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Abstract 
In business applications such as direct marketing, decision-makers are required to choose the 

action which best maximizes a utility function. Cost-sensitive learning methods can help them 

achieve this goal. In this paper, we introduce Pessimistic Active Learning (PAL). PAL employs a 

novel pessimistic measure, which relies on confidence intervals and is used to balance the 

exploration/exploitation trade-off. In order to acquire an initial sample of labeled data, PAL 

applies orthogonal arrays of fractional factorial design. PAL was tested on ten datasets using a 

decision tree inducer. A comparison of these results to those of other methods indicates PAL’s 

superiority. 

 

1. Introduction and Motivation  
When marketing a service or a product, firms increasingly use predictive models to estimate 

the customers’ interest in their offer. A predictive model estimates the response probability of the 

potential customers in question, and helps the decision-maker assess the profitability of the 

different customers. Predictive models assist a target marketing strategy: offering the right 

product to the right customer at the right time using the proper distribution channel. The firm 

approaches the customers estimated as the most interested and proposes a marketing offer. A 

customer that accepts the offer and conducts a purchase adds to the firms’ profits. This strategy 

affords better efficiency than a mass marketing strategy, in which a firm offers a product to all 

known potential customers, usually resulting in low positive response rates. For example, a mail 

marketing response rate of 2% or a phone marketing response of 10% are considered good.  
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Predictive models can be built using data mining methods. These methods are applied to 

detect useful patterns in the information available about the customers purchasing behaviors   

(e.g., Zahavi and Levin, 1997; Buchner and Mulvenna, 1998; Ling and Li, 1998; Viaene et al., 

2001; Yinghui, 2004; Domingos, 2005). Data for the models is available, as firms typically 

maintain databases that contain massive amounts of information about their existing and 

potential customers such as the customer's demographic characteristics and past purchase 

history.   

 Active learning (Cohn et al., 1994) refers to data mining policies which actively select 

unlabeled instances for labeling. It has been previously used for facilitating direct marketing 

campaigns (Saar-Tsechansky and Provost, 2007): during an exploration phase some potential 

customers are approached with a marketing offer. Based on their response, the learner actively 

selects the next customers to be approached, and so forth. Exploration does not come without a 

cost. Direct costs might involve hiring special personnel for calling customers and collecting 

their characteristics and responses to the campaign. Indirect costs may be incurred from 

contacting potential customers who would normally not be approached due to their low buying 

power or low interest in the product or service offer.  

An aspect involved in marketing campaigns is the well-known concept of 

exploration/exploitation trade-off (Kyriakopoulos and Moorman, 2004). Exploration strategies 

interact with customers to explore their behaviors, while exploitation strategies operate on a 

firm’s existing marketing model. In the exploration phase, a concentrated effort is made to build 

an accurate model. In this phase, the firm may, for example, acquire any available information 

which characterizes the customer. During this phase, the results are analysed in depth and the 

best modus operandi is chosen. In the exploitation phase the firm simply applies the induced 

model – with no intention of improving the model – to classify new potential customers and 

identify the best ones. Thus, the model evolves during the exploration phase and is fixed during 

the exploitation phase. Given the tension between these two objectives, research has suggested 

that firms first explore customer behaviors and then follow with an exploitation strategy 

(Rothaermel and Deeds, 2004; Clarke, 2006). The result of the exploration phase is a marketing 

model that is then used in the exploitation phase. 

The problem we address in this paper is which potential customers a firm should approach 

with a new product offer in order to maximize the net profit. Specifically, our objective is not 

only to minimize the net acquisition cost during the exploration phase, but also to maximize the 
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net profit obtained during the exploitation phase. Our problem formulation takes into 

consideration the direct cost of offering a product to the customer, the utility associated with the 

customer’s response, and the alternative utility of inaction.   

We focus on a binary discrete choice problem, where the customer’s response is binary, 

such as acceptance or rejection of a marketing offer. Discrete choice tasks may involve several 

specific problems, such as unbalanced class distribution. Typically, most customers considered 

for the exploration phase reject the offer, leading to a low positive response rate. However, an 

overly-simple classifier may predict that all customers in questions will reject the offer.  

Another problem is that the predictive accuracy of a classifier alone is insufficient as an 

evaluation criterion. One reason is that different classification errors must be dealt with 

differently: mistaking acceptance for rejection, is particularly undesirable. Moreover, predictive 

accuracy alone does not provide enough flexibility when selecting a target for a marketing offer, 

or when choosing how an offer should be promoted. For example, the marketing personnel may 

want to approach 30% of the available potential customers, but the model predicts that only 6% 

of them will accept the offer (Ling and Li, 1996); or, they may want to personally call  the first 

100 most likely to accept, and send a personal mailing to the next 1000 most likely to accept. In 

order to solve some of these problems, learning algorithms for target marketing are required not 

only to classify but to produce a probability estimation as well. This enables ranking the 

predicted customers by order of their estimated positive response probability.  

Active learning merely aims to minimize the cost of acquisition, and does not consider the 

exploration/exploitation tradeoff. Active learning techniques do not aim to improve online 

exploitation. Nevertheless, occasional income is a byproduct of the acquisition process. We 

propose that the calculation of the acquisition cost performed in active learning algorithms 

should take this into consideration.  

Most existing active learning methods assume that the first batch of labeled instances is 

selected randomly or given as an input to the algorithm. Mayer and Sarkissian (2003) illustrated 

the usefulness of applying Design of Experiment (DoE) to active learning. We suggest using 

DoE in the initial sample, followed by a different strategy for selecting the subsequent unlabeled 

instances for labeling.   

In this paper, we present a new learning framework for the discrete choice target marketing 

problem: Pessimistic Active Learning (PAL). When selecting the next batch of customers to be 

courted by a marketing campaign, active learning strictly addresses improved exploration. 
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However, PAL, like reinforcement learning, also considers a secondary criterion: the 

costs/profits of the exploration/exploitation trade-off during the exploration phase. PAL applies a 

novel incremental pessimistic measure, which relies on confidence intervals. According to this 

measure, during the exploration phase, PAL selects which customers are to be approached. PAL 

also employs a known simulated annealing model, so that the ratio between exploration and 

exploitation is traded dynamically, and thus exploration fades over time.  

PAL offers four main innovations: 

1) Pessimism: The selection of instances to be acquired during the exploration phase 

is based on the change in the lower bound of the confidence interval of the success 

probability rather than on the probability itself. There have been several successful attempts 

to use the pessimistic approach in machine learning (e.g., Quinlan, 1993 and Saar-

Tsechansky and Provost, 2004). However, to the best of our knowledge, no cost-sensitive 

method considers the effect of the confidence level of the estimated probability in classifier 

learning problems. 

2) Working with batches: Our assumption is that a marketing campaign is carried out 

in batches. In other words, given a trained classifier, the campaign manager selects a batch of 

customers to solicit. Only after obtaining the responses of all customers in this batch is a new 

classifier trained. Given this, the decision of whether to include a certain customer in the next 

batch should take into account its contribution to the entire batch. In this study, we develop 

an approximation method to estimate the potential contribution of the nth customer in the 

batch. 

3) Design of Experiments: The proposed algorithm employs well-known statistical 

design of experiment (DoE) methods in order to select the first batch of labeled customers, 

which are needed for the construction of the initial classifier in a non-random way. 

Specifically, we integrate an orthogonal array of fractional factorial designs. 

4) Exploration-exploitation trade-off: While most cost-sensitive active learning 

methods try to optimize some testing set measures, such as profit, in this study we are also 

interested in training performance, namely the profit or loss incurred during the exploration 

phase. We adopt and incorporate a well-known simulated annealing technique to gradually 

increase exploitation during the exploration phase. 
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The remainder of this paper is organized as follows: Section 2 introduces the problem 

formulation. Section 3 presents the components of a new active learning algorithm for decision 

trees. Section 4 reports the experiments carried out on benchmark datasets. Section 5 presents 

related work, and Section 6 concludes the work.  

 

2. Problem Formulation 

The main objective of a marketing campaign is to select which potential customers a firm 

should approach with a new product offer, in order to maximize the net profit. In the marketing 

problem presented in this paper, we assume that the firm holds an initial dataset of potential 

customers that can be used during the exploration phase. This initial dataset does not, however, 

cover all potential customers. We also assume that while acquiring the customers’ response is 

costly, some of the courted customers will respond positively to the offer and the income from 

their purchase will offset the cost. Thus, Mayer and Sarkissian (2003) proposed referring to the 

net acquisition cost, which is the total cost of acquiring customer response, less the income 

generated if the courted customers purchase the products. 

We also assume that during a marketing campaign, a firm will not approach its customers 

one by one, but it will rather approach a batch of customers simultaneously, so that the firm can 

concentrate its exploitation of resources, such as marketing personnel and equipment. After a 

campaign session is over and a batch of customers has been courted, the firm can analyze the 

results and proceed to the next stage of the campaign. We assume a fixed batch size.  

