
 1

Mining Manufacturing Data using Genetic Algorithm-Based
Feature Set Decomposition

Lior Rokach

Department of Information System Engineering
 Ben-Gurion University of the Negev

liorrk@bgu.ac.il

Keywords
Genetic Algorithm, Data Mining, Quality Engineering, Feature Set-Decomposition

Abstract
Data mining methods can be used for discovering interesting patterns in manufacturing
databases. These patterns can be used to improve manufacturing processes. However, data
accumulated in manufacturing plants usually suffers from the "Curse of Dimensionality", i.e.
relatively small number of records comparing to large number of input features. As a result,
conventional data mining methods may be inaccurate in these cases. This paper presents a new
feature set decomposition approach that is based on genetic algorithm. For this purpose a new
encoding schema is proposed and its properties are discussed. Moreover we examine the
effectiveness of using a Vapnik-Chervonenkis dimension bound for evaluating the fitness
function of multiple oblivious trees classifiers. The new algorithm was tested on various real-
world manufacturing datasets. The obtained results have been compared to other methods,
indicating the superiority of the proposed algorithm.

1. Introduction and Motivation
Data mining is a collection of tools that explore data in order to discover previously unknown
patterns. The accessibility and abundance of information today makes data mining a matter of
considerable importance and necessity. One of the most practical techniques used in data mining
is classification. The aim of classification is to build a classifier (also known as a classification
model) by induction from a set of pre-classified instances. The classifier can be then used for
classifying unlabelled instances. Given the long history and recent growth of the field, it is not
surprising that several mature approaches to induction are now available to the practitioner.
Decision tree induction is one of the most widely used approaches in data mining and machine
learning for classification problems (see for instance Quinlan, 1993). Decision Trees are
considered to be self-explained models and easy to follow when compacted.

In many modern manufacturing plants, data that characterize the manufacturing process are
electronically collected and stored in the organization's databases. Thus, data mining tools can be
used for automatically discovering interesting and useful patterns in the manufacturing
processes. These patterns can be subsequently exploited to enhance the whole manufacturing
process in such areas as defect prevention and detection, reducing flow-time, increasing safety,
etc. The literature presents several studies that examine the implementation of data mining tools
in manufacturing (Gardner and Bieker, 2000; Fountain et al., 2000; Kusiak and Kurasek, 2001;
Kusiak, 2001 and Last and Kandel, 2001, Kusiak and Kurasek, 2005, Rokach and Maimon,
2006).

 2

This paper focuses on mining quality-related data in manufacturing. Quality can be measured in
many different ways. Usually the quality of batches of products is measured and not that of a
single product. The quality measure can either have nominal values (such as "Passed"/"Not
Passed") or continuously numeric values (Such as the number of good chips obtained from
silicon wafer or the pH level in a cream cheese). Even if the measure is numeric, it can still be
reduced to a sufficiently discrete set of interesting ranges. In the cases that we examined, the
goal was to find the relation between the quality measure (target attribute) and the input
attributes (the manufacturing process data).

Several researchers have shown that the decomposition methodology can be appropriate for
mining manufacturing data (see for instance Kusiak, 2000). In our previous paper (Rokach and
Maimon, 2006) we have examined the idea of feature set decomposition for generalizing the task
of feature selection. Feature selection aims to provide a single representative set of features from
which a classifier is constructed. On the other hand, feature set decomposition decomposes the
original set of features into several subsets, and builds a classifier for each subset. Thus, a set of
classifiers are trained such that each classifier employs a different subset of the original features
set. Subsequently, an unlabelled instance is classified by combining the classifications of all
classifiers. This method potentially facilitates the creation of a classifier for high dimensionality
data sets without the above mentioned drawbacks of feature selection.

In our previous work (Rokach and Maimon, 2006) we have examined a simple hill-climbing
algorithm called BOW (Breadth-Oblivious-Wrapper) that searches for the optimal
decomposition. One limitation with the BOW algorithm is that it has no backtracking capabilities
(for instance, removing a single feature from a subset or removing an entire subset).
Furthermore, the search of BOW begins from an empty decomposition structure, which may lead
to subsets with relatively small number of features. This paper suggests a more profound
exploration of the search space. Because performing exhaustive search is intractable for large
problems, we decided to employ genetic algorithm.

Evolutionary Algorithms (EAs) are stochastic search algorithms inspired by the process of
Darwinian evolution (Goldberg, 1989). The motivation for applying EAs to data mining tasks is
that they are robust, adaptive search techniques that perform a global search in the solution space
(Freitas, 2005). Genetic algorithm is a popular type of evolutionary algorithm and was
successfully used for feature selection (Sharpe and Glover, 1999; Kudo and Skalansky, 2000;
Hsu, 2004). In general GAs, with their associated global search in the solution space, usually
(though not always) obtain better results than local search-based attribute selection methods.

Feature set decomposition is closely related to ensemble methods that manipulate the input
attribute set for creating the ensemble member. Both decomposition methodology as well as
ensemble methodology applies the multiple classifiers approach for solving a classification task.
However, Sharkey (1996) distinguishes between these methodologies in the following way: The
main idea of ensemble methodology is to combine a set of classifiers, each of which solves the
same original task. In a typical ensemble setting, each classifier is trained on data taken or re-
sampled from a common data set or randomly selected partitions. On the other hand, the purpose
of decomposition methodology is to break down a complex problem into several manageable
problems, such that each inducer aims to solve a different task or has been applied to a different
training set.

 3

Opitz and Shavlik (1996) applied GAs to ensembles. However its genetic operators were
designed explicitly for hidden nodes in knowledge-based neural networks and the algorithm does
not work well with problems lacking prior knowledge. In a later research Opitz (1999) uses
genetic search for ensemble feature selection. The Genetic Ensemble Feature Selection strategy
begins with creating an initial population of classifiers where each classifier is generated by
randomly selecting a different subset of features. Then, new candidate classifiers are continually
produced by using the genetic operators of crossover and mutation on the feature subsets. The
final ensemble is composed of the most fitted classifiers.

In this paper we are interested in decomposing the original feature set into several mutually
exclusive subsets. Feature set decomposition can be seen as a generalization of the feature
selection task. Moreover it can be seen as specific case of ensemble methodology in which
members are using disjoints feature subsets. Given the positive evidence of using genetic
algorithm for feature selection tasks from one hand and for creating ensemble of classifiers from
the other hand, using genetic algorithm in this case is, therefore, self-evident. In fact Hsu et al.
(1999) have brought up this idea as part of position paper. However there is no report whether
this idea was implemented and whether it can improve classification performance in general and
in manufacturing databases in particularly.

Moreover all the abovementioned genetic algorithms for feature selection or feature ensemble
have used the wrapper approach for evaluating the fitness function. In this approach a certain
solution is evaluated by repeatedly sampling the training set and measuring the accuracy of the
inducers obtained for feature subsets over a holdout validation data set. The main advantages of
this approach are the fact that it generates reliable evolutions and that it can be used for any
induction algorithm. Nevertheless the fact that the wrapper procedure repeatedly executes the
inducer is considered major drawback. For this reason, wrappers may not scale well to large
datasets containing many features.

