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Abstract. In this paper we present a new approach to content-based
transfer learning for solving the data sparsity problem in cases when the
users’ preferences in the target domain are either scarce or unavailable,
but the necessary information for the preferences exists in another do-
main. Training a system to use such information across domains is shown
to produce better performance. Specifically, we represent users’ behavior
patterns based on topological graph structures. Each behavior pattern
represents the behavior of a set of users, when the users’ behavior is de-
fined as the items they rated and the items’ rating values. In the next
step, a correlation is found between behavior patterns in the source do-
main and target domain. This mapping is considered a bridge between
the two. Based on the correlation and content-attributes of the items,
a machine learning model is trained to predict users’ ratings in the tar-
get domain. When our approach is compared to the popularity approach
and KNN-cross-domain on a real world dataset, the results show that
our approach outperforms both methods on an average of 83%.

Keywords: Recommender-Systems, Transfer Learning, Content-based, Behav-
ior Patterns

1 Introduction

Cross domain recommenders [2] aim to improve recommendation in one domain
(hereafter: the target) based on knowledge in another domain (hereafter: the
source). There are two approaches for cross domain: 1) those that use a mediator
to construct and initialize an empty user model, or that enrich the existing user
model by using provided data or a partial user model in another domain or
service; 2) those that do not use a mediator. In this paper we propose a content-
based cross domain RS that uses a mediator to suggest items to a new user
in a target domain who has only rated items in the source domain. We assume
that: 1) the target domain has very high sparsity; 2) the source domain has
low sparsity; and 3) the new user has already rated some items in the source
domain. Based on these assumptions, traditional recommendation algorithms do



2

not work well in the target domain for two reasons: first, high sparsity; second,
the new user and cold-start issues.
The problem: Given a set of items T in a target domain, and given a user u
who has already rated certain items in the source domain but not in the target,
what are the N most preferred items in T by user u?

We begin solving this problem by presenting a new graph-based transfer
learning method for content-base recommendation. The concept of behavior tree
is defined as a topological representation of users’ behavior patterns. By users’
behavior refers to the items rated by a user and the rating values the user
has assigned to these items. Based on these trees, we find correlated behavior
patterns in the source and target domains which are considered bridges between
the two domains. Then, the data of each bridge is combined with the content
data of the items in a one features vector. This vector is used as a sample in the
training data for a machine learning algorithm. Here common users are assumed
to exist between the source and target domains.

The paper’s innovation is (1) the graph structure employed for dealing with
the problem, instead of just using raw numbers. The trees structure provides a
rich representation of the users’ behavior. First, the structure enables items to
be clustered according to the users’ behavior, and the clusters to be represented
by a forest of behavior trees. Second, the tree’s structure defines a hierarchy
among the items, this hierarchy is important because it shows how much the
item represents the behavior pattern it belongs to. (2) Using the items’ content
data from a rich real world dataset with transfer learning recommenders that are
employed to improve classifier performance. Finally, we find a correlation (map-
ping) between items in the source domain and items in the target domain, so the
mapping is obtained by running a process of tree matching between trees in the
source and trees in the target. Furthermore, from the content data, more features
are gained to represent the training samples for building the recommendation
model.

2 Related Work

Several recent studies apply cross domain techniques in order to achieve per-
formance improvement over a single domain recommender [9]. One of the first
studies [13] is a user study that examined the fundamental assumption that users
share similar preferences across domains. The first case study presented in this
work tested the correlations between related items in different domains. Their
similarity across domain was determined according features or topical similarity.
For example, ”Harry Potter” the movie and the game are considered similar
items, as are Andy Lau the singer and the song sung by her. This study found
that positive correlations of user preferences usually exist across domains. For
instance, users having positive evaluation of a person as an actor/actress also
exhibit a strong interest in the same person as a singer.

The second case study examined the correlation in users’ preferences on items
of the same genre but of different domains (e.g. preferences of action movies and
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action games). The results showed a positive correlation of users’ preferences of
the same genres across domains. The results reinforced the assumption that user
interest exists across domains.

The study’s evaluation was based on user’s questionnaires (the users were
asked for their preferences) and not on an actual recording of system usage, with
a limited number of items and users. Moreover, it was based on the aggregate
ratings that users provided rather than on an individual’s ratings. Therefore,
we can only infer the existence of general trends towards preferences across
domains. However, this is the only user study that has attempted to examine
the assumption that all other studies assume about the relatedness of preferences
across domains.