In our targeted marketing context, an instance ix X∈  is defined as the set of attributes1, such 

as age and gender, of a unique potential customer i. For the sake of clarity, we will assume a 

binary outcome for the target attribute y, specifically y = {"accept", "reject"}. Unlabeled 

instances are defined as instances with an unknown target attribute. A set S of M unlabeled 

instances from the set X is obtained. The instances in S are independent and behave according to 

some fixed and unknown joint probability distribution D of X and Y. The cost of approaching 

customer i with an offer is denoted as iC ∈ℜ . The probability that customer i will respond 

positively to the offer is denoted as ip . If customer i with some unknown probability ip  agrees 

                                                 

1 In this research, we assume that the attributes are independent and that there are no missing values. If that is not the 
case, we assume that data pre-processing methods are used to complete the missing information, remove the 
dependent attributes and scale the numbers. 
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to the offer, the utility obtained from this customer is denoted as ℜ∈S
iU . If the customer rejects 

the offer, the utility is denoted as ℜ∈F
iU . Thus, the net acquisition cost of customer i is defined 

as: 

if customer accepts theoffer

if customer rejects theoffer

S
i i

i F
i i

C U i
NAC

C U i

 −
=  −

    (1) 

      Note that all utility values are a function of the customer's attribute vector (xi).  

Let the corresponding utility of inaction with respect to customer i be denoted as iΨ . In 

order to maximize the expected profit, the decision-maker should court customer i  if the 

probability of a positive response is higher than the cost of approach (Saar-Tsechansky and 

Provost, 2007). This is represented in the following equivalent equations: 

 ˆ ˆ(1 )S F
i i i i i ip U p U C⋅ + − ⋅ − > Ψ  or ˆ

F
i i i i

i S F
i i i

C U o
p

U U r

+ Ψ −> ≡
−

   (2) 

where oi and r i are merely shorthand for the numerator and denominator of the decision threshold 

ratio.  The notation ̂ ip  represents the classifier’s estimation for ip .  

A pseudo code for the active learning framework used for the target marketing process is 

presented in Figure 1. The received input includes: a pool of unlabeled instances (S), an inducer 

(I), and a stopping criterion (CRIT). The first step is to initiate the labeled pool (line 1). An initial 

set of labeled examples is selected in Line 3. Once the potential customers are selected, they are 

approached with a product offer (line 6).  According to the customers' response, the newly 

labeled examples are added to the labeled pool (line 7). The labeled pool is then used for 

building the classifier (line 8). Based on the classifier, the next subset from the unlabeled pool is 

selected (line 10). This process is repeated until triggering some sort of stopping criteria (line 3), 

such as running out of budget. The final classifier (the output, line 12) is used to estimate the 

probability of positive response ˆ ip  of new customers. Customers with an estimated probability 

that exceeds the threshold in Eq. (2) are contacted.  

    Based on the active learning framework presented in Figure 1, the marketing learning problem 

can be defined as follows:  

While keeping the total net acquisition cost to minimum, the goal is to actively acquire from 

S mutually exclusive subsets 1 2, , , kS S S…  of a given batch size M, such that the final classifier 
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induced from 
1

k

i
i

S
=
∪  maximizes the profitability of the campaign. The subsets are acquired 

sequentially. 

Active Learning Framework 
Input: 

S - An unlabeled pool of instances 
I – An induction algorithm  
CRIT – A stopping criterion 

Output: 
 CL – Classifier for predicting customer response 
 

1. L �∅   /* the labeled pool */ 
2.  i�1  
3. S1�Select initial set of instances from S 
4. While CRIT is not met do 
5.  Remove Si from S 
6. Acquire labels for examples in Si 

7. Add Si to L 
8. Apply I to L, resulting in a classifier CL 
9.   i�i+1  
10. Select subset Si from S using CL 
11. End While  
12. Return CL 

Figure 1: Pseudo Code for the Active Learning Framework 
 

This is a Multiple Criteria Decision-Making (MCDM) problem. The first criterion is to 

improve the decisions of the campaign manager. The positive reactions rate can be used to assess 

the profitability during the exploitation phase. Higher rates indicate higher gross profit margins 

and return of investments (ROI). The second criterion is to acquire labeled instances with 

minimal net acquisition cost during the exploration phase. Both criteria deal with financial 

utilities. Still, the two criteria cannot be summed. We cannot represent the first criterion as total 

income during the exploitation phase, since we do not know in advance how many customers are 

going to be evaluated using the model. The only assumption we make is that the instances in the 

unlabeled instances set used during the training phase (S) and the instances examined during the 

operational phase are both distributed according to a fixed and unknown distribution D. In this 

paper, we consider the first criterion as primary and the second as secondary. Prioritization of 

these criteria agrees with the assumption that the exploitation phase is longer than the 

exploration phase.    

In this paper, we use a Decision Tree classifier to estimate ip . Decision trees are considered 

to be self-explanatory models and easy to follow when compacted (Rokach and Maimon, 2005). 

They have been previously used in marketing scenarios (e.g., Levin and Zahavi, 2005; Saar-

Tsechansky and Provost, 2007). The principles underlying the proposed PAL approach can be 
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adjusted to other induction methods, such as neural networks. Neural network classifiers have 

also been applied to target marketing (Zahavi and Levin, 1995; Zahavi and Levin, 1997; Potharst 

et al., 2002). 

In order to estimate the probability ip  with the decision tree classifier, the appropriate leaf k 

in the tree that refers to the given instance ix  should first be located. The frequency vector of 

each leaf node captures the number of instances from each possible class. In the usual case of 

target marketing, the frequency vector has the form: ( ), ,,k accept k rejectm m  where ,k cm  denotes the 

number of instances in the labeled pool that reach leaf k and satisfyy c= . According to Laplace's 

law of succession, the probability ip  is estimated as: 

,
, ,

, ,

1
ˆ ( , )

2
k accept

i k accept k reject
k accept k reject

m
p p m m

m m

+
= =

+ +
 .     (3) 

Besides estimating the point probabilityˆ ip , we are interested in estimating a confidence 

interval for this probability. An approach to a customer can be considered as a Bernoulli trial. 

For the sake of simplicity, we approximate the confidence interval of the Bernoulli parameter 

with the normal approximation to the binomial distribution: 

 
iiiii zppzp σσ αα ˆˆˆˆ 2/12/1 −− +<<−       

rejectkacceptk

ii
rejectkacceptki mm

pp
mm

,,
,,

)ˆ1(ˆ
),(ˆ

+
−

== σσ           (4) 

 
where iσ̂ represents the estimated standard deviation and 2/1 α−z  denotes the value in the standard 

normal distribution table corresponding to the 2/1 α−  percentile. For a small n we can use the 

actual binomial distribution to estimate the interval. Leemis and Trivedi (1996) proposed 

additional approximations. 

To demonstrate the importance of a confidence level, consider two leaves: leaf A and leaf B 

in a classification tree. Each leaf holds the customers in the labeled pool that fit its path. These 

customers are labeled as either “accept” or “reject”. If the “accept”/ “reject” proportions are the 

same, then according to Eq. (3), both leaves have the same estimated probability. Given this, if 

leaf A has more customers than leaf B, then according to Eq. (4), leaf B has a larger confidence 

interval. Thus, acquiring an instance to leaf B will have a greater impact on the class distribution 

than adding an example to leaf A. In the initial iterations, when the data are limited and the 
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confidence intervals are large, obtaining an additional instance to the correct leaf is especially 

important. Moreover, the potential contribution of labeling the i th instance in the same leaf and 

adding it to the labeled pool decreases in i. Thus, the calculation of the potential contribution of 

each instance in the new batch depends on the other instances that are selected to this batch. 

3.  The Pessimistic Active Learning Method 

Figure 2 presents the pseudo code of the PAL (Pessimistic Active Learning) method. The 

algorithm receives as input the unlabeled set (S), an inducer (I) which PAL uses for building the 

classifier, and a certain batch size (M). First, the orthogonal arrays (OA) approach to designing 

experiments (Hedayat et al. 1999) is used to select the first batch of instances (lines 2-3). The 

first batch is labeled and is used to initiate the labeled set. The algorithm actively selects the next 

batches of size M until a given stopping criterion is met (Lines 4-15). In order to select the next 

batch, first an inducer is trained on the labeled set (line 5) and a new classifier (CL) is induced. 

This classifier is then used to make a selection for the next batch.  The selected batch is labeled 

and is added to the labeled set.   

In the following subsections, we present the important elements of PAL: (i) the OA 

approach to design of experiments used to select the first batch of instances; (ii) selection of 

subsequent batches by combining random exploration and biased exploration, which is intended 

to improve future exploitation; and (iii) a pessimistic profit estimator that is used for selecting 

the instances to be explored. 

3.1 Initial Sample Selection 

      Design of experiments seeks to minimize the number of experiments required to collect 

useful information about an unknown process (Montgomery, 1997). The collected data are 

typically used to construct a model for the unknown process. The model may be used to optimize 

the original process.  

