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Abstract The idea of decomposition methodology for classification tasks
is to break down a complex classification task into several simpler and more
manageable sub-tasks that are solvable by using existing induction methods,
then joining their solutions together in order to solve the original problem.
In this paper we provide an overview of very popular but diverse decomposi-
tion methods and introduce a related taxonomy to categorize them. Subse-
quently we suggest using this taxonomy to create a novel meta-decomposer
framework to automatically select the appropriate decomposition method
for a given problem. The experimental study validates the effectiveness of
the proposed meta-decomposer on a set of benchmark datasets.

1 Introduction

One of the explicit challenges in classification tasks is to develop methods
that will be feasible for complicated real-world problems. In many disci-
plines, when a problem becomes more complex, there is a natural tendency
to try to break it down into smaller, distinct but connected pieces. The
concept of breaking down a system into smaller pieces is generally referred
to as decomposition. The purpose of decomposition methodology is to break
down a complex problem into smaller, less complex and more manageable,
sub-problems that are solvable by using existing tools, then joining them
together to solve the initial problem. Decomposition methodology can be
considered as an effective strategy for changing the representation of a classi-
fication problem. Indeed, Kusiak [38] considers decomposition as the “most
useful form of transformation of data sets”.

The decomposition approach is frequently used in statistics, operations
research and engineering. For instance, decomposition of time series is con-
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sidered to be a practical way to improve forecasting. The usual decompo-
sition into trend, cycle, seasonal and irregular components was motivated
mainly by business analysts, who wanted to get a clearer picture of the
state of the economy [18]. Although the operations research community has
extensively studied decomposition methods to improve computational effi-
ciency and robustness, identification of the partitioned problem model has
largely remained an ad hoc task [26].

In engineering design, problem decomposition has received considerable
attention as a means of reducing multidisciplinary design cycle time and
of streamlining the design process by adequate arrangement of the tasks
[37]. Decomposition methods are also used in decision-making theory. A
typical example is the AHP (Analytic Hierarchy Process) method [62]. In
artificial intelligence finding a good decomposition is a major tactic, both
for ensuring the transparent end-product and for avoiding a combinatorial
explosion [45].

Research has shown that no single learning approach is clearly superior
for all cases. In fact, the task of discovering regularities can be made easier
and less time consuming by decomposition of the task. However, decom-
position methodology has not attracted as much attention in the pattern
recognition and machine learning community [11].

Although decomposition is a promising technique and presents an obvi-
ously natural direction to follow, there are hardly any works in the pattern
recognition literature that consider the subject directly. Instead, there are
abundant practical attempts to apply decomposition methodology to spe-
cific, real life applications [11]. There are also many discussions on closely
related problems, largely in the context of distributed and parallel learning
[71] or ensembles classifiers.

Various decomposition methods have been presented [38]. There was also
suggestion to decompose the exploratory data analysis process into 3 parts:
model search, pattern search, and attribute search [7]. However, in this case
the notion of “decomposition” refers to the entire process, while this paper
focuses on decomposition of the model search.

In the neural network community, several researchers have examined the
decomposition methodology [25]. The “mixture-of-experts” (ME) method
decomposes the input space, such that each expert examines a different part
of the space [46]. However, the sub-spaces have soft “boundaries”, namely
sub-spaces are allowed to overlap. Each expert outputs the conditional prob-
ability of the target attribute given the input instance. A gating network
is responsible for combining the various experts by assigning a weight to
each network. These weights are not constant but are functions of the input
instance x.

Hierarchical mixtures of experts (HME) is well-known extension to the
basic mixture of experts [32]. This extension decomposes the space into
sub-spaces, and then recursively decomposes each sub-space to sub-spaces.

Variation of the basic mixtures of experts methods have been developed
to accommodate specific domain problems. A specialized modular network
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called the Meta-pi network has been used to solve the vowel-speaker problem
[24,48]. There have been other extensions to the ME such as nonlinear
gated experts for time-series [70]; revised modular network for predicting the
survival of AIDS patients [47]; and a new approach for combining multiple
experts for improving handwritten numerals recognition [53].

Several taxonomies for decomposition methods have been suggested in
the literature [38,66]. However, there is no work that considers the coexis-
tence of these different decomposition methods in order to answer practical
questions such as: When should we prefer one decomposition method over
the other? Is it possible to solve a given problem using a hybridization of
several decomposition methods?

In our previous work [57,43], we presented a preliminary taxonomy for
decomposition of classification tasks. In this paper, we first extend this
taxonomy and subsequently suggest a systematic way such a taxonomy can
be used in practice. More specifically the taxonomy is used as the basis for
a new decision tree-based meta-decomposer which aims to automatically
identify the best decomposition method for a given database.

2 Decomposition Advantages

Decomposition methods can improve the predictive accuracy of regular
methods. In fact in some cases improving performance is the main motiva-
tion for decomposition [66]. Although this might look surprising at first, it
can be explained by the bias-variance tradeoff. Since decomposition method-
ology constructs several simpler sub-models instead a single complicated
model, we might gain better performance by choosing the appropriate sub-
models’ complexities (i.e. finding the best bias-variance tradeoff). For in-
stance, a single decision tree that attempts to model the entire instance
space usually has high variance and small bias. On the other hand, Näıve
Bayes can be seen as a composite of single-attribute decision trees (each
one of these trees contains only one unique input attribute). The bias of the
Näıve Bayes is large (as it can not represent a complicated classifier); on the
other hand, its variance is small. Decomposition can potentially obtain a set
of decision trees, such that each one of the trees is more complicated than
a single-attribute tree (thus it can represent a more complicated classifier
and it has lower bias than the Näıve Bayes) but not complicated enough to
have high variance.

There are other justifications for the performance improvement of de-
composition methods, such as the ability to exploit the specialized capabil-
ities of each component, and consequently achieve results which would not
be possible in a single model. For instance the identification accuracy of a
clinical diagnosis can be improved when the problem is decomposed and
two neural networks are trained [3].