Among the studies dealing with cross domain recommenders, one can dis-
tinguish between two main approaches for applying data from different domains
are discernible. One aims at constructing a unified user model from the different
domains, while the second approach uses ”Transfer Learning” techniques. The
following sections review the characteristics of the two approaches.

User-Model Mediation Perhaps the simplest approach to cross domain rec-
ommendations is to import relevant data from a different domain and aggregate
it with the original target data. The aggregation is simple when the domains
share information on the same users. Berkovsky et al. [3] refer to this problem as
cross user-model mediation and suggest the following definition: A user model
is the data that the RS has collected on the user in order to provide him with
personalized services. Most of the recommender systems maintain UMs that are
tailored to their specific application or domain. According to Berkovsy et al. [1],
since the quality of the personalized services depends heavily on the UM’s charac-
teristics and accuracy, different services would benefit from enriching their UMs
by importing, translating and aggregating partial UMs from related domains or
services.

Several UM mediation techniques are represented in [4] and [3]. The target
RS sends a request for rating prediction; the other RSs in the different domains
send information back to the target system; and each suggested technique differs
in the information returned to the target system:

Centralized Prediction - Each RS sends back its local users-items-ratings
matrix. The target RS unifies all the given matrices with its own local matrix,
and run collaborative Filtering (CF) on the unified matrix. Distributed Peer
Identification - this technique assumes that if two users are similar in some
domain, they may also be similar in another related domain. In practical terms,
each RS computes the k-nearest neighbors of the given user-id according to its
local matrix and returns their identities. The target RS unifies the given answers
with its local nearest neighbors and computes the rating using CF. Distributed
Neighborhood Formation - Each RS computes the similarity between the active
user i and the other users using their own local rating matrix. A set of K nearest-
neighbors is selected, and their identifiers, together with their similarity are sent
to the target RS. The target RS averages the domain-specific similarity values
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into the overall similarity metric using inter-domain correlation values. When
the overall similarity value is computed, K nearest neighbors can be selected
and the predictions generated. Distributed Prediction- Each RS that contains
rating data on the desired item computes locally the rating using CF, and sends
back the rating to the target. The target RS calculates its local CF rating, and
calculates the average of all the ratings.

Experiments were conducted to compare these approaches to a baseline ap-
proach that used only the target domain data. Results showed that in some
conditions integrating neighbors (2nd approach) and integrating recommenda-
tion (3rd approach) can be beneficial, as they may improve, respectively, the
coverage and accuracy of the generated recommendations. However, in other
cases, when the target system has enough rating records, it is preferable to use
only the target data since the remote systems data may be interpreted as noise.

The study has certain limitations. The method assumes that the different
domains share the same users who are identifiable in different applications. Yet,
in many applications no such overlapping exists and even if there are common
users, they are unidentifiable. In addition, some of the suggested approaches,
for example the Distributed Prediction approach, assume that at least a large
portion of the domains share the same items with the target domain, which
means that such methods cannot be applied to totally different domains like
movies and songs.

A similar approach is described in [6]. The authors generated a uniform UM
approach that aggregated features from different domains, and mapped them to
relevant domains.

In conclusion, the main advantage of the user-model mediation is by its
simplicity and intuitive implementation. However, it can be applied only to par-
ticular problems when the different sources share implicit resources like users,
items or features. Since one of our goals in this work has been to avoid restricting
users or items that overlap between domains, we did not use this approach.

Transfer Learning Transfer learning (TL) is a relatively new area of research
(since 1995) in machine learning whose aim is to extract knowledge that was
learned for one task in a domain and use it for a target task in a different domain
[11]. In the field of machine learning we usually train a model based on available
data for the problem that we are interested in (training data). The model is
used for predicting behavior in examined domain (using the testing data). For
example, in recommender systems the model can help us predict whether or not
the user will like a movie.