    A full factorial design is a design of experiment in which the experimenter chooses n 

attributes that are believed to affect the target attribute. Then, all possible combinations of the 

selected input attributes are acquired (Montgomery 1997). Applying a full factorial design is 

impractical when many input attributes are given.   
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Pessimistic Active Learning 
Input: 

S - an unlabeled set 
I – an induction algorithm which is capable of provi ding confidence intervals 
M – the batch size 
CRIT – a stopping criterion 
α - the confidence level 

  γ - Simulated annealing decay factor 

  T0 – the portion of instances randomely selected 
 
Output: 
  CL – Classifier  
1. j�0 
2. Apply revised OA method to select the subset L containing M instances from S 
3. Remove L from S, and label L 
4. While CRIT is not met do 
5.   Apply I to L, resulting in a classifier CL 
6.  For each instance in S calculate the pessimistic profit gain (Eq. 10) usi ng  
                                                the  probability estimation obtained from CL. 
7.  Z1�Select top (1-Tj) ⋅ M customers from S sorted according to pessimistic profit gain  

8.  S�S-Z1 
9.  Z 2� Randomly select Tj ⋅ M customers from S.  

10. S�S-Z 2 
11. Z �Z1 ∪ Z2 
12. Label Z and add Z to L 
13.  j�j+1 
14. Calculate Tj using a simulated annealing technique (Eq. 11)  

15. End While  
16. Return CL 

Figure 2: The PAL Pseudo Code 
 

  A fractional factorial design is a design in which only a fraction of the combinations required 

for the complete factorial experiment is selected. One of the most practical forms of fractional 

factorial design is the orthogonal array (Hedayat et al. 1999). An orthogonal array Lk(dn)  is a 

matrix of k rows and n columns, with every element being one of the d values. The array has 

strength t if, in every n by t submatrix, the td  possible distinct rows all appear the same number 

of times.  An example of a strength 2 OA is presented in Table 1. Any two attributes in this array 

have all possible combinations (“11”, “12”, “21”, “22”). Each of these combinations appears an 

equal number of times. In an orthogonal array of strength 3 we can see all combinations in any 

three attributes (Hedayat et al. 1999).  

 Constructing a new orthogonal array design for any number of attributes is not an easy task. In 

this paper, we used a ready-made design for a specific number of attributes. The orthogonal 

designs were taken from Sloane's library of orthogonal arrays (Sloane 2007). The number of 

columns n in the OA should be equal to the cardinality of the input attributes set. Moreover the 

domain size d is usually set according to the nominal attribute with the largest domain. There 

might be several suitable designs for a certain dataset. Thus, we selected the design with the 
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smallest number of rows k, aiming to include at least one complete design in the initial subset S1. 

For some datasets, we did not find a design with the exact column cardinality. In such cases, we 

chose a design with more attributes, removed the redundant columns and kept only the distinct 

rows.  

 The original domain of each input attribute should be transformed to a domain of d distinct 

values. With nominal attributes, each attribute type represents one of the d values. Discretization 

methods address this issue for numeric attributes by transforming their values into d ranges of 

values2. 

   Most experimental design approaches aim at settings where instances can be generated, as is 

often the case in lab experiments. In a pool-based selection setting, such as our own, we cannot 

generate instances to fit the design because the instances values are set in advance. Therefore, we 

first derive the design and then identify for each row in the design the instance in the unlabeled 

pool that is most similar. This is done by measuring the normalized Euclidean distance with all 

attributes having the same weight, and selecting the unlabeled instance with the smallest 

distance. 

Table 1: The L8(27) OA’s design 

Attributes   
Instances a1 a2 a3 a4 a5 a6 a7 

1 1 1 1 1 1 1 1 

2 1 1 1 2 2 2 2 

3 1 2 2 1 1 2 2 

4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 

8 2 2 1 2 1 1 2 

 
   

3.2 Pessimistic Profit Using Confidence Bounds 

                                                 

2 In this paper we used a simple unsupervised discretization of equal-width. 
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    In this section, we propose a new measure termed Pessimistic Profit Gain. This measure is 

used for ranking the customers as part of the selection of the next batch. The proposed approach 

aims to improve decision-making by measuring the change in the profit gain when risky 

profitable customers are acquired. We define a risky profitable customer as a customer about 

whom the decision made according to the estimated probability p̂  is not coherent with the 

decision made according to the lower bound of the confidence interval (the pessimistic 

probability). Specifically, if the estimated probability of response suggests the customer is 

profitable, but the lower bound of the confidence interval of p̂  is below the threshold of Eq. (2), 

then there is a non-negligible likelihood that the customer is not profitable. Hence, suggesting an 

offer to this customer is considered risky.   

      Our main goal during the exploration phase is indeed to explore the space. However, by 

selecting customers who are expected to be profitable, yet are considered risky, the Pessimistic 

Profit Gain measure adds exploitive value to the exploration. By acquiring more information 

about risky customers, a later classifier may infer that these customers are indeed unprofitable. 

Yet, we could equally consider an opposite strategy:  acquiring information about customers for 

which the estimated probability suggests the customer is not profitable, but the upper bound of 

the confidence interval is greater than the threshold value, suggesting there is likelihood that the 

customer is in fact profitable. Ignoring the latter strategy is motivated by the assumption that  

most customers are likely to be unprofitable because contacting a customer is costly. Hence, it 

may be more beneficial to reduce the monetary risk of contacting unprofitable customers than 

improving the estimation thereby identifying more profitable customers. 

Approaching a new customer can improve the probability estimation and the current decision 

tree must be updated accordingly. The decision tree can be updated in various ways, for instance 

by adopting the incremental procedure of the ID5R algorithm introduced by Utgoff (1989). For 

the sake of simplicity, we assume that the updated tree is obtained by revising only the class 

probability distribution of the corresponding leaf, and that no new sub-branches are created. 

Obviously, this is not always precise; however, we use it as a low-cost approximation of the 

actual value. 

     3.2.1 Definition of Pessimistic Profit 

 Let us define the notion of profit for a given leaf in the decision tree. Leaf k has ,k acceptm and 

,k rejectm  customers who were courted and responded positively or negatively, respectively. 

Moreover, there are additional mk,new customers in the unlabeled pool which belong to leaf k. We 
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assume that the decision rule presented in Eq. (2) is satisfied, and we decide to approach the 

mk,new customers. For the sake of clarity, we assume that all costs and utilities are identical for all 

customers (e.g., iC C≡ ). If a portion of p customers responds positively, then the total profit is 

calculated as the sum of four terms: 

1. The utility from the customers who have responded positively: ,
S

k newp m U⋅ ⋅   

2. The utility from the customers who have responded negatively: ,(1 ) F
k newp m U− ⋅ ⋅   

3. The cost of approaching the mk,new customers: ,k newm C⋅   

4. The alternative income we lose (when no action is performed): ,k newm ⋅ Ψ . 

Therefore, the profit is: 

,
S

k newprofit p m U≡ ⋅ ⋅ + ,(1 ) F
k newp m U− ⋅ ⋅ - ,k newm C⋅ - ,k newm ⋅ Ψ .   (5) 

Simplifying the expression with the definitions of r and o – the numerator and denominator 

defined in Eq. (2) – the expected profit is: 

   , ,k new k newprofit m r p m o≡ ⋅ ⋅ − ⋅  .       (6) 

We define the pessimistic probability as the lower bound of (1-α )% confidence interval 

of the success probability. When payoffs are Boolean, the normal approximation to the 

binomial distribution can be used to construct the confidence interval. The pessimistic 

probability is the lower limit of the confidence interval presented in Eq. (4): 

   iii zpp σα ˆˆ~
21−−≡ .                                             (7)  

By incorporating the pessimistic probability in Eq. (6), we define the pessimistic profit 

(PP) for a given leaf in the decision tree. 

 

( )
( )

2

, , , , ,

, , , , , ,1

( , , )

( , ) ( , )

k accept k reject k new k new i k new

k new k accept k reject k accept k reject k new

PP m m m m r p m o

m r p m m z m m m oα σ−

≡ ⋅ ⋅ − ⋅

= ⋅ ⋅ − − ⋅

ɶ

.    (8) 

 Eq. (8) generates negative values when probability ip̂  and the pessimistic probability ip~  

are on the opposite sides of the threshold value. When both ip̂  and ip~   are higher than the 

threshold value 
i

i

r

o
 (Eq. 2), PP has a positive value. This means that both ip̂  and ip~  suggest 

the same decision. Thus the reduction of the confidence interval due to acquiring new 

unlabeled instances will not improve the decision. The positive PP value is therefore replaced 

with a value of 0.   
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     3.2.2 Calculation of Pessimistic Profit 

Calculating the pessimistic profit for each customer is done in three steps. First, in order to 

separate customers with a profitable probabilityip̂ from others, the decision rule presented in Eq. 

(2) is applied to all leaves in the decision tree. Customers who correspond to leaves where the 

probability ip̂  is lower than the threshold receive a gain value of 0, thus placing them at the 

bottom of the candidate list. The rest of the customers are considered as potential candidates, and 

move on to the second step: Eq. (8) is used to calculate the leaf’s pessimistic profit for these 

cases. The final step is to estimate how the pessimistic profit will change if the response of a new 

customer is acquired and added to the corresponding leaf. Since the actual response of the 

customer in not known prior to its acquisition, the pessimistic profit is recalculated for each 

possible outcome. 

a) The customer accepts the new product offer:  ,k acceptm  is increased by 1. 

b) The customer rejects the new product offer:  ,k rejectm is increased by 1. 