The aim of this work is to examine whether genetic algorithm-based feature set decomposition
can improve the classification performance. For this purpose a new encoding schema is
proposed. Using theoretical results it is explained why this new encoding is more suitable than
more straightforward encoding schema. Moreover in order to avoid the abovementioned
drawback of the wrapper approach, we employ Vapnik-Chervonenkis dimension bound for
multiple oblivious trees to evaluate the fitness function. A caching mechanism is suggested in
order to additionally reduce the computational complexity of the genetic algorithm.

The rest of the paper is organized as follows. In Section 2 we present a formal formulation of the
feature set decomposition problem. Section 3 presents a GA framework for solving the problem.
Section 4 presents an experimental study that compares the performance of a certain
implementation of the suggested GA framework to other non-GA methods. Finally, we describe
conclusion and future work in Section 5.

2. Problem Formulation
In a typical classification problem, a training set of labelled examples is given and the goal is to
form a description that can be used to predict previously unseen examples. The training set can
be described in a variety of languages, most frequently, as a collection of records that may

 4

contain duplicates. Each record is described by a vector of attribute values. The notation A
denotes the set of input attributes containing n attributes: },...,,...,{ 1 ni aaaA = -and y represents

the class variable or the target attribute. Attributes (sometimes referred to as fields, variables or
features) are typically one of two types: categorical (values are members of a given set), or
numeric (values are real numbers). When the attribute ia is categorical, it is useful to denote its

domain values by },...,,{)()(,2,1, iadomiiii vvvadom = , where)(iadom stands for its finite cardinality.

In a similar way, },...,{)()(1 ydomccydom = represents the domain of the target attribute. Numeric

attributes have infinite cardinalities.

The instance space (the set of all possible examples) is defined as a Cartesian product of all the
input attributes domains:)(...)()(21 nadomadomadomX ×××= . The Universal Instance Space

(or the Labelled Instance Space) U is defined as a Cartesian product of all input attribute
domains and the target attribute domain, i.e.:)(ydomXU ×= .

The training set consists of a set of m records and is denoted as 1(, ,..., ,)mS y y= < > < >1 mx x

where X∈qx and)(ydomyq ∈ .

Usually, it is assumed that the training set records are generated randomly and independently
according to some fixed and unknown joint probability distribution D over U. Note that this is a
generalization of the deterministic case when a supervisor classifies a record using a function

()y f= x .

The notation I represents a probabilistic inducer (i.e. an algorithm that generates classifiers that
also provide estimates to the conditional probability of the target feature given the input
features), and ()I S represent a probabilistic classifier which was induced by activating the
induction method I onto dataset S. In this case it is possible to estimate the conditional

probability () ,
ˆ (; 1,...,)I S j i q iP y c a x i n= = = of an observation xq. Note the addition of the “hat” -

^ - to the conditional probability estimation is used for distinguishing it form the actual
conditional probability.

Consider a set of examples labeled positive and negative, and a classifier predicting the label for
each example (the choice as to which class is called positive is usually arbitrary. In this case the
"not passed QA" class will be considered as positive). A positive (negative) example that is
correctly classified by the classifier is called a true positive (true negative); a positive (negative)
example that is incorrectly classified is called a false negative (false positive). These numbers
can be organized in a confusion matrix shown in Table 1.

Table 1: Confusion Matrix for Binary Classification Problem
Actual \ Classification Classified as Positive Classified as Negative

Actually Positive True Positive False Negative

Actually Negative False Positive True Negative

 5

The accuracy measure that is usually employed for evaluating the performance of classifiers is
defined as:

True Positive True Negative
Accuracy

True Positive False Positive True Negative False Negative

+=
+ + +

 (1)

The problem of decomposing an input feature set is that of finding the best decomposition, such that if a
specific inducer is run on each feature subset data, then the combination of the generated classifiers will
have the highest possible accuracy. Consequently the problem can be formally phrased as follows:

Given an inducer I, a combination method C, and a training set S with input feature set
},...,,{ 21 naaaA = and target feature y from a distribution D over the labeled instance space, the goal

is to find an optimal decomposition 1{ ,... ..., }opt kZ G G Gω= of the input feature set A into ω mutually

exclusive subsets ωα ,...,1;},...,1{)(=== kljaG kjk k
that are not necessarily exhaustive such that the

generalization error of the induced classifiers ωπ ,...,1;)(=∪ kSI yGk
combined using method C, will

be minimized over the distribution D.

where },...,1{)(kjk ljaG

k
== α indicates the k'th subset that contains lk input attributes such that

},...,1{},...,1{: nlkk →α is a function that maps the attribute index j in the subset k to the original

attribute index in the set A. })(..},...,1{{ ijtsljiR kkk =∈∃= α denotes the corresponding indexes

of subset k in the complete attribute set A and SyGk ∪π represents the corresponding projection of

S.

It should be noted that the optimal is not necessarily unique. Furthermore it is not obligatory that
all input features will actually belong to one of the subsets.

This paper focuses on feature set decomposition designed for decision trees which are combined
using the Naive Bayes combination, namely I is any decision tree inducer and C is the Naive
Bayes combination. In the Naive Bayes combination a classification of a new instance is based
on the product of the conditional probability of the target feature, given the values of the input
features in each subset. Mathematically it can be formulated as follows:

 ∏
=

>=
∈ =

∈==
⋅== ∪

ω
π

1)(

,)(

)(

0)(ˆ
)()(ˆ

)(ˆ
)(ˆmaxarg)(

)(

k jSI

kiqijSI

jSI

cyP
ydomc

qMAP
cyP

RixacyP
cyPxv ykG

jSI

j

 (2)

or:

1
)(

1
,)(

0)(ˆ
)()(ˆ

)(ˆ

maxarg)(

)(

−
=

>=
∈ =

∈==
=

∏ ∪

ω

ω

π

jSI

k
kiqijSI

cyP
ydomc

qMAP
cyP

RixacyP
xv

ykG

jSI

j

 (3)

Recall that Rk denotes the correspondence indexes of subset k in the complete feature set A. In

case of decision trees, () ,
ˆ ()

G yk
I S j i q i kP y c a x i Rπ ∪

= = ∈ can be estimated by using the appropriate

frequencies in the relevant leaf. However using the frequency as is will typically over-estimate
the probability. In order to avoid this phenomenon it is useful to perform the Laplace correction

 6

(Domingos and Pazzani, 1997). According to Laplace's law of succession, the probability of the
event y=ci where y is a random variable and ci is possible outcome of y which has been observed
mi times out of m observations is:() /()i a priorim kp m k−+ + . Where pa-priori is an a-priori probability

estimation of the event and k is the equivalent sample size that determines the weight of the a-
priori estimation relative to the observed data.

3. A Genetic Algorithm Framework for Feature Set Decomposition
3.1 Overview
In order to solve the problem defined in Section 2, we suggest using a genetic algorithm search
procedure. Figure 1 presents a high level pseudocode of GA adapted from Freitas (2005).