Transfer Learning is a very intuitive notion since human nature is to transfer
learning from different aspects of life. People can intelligently apply previously
learned knowledge to solve new problems faster or better. For example, when
learning a foreign language such as French, knowledge of Romanian can be used
to pick up new words and skills that we acquired in the past can be employed to
assimilate the new language. Another example, when learning a new program-
ming language like C++, our knowledge of Java and our general programming



5

skills can be exploited to our benefit. TL also enables us to retain and reuse
previously learned knowledge [11], and this may reduce the need and effort to
recollect training data in new applications.

An important TL characteristic is that it does not always require content
overlap between the different domains. Regarding the recommender systems ap-
plication, TL does not require that the source and target domain share users or
items, since it aims at finding common consumption patterns that exist in re-
lated domains by recognizing latent behavior groups [10]. Consider, for example,
the music and games domains. Although they do not appear strongly connected,
the same latent groups of users are still found in both domains. For example,
there might be a group of consumers that always purchase new trendy items, or
another group which likes to consume low cost products, and still other users
who especially enjoy children’s items.

Transferring knowledge between domains is a daunting task because the
knowledge of one domain is not guaranteed to be useful for another domain.
The success of transfer learning depends on a variety of factors, e.g. the degree
of domain correlation (for example, are movies and books more closely correla-
tion than movies and jokes), the data characteristics (sparsity level, rating scale
etc.), and whether the domains share common resources such as items or users.

There are only a few transfer learning applications for the recommender
system. Most of the works that used TL for recommender systems are based
on collaborative filtering. Next several works are reviewed that employ TL for
recommender systems and discuss their limitations and difference from our work.

Li et al [10] may be the most relevant work. They suggested that when insuf-
ficient data in the target domain prevents training an accurate recommendation
model, useful knowledge can be borrowed from a different domain and its data
used to train the model. They introduced the idea that rating matrices of dif-
ferent domains may share similar user-item rating patterns. Thus, they adopted
a user-item rating matrix of the source domain, referred to as a ”codebook”,
and transferred the rating patterns to the target domain in order to fill in the
target domain’s missing values. Their algorithm consists of two steps. First, a
rating pattern (codebook) of the dense domain is created, which summarizes
the original rating data. Second, the codebook is expanded in order to learn the
missing values in the target domain.

3 The Recommendation Framework

Our framework deals with the abovementioned problem in three phases: The
first is described in (3.1) and aims to preprocess the users’ data in the source
and target domains. Preprocessing consists of three steps: 1) building behavior
trees for each domain; 2) tree matching; 3) building training samples. The second
phase (3.2) is for training a model on the training set. The third phase, described
in (3.3), is for recommending items to new users based on their behavior in the
source domain.
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3.1 Preparing Training Data

Building Behavior Graphs Constructing the graphs requires four steps.
First, the same item with different rating values is separated by expanding
each item into k items, where k equals the number of possible rating values in
the domain. For example, if item i was rated as r1 by one group of users and
the same item received an r2 rating from a different group of users, we consider
them as different items and represent them by ir1 and ir2. Note: the number of
items after this step is k × number of origin items. Second step. The sepa-
rated items are sorted by their popularity, that is, by the number of the user
ratings. Table (1) is an example of a rating matrix, where the popularity of item
1 2 (item 1 with rating 2) in this matrix is 3.

item1 item2 item3 item4 item5

user1 2 1 1

user2 1 1 1 3

user3 2 1 2 3

user4 3 2 1

user5 3 3 1 1

user6 1 3 1

user7 1 1 2 3

user8 2 3 3 2 1

user9 1 3 1

user10 1 1 3

Table 1. Rating matrix, possible ratings [1, 2, 3] (k=3).

Third step: A topological representation is adopted by taking the sorted
items set of each domain and representing them by a disconnected weighted
graph. The graphs are constructed as follows: Nodes: Each item on the sorted
items list is represented by one node (note: the node represents a pair of an item
and one rating value). Edges: An edge is found between two nodes if there are
common users exist who rated both items represented by both nodes (note: rating
must be the same as in the node). Weight: The weight of the edge between two
nodes is defined as the Jaccard coefficient between the sets of users who rated
the items represented by the nodes. The Jaccard coefficient measures similarity
between sample sets, and is defined as the size of the intersection divided by the
size of the union of the sample sets (Wikipedia):

Similarity(A, B) = J(A, B) =
|A
⋂

B|
|A
⋃

B|
. If the two sets A and B are empty

then we define J(A,B) = 0. The max value of this similarity when A,B are
finite is 1, and the minimal value is 0.
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If the weight of edge is less than a given threshold 3 we drop the edge. Note, a
one-to-one mapping exists between the nodes and the items, thus the term node
or item can be used to refer to the same element. Figure (1) shows the behavior
graphs (disconnected) obtained from table (1) when threshold = 0.5.