In both cases ip̂ and ip~  are updated and mk,new decreases by 1. The two possible pessimistic 

profits above are weighted according to the estimated probability ip̂ . 

The pessimistic profit gain is the difference between the estimated pessimistic profit before 

and after approaching a customer. The customers are ranked in descending order according to 

their gain, and those with the highest gain are chosen to be contacted. 

 

 
3.3 Pessimistic Profit Gain for a Group of n Customers 

The previous subsection presented a method for calculating the pessimistic profit gain under 

two assumptions: (1) the customers are courted one at a time; and (2) the next customer is 

approached only after receiving the previous customer’s response. However, this situation is not 

typically the case in many targeted marketing applications, since several salespersons can 

simultaneously contact multiple potential customers. Therefore, the targeting policy should be 

refined to allow a quota of customers to be approached simultaneously. The pessimistic profit for 

the first n customers of a certain leaf k is: 
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Eq. (9) calculates the expected pessimistic profit by examining all possible outcomes of 

approaching n customers and weighting their corresponded profits. We refer to the process of 

approaching n customers as a sequence of n independent Bernoulli experiments, each of which 

yields an “accept” outcome with a probability of ),( ,, rejectkacceptk mmp . Note that by setting n=0 in 

Eq. (9) we obtain the current pessimistic profit of a leaf, before any new customer is courted. 

The gain obtained by the nth customer in leaf k is defined as: 

( ) ( ) ( ), , , , , , 1 , , ,, , , , , ,n k accept k reject k new n k accept k reject k new n kaccept k reject k newG m m m PPG m m m PPG m m m−= −           (10) 

The gain is decreasing in n, i.e., the contribution of adding n instances to a certain leaf is 

smaller than n times the contribution of adding the first instance to that leaf. Note that our 

measure focuses on massive leaves, leaves in which there are more unlabeled customers; Hence, 

if two leaves have the same confidence interval for the estimated probability and the only 

difference between them is the amount of unlabeled corresponding customers, then Eq. (10) 

increases the priority of leaves corresponding to a larger set of instances.   

3.4 Selecting the Subsequent Batches 

While active learning explicitly seeks only improved exploration, PAL selects the next batch 

of customers to be courted by considering the exploration/exploitation tradeoff explicitly, just as 

reinforcement learning does. We employ simulated annealing (Kirkpatrick et al. 1983) to 

determine the amount of instances in a batch courted for exploitation purposes. The rest of the 

instances in the same batch are courted for exploration purposes.  

Simulated annealing is a generic randomized strategy for global optimization problems. Its 

key idea by default is to exploit, that is, to take the action with the best estimated reward. Yet, 

with some probability, exploration is performed by selecting an action at random. The ratio 

between exploration and exploitation is traded dynamically, so that exploration fades in time.  

The parameter 0 1γ≤ ≤  controls the rate of the decay. The parameter 0 1jT≤ ≤  denotes the 

proportion of customers to be courted (explored) in batch j. jT  decreases over time to decrease 

exploration. We used the following simple and common exponential schedule: 

1j jT Tγ −=         (11) 

The outcome jT  is multiplied by the batch size M in order to determine the amount of customers   

in the batch that are randomly selected. The complementary proportion ( )1 jT−  is again 
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multiplied by M to determine the amount of customers that are selected according to their 

Pessimistic Profit Gain.   

4. Experimental Study 

     In this section we present empirical evaluations of our approach for a set of benchmark 

datasets. These evaluations also examine the benefit from each of the algorithms components 

presented in the previous section. 

4.1 Experimental Setup 

4.1.1 The Benchmark Datasets Used in the Experiments 

Because the proposed method is designed for binary domains, we selected ten publicly 

available binary class datasets with an unbalanced class distribution, so as reflect as much as 

possible the characteristics of the direct marketing domains addressed here. Specifically, we 

have used the donation dataset, which has been used in the KDD cup 983, and the insurance 

company benchmark, which has been used in CoIL challenge 2000 (Putten and Someren, 2000). 

In these two datasets, the class refers to a real response of the person to buy a policy or 

contribute a donation. The remaining datasets were obtained from the UCI repository (Blake and 

Merz, 1998). In these datasets we selected the less frequent class to represent the positive 

response.  

Table 2 presents the characteristics of each dataset: the number of attributes, the selected 

training set size, the test set size, and the number of equally sized batches. The large datasets 

were partitioned into 60 batches, while the small datasets were partitioned into 20 batches. 

In real world applications, the actual values of o and r, as defined in Eq. (2),  are estimated 

from the specific application. In the donation problem domain, the cost of approach (o=Ci) is 

given and the positive response utility ( S
ir U= ) can be predicted (for instance, see Saar-

Tsechansky and Provost, 2007 for a detailed description of how these values can be 

appropriately estimated).  We had to fabricate the values for the other datasets considering the 

following arguments:  (i) for values of o/r much lower than the customers' positive response rate, 

a positive profit is guaranteed and the relative contribution of an intelligent model is less 

significant; (ii) for values of o/r much higher than the customers’ positive response rate, the risk 

                                                 

3 http://kdd.ics.uci.edu//databases/kddcup98/kddcup98.html 
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of incurring losses becomes too high, and risky scenarios are unacceptable in most business 

applications. Therefore, avoiding risky scenarios, the maximum potential contribution of an 

intelligent model is manifested when the value of o/r is equal to the customers’ positive response 

rate.  Thus, we set the ratio of o/r at the proximity of the customers’ positive response rate. 

 

 

Table 2: Summary of the dataset characteristics used in the experimental study 

Dataset # 
Attributes 

Training 
Size 

Test Set 
Size 

# 
Batches  

Positive 
Response 
Rate 

o Value 
 

r Value 
 

Adult 14 10000 20000 60 24% 2.9 10 
Anneal 39 797 99 20 4.5% 0.49 10 
Breast C. 10 500 199 20 34% 4.3 10 
Credit 15 300 370 20 37% 3.5 10 
Donation 154 100005 96,357 60 5% 0.68 

(Given) 
Varied 
(mean 15) 

German 25 469 530 20 30% 3.2 10 
Heart 14 124 145 20 44% 4.3 10 
Insurance 85 5822 4000 60 6% 0.63 10 
Mushroom 22 4062 4062 60 10% 1 10 
Thyroid 30 2799 971 60 6% 0.61 10 
 

4.1.2 Alternative Acquisition Algorithms 

In order to evaluate the benefit of the PAL algorithm, we execute it with the following parameter 

values: γ =0.85 (the simulated annealing decay factor) and 5%α =  (the confidence level). We 

compared PAL to the following algorithms, which are later described in Section 5: 

1. An algorithm which acquires new customers drawn uniformly at random. 

2. Kaelbling's (1993) interval estimation algorithm: favors instances with high success 

probability estimation, and also focuses exploration on the most promising, but uncertain 

leaves. The confidence interval of the success probability is estimated for each leaf. Instances 

are selected from the leaf whose confidence interval has the highest upper bound.  

                                                 

4 Originally the donation datasets contain 479 attributes. For the classification task we have used only the following 
input attributes: ODATEDW , INCOME  ,RAMNTALL, NGIFTALL, CARDGIFT, MINRAMNT, MINRDATE, 
MAXRAMNT, MAXRDATE, LASTGIFT, LASTDATE, FISTDATE, NEXTDATE, TIMELAG , AVGGIFT 
5 The original dataset contained 95,413 training instances, of which we randomly selected only 10,000. 
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3.  Randomized strategy using Boltzmann distribution (Kaelbling and Littman, 1996): in this 

case, an instance i is probabilistically chosen proportionally to TNACie /− , where NACi denotes 

the net acquisition cost of customer i and T is a temperature parameter that decreases over 

time to decrease exploration. 

4. The GOAL algorithm (Saar-Tsechansky and Provost, 2007): GOAL, like PAL, aims to 

minimize the cost of acquisition to obtain a given performance. However, unlike PAL, 

GOAL considers only acquisition costs, but not revenue generated during the acquisition 

phase. 

We also evaluated each one of PAL’s four components presented in Section 3 by examining the 

following configurations: 

1. PAL without Simulated Annealing: This variation of PAL includes the OA method for the 

initial sample with random acquisition on the subsequent batches. It does not include the 

simulated annealing module for trading exploration with exploitation (section 3.2). Any 

difference between the performance of this algorithm and PAL's can be attributed to the 

simulated annealing module. 

2. PAL without Pessimism: Employing the OA method for the initial sample simulated 

annealing for trading exploration with exploitation, but instead of using the pessimistic 

estimate for the probability (sections 3.3 and 3.4) we use the probability estimation from Eq. 

(2). This PAL version aims to evaluate what pessimism buys us. 

3. PAL without Orthogonal Arrays: Employing the PAL with random initialization, i.e., without 

OA. This PAL version is used to evaluate the value in the OA initialization. 

4. PAL with Optimism: Employing the OA method for the initial sample simulated annealing 

for trading exploration with exploitation, but instead of using the pessimistic estimate for the 

probability (sections 3.3 and 3.4) we use the upper bound (optimistic). This PAL version 

aims to evaluate whether using the upper bound as other interval estimation techniques can 

produce preferable results.  