One of the explicit challenges of the research community is to develop
methods that facilitate the use of pattern recognition algorithms for real-
world applications. In the information age, data is automatically collected
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and therefore the database available for patterns discovery can be quite
large, as a result of an increase in the number of records in the database
and the number of fields/attributes in each record (high dimensionality).

There are many approaches for dealing with huge databases including:
sampling methods; massively parallel processing; efficient storage methods;
and dimension reduction. Decomposition methodology suggests an alterna-
tive way to deal with the aforementioned problems by reducing the volume
of data to be processed at a time. Decomposition methods break the original
problem into several sub-problems, each one with relatively small dimension-
ality. In this way, decomposition reduces training time and makes it possible
to apply standard pattern recognition algorithms to large databases [66].

Decomposition methods suggest a conceptual simplification of the orig-
inal complex problem. Instead of getting a single and complicated model,
decomposition methods create several sub-models, which are more compre-
hensible. This motivation has often been noted in the literature [49,28,66].
Smaller models are also more appropriate for user-driven data mining that is
based on visualization techniques. Furthermore, if the decomposition struc-
ture is induced by automatic means, it can provide new insights about the
explored domain.

Modularity eases the maintenance of the classification model. Since new
data is being collected all the time, it is essential once in a while to exe-
cute a rebuild process to the entire model. However, if the model is built
from several sub-models, and the new data collected affects only part of
the sub-models, a more simple re-building process may be sufficient. This
justification has often been noted [38].

If there are no dependencies between the various sub-components, then
parallel techniques can be applied. By using parallel computation, the time
needed to solve a mining problem can be shortened.

Decomposition methodology suggests the ability to use different inducers
for individual sub-problems or even to use the same inducer but with a
different setup. For instance, it is possible to use neural networks having
different topologies (different number of hidden nodes). The researcher can
exploit this freedom of choice to boost classifier performance.

The first three advantages are of particular importance in commercial
and industrial data mining. However, as it will be demonstrated later, not
all decomposition methods display the same advantages.

3 The Elementary Decomposition Taxonomy

Finding an optimal or quasi-optimal decomposition for a certain supervised
learning problem might be hard or impossible. For that reason the elemen-
tary decomposition methodology have been proposed [43]. The basic idea
is to develop a meta-algorithm that recursively decomposes a classification
problem using elementary decomposition methods. We use the term “ele-
mentary decomposition” to describe a type of simple decomposition that
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can be used to build up a more complicated decomposition. Given a certain
problem, we first select the most appropriate elementary decomposition to
that problem. A suitable decomposer then decomposes the problem, and fi-
nally a similar procedure is performed on each sub-problem. This approach
agrees with the “no free lunch theorem”, namely if one decomposition is bet-
ter than another in some domains, then there are necessarily other domains
in which this relationship is reversed.

For implementing this decomposition methodology, one might consider
the following issues:

– What type of elementary decomposition methods exist for classification
inducers?

– Which elementary decomposition type performs best for which problem?
What factors should one take into account when choosing the appropri-
ate decomposition type?

– Given an elementary type, how should we infer the best decomposition
structure automatically?

– How should the sub-problems be re-composed to represent the original
concept learning?

– How can we utilize prior knowledge for improving decomposing method-
ology?

Figure 1 suggests an answer to the first issue. This figure illustrates a
novel approach for arranging the different elementary types of decomposi-
tion in supervised learning.

Supervised learning decomposition

Original Concept Intermediate Concept

Tuple Attribute Concept
Aggregation

Function
Decomposition

Space Sample

Fig. 1 Elementary Decomposition Methods in Classification.

3.1 Intermediate Concept Decomposition

In intermediate concept decomposition, instead of inducing a single compli-
cated classifier, several sub-problems with different and more simple con-
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cepts are defined. The intermediate concepts can be based on an aggregation
of the original concept’s values (concept aggregation) or not (function de-
composition).

Classical concept aggregation replaces the original target attribute with
a function, such that the domain of the new target attribute is smaller than
the original one.

Concept aggregation has been used to classify free text documents into
predefined topics [11]. This paper suggests breaking the topics up into
groups (co-topics). Instead of predicting the document’s topic directly, the
document is first classified into one of the co-topics. Another model is then
used to predict the actual topic in that co-topic.

The Error-Correcting Output Coding (ECOC) is a general concept ag-
gregation algorithm which decomposes multi-class problems into multiple,
two-class problems [15]. A classifier is built for each possible binary parti-
tion of the classes. Experiments show that ECOC improves the accuracy
of neural networks and decision trees on several multi-class problems from
the UCI repository. The idea to decompose a K class classification prob-
lems into K two class classification problems [2]. Each problem considers
the discrimination of one class to the other classes. The last method can
be extended for manipulating the data based on the class relations among
training data [41]. By using this method, they divide a K class classification
problem into a series of K(K−1)/2 two-class problems where each problem
considers the discrimination of one class to each one of the other classes.
They have examined this idea using neural networks.

The round-robin classification problem (pairwise classification) is a tech-
nique for handling multi-class problems, in which one classifier is con-
structed for each pair of classes [20]. Empirical study has showed that this
method can potentially improve classification accuracy.

Function decomposition was originally developed in the Fifties and Six-
ties for designing switching circuits. It was even used as an evaluation mech-
anism for checker playing programs [63]. This approach was later improved
[8]. Recently, the machine learning community has adopted this approach.
A manual decomposition of the problem and an expert-assisted selection
of examples to construct rules for the concepts in the hierarchy was stud-
ied [45]. In comparison with standard decision tree induction techniques,
structured induction exhibits about the same degree of classification accu-
racy with the increased transparency and lower complexity of the developed
models.