Genetic algorithms begin by randomly generating a population of L candidate solutions. Given
such a population, a genetic algorithm generates a new candidate solution (population element)
by selecting two of the candidate solutions as the parent solutions. This process is termed
Reproduciton. Generally, parents are selected randomly from the population with a bias toward
the better candidate solutions. Given two parents, one or more new solutions are generated by
taking some characteristics of the solution from the first parent (the "father") and some from the
second parent (the "mother"). This Process is termed Crossover. For example, in genetic
algorithms that use binary encoding of n bits to represent each possible solution, we might
randomly select a crossover bit location denoted as o. Two descendants' solutions could then be
generated. The first descendant would inherit the first o string characteristics from the father and
the remaining n-o characteristics from the mother. The second descendant would inherit the first
o string characteristics from the mother and the remaining n-o characteristics from the father.
This is type of crossover is the most common and it is termed One-Point Crossover. Crossover is
not necessarily applied to all pairs of individuals selected for mating: a Pcrossover probability is
used in order to decide whether crossover will be applied. If crossover is not applied, the
offspring are simply duplications of the parents.

Finally, once descendant solutions are generated, genetic algorithms allow characteristics of the
solutions to be changed randomly in a process know as Mutation. In the binary encoding
representation, according to a certain probability (Pmut) each bit is changed from its current value
to the opposite value. Once a new population has been generated, it is decoded and evaluated.
The process continues until some termination criterion is satisfied.

To implement a genetic algorithm one is required to provide a schema for encoding,
manipulating and evaluating the solution. The following sections present the schemes suitable to
the problem discussed in this paper.

 7

Create initial population of individuals
 (candidate solutions)
Compute the fitness of each individual
REPEAT
 Select individuals based on fitness
 Apply genetic operators to selected individuals,
 creating new individuals
 Compute fitness of each of the new individuals
 Update the current population
 (new individuals replace old individuals)
UNTIL (stopping criteria)

Figure 1: A Pseudocode for GA

3.2 Encoding and Genetic Operators
A candidate solution consists mainly of values of variables - in essence, data. In particular, GA
individuals are usually represented by a fixed-length linear genome. The following subsection
presents two alternative encoding for the problem and their properties.

3.2.1 Simple Encoding
A straight forward individual representation for feature set decomposition consists simply of a
string of n integers. Recall that n is the number of features. The the i-th integer, i=1,…, n, can
take the value 0,…,n, indicating to which subset (if any) the i-th attribute belongs. A value of 0
indicates that the corresponded attribute is not selected and filtered out. For instance, in a
10-attribute data set, the individual '1 0 2 0 1 3 3 2 0 1' represents a candidate solution where the
1st, 5th and 10th attributes are located in the first subset. The 3rd and 8th are located in the
second subset. The 6th and the 7th are located in the third group. All other attributes are filtered
out. This individual representation is simple, and traditional one-point crossover operator can be
easily applied. As to the mutation operator, according to a certain probability (Pmut) each integer
is changed from its current value to a different valid value.

The last representation has redundancy, i.e. the same solution can be represented in several ways.
For instance the illustrated solution '1 0 2 0 1 3 3 2 0 1' can be also represented as
'3 0 1 0 3 2 2 1 0 3'. Moreover similar solutions can be represented in quite different ways. This
property can lead to situations in which the offspring are dissimilar to their parents. For instance
if we perform the one-point crossover operator on the two above equal solutions: '1 0 2 0 1 3 3 2
0 1' and '3 0 1 0 3 2 2 1 0 3' we may obtain the following descendant solution '1 0 2 0 3 5 5 1 0
3'. Because the two parents are equal we expect that the descendant (before mutation) should be
also equal. However this is not the case here and the descendant represent quite different
solution. Although the above case is rare, it still illustrates the problematic character of the above
representation. Besides being not compact, the above encoding may result in a slow
convergence of the genetic algorithm. A GA converges when most of the population is identical,
or in other words, the diversity is minimal (Louis and Rawlins, 1993). Louis and Rawlins (1993)
analyzed the convergence of binary strings using the Hamming distance and showed that
traditional crossover operators (such as one-point crossover operator) does not change the
average Hamming distance of a given population. In fact selection is responsible to the
Hamming distance convergence. Thus, we should look for encoding with similar properties. The
next subsection proposes such encoding.

 8

3.2.2 Adjacency Matrix Encoding
We begin by defining a measure called Decomposition Structural Distance. This measure can be
used to determine the distance of two decomposition structures as following:

Definition 1: Decomposition Structural Distance (DSD):

∑ ∑
−

= += −⋅
⋅

=
1

1 1

21
21

)1(

),,,(2
),(

n

i

n

ij

ji

nn

ZZaa
ZZ

η
δ

 (4)

where 1 2(, , ,)i ja a Z Zη is a binary function that returns the value "0" if the features ,i ja a belong to the

same subset in both decompositions 1 2,Z Z or if ,i ja a belong to different subsets in both decompositions.

In all other cases the function returns the value "1".

∈∈∈∈≠≠∃
∈∈∃

∉∉∈∈

∈∈∉∉

∉∉∉∉

=

====

====

====

otherwise

RjRiRjRikkkk

RjiRjikk

RjRjandRiRi

RjRjandRiRi

RjRjandRiRi

ZZaa

kkkk

kk

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

ji

1

,;,;,0

,,,;,0

;;0

;;0

;;0

),,,(

2211
2,21,22,11,1

21
21

1

2

1

1

1

2

1

1

1

2

1

1

1

2

1

1

1

2

1

1

1

2

1

1

21

2,21,22,11,1

21

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

∪∪∪∪

∪∪∪∪

∪∪∪∪

ωωωω

ωωωω

ωωωω

η (5)

For example, given that },,,,,{ 654321 aaaaaaA = , }},{};,{{ 3524
1 aaaaZ = and

}},{};,,{{ 42531
2 aaaaaZ = then:

15

5
)000000000011111(

30

2
)),,,(

),,,(),,,(),,,(),,,(

),,,(),,,(),,,(),,,(

),,,(),,,(),,,(),,,(

),,,(),,,((
65

2

)1(

),,,(2
),(

21
65

21
64

21
54

21
63

21
53

21
43

21
62

21
52

21
42

21
32

21
61

21
51

21
41

21
31

21
21

1

1 1

21
21

=++++++++++++++=+

++++

++++

++++

+
⋅

=
−⋅

⋅
=∑ ∑

−

= +=

ZZaa

ZZaaZZaaZZaaZZaa

ZZaaZZaaZZaaZZaa

ZZaaZZaaZZaaZZaa

ZZaaZZaa
nn

ZZaa
ZZ

n

i

n

ij

ji

η

ηηηη
ηηηη

ηηηη

ηη
η

δ

It is important to note that the Structural Distance Measure is an extension of the Rand index
(Rand 1971) developed for evaluating clustering methods.

 9

Lemma 1: Structural Distance Measure Properties

The Structural Distance Measure has the following properties:
1. Symmetry:),(),(1221 ZZZZ δδ =

2. Positivity: 0),(21 =ZZδ IIf 21 ZZ =

3. Triangular Inequality:),(21 ZZδ ≤),(31 ZZδ +),(32 ZZδ

Proof

The proof of the first property of Lemma 1 results explicitly from definition. So is the proof of
the first direction of property 2 of Lemma 1, namely If 21 ZZ = then 0),(21 =ZZδ .