The C4.5 induction algorithm (Quinlan, 1993) with the Laplace correction (Cestnik 1990) was 

employed in all the experiments to estimate the probability of success. 
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4.1.3 Evaluation Methodology 

Each dataset was divided into two subsets. The first subset was used as the unlabeled pool for 

the iterative selection of the training instance. A fixed number of instances M (the batch size) 

was chosen in each iteration. The second subset is a test set of instances for which we compare 

the profits generated by each approach after each acquisition phase. In order to provide reliable 

estimates of the algorithms’ performance and analyze if the differences between reported 

performances are statistically significant, we generated ten stratified random partitions onto 

training and testing datasets. To reduce the experimental variance, the same data partitions were 

used by all methods. Moreover, methods that did not use OA for the initial sample (i.e., Random, 

GOAL, PAL without Orthogonal Arrays) were started from the exact same initial random 

sample. Similarly, methods that employed OA were also started from the exact same OA sample. 

We evaluated four performance measures for each algorithm and dataset: (i) training profit; 

(ii) test set positive reaction rate; (iii) test set profit; and (iv) gain charts. The first two measures 

represent the two criteria that were defined in the problem formulation. The last two measures 

are used to obtain an additional assessment of PAL’s contribution.  

Because the curves of the compared algorithms might intersect, we used the AUC (Area 

Under the Curve) measure as a single value metric to compare algorithms and establish a 

dominance relationship among them. The reported values represent the mean AUC performance 

over the ten random partitions of the data. The confidence interval of the AUC was estimated 

using the Student's t distribution. The statistical significance of the differences in performance 

between the PAL algorithm and the other algorithms was verified by the one-tailed paired t-test, 

with a confidence level of 95%. 

Additionally, we provide the mean rank of each algorithm across data sets. For this purpose, 

we rank the algorithms for each dataset separately and provide the average rank of each 

algorithm across data sets. The best performing algorithm is ranked 1. 

To compute the mean normalized performance of each method, we use simple linear scaling 

within the dataset minimum and maximum performance values. The normalized values are used 

to quantify the differences across all datasets. Formally, the normalized performance of 

algorithm i on dataset j is defined as 
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In order to conclude which algorithm performs best over multiple datasets, we followed the 

robust non-parametric procedure that was proposed by Demsar (2006). In case of multiple 

classifiers, we first used the adjusted Friedman test in order to reject the null hypothesis, 

followed by the Bonferroni-Dunn test to find whether PAL performs significantly better than 

existing algorithms.  

 

4.2 Experimental Results 

In the following subsections, we report the evaluation results of the four performance 

measures. Tables 3, 4, 5, and 6 report a 95% confidence interval of the mean AUC for each 

algorithm and dataset combination. The shaded boxes represent cases where the difference 

between PAL and the corresponding algorithm is statistically significant with 95% confidence. 

Also, a mean rank and a mean normalized AUC are presented for each algorithm.  

 
 
4.2.1 Comparing the Training Profit 
 

Consider the three typical training profit graphs in Figure 36. Methods that do not employ 

simulated annealing (Random, GOAL) have an almost linear behavior: the line either increases 

linearly, if o/r is smaller than customers’ positive response rate in the training set, as Donation 

and Credit, decreases linearly, if o/r is greater than customers’ positive response rate, as in Adult, 

or oscillates around the x-axis, if o/r is equal to the customers’ positive response rate. When 

100% of the training data is used, all methods converge to the same training profit because all 

methods eventually acquire all the examples in the unlabeled pool. 

                                                 

6 In this section we provide the results summary on all datasets, but detailed graphs are provided for only three 
selected datasets. A complete and detailed report of the results of the remaining datasets is available from the first 
author. 
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Methods that attempt to balance the exploration and exploitation trade-off (PAL, Boltzmann, 

and Kaelbling's algorithm) display a large unimodal peak and an initial quadratic-like growth. 

The positive affect of simulated annealing on the training profit is observed until around 50% of 

the training data is selected. While a relatively accurate classifier can be constructed with 50% of 

the training data, there are many profitable customers among the remaining 50% of customers. 

Table 3 presents the 95% confidence interval of the mean AUC of the training profit graphs. 

The highlighted values represent cases where the difference between PAL and the corresponding 

algorithm is statistically significant with 95% confidence. As can be clearly seen from the 

results, the simulated annealing feature in PAL significantly improves the training profit. The 

OA method, on the other hand, did not seem to influence the performance of PAL. Using 

optimistic upper bound undermines performance. 

The train profit ranking indicates that PAL is the second best to Boltzman. However, as we 

will see later, the superiority of the Boltzman approach comes at the expense of its test set 

positive reaction rate performance. The adjusted Friedman test with a confidence level of 95% 

rejected the null-hypothesis that all classifiers perform the same. The Bonferroni-Dunn test 

concluded that PAL significantly outperforms Random, GOAL and Kaelbling at a 95% 

confidence level. However, we could not conclude that Boltzman significantly outperforms PAL. 
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Figure 3: Illustration of Training Profit Graphs  
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Table 3: 95% confidence interval of the mean AUC of the training profit graphs. Highlighted values indicate that the PAL performance is 

significantly different from the performance of the corresponding algorithm at a confidence level of 95%.  

Dataset Random GOAL Boltzman Kaelbling PAL 
PAL without 
Orthogonal 

Arrays  

PAL without 
Simulated 
Annealing 

PAL without 
Pessimism 

PAL with 
Optimism 

Adult 16015.8±581 16169.17±554 17445 ±103 15857±1025 16850.34±339 16875.66±455 16051.02±787 16425.17±407 15727 ±209 
Anneal -182.1±20 -192.72±26 -67 ±16 -173 ±72 -53.62±2 -58.72±12 -180.92±19 -54.02±3 -82 ±16 

Breast C. 51.2±16 156.03±59 278 ±27 87 ±305 201.57±37 209.32±27 24.45±26 270.15±17 196 ±51 
Credit 161.24±73 199.09±20 344 ±1 182 ±9 362.26±22 362.44±13 172.61±13 390.71±24 195 ±2 

Donation 175.7±69 208.59±77 616 ±81 183 ±141 583.78±95 568.01±94 169.39±98 632.29±88 440 ±80 
German -106.21±28 -105.01±16 4 ±23 -105 ±107 -0.01±20 12.89±36 -118.84±21 14.84±28 -125 ±29 
Heart 9.97±9 21.15±23 77 ±10 17 ±58 58.47±9 59.5±13 25.6±22 76.45±9 -8 ±16 

Insurance -94.87±56 -59.03±48 340 ±40 229 ±177 413.31±41 374.03±47 -80.87±57 400.11±47 319 ±29 
Mushroom 52.63±6 -1388.28±56 1579 ±8 1564 ±227 1690.63±8 1659.93±78 207.15±5 1712.16±50 557 ±16 

Thyroid 31.16±16 16.72±66 635 ±17 308 ±278 678.61±8 668.48±54 10.92±6 682.35±49 191 ±65 
Mean Rank 7.4 3.9 5.4 7.3 1.7 3.7 6.8 4.9 3.9 

Mean 
Normalized 

AUC 
45% 79% 42% 31% 96% 84% 55% 64% 75% 
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4.2.2 Comparing the Test Set Positive Reaction Rate (Profit Margin) 
 

Cost-sensitive active learning methods are typically measured on their test set performance. In 

this subsection, we examine the positive reaction rate as a function of the percentage of acquired 

responses from the training pool.  

Figure 4 illustrates three typical positive reaction rate graphs. The positive reaction rate 

increases as more instances become available. Naturally, all methods converge to the same rate 

when using the entire training set.  

Table 4 presents the 95% confidence interval of the mean AUC of the positive reaction rate 

graphs. The highlighted values represent cases where the difference between PAL and the 

corresponding algorithm is statistically significant with 95% confidence. As before, adding the 

simulated annealing feature, which also takes into consideration the fact that customers are 

acquired in batches, but without pessimism, improves Random’s results. Adding pessimism 

further improves performance. Nevertheless, if we remove OA from PAL, we obtain almost 

similar results. This implies that the OA method improves the positive reaction rate only slightly, 

if at all.  

PAL obtained the best rank among all algorithms. The adjusted Friedman test with a 

confidence level of 95% rejected the null-hypothesis that all classifiers perform the same. The 

Bonferroni-Dunn test concluded that PAL significantly outperforms Random, Kaelbling, 

Boltzmann and GOAL at a 95% confidence level. Nevertheless, we could not reject the null 

hypothesis that PAL and PAL without Pessimism perform the same. One might conclude that 

pessimism does not significantly improve results. However, when we set PAL without 

Pessimism as the control classifier, the Bonferroni-Dunn test indicates that it does not 

significantly outperform GOAL. Thus, the pessimism feature is required in order to obtain 

significant superiority to existing methods. 

Recall that our problem is a Multiple Criteria Decision Making, and thus, we are interested in 

maximizing both the Positive Reaction Rate and the Train Profit which were evaluated in the 

previous section. Figure 5 presents the Positive Reaction Rate vs. Train Profit.  Note that higher 

values are preferred to lower values in both axes. Random, Kaelbling and GOAL are not on the 

Pareto Frontier because they are dominated by both PAL and Boltzmann. 
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Figure 4: Illustration of Test Set Positive Reaction Rate Graphs 
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Table 4: 95% confidence interval of the mean AUC of the Test Set Positive reaction Rate Graphs. Highlighted values indicate that the PAL 

performance is significantly different from the performance of the corresponding algorithm at a confidence level of 95%. 