Fig. 1. Behavior graphs (disconnected) of table (1) when threshold = 0.5.

Fourth step: Each component in the disconnected graph is converted into
a topological tree which we refer to as a behavior tree. This is another repre-
sentation of the users’ behavior in the graph based on the graph’s structure.
Transferring a graph into a tree is a known problem. For example, in [5] the
authors showed a general transformation between graphs, trees and generalized
trees by introducing a special transformation that uses the DIJKSTRA distance
between nodes to define a multi-level function which assigns each node of the
graph a level value that introduces a hierarchy.

This process takes place by adding an artificial node as the root for each tree,
and connecting all the popular 4 nodes in the graph to the node. The weight of
each child in level one is equal to the child’s popularity. Then a recursive greedy
algorithm is used to complete the tree by adding all the other nodes on the graph
to it. This is done by connecting each child (who is not in the tree yet) to the
parent who is connected to the highest edge weight in the original graph.

The weight of each node (except in first level) in the tree is the same as
the edge from the parent to the child in the graph. The idea behind adding an
artificial node is to make sure that all the popular items in the graph appear in
the first level of the tree and the less popular items appear in deeper levels.

The motivation for moving from graphs to trees is the tree’s simpler hierar-
chical structure than that of graphs, and the tree’s greater ability to represent
sufficient data of the behavior graphs. Figure (1) represents the graphs obtained
from the rating matrix in Table (1), and Figure (2) illustrates the behavior trees

3 This threshold depends on different parameters, such as the number of users in the
domain, the number of items, the number of ratings, etc. We set it as 0.5 in our
experiments.

4 The most popular items in each graph are those which have greater popularity than
the average popularities in the same graph.
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based on the behavior graphs in Figure (1), where Ti is the behavior tree of
graph Gi, i : 1→ 6, and the nodes with labels A1-A6 are artificial.

Fig. 2. Constructed behavior trees based on the behavior graphs (1). ”P” is the popu-
larity threshold.

Tree Matching The first task is to decide for each tree in the source domain
which tree in the target domain is the best for matching. Tree matching appears
in various fields such as image clustering, RNA, chemical structure analysis,
and so fourth. Thus, many method were defined to measure similarity between
trees, for instance largest or smallest common subtree, tree edit distance, or the
transferable ratio between two trees [8].

Since we have an advantaged by the common users, the similarity between
two trees is defined the same way that similarity between two items is defined
in (3.1), but here it is referred to on a set of users instead of items:

Tree-Similarity(T1, T2) = J(U(T1), U(T2)) =
|U(T1)

⋂
U(T2)|

|U(T1)
⋃

U(T2)|

U(T) =
⋃|T |

i=1 (u | user u rated item i in T ).

The similarity measure relates to the content of the trees instead of the structure,
so if two trees have the same set of users then they receive a higher similarity
value than trees that do not have common users. However, after a tree in the
target has been found for each tree in the source that it should be matched with,
we run the tree matching process to match the nodes in both trees, and obtain
the advantages of the structure of the trees as well. Eventually, a set of pairs of
matched nodes is arrived at that are the bridges between the items in the source
and the items in the target.

Building the Training Samples This is the final step in preparing training
data. Here the training set must be prepared for a supervised machine learning
task. A special structure for features vectors is found that combines the data of
users’ behavior in the source and target domains, and the items content data.
This is done by taking all the matched nodes from the previous step. Then, for
each two matched nodes ns and ntr that represent item ts in the source with rate
rs and item ttr in the target with rating rtr, respectively, one features vector is
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defined as following:
[f1(ts), ..., fn(ts), rs; f1(ttr), ..., fm(ttr), rtr], where fi(t) is the value of feature i
for item t. This structure is meaningful for cross-recommendation because it
provides a full image of the user’s behavior from the previous step and the
features of the items they rated, since it combines the features with the rating
values for each group of users, For example, if the users who like books with
features [b1, b2, ..., bn], like movies with features [m1,m2, ...,mm], then a new user
u with similar behavior in the books domain will be in the same behavior tree
and probably has similar behavior toward movies with features [m1,m2, ...,mm].