A general-purpose function decomposition approach for machine learn-
ing has also been developed [73]. According to this approach, attributes are
transformed into new concepts in an iterative manner and create a hierar-
chy of concepts. It is also possible to use a different function decomposition
known as bi-decomposition [40].
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3.2 Original Concept Decomposition

Original Concept decomposition means dividing the original problem into
several sub-problems by partitioning the training set into smaller training
sets. A classifier is trained on each sub-sample seeking to solve the original
problem. Note that this resembles ensemble methodology but with the fol-
lowing distinction: each inducer uses only a portion of the original training
set and ignores the rest. After a classifier is constructed for each portion
separately, the models are combined in some fashion, either at learning or
classification time.

There are two obvious ways to break up the original dataset: tuple-
oriented or attribute (feature) oriented. Tuple decomposition by itself can be
divided into two different types: sample and space. In sample decomposition
(also known as partitioning), the goal is to partition the training set into
several sample sets, such that each sub-learning task considers the entire
space.

In space decomposition, on the other hand, the original instance space is
divided into several sub-spaces. Each sub-space is considered independently
and the total model is a (possibly soft) union of such simpler models.

Space decomposition also includes the divide and conquer approaches
such as mixtures of experts, local linear regression, CART/MARS, adaptive
subspace models, etc., [31,32,54,27].

Feature set decomposition (also known as attribute set decomposition)
generalizes the task of feature selection which is extensively used in data
mining. Feature selection aims to provide a representative set of features
from which a classifier is constructed. On the other hand, in feature set
decomposition, the original feature set is decomposed into several subsets.
An inducer is trained upon the training data for each subset independently,
and generates a classifier for each one. Subsequently, an unlabelled instance
is classified by combining the classifications of all classifiers. This method
potentially facilitates the creation of a classifier for high dimensionality data
sets because each sub-classifier copes with only a projection of the original
space.

In the literature there are several works that fit the feature set decompo-
sition framework. However, in most of the papers the decomposition struc-
ture was obtained ad-hoc using prior knowledge. Moreover, it was argued
that: “There exists no algorithm or method susceptible to perform a vertical
self-decomposition without a-priori knowledge of the task!” [61].

The feature set decomposition algorithm known as MFS (Multiple Fea-
ture Subsets) combines multiple nearest neighbor classifiers, each using only
a subset of random features [4]. Experiments show MFS can improve the
standard nearest neighbor classifiers. This procedure resembles the well-
known bagging algorithm [10]. However, instead of sampling instances with
replacement, it samples features without replacement.

Additional alternative is to group the features according to the attribute
type: nominal value features, numeric value features and text value features
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[38]. A similar approach was used for developing the linear-bayes classifier
[21]. The basic idea consists of aggregating the features into two subsets:
the first subset containing only the nominal features and the second subset
only the continuous features.

An approach for constructing an ensemble of classifiers using rough set
theory was presented by Hu [29]. Although Hu’s work refers to ensemble
methodology and not decomposition methodology, it is still relevant for this
case, especially as the declared goal was to construct an ensemble such that
different classifiers use different attributes as much as possible. According to
Hu, diversified classifiers lead to uncorrelated errors, which in turn improve
classification accuracy. The method searches for a set of reducts, which
include all the indispensable attributes. A reduct represents the minimal set
of attributes which has the same classification power as the entire attribute
set.

The feature set can be decomposed according to the target class [68].
For each class, the features with low correlation relating to that class have
been removed. This method has been applied on a feature set of 25 sonar
signals where the target was to identify the meaning of the sound (whale,
cracking ice, etc.).

Feature set decomposition has been used for radar volcanoes recognition
[14]. In this case, a feature set of 119 features was manually decomposed
into 8 subsets. Features that are based on different image processing opera-
tions were grouped together. As a consequence, for each subset, four neural
networks with different sizes were built.

The feature set decomposition was proved to be beneficial in many other
applications, such as text-independent speaker identification [13], truck
backer-upper problem [30] and quality problem in manufacturing plants
[42].

The co-training paradigm for learning with labelled and unlabelled data
can be considered as a feature set decomposition for classifying Web pages
[9]. Co-training is useful when there is a large data sample, of which only
a small part is labelled. In many applications, unlabelled examples are sig-
nificantly easier to collect than labelled ones. This is especially true when
the labelling process is time-consuming or expensive, such as in medical
applications. According to the co-training paradigm, the input space is di-
vided into two different views (i.e. two independent and redundant sets of
features). For each view, a different classifier is built to classify unlabelled
data. The newly labelled data of each classifier is then used to retrain the
other classifier. It has been shown, both empirically and theoretically, that
unlabelled data can be used to augment labelled data.

Another alternative for decomposing the feature set is as follows [39]:
All input features are initially grouped by using a hierarchical clustering
algorithm based on pairwise mutual information, with statistically similar
features assigned to the same group. As a consequence, several feature sub-
sets are constructed by selecting one feature from each group. A neural
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network is subsequently constructed for each subset. All networks are then
combined.

In the statistics literature, the most well-known decomposition algorithm
is the MARS algorithm [19]. In this algorithm, a multiple regression function
is approximated using linear splines and their tensor products. It has been
shown that the algorithm performs an ANOVA decomposition, namely the
regression function is represented as a grand total of several sums. The first
sum is of all basic functions that involve only a single attribute. The second
sum is of all basic functions that involve exactly two attributes, representing
(if present) two-variable interactions. Similarly, the third sum represents (if
present) the contributions from three-variable interactions, and so on.

Other works on feature set decomposition have been developed by ex-
tending the Näıve Bayes classifier. The Näıve Bayes classifier [16] uses the
Bayes’ rule to compute the conditional probability of each possible class,
assuming the input features are conditionally independent given the tar-
get feature. Due to the conditional independence assumption, this method
is called “Näıve”. Nevertheless, a variety of empirical researches show sur-
prisingly that the Näıve Bayes classifier can perform quite well compared
to other methods, even in domains where clear feature dependencies exist
[16]. Furthermore, Näıve Bayes classifiers are also very simple and easy to
understand [36].