Dataset Random GOAL Boltzman Kaelbling PAL 

PAL 
without 

Orthogonal 
Arrays  

PAL 
without 

Simulated 
Annealing 

PAL without 
Pessimism 

PAL with 
Optimism 

Adult 57.11%±0.75 57.85%±0.31 59%±0.92 57%±2.54 60.88%±0.61 60.86%±0.6 57.11%±0.51 59%±0.53 57.6%±0.92 
Anneal 77.7%±6.68 76.23%±9.41 80%±5.89 74%±6.12 82.04%±0.74 80.73%±5.79 73.97%±8.53 80.95%±2.02 78%±10.96 
Breast C. 76.26%±2.55 74.62%±2.17 77.5%±3.46 75.2%±6.93 82.42%±1.89 80.88%±1.48 76.57%±3.36 79.76%±2.27 69.3%±3.46 
Credit 73.63%±6.65 75.69%±2.9 79.8%±2.42 74.2%±3.92 79.09%±2.27 78.49%±3.13 74.9%±2.97 77.16%±12.35 78.7%±2.42 
Donation 5.86%±0.44 6.26%±0.87 5.97%±0.58 6.26%±0.23 6.36%±0.33 6.39%±0.35 5.89%±0.43 6.19%±0.33 6.22%±0.35 
German 47.03%±2.25 47%±1.81 48%±2.77 46.4%±2.19 48.28%±1.65 48.86%±2.12 45.77%±1.97 46.98%±1.07 46.3%±1.5 
Heart 66.29%±10.39 66.82%±5.25 68.8%±2.31 67%±3.46 68.14%±4.78 68.11%±3.19 63.55%±4.17 67.39%±4.17 67.9%±3.46 
Insurance 10.32%±0.61 11.27%±0.35 11.3%±0.46 10.8%±0.46 12.26%±0.65 11.19%±0.54 10.65%±0.42 11.25%±0.47 10.7%±0.35 
Mushroom 19.14%±0.2 18.54%±0.39 18.6%±0.46 18.2%±2.31 18.56%±0.21 18.55%±0.45 19.3%±0.33 18.79%±0.39 18.4%±0.12 
Thyroid 48.69%±2.52 49.19%±1.21 46 ±3.69 48.95%±5.89 51.23%±1.21 50.84%±1.22 48.77%±2.55 50.32%±0.92 48.2%±7.04 
Mean Rank 6.8 5.6 3 6.9 1.9 3 7 4.1 6.4 

Mean 
Normalized 
AUC 

33% 45% 69% 34% 78% 73% 30% 56% 40% 
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Figure 5: Positive Reaction Rate vs. Train Profit 
 
4.2.3 Comparing the Test Set Profit 
 

In the previous section we evaluated the test set performance by measuring the positive 

reaction rate. However, a superior response rate might also be obtained at the expense of 

approaching fewer customers (low recall). In this section, we will examine the actual test set 

profit. 

Table 5 presents the 95% confidence interval of the mean AUC of the test set profit graphs. 

The highlighted values represent cases where the difference between PAL and the corresponding 

algorithm is statistically significant with 95% confidence. As expected, the Random method 

often yields the most inferior results, while PAL and GOAL often yield the best results. The 

adjusted Friedman test, with a confidence level of 95%, rejected the null-hypothesis that all 

classifiers perform the same. The Bonferroni-Dunn test concluded that PAL significantly 

outperforms Random, Boltzman, Kaelbling, PAL without Pessimism and PAL without simulated 

annealing at a confidence level of 95%. Nevertheless, we could not reject the null hypothesis that 

PAL and GOAL perform the same at a confidence level of 95%. We conclude that pessimism 

and simulated annealing significantly improve the test set profit. OA's contribution is not 

substantial. 
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Table 5: 95% confidence interval of the mean AUC of the Test Profit Graphs. Highlighted values indicate that the PAL performance is 

significantly different from the performance of the corresponding algorithm at a confidence level of 95%. 

Dataset Random GOAL Boltzman Kaelbling PAL 
PAL without 
Orthogonal 

Arrays  

PAL without 
Simulated 
Annealing 

PAL without 
Pessimism 

PAL with 
Optimism 

Adult 16015.8±581 16169.17±554 16328±234 16564±1063 16850.34±340 16875.66±456 16051.02±787 16425.17±408 16150±327 
Anneal 46.7±3 46.87±3 49 ±3 48 ±2 49.73±0 48.78±3 46.4±0 49.83±3 47 ±5 
Breast C. 463.97±18 502.78±22 498 ±33 442 ±81 513.73±25 502.46±23 486.8±21 461.38±20 499 ±38 
Credit 857.33±62 870.86±35 589 ±2 548 ±3 883.47±30 872.82±35 855.88±32 839.21±131 879 ±2 
Donation 7399.45±69 9462.37±80 7980 ±122 7620 ±40 10557.61±54 10477.28±76 7450.01±106 8440.5±88 7720 ±55 
German 2720.21±30 2816.37±38 269 ±40 261 ±44 2818.07±26 2675.83±28 2584.71±37 2599.92±34 2819 ±32 
Heart 148.61±14 164.81±29 165.1 ±12 157.3 ±15 167.2±18 158.03±12 152.36±14 150.51±14 172.3 ±15 
Insurance 404.77±28 424.01±23 431 ±23 373 ±37 457.81±39 415.73±28 428.54±39 417.95±38 423 ±14 
Mushroom 1746.77±26 1884.68±68 1803 ±44 1772 ±463 1868.57±26 1858.27±68 1776.7±42 1879.8±55 1871 ±31 
Thyroid 486.06±3 489.73±10 341 ±14 470 ±67 494.98±2 494.26±10 483.52±10 492.99±3 492 ±9 
Mean 
Rank 

7.4 3.9 5.4 7.3 1.7 3.7 6.8 4.9 3.9 

Mean 
Normalized 
AUC 

45% 79% 42% 31% 96% 84% 55% 64% 75% 
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4.2.4 Comparing the Gain Charts (Market Share) 
 

In this section we examine a scenario in which the marketing budget is limited and the 

classifier is used to select a subset of customers. This scenario occurs, for example, when a 

corporation aims to increase its market share, perhaps at the expense of immediate profitability. 

Thus, in this scenario we are interested in reaching a pre-specified quota (e.g., 75%) of potential 

respondents. In these cases it is useful to use a Gain Chart. A gain chart presents the cumulative 

gains (e.g., profitability or response) accrued when using a predictive model versus those 

obtained via a default approach, which assumes that all customers are identical. The cumulative 

proportion of the population being targeted, nixi /100⋅=  (where n is the size of the audience, i – 

customer index), is shown on the x-axis. The cumulative positive response rate, 

∑∑
==

=
n

j
j

i

j
ji yyY
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*100 , is shown on the y-axis. 

Table 6 presents the 95% confidence interval of the mean AUC of the gain charts. The 

highlighted values represent cases where the difference between PAL and the corresponding 

algorithm is statistically significant with 95% confidence. The gain chart is calculated when 50% 

of the training data is selected by each algorithm. As in the previous measures, PAL is the 

dominant algorithm. The adjusted Friedman test, with a confidence level of 95%, rejected the 

null-hypothesis that all classifiers perform the same. The Bonferroni-Dunn test concluded that 

PAL significantly outperforms Random, Boltzman, Kaelbling at a confidence level of 95%. PAL 

significantly outperforms GOAL at a confidence level of 90%. Finally, as shown, all of PAL's 

elements contribute to its performance. 

 
4.2.5 Confidence Intervals 

The purpose of this subsection is to examine if PAL can provide a tighter confidence interval for 

risky decisions, i.e., when the mean and the lower bounds are located on opposite sides of the 

threshold value defined in Eq. (2). The learning process shrinks the confidence interval, and thus, 

as the learning progresses, less risky decisions should be made. Table 7 presents the percentage 

of risky decisions after acquiring 50% of the Donation dataset. Note that in this case, lower 

values are considered better. As can be seen from the table, GOAL, PAL and Kaelbling perform 

similarly, but better than Random and Boltzmann. A similar behavior has been revealed in all the 

other datasets.  
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Table 6: 95% confidence interval of the mean AUC of the Lift Charts. Highlighted values indicate that the PAL performance is 

significantly different from the performance of the corresponding algorithm at a confidence level of 95%.  