3.2 Model Training

Here a model of a multiclass classifier is built on the training samples that
combine features of items in the source, ratings in the source, features of items
in the target, and ratings in the target. Since our goal is to predict the user’s
rating of an item in the target domain, the class of the classifier is the last
attribute in the features vector, where all the other attributes in the vector
represent the features. This model is expected to predict rating for an item t
in the target domain for a new user u that has rated only items in the source
domain. The number of the classes equals the number of possible rating values
in the target domain.

3.3 Recommendation

The recommendation task is based on the model described in the previous task
(3.2). When the system is asked to recommend the top N items in the target
domain for a new user u, the system ranks each item tr in the target domain
based on the items rated by the user in the source domain. The ranking is carried
out by building a features matrix for each item tr in the target as follows:

– The number of rows in the matrix equals the number of items the user rated
in the source.

– The number of the column in the matrix equals n + m + 2, where n is the
number of the item’s features in the source, m is the number of the item’s
features in the target domain and + 2 for the rating in the source and the
class (rating in target).

– The value in row i, column j, equals to:
If j < n + 1 Then: The value of feature j in item i (in the source)
If j = n + 1 Then: The rating value that the user u rated item i (in the

source)
If j > n + 1 Then: The value of feature j − (n + 1) of the item tr (in the

target)
If j = n + 2 Then: The value is ”?” (missing)

To find the rank of a features matrix M , we first run the classifier on each row
in the matrix in order to return the vector of the predicted probability for each
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class. This vector is called the distribution vector and represents the probability
for each class, so the value in entry i equals the probability that this sample is
classified as i, and the vector’s size equals the number of the classes (possible
ratings). For each row we take the distribution vector P returned by the classifier

and compute the expected rating5 as follows: expected rating =
∑k

j=1 j×P [j],
when k is the size of P . The rank of the features matrix M is defined as the

average of the expected ratings of all the rows in M : Rank(M) =

∑z

j=1
ER(j)

z ,
where ER(j) is the expected rating for row j and z is the number of the rows
in M . Then the matrices are sorted by the rank value, and the target items
represented by the top N matrices are sent back as the recommended items for
the user u.

4 Experiment

In this chapter we investigate whether the additional knowledge gained from the
source domain and the content of the items can improve the recommendation
in the target domain. Our approach is compared with the popularity, which is
a single domain approach generally used for recommendation to new users, and
with the KNN-cross-domain approach that uses both domains but does not use
the content data.

4.1 Dataset

We used the Loads data-set in our experiments. Loads data is a real-world con-
tent dataset that includes different domains such as videos, music, games (com-
mon users among the domains). Music-loads was chosen as the source domain
and game-loads as the target domain, and 600 common users were extracted
from both domains, 817 items from the music domain with 18,552 ratings, and
1264 items from the games domain with 17,640 ratings. This dataset is event-
based, thus we manipulated it and converted the events to ratings by weighting
the events by their type. For example, the event user buys an item that was
converted to the max rate value. For this experiment we used a binary rating.

4.2 Evaluation and Metrics

Our goal is to recommend a set of N items that may find the interest of the new
user in the target domain. This kind of recommendation refers to recommending
good items [7] or top-N items. The correct method of evaluating the recom-
mender in this case is by measuring the precision at N (or Top-N precision)
which is the number of interesting items from the recommended items [7]. Since
we have content data, a recommended item is considered to be a true positive if
it is similar to 80% of the positively rated items

5 Ratings here are natural numbers between 1 and k when 1 is the minimal value,
and k is the maximal value.



11

4.3 Baseline

Our method, referred to as BGM (Behavior Graph Matching), is compared with
two base-line recommenders:

KNN-cross-domain: This recommender is a cross domain recommender
based on collaborative filtering with Pearson’s correlation coefficient method.
The main idea behind the method is to find the K-nearest-neighbors of the
active user in the source domain who also rated items in the target domain, and
to consider them as the K-nearest-neighbors of the active user, who is also in the
target domain, and then predict the user’s ratings in the target domain based
on his/her neighbors’ ratings in the target domain.