Recently, a new general framework that searches for helpful feature set
decomposition structures has been proposed [58]. This framework nests
many algorithms, two of which are tested empirically over a set of bench-
mark datasets. The first algorithm performs a serial search while using a
new Vapnik-Chervonenkis dimension bound for multiple oblivious trees as
an evaluating schema. The second algorithm performs a multi-search while
using wrapper evaluating schema. This work indicates that feature set de-
composition can increase the accuracy of decision trees.

4 The Decomposer’s Characteristics

The following sub-sections present the main properties that characterize de-
composers. These properties can be useful for differentiating between various
decomposition frameworks.

4.1 The Structure Acquiring Method

This important property indicates how the decomposition structure is ob-
tained:

– Manually (explicitly) based on an expert’s knowledge in a specific do-
main [9,45]. If the origin of the dataset is a relational database, then the
schema’s structure may imply the decomposition structure.
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– Predefined due to some restrictions (as in the case of distributed data
mining)

– Arbitrarily [17,12] - The decomposition is performed without any pro-
found thought. Usually, after setting the size of the subsets, members
are randomly assigned to the different subsets.

– Induced without human interaction by a suitable algorithm [73].

Some may justifiably claim that searching for the best decomposition
might be time-consuming, namely prolonging the induction process. In or-
der to avoid this disadvantage, the complexity of the decomposition algo-
rithms should be kept as small as possible. However, even if this cannot
be accomplished, there are still important advantages, such as better com-
prehensibility and better performance that makes decomposition worth the
additional computational complexity.

Furthermore, it should be noted that in an ongoing induction effort (like
in a churning application) searching for the best decomposition structure
might be performed in wider time buckets (for instance, once a year) than
when training the classifiers (for instance once a week). Moreover, for acquir-
ing decomposition structure, only a relatively small sample of the training
set may be required. Consequently, the execution time of the decomposer
will be relatively small compared to the time needed to train the classifiers.

Usually in real-life applications the decomposition is performed manu-
ally by incorporating business information into the modelling process. The
following quotation provides a practical example [6]:

It may be known that platinum cardholders behave differently from
gold cardholders. Instead of having a data mining technique figure
this out, give it the hint by building separate models for the platinum
and gold cardholders.

Decomposition can be also useful for handling missing data. In this case
we do not refer to sporadic missing data but to the case where several at-
tribute values are available for some tuples but not for all of them. For
instance: “Historical data, such as billing information, is available only for
customers who have been around for a sufficiently long time” or “Outside
data, such as demographics, is available only for the subset of the customer
base that matches”). In this case, one classifier can be trained for cus-
tomers having all the information and a second classifier for the remaining
customers [6].

4.2 The Mutually Exclusive Property

This property indicates whether the decomposition is mutually exclusive
(disjointed decomposition) or partially overlapping (i.e. a certain value of a
certain attribute in a certain tuple is utilized more than once). For instance,
in the case of sample decomposition, “mutually exclusive” means that a
certain tuple cannot belong to more than one subset [17,12]. Other have
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used non-exclusive feature decomposition [4]. Similarly CART and MARS
perform mutually exclusive decomposition of the input space, while HME
allows sub-spaces to overlap.

The partially overlapping decompositions are potentially more accurate
than mutually exclusive decompositions, because the latter forms a restric-
tion on the problem space which might skip on accurate models. Still mu-
tually exclusive decomposition has some important and helpful properties:

– A greater tendency in reduction of execution time than non-exclusive
approaches. Since most learning algorithms have computational com-
plexity that is greater than linear in the number of attributes or tuples,
partitioning the problem dimensionality in a mutually exclusive manner
means a decrease in computational complexity [51].

– Since mutual exclusiveness entails using smaller datasets, the models
obtained for each sub-problem are smaller in size. Without the mutually
exclusive restriction, each model can be as complicated as the model
obtained for the original problem. Smaller models contribute to compre-
hensibility and ease in maintaining the solution.

– Mutually exclusive decomposition may help avoid some error correla-
tion problems that characterize non-mutually exclusive decompositions
[4]. However, mutually exclusive training sets do not necessarily result
in low error correlation [66]. This point is true when each sub-problem
is representative (i.e. represent the entire problem, as in sample decom-
position).

– Reduced tendency to contradiction between sub-models. When a mutu-
ally exclusive restriction is unenforced, different models might generate
contradictive classifications using the same input. Reducing inter-models
contraindications help us to grasp the results and to combine the sub-
models into one model. The resulting predictions of ensemble methods
are usually inscrutable to end-users, mainly due to the complexity of the
generated models, as well as the obstacles in transforming theses models
into a single model [56]. Moreover, since these methods do not attempt
to use all relevant features, the researcher will not obtain a complete pic-
ture of which attribute actually affects the target attribute, especially
when, in some cases, there are many relevant attributes.

– Since the mutually exclusive approach encourages smaller datasets, they
are more feasible. Some inducers can process only limited dataset size
(for instance when the program requires that the entire dataset will be
stored in the main memory). The mutually exclusive approach can make
certain that inducers are fairly scalable to large data sets [12,51].