The opposite direction, namely if 0),(21 =ZZδ then 21 ZZ = , is proved by contradiction. We

assume that there are cases where 0),(21 =ZZδ but 21 ZZ ≠ . If 21 ZZ ≠ then without loss of

generality 11 ZGi ∈∃ such that there is no 22 ZG j ∈ which fulfills 21
ji GG = . Consequently

ji aa ,∃ such that 1),,,(21 =ZZaa jiη , which contradict the assumption and therefore our original

assumption that 0),(21 =ZZδ but 21 ZZ ≠ must be false.
In order to prove property 3 of Lemma 1, note that:

∑ ∑
−

= += −⋅
+

⋅=+
1

1 1

3231
3231

)1(

),,,(),,,(
2),(),(

n

i

n

ij

jiji

nn

ZZaaZZaa
ZZZZ

ηη
δδ

Because the following arguments hold:

1. If 0),,,(),,,(3231 =+ ZZaaZZaa jiji ηη then 0),,,(21 =ZZaa jiη

2. If 2),,,(),,,(3231 =+ ZZaaZZaa jiji ηη then 0),,,(21 =ZZaa jiη

3. If 1),,,(),,,(3231 =+ ZZaaZZaa jiji ηη then 1),,,(21 =ZZaa jiη

Then also the triangular inequality is true.

By using an adjacency matrix like encoding, one can represent any decomposition structure as n
x n matrix in which cell (i , j) gets the value "1" if attributes ai and aj are located in the same
group, cell (i , j) gets the value "-1" if attributes ai and aj are both filtered out and it gets the
value "0" otherwise. The values on the diagonal indicate whether each attribute filtered out (-1)
or not (1). For example, Table 2 illustrates the representation of }},{};,{{ 3524

1 aaaaZ = given

that },,,,,{ 654321 aaaaaaA = . Note that because the above matrix is always symmetric, we can

specify only the upper triangle.

 10

Table 2: Illustration of adjacency matrix like encoding

 a1 a2 a3 a4 a5 a6
a1 -1 0 0 0 0 -1
a2 0 1 0 1 0 0
a3 0 0 1 0 1 0
a4 0 1 0 1 0 0
a5 0 0 1 0 1 0
a6 -1 0 0 0 0 -1

Definition 2: Encoding Matrix A is said to be well-defined if:

1. Commutative: ; (,) (,)i j cell i j cell j i∀ ≠ =
2. Transitive: ; (,) 0 (,) 0 (,) 0i j k if cell i j and cell i k then cell j k∀ ≠ ≠ ≠ ≠ ≠
3. Sign Property: ; (,) 0 (,) (,)i j if cell i j then cell i j cell i i∀ ≠ ≠ =

We now suggest a new crossover operator call "Group-wise Crossover" (GWC) that works in the
following way. We select one anchor subset from the subsets that define the first parent
decomposition and one anchor subset from the subsets that define the second parent
decomposition (the selected subset can be also the filtered out subset). The anchor subsets are
used as-is without any addition or diminution of attributes.

The first offspring is created by copying the columns and rows of the attributes that belong to the
first selected anchor subset from the first parent. All remaining cells are filled in with the
corresponding values that are obtained from the second parent. The second offspring is similarly
created using the second anchor subset by copying the appropriate columns and the rows from
the second parent and then fill in the remaining cells with the corresponding values from the first
parent.

Example: Assuming that two decompositions }},{};,{{ 3524

1 aaaaZ = and
2

2 6 1 4 3 5{{ , };{ , , }{ }}Z a a a a a a= are given over the feature set },,,,,{ 654321 aaaaaaA = . In order to

perform GWC operator, two anchor subsets are selected, one from every decompositions:

2 4{ , }a a from Z1 and 1 4 3{ , , }a a a from Z2. Figure 2 illustrates representations of the Z1 and Z2 and

their offspring Z3 and Z4. Z3 is obtained by keeping the group 2 4{ , }a a and the remaining cells

are copied from Z2. Z4 is obtained by keeping the group 1 4 3{ , , }a a a and the remaining cells are

copied from Z1. Thus, 3
2 4 1 3 5 6{{ , };{ , };{ };{ }}Z a a a a a a= and 4

1 4 3 5 2{{ , , };{ };{ }}Z a a a a a=

The highlighted cells indicate the selected group that was copied into the offspring.

 11

 Z1 Z2

 a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6
a1 -1 0 0 0 0 -1 a1 1 0 1 1 0 0
a2 0 1 0 1 0 0 a2 0 1 0 0 0 1
a3 0 0 1 0 1 0 a3 1 0 1 1 0 0
a4 0 1 0 1 0 0 a4 1 0 1 1 0 0
a5 0 0 1 0 1 0 a5 0 0 0 0 1 0
a6 -1 0 0 0 0 -1 a6 0 1 0 0 0 1

 Z3 Z4

 a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6
a1 1 0 1 0 0 0 a1 1 0 1 1 0 0
a2 0 1 0 1 0 0 a2 0 1 0 0 0 0
a3 1 0 1 0 0 0 a3 1 0 1 1 0 0
a4 0 1 0 1 0 0 a4 1 0 1 1 0 0
a5 0 0 0 0 1 0 a5 0 0 0 0 1 0
a6 0 0 0 0 0 1 a6 0 0 0 0 0 -1

Figure 2: Illustration of GWC operator

Lemma 2: A projection of well-defined encoding matrix is well-defined encoding matrix.

Proof

A projection of matrix is obtained by removing certain attributes (i.e. removing their
corresponding rows and columns). Without the loss of generality we assume that the removed
attributes are the last t attributes. Let assume by contradiction that the projected matrix is not
well-defined but the original matrix is well-defined. Because the projected matrix is not well-
defined then , ,i j k n t∃ ≤ − that violates one of the constraints specified in definition 2. However
because the original matrix is well-defined then for , ,i j k n∀ ≤ or more specifically for

, ,i j k n t∀ ≤ − the above constraints hold. Thus, we have reached to a contradiction and
therefore our original assumption is not true.

Lemma 3: Performing GWC operator on two well-defined encoding matrices generates a

new well-defined encoding matrix

Proof

The way in which the GWC operator is defined the new offspring are obtained by diagonally
concatenating the projections of the anchor subset from one parent and the remaining attributes
from the second parent. Based on Lemma 2, because the parents were well-defined so are their

 12

projections. It remains to show that the cells that are not obtained from the projection do nor
violate definition 2.

We denote by R the original attribute index of the anchor subset in the set A. Because the rows
and columns of the anchor subset R are copied as-is, then cell(i,j)= cell(j,i)=0 for ;i R j R∀ ∈ ∉ .
Therefore constrain 1 in definition 2 is always true and constraints 2 and 3 are not relevant in this
case.

Lemma 4: Operator GWC creates offspring that their distance is not greater than the
distance of their parents.

Proof

We denote by Z1 and Z2 the parent solutions and by Z3 and Z4 the offspring. Because each cell of
the offspring are obtained from one of the parent then,

3 1 3 2 1 2(,) (,) (,)Z Z Z Z Z Zδ δ δ+ =
4 1 4 2 1 2(,) (,) (,)Z Z Z Z Z Zδ δ δ+ =

The last equation is true because in Equation (4), the term 1 2(, , ,) 0i ja a Z Zη = if cells (i,j) in

both matrices are equal.