Popularity: This is a naive method that recommends the popular items
to the new users. This method is the simplest to implement and sometimes
outperforms other complex algorithms [12] especially in a domain where most of
the users have similar preferences.

4.4 BGM versus Popularity

We evaluate the two methods by 10-fold cross validation on the Loads dataset,
when each fold includes 60 users for testing and 540 users for training. The test
set was considered as the new users’ set in the target domain who have ratings
just in the source domain. The behavior patterns were based on all the users in
the source domain, and users who belong to the training set in the target domain.
For each user in the test set, the recommender was asked to recommend the Top-
N items when N= 5, 10, 15, 20, 50, and 100, and for each set of recommended
items the top-N precision was measured per user. The popularity algorithm
employs the training set in the target domain to find the popular item that was
recommended for each of the test users, then the top-N precision was compared
for each N, and for each N the average of the top-N precision was found for all
of the users.

Figure (3) shows the results, where we divided into 6 groups, each group
representing a different N value and containing three columns, the first one
representing the average Top-N precision value for the BGM, and the second
representing the average of Top-N precision value for the popularity algorithm.
Note that BGM outperforms the popularity in all the cases except when N=
100. The reason is BGM tries to recommend items which are similar to the
user’s behavior, thus, with small values of N BGM knows better than popularity
what items are related to the user, but sometimes users behave in a different
way than their normal behavior, such as one decide to buy a book because
it is a little bit popular and there is a good offer about it. Here, popularity
recommender will recommend this item specially when N is big, while BGM will
not recommend this item because it is not similar to the user’s preferences. Thus,
our results-based conclusion: it is better to use the source domain to improve
recommendation in the target domain, specially in cases there is a limitation of
the number of items to recommend.
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4.5 BGM Vs. KNN cross-domain

This experiment was designed to compare the performance of our approach with
the collaborative-filtering cross-domain approach which also uses the knowledge
in the source domain to return recommendations to the target domain. The main
goal was to determine whether the BGM method makes maximum use of the
content data of the items, and to check whether the proposed behavior patterns
work well for representing the users’ behavior and knowledge transfer. As in the
first experiment, this on was conducted with a 10-fold cross validation on Loads
dataset.

When comparing the results in Figure (3), where the third column in each
group represents the value of top-N precision of the KNN-cross-domain, note
that BGM outperforms the KNN-cross-domain in 83% of the cases. The only case
where KNN-cross-domain outperforms BGM is when N=100. This is because of
a similar reason to the one described above: sometimes people make exceptions
in their behavior, such as one decide to go to watch a movie just to join friends,
so BGM will not perform well with these cases, however, people usually have a
consistence behavior, and recommendation is done with small values of N.

Fig. 3. Top-N precision values for BGM, Popularity, and Knn-cross-domain, with dif-
ferent N values

4.6 Statistical Analysis

Paired t-tests were performed on the same results that were received by running
10-fold cross-validation with BGM, Popularity and KNN-cross-domain on Loads
dataset, and their statistically significant was checked. Each user was considered
a participant, and each of the recommenders was considered a different method
of the test.

A table of 600 users (rows) was obtained, and for each user the top-N precision
value was received when TopN= 5, 10, 15, and 20 with each of the methods (12
columns per user). Then the t-test was performed for every two relevant columns
(with the same N ) . All the results are statistically significant, which means
that our method performance is decidedly better than the other two when the
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number of recommended items is 5, 10, 15, and 20, and the size of the sample is
600 participants.

5 Conclusions

Our paper has presented and evaluated a novel method of transfer learning in
content-based recommenders by using a new topological structure that we call a
behavior graph. The main idea of using such structure is its ability to represent
rich data about the users’ behavior, and the relation between items in a structure.
By employing tree matching methods we discovered a correlation between items
in the source and items in the target.

We compared our method with the popularity approach, which is gener-
ally used with recommendations to new users, and with the KNN-cross-domain
method. The comparison was based on a real-world dataset called Loads dataset,
and the Top-N precision metric was evaluated by 10-fold cross validation.

The results show that our method (referred to as BGM) outperforms the
popularity and KNN-cross-domain methods in the majority of cases. Our con-
clusion: it is preferable to use the data in the source domain and the item’s
content data when dealing with this kind of recommendation problem.
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