– We claim that end-users can grasp mutually exclusive decomposition
much easier than many other methods currently in use. For instance,
boosting, which is a well-known ensemble method, distorts the original
distribution of instance space, a fact that non-professional users find
hard to grasp or understand.
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4.3 The Inducer Usage

This property indicates the relation between the decomposer and the in-
ducer used. Some decomposition implementations are “inducer-free”, namely
they do not use intrinsic inducers at all. Usually the decomposition pro-
cedure needs to choose the best decomposition structure among several
structures that it considers. In order to measure the performance of a cer-
tain decomposition structure, there is a need to realize the structure by
building a classifier for each component. However since “inducer-free” de-
composition does not use any induction algorithm, it uses a frequency table
of the Cartesian product of the feature values instead. Consider the fol-
lowing example. The training set consists of four binary input attributes
(a1, a2, a3, a4) and one target attribute (y). Assume that an “inducer-free”
decomposition procedure examines the following feature set decomposition:
(a1, a3) and (a2, a4). In order to measure the classification performance of
this structure, it is required to build two classifiers; one classifier for each
subset. In the absence of an induction algorithm, two frequency tables are
built; each table has 22 = 4 entries representing the Cartesian product of
the attributes in each subset. For each entry in the table, we measure the
frequency of the target attribute. Each one of the tables can be separately
used to classify a new instance x: we search for the entry that corresponds
to the instance x and select the target value with the highest frequency
in that entry. This “inducer-free” strategy has been used in several places.
For instance the extension of Näıve Bayes suggested can be considered as
a feature set decomposition with no intrinsic inducer [16]. The function de-
composition algorithm developed by using sparse frequency tables also fits
this strategy [73].

Other implementations are considered as an “inducer-dependent” type,
namely these decomposition methods use intrinsic inducers, and they have
been developed specifically for a certain inducer. They do not guarantee
effectiveness in any other induction method. For instance, some works have
been developed specifically for neural networks [41] or decision trees [58].

The third type of decomposition method is the “inducer-independent”
type. These implementations can be performed on any given inducer, how-
ever, the same inducer is used in all subsets. As opposed to the “inducer-
free” implementation, which does not use any inducer for its execution,
“inducer-independent” requires the use of an inducer. Nevertheless, it is
not limited to a specific inducer like the “inducer-dependent”.

The last type is the “inducer-chooser” type, which, given a set of induc-
ers, the system uses the most appropriate inducer on each sub-problem.

4.4 Exhaustiveness

This property indicates whether all data elements should be used in the
decomposition. For instance, an exhaustive feature set decomposition refers
to the situation in which each feature participates in at least one subset.
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4.5 Combiner Usage

This property specifies the relation between the decomposer and the com-
biner. Some decomposers are combiner-dependent. That is to say they have
been developed specifically for a certain combination method like voting or
Näıve Bayes. Other decomposers are combiner-independent; the combina-
tion method is provided as input to the framework. Potentially there could
be decomposers that, given a set of combiners, would be capable of choosing
the best combiner in the current case.

4.6 Sequentially or Concurrently

This property indicates whether the various sub-classifiers are built sequen-
tially or concurrently. In sequential framework the outcome of a certain
classifier may effect the creation of the next classifier. On the other hand, in
concurrent framework each classifier is built independently and their results
are combined in some fashion. Some refers to this property as “The relation-
ship between modules” [65] and distinguishes between three different types:
successive, cooperative and supervisory. Roughly speaking the “successive”
refers to “sequential” while “cooperative” refers to “concurrent”. The last
type applies to the case in which one model controls the other model, for
instance, one neural network is used to tune another neural network.

The original problem in intermediate concept decomposition is usually
converted to a sequential list of problems, where the last problem aims to
solve the original one. On the other hand, in original concept decomposition
the problem is usually divided into several sub-problems which exist on their
own. Nevertheless, there are some exceptions. For instance, the “windowing”
concept [52] is considered to be sequential.

Naturally there might be other important properties which can be used
to differentiate a decomposition scheme. Table 1 summarizes the most rel-
evant research performed on each decomposition type.

Table 1 Summary of Decomposition Methods in the Literature.

Paper Decomposition Type Mutually Exclusive Structure Acquiring Method

[2] Concept No Arbitrarily
[11] Concept Yes Manually
[45] Function Yes Manually
[73] Function Yes Induced
[1] Sample No Arbitrarily
[17] Sample Yes Arbitrarily
[59] Sample Yes Induced
[54] Space No Induced
[35] Space Yes Induced
[4] Attribute No Arbitrarily
[38] Attribute Yes Manually
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5 Meta Decomposer Framework

As stated above, our ultimate goal is to develop a mechanism that com-
bines all decomposition methods such that given an unseen dataset; the
most appropriate decomposition (if any) could be selected. There are two
alternatives to achieve this automatic and systematic decomposition proce-
dure:

– The wrapper approach – Given a certain dataset, use each elementary
decomposition and select the one that appears to give the highest success
rate. The main advantage of this approach is its ability to predict quite
well the performance of each examined method. The main disadvantage
of this method is it’s prolonged processing time. For some inducers the
induction times may be very long, particularly in large real-life datasets.
Several researchers have implemented this method for selecting induc-
tion algorithms or dimension reduction algorithms and showed that it
produces superior results [64,34].

– The meta-learning approach – Based on datasets characteristics, the
meta-decomposer decides whether to decompose the problem or not and
what elementary decomposition to use. The idea of the meta-decomposer
approach can be summarized as follows: If a certain decomposition
method outperforms other decomposition methods in a particular dataset,
then one should expect that this method will be preferable when other
problems with similar characteristics are presented. For this purpose
one can employ meta-learning. Meta-learning is concerned with accu-
mulating experience on the performance of multiple applications of a
learning system. One possible output of the meta-learning process is a
meta-classifier that is capable to indicate which learning method is most
appropriate to a given problem. In this paper the meta-learning focuses
on explaining what causes a decomposition method to be successful or
not in a particular problem. Thus, in this case the meta-classifier is
used a meta-decomposer which attempts to select the most appropriate
decomposition method . This goal can be accomplished by performing
the following phases: In the first phase one should examine the perfor-
mance of all investigated decomposition methods on various datasets.
Upon examination of each dataset, the characteristics of the dataset are
extracted. The dataset’s characteristics, together with the indication of
the most preferable decomposition method, (in this dataset) are stored
in a meta-dataset. This meta-dataset reflects the experience accumu-
lated across different datasets. In the second phase, an inducer can be
applied to this meta-dataset to induce a meta-decomposer that can map
a dataset to the most appropriate decomposition method (based on the
characteristics of the dataset). In the last phase, the meta-decomposer
is actually used to match a new unseen dataset to the most appropriate
decomposition method.