Using the triangular inequality we obtain that:

3 4 3 1 4 1(,) (,) (,)Z Z Z Z Z Zδ δ δ≤ +
3 4 3 2 4 2(,) (,) (,)Z Z Z Z Z Zδ δ δ≤ +

Thus:

3 4 3 1 4 1 3 2 4 22 (,) (,) (,) (,) (,)Z Z Z Z Z Z Z Z Z Zδ δ δ δ δ≤ + + +

or:

3 3 1 2(,) (,)Z Z Z Zδ δ≤

Lemma 4 indicates that the GWC operator together with the proposed encoding does not slow
down the convergence of the genetic algorithm. Together with the selection process that prefers
solutions with higher fitness values, one can ensure that the algorithm does converge (Louis and
Rawlins, 1993). As to the mutation operator, according to a certain probability (Pmut) each
attribute can be cut off from its original group and join another randomly selected group.

 13

3.3 Fitness Function

In each iteration, we have to create a new population from the current generation. The selection
operation determines which parent chromosomes participate in producing offspring for the next
generation. Usually, members are selected for mating with a selection probability proportional to
their fitness values. The most common way to implement this method is to set the selection
probability pi equal to:

i
i

j
j

fp
f

=
∑

 (6)

For a classification problem, the fitness value fi of the ith member can the complement to 1 of the
generalization error. Note that using training error as-is is not sufficient for evaluating
classifiers due to over-fitting phenomena.

The following subsections present two evaluation methods for the generalization error. The first
method utilizes the Wrapper methodology. The second method uses a new VC-Dimension bound
developed for this purpose.

3.3.1 Wrapper Approach
The most straightforward to estimate generalization error is to use the wrapper procedure. In this
approach the decomposition structure is evaluated by repeatedly sampling the training set and
measuring the accuracy of the inducers obtained for this decomposition on an unused portion of
the training set. This is the most common approach for evaluate the fitness function in attribute
selections problems.

3.3.2 VC-Dimension Framework

An alternative approach for evaluating performance is to use the generalization error bound in
terms of the training error and concept size. In the book “Mathematics of Generalization”,
Wolpert (1995) discuss four theoretical frameworks for estimating the generalization error,
namely: PAC, VC and Bayesian, and Statistical Physics. All these frameworks combine the
training error (which can be easily calculated) with some penalty function expressing the
capacity of the inducers. In this paper we decided to use the VC theory for evaluating the
generalization error bound. According to the VC theory the bound on the generalization error of
hypothesis space H with finite VC-Dimension d is given by:

m
d

m
d

ShDh 4
ln)1

2
(ln

),(ˆ),(

δ

εε
−+⋅

≤−
 0>∀

∈∀
δ

Hh

 (7)

 14

with probability of 1 δ− . where ˆ(,)h Sε represents the training error of classifier h measured on
training set S of cardinality m and (,)h Dε represents the generalization error of the classifier h
over the distribution D.

In order to use the bound (Equation 7), one needs to measure the VC-Dimension. The VC
dimension for a set of indicator functions is defined as the maximum number of data points that
can be shattered by the set of admissible functions. By definition, a set of m points is shattered
by a concept class if there are concepts (functions) in the class that split the points into two
classes in all of the 2m possible ways. The VC dimension might be difficult to compute
accurately and it depends on the induction algorithm.

In this paper concentrates on decision tree inducers and more specifically on Oblivious
Decision Trees. Oblivious Decision Trees are found to be effective for feature selection which is
a simplified case of the problem solved here. Oblivious Decision Trees are decision trees, for
which all nodes at the same level test the same feature.

Figure 3 demonstrates a typical ODT with three input features: the slicing machine model
used in the manufacturing process; the rotation speed of the slicing machine and the shift (i.e.
when the item was manufactured); and the Boolean target attribute representing whether that
item passed the quality assurance test. The arcs that connect the hidden terminal nodes and the
nodes of the target layer are labeled with the number of records that fit this path. For instance,
there are twelve items in the training set which were produced using the old slicing machine that
was setup to rotate at a speed greater than 1000 RPM and that were classified as “good” items
(i.e. passed the QA test).

0

Bad

1

2

3

4

6

5

Good New Slicing
Machine

Slicing
 Machine

Layer

Old Slicing
Machine

Shift
Layer

Night

Morning

Rotation
 Speed
Layer

<= 1000 RPM

> 1000 RPM

Target
Layer

105

23 12

3

8

31

98

11

Figure 3: Oblivious Decision Tree for Quality Assurance

The principal difference between the oblivious decision tree and a regular decision tree

structure is the constant ordering of input features at every terminal node of the oblivious
decision tree, the property which is necessary for minimizing the overall subset of input features
(resulting in dimensionality reduction). Therefore despite its restriction, an oblivious decision
tree is found to be effective as a feature selection procedure. Almuallim and Dietterich (1994), as
well as Schlimmer (1993), have proposed forward feature selection procedure by constructing
oblivious decision trees while Langley and Sage (1994) suggested backward selection using the

 15

same means. Recently Last et al. (2002) have suggested a new algorithm for constructing
oblivious decision trees, called IFN (Info-Fuzzy Network) which is based on information theory.

In the case of feature set decomposition each subset is represented by an oblivious decision
tree and each feature is located on a different layer. As a result, adding a new feature to a subset
is performed by adding a new layer and connecting it to the nodes of the last layer. The nodes of
a new layer are defined as the Cartesian product combinations of the previous layer’s nodes with
the values of the new added feature. In order to avoid unnecessary splitting, the algorithm splits a
node only if it is useful. In this paper we split a node, if the information gain of the new feature
in this node is strictly positive.

The unique structure of oblivious decision tree is very convenient to our genetic algorithm
approach. Moving from one generation to the other usually require a small changes on the subset
structures. Because each feature is located on a different layer, it relatively easy to add or remove
features incrementally; As opposed to regular decision tree inducers in which each iteration of
the search may require generating the decision tree from scratch.

As stated before, using an oblivious decision tree may be attractive in this case as it adds features
to a classifier in an incremental manner. Oblivious decision trees can be considered as restricted
decision trees. For that reason any generalization error bound that has been developed for
decision trees in the literature (Mansour and McAllester, 2000) can be used in this case also.
However, there are several reasons to develop a specific bound. First, by utilizing the fact that
the oblivious structure is more restricted, it might be possible to develop a tighter bound. Second,
in this case it is required to extend the bound for several oblivious trees combined using the
Naive Bayes combination.

The following theorem introduces an upper bound and a lower bound of the VC dimension that
was recently proposed by us in the hill-climbing algorithm for feature set decomposition (Rokach
and Maimon, 2005). The hypothesis class of multiple mutually exclusive oblivious decision trees

can be characterized by two vectors and one scalar: 1(,...,)L l lω=
�

 , 1(,...,)T t tω=
�

and n, where lk

is the numbers of layers (not including the root and target layers) in the tree k, tk is the number of
terminal nodes in the tree k and n is the number of input features.

