microchip Fabrication: a Pieadt Guide to Semiconductor
Processing’, New York: McGraw-Hill.

Wolpert, D. H. (1995) 'The relationship between RA statistical physics framework,
the Bayesian framework, and the VC frameworkie Mathematics of Generalization
Wolpert D. H. ed., The SFI Studies in the ScierafeSomplexity, Addison-Wesley, pp.
117-214.

23