This paper adopts the second alternative and examines it on real world
problems. Previous works have already considered this approach for select-
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ing the most appropriate induction algorithm given dataset characteristics
(see for instance [22,69,5]). However, applying this methodology for select-
ing the most appropriate decomposition given a certain dataset, has not
yet been considered. The main disadvantages of the meta-learning process
concern the assumption that datasets with similar properties behave the
same. Furthermore, in meta-learning, the amount of data available (dataset
descriptions and different performances) is usually quite small, thus the
meta-decomposer is based on small meta datasets. Nevertheless, the main
advantage of this approach is that after the meta-learning phase is com-
pleted, it can be used to select the best decomposition in negligible process-
ing time.

Figures 2 and 3 present the schematic framework of the meta-decomposer.
Figure 2 presents the meta-data generation phase. Figure 3 presents (A) the
meta-learning phase and (B) the usage of the meta-decomposer. As it can
be seen in Figure 2, the Dataset-Generator component is responsible to
extend the original datasets repository into a much bigger repository by
manipulating the original datasets.

Meta-Data

Dataset
Generator

Dataset
Characterizer

Original
Datasets

Repository

Decomposers
Evaluator

Manipulated
Datasets

Repository

Fig. 2 Meta-Data Generation Phase.

5.1 Dataset Characterizer

It appears that datasets can be described using a vector of numeric values
using certain features. It is possible to categorize the characteristic measures
into the following types [22]:

– Simple measures (e.g. number of attributes, number of classes, propor-
tion of binary, categorical or ordinal attributes).
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Meta-Data

Inducer

Meta-
Decomposer

New
Datasets

Meta-
Decomposer

Dataset
Characterizer

What Decomposer
Should be Used?

A

B

Fig. 3 (A) Meta Induction Phase Figure and (B) Meta-Decomposer Usage.

– Statistical measures (e.g. standard deviation ratio).
– Information based measures (e.g. mean entropy).

The Meta attributes used here are:

1. Number of instances in the training dataset.
2. Number of attributes.
3. Ratio of number of instances to the number of attributes - Potential

for overfitting. If this value is small, inducers may find a classifier that
adapts too well to the specificities of the training data, which may be
caused by noisy or irrelevant attributes, and thus result in poor gener-
alization performance.

4. Number of classes — The domain size of the target attribute.
5. Proportion of the binary attributes.
6. Proportion of the categorical attributes.
7. Proportion of the ordinal attributes.
8. Default accuracy — accuracy obtained when using the most frequent

class in the training set, without building any classifier.
9. Mean of means — the mean of all numerical attributes means.

10. Mean of standard deviation — the mean of all numerical attributes
standard deviations.
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11. Mean Kurtosis - The mean of all numerical attributes kurtosis measure.
Kurtosis is a measure of whether the data are peaked or flat relative to
a normal distribution.

12. Mean Skewness — The mean of all numerical attributes skewness mea-
sure. Skewness is a measure of symmetry, or more precisely, the lack of
symmetry.

13. Mean of entropies — mean of all attributes simple entropy. Entropy
measures the amount of uncertainty of a random variable. The Shanon
entropy measure resembles in many ways to the classic variance mea-
surement. Both of them are measures of quantifying uncertainty changes.
However, entropy is different from variance by its metric-free nature: It
is dependent only on the probability distribution of a random variable
and not on its values. However,the entropy measure is not expressive as
much as the cumulative effect of all statistical measures. For this purpose
it is possible to use one of the generalized entropy measures available in
the literature. For this purpose we can use two generalizations proposed
in the literature: Renyi [55] and Tsallis [67].

14. Average absolute correlation between numeric attributes: indicate ro-
bustness to irrelevant attributes.

15. Proportion of numeric attributes with outliers: Indicate robustness to
outlying values. A certain attribute is considered to have outliers if the
ratio of the variances of mean value and the α-trimmed mean (where
α = 0.05) is smaller than 0.7.

16. Average Gain Ratio — Average information gain ratio of the target
attribute obtained by splitting the data according to each attribute.
Useful as an indicative to the amount of relevant information embodied
in the input attributes.

5.2 Dataset Manipulator

As stated above one of the main drawbacks of the meta-learning methodol-
ogy is the necessity to induce from a very limited meta-dataset. The purpose
of the Dataset Manipulator component is to extend the original repository
of datasets into a much bigger repository and by that overcoming the limited
meta-dataset problem.

Obviously the manipulation operators should efficiently affect the dataset
characteristics in order to explore new options that are not represented in
the original repository. The following simple operators can be suitable to
this task:

– Projection – Randomly choose a subset of the original input attributes
set and project the data according to it. This operation can have different
levels of manipulation by setting a parameter that represents the subset
size as a portion of the original attribute set. Note that this operation
is disabled if the parameter is set to 100%.
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– Selection – Randomly select a sub-sample of the original dataset. This
operation can have different levels of manipulation by setting a param-
eter that represents the sub-sample size as a portion of the original
dataset. Note that this operation is disabled if the parameter is set to
100%.

– Distortion – Changing the distribution of the target attribute by reas-
signing some of the instances to a different class. This operation can
have different levels of manipulation by setting a parameter that rep-
resents the portion of instances that remain untouched. Note that this
operation is disabled if the parameter is set to 100%.

Each manipulated dataset is obtained by performing these three opera-
tions. Note that there is no meaning to the order of manipulative operations.

5.3 Decomposer Evaluator

The aim of this component is to evaluate the performance of each decompo-
sition method on each dataset in the manipulated repository. In this paper
we use the C4.5 algorithm [52] as the internal inducer. Furthermore, we
check the performance of C4.5 without performing any decomposition at
all. Each manipulated dataset is represented in the meta-dataset as a sin-
gle tuple, where its target value is chosen to be the method’s name having
the highest performance (from accuracy perspective) for this dataset. The
performance is evaluated by averaging the results obtained by 10-fold-cross-
validation procedure repeated 5 times.