For the sake of simplicity, the bound described in this section is developed assuming that the
input features and the target feature are both binary. This bound can be extended for other cases
in a straightforward manner. Note that each oblivious decision tree with non-binary input
features can be converted to a corresponding binary oblivious decision tree by using appropriate
artificial features.

Theorem 1: Upper and Lower Bound for VC dimension of Multiple Oblivious Decision
Trees Combined with Naive Bayes

The VC-Dimension of ω mutually exclusive oblivious decision trees on n binary input features

that are combined using the Naive Bayes combination and that have 1(,...,)L l lω=
�

 layers and

1(,...,)T t tω=
�

 terminal nodes is not greater than:
log 1

2(1) log(2) 2 log 1

F U

F e U

ω
ω

+ =
 + + >

and at least: 1F ω− +

 16

where:
1

i
i

F t
ω

=

=∑
1

1

(2 4)!!

(2)! (2)!
! ()!

i

i i i
i

i

tn
U

t t
n l

ω

ω

ω =

=

−
= ⋅

− ⋅ −⋅ −
∏

∑
.

The proof of the Theorem can be found in (Rokach and Maimon, 2005).

3.4 Caching Mechanism

The Achilles heel of using genetic algorithm in feature set decomposition problem is that it
requires the creation of a classifier for each subset in each solution candidate. Assuming that
there are G generations, the population size is L, and that each solution has on average D subsets,
then :G L D⋅ ⋅ classifiers are created. Recall that by using oblivious decision trees we might not
need to create from scratch each classifier but reuse classifiers that have already created. It is
well know fact that one can trade computational complexity with storage complexity. Thus we
suggest using the following caching mechanism.

First of all when moving from one generation to the consequent generation, we can use all
subsets that have remained without any change. By using the GWC operator and ignoring the
mutation, each member in the new population has at least one subset (the anchor subset) that has
not been changed at all. Moreover all other subsets have some common members. In that case
we can not use the oblivious decision tree as-is because the original tree might use attributes that
are not used in the inherited subset. For this purpose we eliminate attributes from the oblivious
tree, layer by layer until we obtain an oblivious decision tree that all its attributes are used in the
inherited subset.

Example: Assuming that two decompositions 1

2 4 5 3{{ , };{ , }}Z a a a a= and
2

2 6 1 4 3 5{{ , };{ , , }{ }}Z a a a a a a= are given over the feature set },,,,,{ 654321 aaaaaaA = . We also

assume that in the previous generation the following attribute order has been used in the created
oblivious decision trees: 4 2 5 3;a a a a→ → 2 6 1 3 4 5; ; ;a a a a a a→ → →

 Recall that by using the GWC operator (and ignoring the mutation operator), the following
subsets may be obtained: 3

2 4 1 3 5 6{{ , };{ , };{ };{ }}Z a a a a a a= and 4
1 4 3 5 2{{ , , };{ };{ }}Z a a a a a= .

Thus in order to create the oblivious decision trees to Z3 and Z4, we can use the following
oblivious decision trees as-is: 4 2;a a→ 1 3 4 5;a a a a→ → . The oblivious tree for 6{ }a will be

created from scratch. The remaining subsets can be (partially or completely) obtained by
removing attributes from the existing oblivious decision trees. The tree for1 3{ , }a a can be

obtained by removing attribute 6a from 2 6a a→ . This removal is possible as 4a is located last.

The tree for 2{ }a can be obtained by removing attribute 4a from 1 3 4a a a→ → .

Additionally to using the oblivious decision trees of the previous generations, we can use the
existing resemble in different subset of the current generation. While generating a decision tree,
we check at the end of each iteration (i.e. after adding a new attribute to the decision tree) if there
is another solution in the current generation that also group these features together in the same
subset. If this is the case, we store the current decision tree in the memory cache for future use.
Later on when time has come to generate the decision tree for the solution with the common

 17

subset, instead of creating the tree from scratch we use the tree that was stored in the caching
mechanism. For example if in the first generation we have the following members:

1 1 4 5 6 2 3 8 10 7 9{ , , , }; { ; ; ; }; { ; }Z a a a a a a a a a a=

2 1 5 6 8 2 3 4 10 7 9{ , , , }; { ; ; ; }; { ; }Z a a a a a a a a a a=

3 1 3 4 5 6 2 8 10 7 9{ , , , , }; { ; ; }; { ; }Z a a a a a a a a a a=

Assuming that we are evaluating the members one by one according to the above order and that
while creating the tree for the first subset in the first solution we got a decision tree with the
following order 5 1 6 a a a→ → then we might want to store this tree in the caching

mechanism, and use it also in members 2 and 3.

It should be noted that using this caching mechanism reduce the search space, because it dictates
the order in which the features are located in the decision tree. For instance in the last example
the first tree of solution 2 could have the following structure: 8 1 5 6a a a a→ → → . However by

using the tree 5 1 6 a a a→ → that was stored in the cache we ignore this structure in advance. In

order to solve this dilemma we decided no to store small trees (in this paper less than 3
attributes). In these cases the saving in computational complexity is not worth the loss in
generalization capability.

Obviously we would like to store in the cache the longest common subset. Thus in each iteration
we check if the current tree still can be used by the same number of solutions. If this is the case
the current tree will replace the older one.

4. Experimental Study
4.1 Overview
The aim of this experimental study is to examine whether the genetic algorithm framework for
feature set decomposition approach can improve the classification performance in mining quality
assurance problems. For this purpose, a comparative experiment was conducted on three real-
life datasets obtained from two manufacturers with an average yearly income of more than 1
billion dollars. The first dataset was obtained from a manufacturer of dairy products. The last
two datasets were obtained from a wafer manufacturer.

This study examines an implementation of genetic algorithm to feature set decomposition using
the suggested adjacency matrix encoding, GWC operator and fitness function that is based on the
VC dimension of multiple oblivious decision trees combined with Naive Bayes. This algorithm
is called GOV (Genetic algorithm for Oblivious decision tree using VC-dimension estimation).
The performance of GOV algorithm is compared with our previous feature set decomposition
(BOW), Naive Bayes and C4.5 (Quinlan, 1993) algorithms. The Naïve Bayes was chosen since it
represents a specific point in the search space of the GOV algorithm. The C4.5 algorithm was
selected because it is considered as a state-of-the-art decision tree algorithm which is widely

 18

used in many other comparative studies. The following subsections describe each one of the case
studies and the results.

4.2 Manufacturing Cottage Cheese

4.2.1 Objective
Manufacturing cottage cheese is one of the most complicated processes in producing dairy
products. The process, which may take up to 20 hours, usually involves many stages. During
this long process, a few hundred parameters can be measured or adjusted. As in every dairy
product, there is a chance that a specific batch will be found sour when consumed by the
customer, prior to the end of the product’s shelf-life. During its shelf-life, the product’s pH
value normally drops. When it reaches a certain value, the consumer reacts to it as a spoiled
product; even though there is no any bacteriological problem. For every batch manufactured,
the dairy department performs randomly tests for pH as well organoleptic (taste) at the end of
the shelf-life. The samples are kept in the laboratory at a temperature of 7ºC, compared to
4ºC, which is the recommended storage temperature in a home refrigerator. The higher
laboratory temperature simulates abuse handling of the product along the cooling chain. The
product shelf-life is determined by the dairy department (generally 12-14 days), assuming that
the product retains its organoleptic properties to the end of its shelf-life.