Dataset Random GOAL Boltzman Kaelbling PAL 
PAL 

without 
Orthogonal 

Arrays  

PAL 
without 

Simulated 
Annealing 

PAL 
without 

Pessimism 

PAL with 
Optimism 

Adult 63.33±4.7 78.69±2.4 69 ±9.2 73 ±10.4 79.82±3.7 79.54±5.6 77.62±5.5 79.11±2.9 739.5 
Anneal 84±20 85±26 80±1.2 80±1.4 85±2.3 85±11.9 85±19.1 85±2.7 80±0.1 
Breast C. 62.85±11.1 66.98±9.6 63.4±3.5 61.8±2.9 70.91±12.7 68.65±13.5 67.48±7.2 67.6±9.6 63.2±0.3 
Credit 70.89±1.6 72.72±1.6 72.94±0.5 75.94±0.8 74.06±1.2 73.51±1.2 71.28±0.6 72.86±1.9 72.88±0.5 
Donation 50.36±1.2 56.15±1 61±2.2 54±17.3 59.58±1.2 58.78±1 54.88±0.8 59.31±1 51±1.5 
German 64.76±2.6 64.5±1.1 66.8±1.7 65.3±1 65.98±1.3 62.67±0.4 58.62±1.1 58.62±1.1 62±1.2 
Heart 17.19±3 18.32±2.6 20.2 ±4.6 20.3 ±0.3 19.4±3.5 18.78±3.7 18.46±2 18.5±2.6 17.9 ±0.2 
Insurance 61.84±0.1 64.16±0.1 66.2±0.1 60.1±5.9 68.18±0.1 66.2±0.1 63.64±0.1 66.79±0.1 63.5±0.1 
Mushroom 85.43±0.7 93.97±0.1 89 ±2.1 86 ±0.5 93.97±0.1 93.98±0.4 93.98±0.1 93.98±0.7 88±0.2 
Thyroid 94±1.8 93.87±1.8 96.4 ±0.3 91 ±1.3 93.85±1.8 93.85±1.8 93.85±1.8 93.85±1.8 95.9 ±1 
Mean 
Rank 

7.4 4.8 3.9 6.1 2.3 3.2 5.1 3.8 5.9 

Mean 
Normalized 
AUC 

26% 56% 67% 42% 77% 64% 45% 57% 49% 

 

Table 7: Percentage of Risky Decision in Donation Dataset 

Random GOAL Boltzman Kaelbling PAL 

19.53% 11.17% 14.33% 8.13% 10.05% 
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4.2.6 Simulated Annealing 

As demonstrated in the previous subsections, some of PAL’s capabilities are due to the simulated 

annealing algorithm (Eq. 11). We examined different values of the simulated annealing decay 

factor, and found that the best results are obtained when γ  is set to a value in the range [0.7,1];  

however, the best value depends on the dataset. Figure 6 illustrates the train profit and positive 

reaction rate as a function of γ  in the donation dataset. In this dataset the best value is obtained 

for 0.88γ = . Note that for the previous experiments we used a fixed value of  0.85γ =  
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Figure 6: The train profit and positive reaction rate as a function of γ  in the donation dataset 

 

4.2.7 The Effect of Batch Size 

We explored the effect of the batch size on PAL’s performance. We tried using batches 

which are 1%, 5% or 10% of the total training set. Table 8 presents the mean net profit per 

approached customer in the donation dataset using different batch sizes. The highlighted values 

represent cases where the difference between PAL and the corresponding algorithm is 

statistically significant with 95% confidence. We found that the smaller the batch is, the better 

the total profit will be. This is expected, since a smaller batch means the classifier is rebuilt more 

often and is thus finer tuned to the obtained information. Although it gives the best results, in 

real-world campaign we can not approach the customers one at a time.  

 



 

 32 

Table 8: The effect of the batch size on the mean profit per approached customer in the donation 

dataset. Highlighted values indicate that the PAL performance is significantly different from the 

performance of the corresponding algorithm at a confidence level of 95%. 

  1% 5% 10% 

PAL 0.594 0.558 0.532 

GOAL 0.552 0.522 0.468 

Random 0.434 0.428 0.424 

 

 

5. Related Work 

In this section we discuss how our method relates to existing work. The underlined problem 

and the proposed solution share some common properties with Reinforcement Learning and 

Active Learning. In the following sections, we present these methods and discuss how our 

proposed solution differs from the existing methods.  

 

5.1 Reinforcement Learning  

Reinforcement learning (Kaelbling and Littman, 1996, Sutton and Barto, 1998) is concerned 

with how an agent ought to take actions in an environment so as to maximize some notion of a 

long-term reward. At each step of the interaction between an agent and its environment, the 

agent receives as input some indication of the current state of the environment Ss∈ . For 

example, a sales agent with a set of potential customers’ receives as input the willingness of each 

potential customer to buy. The agent then chooses an action Aa∈  from a discrete set of actions 

to generate as output. The action changes the state of the environment. The value of this state 

transition is communicated to the agent through a scalar reinforcement signal r. For example, a 

sales agent chooses to make an offer to a potential customer, and the reinforcement signal is the 

accept/reject decision of the potential customer, or the revenue from its purchase. Reinforcement 

learning algorithms attempt to find a policy to map states to actions AS →:π   that maximizes 

some long-run measure of reinforcement, e.g., some kind of discounted revenue stream. We 

expect the environment to be non-deterministic, taking the same action in the same state on two 

different occasions. For example, approaching two similar potential customers may result in 

different next states and/or different reinforcement signals. However, we assume that the 

environment is stationary, that is, the probabilities of making state transitions or receiving 

specific reinforcement signals do not change over time. The main difficulty is that the agent is 
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not told if the immediate reward after taking an action means that he took the best action for its 

long-term interests. For example, high revenue from approaching a particular potential customer 

does not necessarily mean that approaching the same type of potential customers is always 

profitable. Pednault et al. (2002) modeled the continuous relationship between a retailer and its 

customer as a Markov Decision Process. The sequential offers of the retailer can probabilistically 

alter the state of the customer, and potentially generate a reward to the retailer. They used 

reinforcement learning to find the policy of the retailer toward its customers. 

Reinforcement learning is considered a difficult problem in its most general formulation, 

and it typically requires thousands of learning steps to find a good policy.  A practical difficulty 

in the context of target marketing is that this approach requires that the past history of purchases 

and promotions for each customer be available. This is true for some datasets. For example, the 

donation dataset from the KDD Cup 1998 competition contains approximately two years of 

direct-mail promotional history for each donor. However, in many other datasets, this 

information is not available.  

Alternatively, when no information regarding previous purchases is available, a 

reinforcement learning problem is considered to be a problem of only one state i.e., there are no 

state transitions, but multiple actions, such as contacting different prospective customers, can 

take place, and exploration/exploitation tradeoff exists. An example is the classic k-armed bandit 

problem (Robbins, 1952). 

The problem of choosing which leaf in the decision tree to explore is similar to the k-armed 

bandit. Each leaf can be treated as a one-armed bandit and the batch size can be referred to as the 

allowed number of pulls. Still, our problem has some unique properties. First, the classic k-

armed bandit does not enforce any restriction on how many times we can pull each arm. It 

assumes that each arm can be selected as many times as we want as long as the agent does not 

exceed the fixed number of pulls, h. However, in our problem each customer can be selected 

only once. Thus, the number of times we can select each leaf is bound by the number of 

customers in the unlabeled training set who correspond to this leaf. On the one hand, this sets a 

restriction on selecting the next action; on the other, it also implies which arms (leaves) should 

be explored better. Specifically, we should carefully look into the leaves with which many 

unlabeled instances are associated. Assuming that the unlabeled training set represents the 

overall distribution D, making wrong decisions about these leaves may result in low quality 
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decisions in the long run exploitation phase for future customers who are currently not included 

in the training set. 

Additionally, the k-armed bandit assumes a purely online environment, namely the 

algorithm makes a decision and it is told the outcome before it makes the next decision. In a 

direct marketing campaign, it is more reasonable to assume that we approach a batch of 

customers at a time, and only then are we told the outcome. Finally the k-armed bandit assumes 

that there is no cost associated with each pull, other than the opportunity cost from playing a 

suboptimal machine. 

 Nevertheless, the resemblance of the k-armed bandit problem to our problem encouraged 

us to look into known solutions. Kaelbling and Littman (1996) divide the techniques for solving 

the single-state case such as the k-armed bandit into two types: Formally Justified Techniques 

and ad-hoc Techniques. In this paper we focus on the ad-hoc Techniques which are considered to 

be computationally tractable heuristics. Interval estimation techniques are ad-hoc Techniques 

that use second-order information about the certainty or variance of the estimated values of 

actions, such as the Kaelbling's interval estimation algorithm.  While it is not formally justified, 

this interval estimation algorithm has been widely used and can be applied to our problem. It 

stores statistics for each action: the number of successes and the number of trials. For each arm, a 

confidence interval centred on the sample mean is calculated. The arm whose confidence interval 

has the highest tail is chosen. Larger intervals encourage greater exploration. Fong (1995) 

introduced the γ -IE strategy, which is a generalization of Kaelbling’s IE (Interval Estimation) 

Strategy. The parameter γ affects the size of the confidence intervals and often improves the 

performance of the algorithm. 

Model-based Interval Estimation (MBIE) is another learning algorithm that builds a model to 

construct an exploration policy (Wiering, and Schmidhuber, 1998). More recently, Strehl and 

Littman (2005) introduced a version of MBIE, which not only combines Interval Estimation with 

model-based reinforcement learning, but also comes with a formal PAC-like learning-time 

guarantee. Nevertheless, to the best of our knowledge, no cost-sensitive method considers the 

effect of the confidence level of the estimated probability in classifier learning problems. 