6 Experimental Study

In this section we examine the suggested meta-decomposition approach. For
this purpose we use 25 datasets from the UCI repository [44].

For each manipulation operation we have examined four different levels
of manipulation: 100%, 90%, 75% and 50%. This results in 64 different com-
binations (manipulated datasets) for every dataset in the original repository.
Because the original dataset repository contains 25 datasets, the manipu-
lated repository consists of 1600 datasets.

In this paper we compare only three decomposition methods: Feature
set decomposition using DOG algorithm[58], Space Decomposition using
K-Classifier algorithm[60] and Sample Decomposition using Cluster Based
Concurrent algorithm[59]. All algorithms were executed using their default
parameters. Obviously there are several limitations in the methodology pre-
sented above. First, the results could be altered if the algorithms’ parameters
are tuned differently. Second, there is no guarantee that these algorithms
precisely represent the corresponded decomposition method, namely if dif-
ferent decomposition algorithms had been employed here the results could
be different.
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Figure 4 presents the decision tree obtained by employing the C4.5
algorithm on meta-data (the tree has been slightly modified for legibil-
ity). It can be seen that space decomposition is useful when there are
numeric attributes. This makes sense as the employed algorithm uses the
K-Means algorithm which is more suitable to numeric instance space. The
Instance-Attribute Ratio Meta attribute is used to differentiate between AT-
TRIBUTE (Attribute Decomposition) and NONE (not performing decom-
position at all) in the second and third leaves. In this case, if the Instance-
Attribute Ratio is below a 78.77 (namely there are many attributes rela-
tively to the dataset size), then attribute decomposition should be applied.
Another interesting observation is that both MeanEntropy2 and MeanTsal-
lisEntropy2 (Tsallis’ Entropy Measure) are found to be relevant. This indi-
cates that the new proposed measure is not redundant.

num prop <= 0

MeanEntropy2 <= 0.03 −→ ATTRIBUTE (362.0/57.0)

MeanEntropy2 > 0.03

Cat prop <= 0.67

MeanTsallisEntropy2 <= 0.57

Instance-Attribute Ratio <= 78.77

−→ ATTRIBUTE (336.0/135.0)

Instance-Attribute Ratio > 78.77

−→ NONE (213.0/56.0)

MeanTsallisEntropy2 > 0.57

−→ SAMPLE (425.0/235.0)

Cat prop > 0.67 −→ NONE (328.0)

num count > 0 −→ SPACE (280.0/151)

Fig. 4 Meta-Decomposer Decision Tree.

6.1 Evaluating the Meta-Decomposer

To evaluate whether meta-decomposer brings some benefits, we have carried
out the leave-one-out procedure. According to this procedure the meta-
decomposer has been generated by learning from a partial meta-dataset
obtained by removing one original dataset (and all its derived datasets).
Then the obtained meta-decomposer has been evaluated on the dataset
that has been left out. This procedure has been repeated 25 times, each
time leaving out a different dataset. Table 2 presents the obtained results.
The first column shows the dataset name. The second and third columns
correspondingly present the actual best method and the method anticipated
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by the meta-decomposer to be the most suitable method. The fourth, fifth
and sixth columns present the accuracy obtained using C4.5, the actual
best method and the anticipated method respectively. As it can be seen in
almost two thirds of the datasets, the meta-decomposer was able to predict
which decomposition method (if at all) outperforms other methods. In the
remaining cases the performance of the anticipated method has been slightly
less accurate than the actual best method with no statistical significance.
Moreover, employing the meta-decomposer together with its corresponded
decomposition method can improve on average the accuracy of C4.5 in 6.86
% ± 3.65% (while the best improvement that might be obtained by selecting
the most suitable decomposition method is 7.07% ± 3.64%).

Table 2 Performance Results of Meta-Decomposer Procedure.

Dataset
Name

Actual
Best
Method

Anticipated
Best
Method

Accuracy
C4.5

Accuracy
Actual
Best
Method

Accuracy
Anticipated
Best
Method

AUST Attribute None 85.36±5.1 86.52±2.5 85.36±5.1
AUDIOLOGY Attribute ATT 75±6.95 78.5±6.54 78.5±6.54
BCAN Attribute None 92.99±2.87 97.42±1.17 92.99±2.87
HEPATITIS Attribute Attribute 70.32±8.46 80±6.89 80±6.89
IRIS None None 96±3.33 95.33±5.05 96±3.33
KR-VS-KP Space None 99.44±0.55 99.62±0.43 99.44±0.55
LABOR Attribute Attribute 87.72±12.72 98.24±4.52 98.24±4.52
LED17 Attribute Attribute 59.09±6.9 73.64±5.5 73.64±5.5
LETTER Space Space 74.96±0.8 77.46±0.64 77.46±0.64
LCAN Attribute Attribute 38.71±17.82 93.55±10.05 93.55±10.05
MONKS1 Attribute Attribute 75.81±8.2 98.39± 2.3 98.39± 2.3
MONKS2 Sample Sample 61.54±8.6 65.36 ±5.7 65.36 ±5.7
MONKS3 Attribute None 93.44±3.7 93.442±3.3 93.44±3.7
MUSH None Attribute 100±0 100±0 100±0
NURSE None Space 97.45±0.4 90.65±0.6 90.65±0.6
OPTIC Attribute Attribute 62.42±2 91.73±1.4 91.73±1.4
SONAR Attribute Attribute 69.71±5.4 77.12±8.7 77.12±8.7
SOYBEAN Space Attribute 92.83±1.52 94.9±4.61 92.9±2.56
SPI Attribute Attribute 91.2±1.9 95.8±0.9 95.8±0.9
TTT None Space 85.7±1.65 79.33±4 79.33±4
VOTE None None 96.21±2.45 90.52±1.23 96.21±2.45
WINE Attribute Attribute 85.96±6.9 96.63±3.9 96.63±3.9
ZOO Attribute Attribute 93.07±5.8 98.02±3.02 98.02±3.02
ARCENE Sample None 75 ±9.2 79±8.1 75 ±9.2
DEXTER Attribute Attribute 78.33 ±3.6 89.33±2.7 89.33±2.7
MADELON Attribute Attribute 69.8±4.7 71.4 ±2.6 71.4 ±2.6
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7 The Relation to Other Methodologies