The aim of this experiment was to identify batches with a high probability of becoming sour
(at the end of shelf-life) based on the process variables. For this purpose we built a
classification model that is capable to classify each batch into its anticipated quality level. By
having the ability to identify in advance manufacturing patterns with impact on the quality,
the manager can replace low quality anticipated manufacturing setting with a better setting.

4.2.2 Data
The training data set includes 800 records. Each record has 70 input attributes representing
various manufacturing variables. Most of the parameters fall into one of the following classes:
temperature, duration, raw material quantities and machines. For example we have used the
following attributes: average cooling temperature, scalding duration, calcium quantity, culture
quantity, etc. The target attribute represents the pH value after two weeks. It can have two
values: "Tasty" (pH 4.9-5.3) and "Sour" (below pH 4.9).

4.2.3 Results
In order to compare the results of GOV to other algorithms, we used the 10-fold cross-
validation procedure. According to this procedure, the training set was randomly partitioned
into 10 disjoint instance groups. Each instance group was used once in a test set and nine
times in a training set. Since the accuracy on the validation instances is a random variable, the
confidence interval was estimated by using the normal approximation. Table 3 shows the
overall accuracy obtained by using 10-fold cross-validation along with their confidence
interval. A paired two-sample student's t-test has been performed in order to determine
whether a sample's means are distinct. The superscript "+" indicates that the accuracy rate of
GOV was significantly higher than the corresponding algorithm at confidence level of 5%. It
should be noted that both feature set decomposition methods have improved accuracy.

 19

However the exhaustive search of GOV has resulted in better performance than the BOW
algorithm.

Table 3 also shows the number of features and the number of subsets used by each algorithm.
The GOV algorithm obtained six ODTs using totally 31 different attributes. The BOW
algorithm obtained four ODTs using totally 24 different attributes. This table indicates that
the GOV employed a much greater number of features than a single decision tree and even
greater than the BOW algorithm. This implies that the proposed decomposition method can
address high dimension problems by letting more relevant input features affect the
classification model. The Naïve Bayes classifier uses all available input features including
irrelevant features. Naïve Bayes can been referred as feature set decomposition such that for
each attribute it builds a separate single node decision tree.

Table 3: The accuracy performance for the Cottage-Cheese dataset
Criterion Naïve Bayes C4.5 BOW GOV

Accuracy +77.81+%±2.8% +77.52%±2.8 +85.92%±0.5% 89.54%±1.3%

of Features

Used

70 12±3.1 24±4.8 31±7.2

of Subsets 70 1 4 6

4.3 Yield of IC manufacturing
4.3.1 Objective
An integrated circuit (IC) is a miniature electric circuit containing large numbers of electronic
devices packaged on a single chip made of semiconductor material. Manufacturing an IC
begins with the production of a semiconductor wafer. An area on the wafer containing a
single discrete device or IC is called a chip. Depending on the dimensions of the wafer and
the dies, several hundred chips are formed on a single wafer.

While the number and variety of process steps may change from manufacturer to
manufacturer, fabricating a wafer usually contains more than 100 steps (Van Zant, 1997). The
wafer manufacturing process is largely mechanical. Measurements (for instance flatness,
surface quality verification, visual inspection) are taken at various stages of the process to
identify defects induced by the manufacturing process, to eliminate unsatisfactory wafer
materials and to sort the wafers into batches of uniform thickness to increase productivity.

After the wafer is manufactured, integrated circuits are fabricated on its surface with a single
wafer bearing several integrated circuits, all produced at the same time. Each lot undergoes
hundreds of individual processing steps, in which different parts of the ICs are etched in thin
layers of material grown or deposited on the working surface of the wafers. Each process step
must be tightly controlled to ensure dimensional tolerances. After a high-precision diamond
saw cuts the wafers into chips, they are mounted onto packages.

 20

Fabrication of a single lot requires several months. The data are accumulated for each
fabrication tool at both the wafer and lot level, using an information system known as
“manufacturing execution system”. IC manufacturing lines provide many data-mining
opportunities. In IC manufacturing, data-mining could have tremendous economic impact,
raising profitability by increasing throughput and reducing costs, consequently (Fountain et
al., 2000).

For this paper we examined two different datasets obtained from a wafer manufacturer
providing design support, manufacturing and turnkey services for integrated ICs on silicon
wafers in geometries from 1.0 to 0.18 microns.

The main goal of data mining in IC manufacturing databases is to understand how different
parameters in the process affect the line throughput. The throughput of IC manufacturing
processes is measured by “yield,” which is the number of good products (chips) obtained
from a silicon wafer. Since the capability of very expensive microelectronics equipment
usually limits the number of wafers processed per time unit , the yield is the most important
criterion in determining the effectiveness of an IC process.

4.3.2 Data
The training dataset includes only 70 records. Each record represents a single wafer and has
257 input attributes labelled p1,…,p257 that represent the setting of various parameters used
in the manufacturing process of this wafer. The target attribute represents the yield, which the
manufacturer's quality engineer has manually divided into two groups: High and Low. More
than half of the attributes are numeric. The input attributes specify several machine
parameters (for instance, the rotation speed of the slicing machine or the slicing machine
model) that may affect the yield. A distinctive value (in case of categorical attributes) or the
mean value (in case of numeric values) replace missing values. Due to the high commercial
confidentiality of the process data, we will not explain here the specific meaning of the
measured parameters.

4.3.3 Results
Table 4 presents the overall accuracy. The results indicate that both BOW and GOV achieved
better results in accuracy compared to the C4.5 and Naïve Bayes. GOV has slightly better
results. However as opposed to the first case study the difference between GOV and BOW
mean accuracy is not statistically significant. Moreover, as in the first case study, the BOW
and GOV algorithms employed a greater number of features than C4.5.

Table 4: The accuracy for the yield dataset

Criterion Naïve Bayes C4.5 BOW GOV

Accuracy +84.28%±2.1% +78.85%±3.6% 92.86%5.3% 93.17%4.6%

of Features Used 257 4±1.4 16±7.9 22±7.2

of Subsets 70 1 5 5

 21

4.4 The IC test
4.4.1 Objectives
The fabricated ICs undergo two series of exhaustive electric tests that measure the operational
quality. The first series of tests, which is used for reducing costs by avoiding packaging
defective chips, is performed while ICs are still in wafer form. The second series of tests,
which is used for quality assurance of the final chip, is carried out immediately after the
wafers are cut into chips and mounted onto packages.

The electric tests are performed by feeding various combinations of input signals into the IC.
The output signal is measured in each case and compared to the expected behaviour. There
are wafers that perform well on the first series but fail later in the second series. The goal is to
check whether the results of the first series can be further analyzed in order to predict the
outcome of the second series. This can be used to reduce the number of wafers that are
unnecessarily sliced and packed, eliminating the need for a second series of exhaustive
electric tests for most of the devices.

4.4.2 Data
The training data set includes 395 records. Each record has 220 input attributes labeled
p1,…,p220 representing the electric result values obtained in the first series of tests. Most of
the input features represent voltage levels. The target attribute is binary representing "pass"
and "not pass" devices according to the functionality of the device in the second testing series.
Similar to the yield problem, a distinctive value or the average value replaces missing values
depending on the data type.