Previous research studies, such as Cohn et al. (1996), which tried to minimize the variance, have 

not been developed in a full cost-sensitive context. Schein (2005) uses A-optimality, a strategy 

for minimizing the variance to examine which pool-based active learning methods will work 

well with logistic regression. He considers the labeling cost, but not the utility costs.   
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There are four issues which differentiate our method from existing interval estimation 

methods: 

1. Interval Change: In existing interval estimation methods, instances are selected according 

to the interval bound value. In this research, we propose to select instances according to 

the estimated change in the interval bound if exploration is indeed made in that interval. 

The change indicates to what extent the interval has been decreased. Large intervals 

indicate that additional exploration is required. Thus, the anticipated reduction in the 

interval size that a certain instance provides is indicative of the explorative contribution of 

that instance. 

2. Profit Interval: Existing methods use the probability interval. Here we use the profit 

interval instead. The profit interval takes into consideration how many unlabeled instances 

are associated with the interval. Thus, the same probability interval reduction is obtained 

for different leaves, regardless of the number of instances corresponding to each leaf. This 

approach is conceivable because change in the probability estimation of a massive interval 

has an effect on further decisions to be made in the future. Note that our main goal is not 

to improve the class probability estimations, but to improve the marketing decisions. A 

trade-off between the two goals might exist (Saar-Tsechansky and Provost, 2007). 

Assuming fixed distribution of the instances, prioritizing large leaves has a positive effect 

on larger number of examples in the population.  

3. Using a Lower Bound (Pessimistic) of the Confidence Interval: Existing interval 

estimation methods prefer instances with a higher upper bound. The idea is that a higher 

upper bound indicates both a high success probability, which is good for exploitation, and 

a wide confidence interval, which is good for exploration. Thus, the fact that we are using 

the lower bound seems odd. However, we are not using the value itself, but the anticipated 

change in the value. Recall that we aim to improve the decision-making for risky 

customers whose estimated probabilities suggest that they are profitable. Thus, selecting 

customers according to the change in the lower bound does not prioritize profitless 

customers, but does prioritize customers who are potentially profitable and can add the 

most benefit by additional exploration. 

4. Using Batches: Our new measure, as discussed in Section 3.4, takes into consideration the 

fact that in every iteration, we select a batch of customers to approach. Thus, the 

explorative contribution of acquiring the first customer in a certain interval is greater than 
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the contribution of the subsequent customers from the same interval. The reason for this is 

that the reduction in the interval confidence size is not linear. Considering the normal 

approximation to the binomial, the confidence interval shrinks at the approximate rate of 

mm
pp

4
1)ˆ1(ˆ ≤− , where m is the number of acquired customers for a leaf in the decision tree.  

Randomized Strategies are another group of ad-hoc techniques that are widely used to trade 

exploration and exploitation in practice. The idea is to choose the action with the highest 

estimated expected reward by default, but with probability p, to choose an action at random. 

Some versions of this strategy begin with a large value of p to encourage exploration, which is 

gradually decreased. (Kaelbling and Littman, 1996). In particular, Boltzmann distribution has 

been frequently used in order to ensure sufficient exploration while still favoring actions with 

higher value estimates. The Boltzmann policy chooses actions according to a stochastic function 

of their associated expected rewards. The expected reward from an action is used to choose an 

action probabilistically according to the Boltzmann distribution. The likelihood of picking an 

unlabeled customer is exponentially weighted by its utility via the Boltzmann distribution. The 

ratio between exploration and exploitation is traded dynamically so that exploration fades in 

time. A “temperature” parameter controls the rate of the convergence. The temperature 

parameter can be decreased over time to decrease exploration. This strategy may suffer when the 

values of the actions are close (Kaelbling and Littman, 1996). 

In PAL, as well, we dynamically reduce the relative part of the exploration in every new 

batch. However, we do it directly usingγ , and do not consider the utility of the customer as in 

Boltzmann. In this sense, our approach is simpler.   

 

5.2 Active Learning 

Several active learning frameworks are presented in the literature. In pool-based active 

learning (Lewis and Gale, 1994) the learner has access to a pool of unlabeled data and can 

request the true class label for a certain number of instances in the pool. Other approaches focus 

on the expected improvement of class entropy (Roy and McCallum, 2001), or minimizing both 

labelling and misclassification costs (Margineantu, 2005). Zadrozny (2005) examined a variation 

in which instead of having the correct label for each training example, there is one possible label 

(not necessarily the correct one) and the utility associated with that label. Most active learning 

methods aim to reduce the generalization accuracy of the model learned from the labeled data. 

They assume uniform error costs, and do not consider benefits that may accrue from correct 
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classifications. They also do not consider the benefits that may be accrued from label acquisition 

(Hollmén et al., 2000, Turney, 2000).  

Rather than trying to reduce the error or the costs, Saar-Tsechansky and Provost (2007) 

introduced the GOAL method that focuses on acquisitions that are more likely to affect decision-

making. GOAL acquires instances which are related to decisions for which a relatively small change 

in the estimation can change the preference order of choice. In each iteration, GOAL selects a batch 

of instances based on their effectiveness score. The score is inversely proportional to the minimum 

absolute change in the probability estimation that would result in a decision different from the 

decision implied by the current estimation. Instead of selecting the instances with the highest scores 

GOAL uses a sampling distribution in which the selection probability of a certain instance is 

proportional to its score. 

 

6.  Limitations and Conclusions 

Target marketing is a multi-million dollar industry. This paper presented the PAL active 

learning algorithm, which considers the long-term need to increase the positive reactions rate and 

the short term need to decrease the total net acquisition costs. 

The experimental study indicates that PAL can improve the profit of a marketing campaign.  

PAL achieved the best rank for the Test Set Positive Reaction Rate criterion, the Test Profit 

criterion, and the Lift Charts criterion. It was second only to Boltzmann for the Train Profit 

criterion. This indicates that PAL provides a good balance of the exploration/exploitation 

tradeoff.  

Closer examination indicates that PAL is particularly advantageous when the estimation 

confidence intervals are relatively large. Once the decision tree obtains sufficient evidence for 

each leaf, the relative advantage of PAL is diminished.  

Our results suggest that on average, all PAL's elements contribute to its performance. The 

PAL configurations with simulated annealing demonstrate a significant improvement in the train 

profit. It seems that of the four key elements of the PAL algorithm, the simulated annealing 

element was responsible for most of the improvement. This is not surprising, as simulated 

annealing is an effective, generic method for global optimization. 

The second most beneficial element of PAL is the pessimistic learning mechanism. The 

proposed method is differentiated from existing interval estimation algorithms in that it takes 
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into consideration interval change, as opposed to the actual bounds values. The experimental 

study shows that this approach is preferable for the problem addressed here. 

The OA DoE methodology is another element used in the PAL algorithm. It is a generic 

element that can easily be integrated into any other active learning algorithm. To the best of our 

knowledge, this is the first time that the potential contribution of this methodology was measured 

explicitly. 

Boltzmann and GOAL's algorithms require that the base classifier be probabilistic, i.e., that 

given the input attributes, it provides an estimate to the conditional success probability. The 

Kaelbling algorithm requires an estimate of the confidence interval. This is a drawback, as 

currently not all classifiers can provide this measure explicitly. The confidence interval can be 

estimated for certain induction algorithms, such as neural networks (Hwang and Ding, 1997) and 

Logistic Regression (Sofroniou and Hutcheson, 2002) which are used in marketing problems. 

Additionally, the PAL algorithm requires an estimate of how a new acquired instance changes 

the confidence interval of the success probability. This can be done, for example, by calculating 

the difference between the confidence interval before and after acquiring an instance. However, 

it might be computationally expensive, since it requires rebuilding or updating the classifier for 

each candidate instance. Therefore, it is recommended to develop a low-cost approximation for 

classification trees, as we did in this paper. 

Another limitation of the PAL algorithm is the need to fit an orthogonal array to the 

examined dataset. Selecting an orthogonal array is performed according to the cardinality of the 

input attribute set. However, the available libraries for orthogonal arrays do not include an array 

for any cardinality. Therefore, if no suitable array can be found, a larger array must be used and 

adjusted to the dataset. 

Current PAL implementation uses a static batch size. There may be a benefit to using 

dynamic batch sizes which evolve along the exploration process (Weiss and Tian, 2008). 

Moreover, we assume that the number of batches bounds the exploration phase. Alternatively, 

one may consider any other constraint which bounds the exploration phase, such as total gross 

acquisition cost, total net acquisition cost or time.  

While this paper focuses on direct marketing applications, similar settings may arise in other 

domains, such as medicine (Percus and Percus, 1984; Petkau, 1978), where the pessimism 

mechanism can be useful. Consider, for example, cancer patients volunteering to participate in a 

medical experiment, such as the study of the efficiency of a new chemotherapy drug. Only some 
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of the patients would benefit from the experimental drug, while the rest may suffer from severe 

side effects. Typically, volunteer patients are recruited over time. Therefore, the statistics 

accumulated from the first volunteers, together with the pessimistic measure can be used as an 

additional criterion to decide which additional volunteers may be particularly beneficial for the 

study while reducing the cost. 
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