The main distinction between existing approaches, such as ensemble meth-
ods and distributed data mining to decomposition methodology, focuses on
the following fact: the assumption that each model has access to a com-
parable quality of data is not valid in the decomposition approach [68].
In decomposition methodology classifiers may have significant variations
in their overall performance. Furthermore when individual classifiers have
substantially different performances over different parts of the input space,
combining is still desirable [68]. Nevertheless neither simple combiners nor
more sophisticated combiners are particularly well-suited for the type of
problems that arise.

The ensemble methodology is closely related to the decomposition
methodology. In both cases the final model is a composite of multiple mod-
els combined in some fashion. However, it is possible to distinguish between
these methodologies in the following way [65]: the main idea of ensemble
methodology is to combine a set of models, each of which solves the same
original task. The purpose of ensemble methodology is to obtain a more
accurate and reliable performance than when using a single model. On the
other hand, the purpose of decomposition methodology is to break down a
complex problem into several manageable problems, enabling each inducer
to solve a different task. Therefore, in ensemble methodology, any model
can provide a sufficient solution to the original task. On the other hand, in
decomposition methodology, a combination of all models is mandatory for
obtaining a reliable solution.

Distributed data mining (DDM) deals with mining data that might be
inherently distributed among different, loosely coupled sites with slow con-
nectivity, such as geographically distributed sites connected over the Inter-
net [33]. Usually DDM is categorized according to data distribution:

– Homogeneous – In this case, the datasets in all the sites are built from
the same common set of attributes. This state is equivalent to the sample
decomposition discussed above, when the decomposition structure is set
by the environment.

– Heterogeneous – In this case, the quality and quantity of data available
to each site may vary substantially. Since each specific site may con-
tain data for different attributes, leading to large discrepancies in their
performance, integrating classification models derived from distinct and
distributed databases is complex.

DDM can be useful also in the case of “mergers and acquisitions” of
corporations. In such cases, since each company involved may have its own
IT legacy systems, different sets of data are available.

In DDM the different sources are given, namely the instances are pre-
decomposed. As a result, DDM is mainly focused on combining the various
methods. Several researchers discuss ways of leveraging distributed tech-
niques in knowledge discovery, such as data cleaning and preprocessing,
transformation, and learning.
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The JAM system is a meta-learning approach [50]. The meta-learning
approach is about combining several models (describing several sets of data
from several sources of data) into one high-level model.

Another meta-learning concept is the knowledge probing [23]. In knowl-
edge probing, supervised learning is organized into two stages. In the first
stage, a set of base classifiers is constructed using the distributed data sets.
In the second stage, the relationship between an attribute vector and the
class predictions from all of the base classifiers is determined.

A closely related field is Parallel Data Mining (PDM). PDM deals with
mining data by using several tightly-coupled systems with fast interconnec-
tion, as in the case of a cluster of shared memory workstations [71].

The main goal of PDM techniques is to scale-up the speed of the data
mining on large datasets. It addresses the issue by using high performance,
multi-processor computers. The increasing availability of such computers
calls for extensive development of data analysis algorithms that can scale
up as we attempt to analyze data sets measured in terabytes on parallel ma-
chines with thousands of processors. This technology is particularly suitable
for applications that typically deal with large amounts of data, e.g. company
transaction data, scientific simulation and observation data. Another im-
portant example of PDM is the SPIDER project that uses shared-memory
multiprocessors systems (SMPs) to accomplish PDM on distributed data
sets [72].

8 Conclusion and Future Work

In this paper we have reviewed the necessity of decomposition methodol-
ogy in pattern recognition, machine learning and data mining. We have
suggested an approach to categorize elementary decomposition methods.
We also discussed the main characteristics of decomposition methods and
demonstrated these characteristics on various methods presented in the lit-
erature.

Finally we proposed a meta-decomposition approach and validated its
prediction capabilities. We have shown empirically that the proposed meta-
decomposer usually select the most appropriate decomposition method. In
fact using the meta-decomposer achieved an accuracy improvement of 6.8%
while using the posteriori best method has provided only slightly better
results (7.1%).

Additional research issues in meta decomposer approach include: Ex-
tending the meta-learning schema to investigate other decomposition meth-
ods presented in Section 3, more precisely: Function Decomposition and
Concept Aggregation; Checking whether the meta-learning results are still
valid when different decomposition algorithms implementations are used,
namely examine the robustness of the meta-decomposer; Examine the ef-
fectiveness of recursively using the meta-decomposer; and finally how can
we utilize prior knowledge for decomposition methodology.
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9 Originality and Contribution

This paper introduces a novel taxonomy for decomposition methods as ap-
plied to classification tasks. The proposed taxonomy refers to elementary
decomposition methods that can be used as building blocks to construct
a more complicated decomposition. The taxonomy is illustrated using an
extensive review of existing decomposition methods.

The taxonomy is subsequently used as the basis for a new meta-
decomposition methodology which is designed to automatically select the
best decomposition method for a given database. For this purpose we ex-
amine a meta-decomposer framework that contains two phases. In the first
phase the meta-dataset is generated by evaluating the performance of sev-
eral decomposition methods on a given set of datasets. Every dataset is
characterized by a set of well-known measures, such as entropy and skew-
ness. In order to significantly extend the dataset variety, we suggest to
use a randomize dataset manipulator. In the second phase a decision tree-
based meta-decomposer is trained by using the generated meta-dataset.
Then when a new dataset is provided, we employ the meta-decomposer to
select the most promising decomposition method.
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