4.4.3 Results
Running the GOV algorithm on the above data has created 9 ODTs containing 34 electronic
tests that can be used as indicators for the results of the second series of tests. Table 5 shows
the mean accuracy obtained by using 10-fold cross-validation along with their confidence
interval (with a confidence level of 95%). As in the case of the yield dataset, the GOV
algorithm obtained the most encouraging results.

Table 5: The accuracy for the IC-Test dataset
Criterion Naïve Bayes C4.5 BOW GOV

Accuracy +92.82%±2.5% +89.24%±1.9% 96.81%±0.6% 97.17%1.3%

of Features Used 220 9±3.2 26±2.7 34±3.1

of Subsets 220 1 7 9

5. Conclusion
Classification problems in quality assurance are characterized by many contributing features
relative to the training set size. This paper presents a new, mutually exclusive feature set

 22

decomposition methodology designed specifically for these circumstances. The basic idea is
to decompose the original set of features into several subsets, build a decision tree for each
projection, and then combine them.

This paper examine if genetic algorithm can be useful for discovering the appropriate
decomposition structure. For this purpose we have suggested a new encoding schema and
fitness function that was specially designed for feature set decomposition with oblivious
decision trees. Additionally a caching mechanism has been implemented in order to reduce
computational complexity.

The proposed framework was tested with over three real-life datasets. The results show that
this framework tends to outperform other comparable methods in the accuracy. The above
leads to the conclusion that feature set decomposition can be used for solving classification
problems in quality assurance and that using genetic algorithm can lead better results than
hill-climbing methods.

Additional issues to be further studied include: examining how the feature set decomposition
concept can be implemented using other inducers like neural networks and by examining
other techniques to combine the generated classifiers (like voting).

References

1. Almuallim, H. and Dietterich, T.G. (1994) 'Learning Boolean concepts in the presence of
many irrelevant features'. Artificial Intelligence, 69: 1-2, 279-306.

2. Domingos, P. and Pazzani, M. (1997) 'On the Optimality of the Naive Bayes Classifier
under Zero-One Loss', Machine Learning, 29: 2, 103-130.

3. Fountain, T. Dietterich T. and Sudyka B. (2000) 'Mining IC Test Data to Optimize VLSI
Testing'', Proc. 6th ACM SIGKDD Conference, Simoff J., Zaiane O., eds., Boston, MA,
USA, pp. 18-25.

4. Freitas, A. (2005) 'Evolutionary Algorithms for Data Mining', The Data Mining and
Knowledge Discovery Handbook, Maimon O. and Rokach L., eds., Springer, pp. 435-
467.

5. Gardner, M. and Bieker, J. (2000) 'Data mining solves tough semiconductor
manufacturing problems'. Proc. 6th ACM SIGKDD Conference, Simoff J., Zaiane O.,
eds., Boston, MA, USA, pp. 376-383.

6. Goldberg, D. (1989) 'Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading', MA: Addison-Wesley.

7. Hsu, W.H., Welge M., Wu J. and Yang T. (1999) 'Genetic algorithms for selection and
partitioning of attributes in large-scale data mining problems', Proc. of the Joint AAAI-
GECCO Workshop on Data Mining with Evolutionary Algorithms, Freitas A., edt.
Orlando, FL, July, pp. 1-6.

8. Hsu, W. H. (2004) 'Genetic wrappers for feature selection in decision tree induction and
variable ordering in Bayesian network structure learning', Information Sciences, 163(1-
3):103-122.

9. Kudo, M. and Sklansky J. (2000) 'Comparison of algorithms that select features for
pattern classifiers', Pattern Recognition, 33: 25-41.

10. Kusiak, A. (2000) 'Decomposition in Data Mining: An Industrial Case Study', IEEE
Transactions on Electronics Packaging Manufacturing, 23(4) pp. 345-353.

 23

11. Kusiak, A. (2001) 'Rough Set Theory: A Data Mining Tool for Semiconductor
Manufacturing', IEEE Transactions on Electronics Packaging Manufacturing, 24(1) pp.
44-50.

12. Kusiak, A. and Kurasek, C. (2001) 'Data Mining of Printed-Circuit Board Defects', IEEE
Transactions on Robotics and Automation, 17(2) pp. 191-196.

13. Langley, P. and Sage, S. (1994) 'Induction of selective Bayesian classifiers', Proc. of the
Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA: Morgan
Kaufmann, pp. 399-406.

14. Last, M. and Kandel, A. (2001) 'Data Mining for Process and Quality Control in the
Semiconductor Industry', Data Mining for Design and Manufacturing: Methods and
Applications, Braha D., ed., Kluwer Academic Publishers, pp. 207-234.

15. Louis, S. J. and Rawlins G. J. E. (1993), 'Predicting convergence time for
genetic algorithms', Foundations of Genetic Algorithms 2, Whitley L. D., editor, Morgan
Kaufmann, pp. 141-161.

16. Maimon, O., and Rokach, L. (2001) 'Data Mining by Attribute Decomposition with
semiconductors manufacturing case study', Data Mining for Design and Manufacturing:
Methods and Applications, Braha D. ed., Kluwer Academic Publishers, pp. 311-336.

17. Mansour, Y. and McAllester, D. (2000). Generalization Bounds for Decision Trees, Proc.
of the 13th Annual Conference on Computer Learning Theory, San Francisco, Morgan
Kaufmann, pp. 69-80.

18. Opitz, D., and Shavlik, J. (1996) 'Actively searching for an effective neural-network
ensemble'. Connection Science, 8(3/4):337-353.

19. Opitz, D. (1999), 'Feature Selection for Ensembles', Proc. 16th National Conf. on
Artificial Intelligence, Orlando, Florida , pp. 379-384.

20. Quinlan, J. R. (1993) 'C4.5: Programs for Machine Learning', Morgan Kaufmann
21. Rokach, L. and Maimon O., 'Feature Set Decomposition for Decision Trees', Journal of

Intelligent Data Analysis, 9(2):131-158.
22. Rokach, L. and Maimon O. (2006) 'Data mining for improving the quality of

manufacturing: a feature set decomposition approach', Journal of Intelligent
Manufacturing (Accepted for publication).

23. Schlimmer, J. C. (1993) 'Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning'. Proc. of the International Conference on
Machine Learning, San Mateo, CA, Morgan Kaufmann, pp 284-290.

24. Sharkey, A. (1996) 'On combining artificial neural nets', Connection Science, 8: 299-313.
25. Sharpe, P.K. and Glover, R.P. (1999) 'Efficient GA based techniques for classification',

Applied Intelligence, 11: 277-284,.
26. Van Zant, P. (1997) 'Microchip Fabrication: a Practical Guide to Semiconductor

Processing', New York: McGraw-Hill.
27. Wolpert, D. H. (1995) 'The relationship between PAC, the statistical physics framework,

the Bayesian framework, and the VC framework', The Mathematics of Generalization,
Wolpert D. H. ed., The SFI Studies in the Sciences of Complexity, Addison-Wesley, pp.
117-214.

