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I?El?tsrlr?gs applications such as direct marketiegjsion-makers are required to choose the
action which best maximizes a utility function. €esensitive learning methods can help them
achieve this goal. In this paper, we introduce fassc Active Learning (PAL). PAL employs a
novel pessimistic measure, which relies on confidemtervals and is used to balance the
exploration/exploitation trade-off. In order to ao®g an initial sample of labeled data, PAL
applies orthogonal arrays of fractional factoriakign. PAL was tested on ten datasets using a
decision tree inducer. A comparison of these redoltthose of other methods indicates PAL’s

superiority.

1. I ntroduction and Motivation
When marketing a service or a product, firms insirggly use predictive models to estimate

the customers’ interest in their offer. A predietimodel estimates the response probability of the
potential customers in question, and helps thesdetimaker assess the profitability of the
different customers. Predictive models assist getamarketing strategy: offering the right
product to the right customer at the right timengsihe proper distribution channel. The firm
approaches the customers estimated as the mostsi®@ and proposes a marketing offer. A
customer that accepts the offer and conducts éhpsecadds to the firms’ profits. This strategy
affords better efficiency than a mass marketingtegy, in which a firm offers a product to all
known potential customers, usually resulting in lp@sitive response rates. For example, a mail

marketing response rate of 2% or a phone marketisggonse of 10% are considered good.



Predictive models can be built using data mininghods. These methods are applied to
detect useful patterns in the information availagb®ut the customers purchasing behaviors
(e.g., Zahavi and Levin, 1997; Buchner and Mulverir®8; Ling and Li, 1998; Viaene et al.,
2001; Yinghui, 2004; Domingos, 2005). Data for thedels is available, as firms typically
maintain databases that contain massive amountmfofmation about their existing and
potential customers such as the customer's dentugrajmaracteristics and past purchase
history.

Active learning (Cohn et al., 1994) refers to dateing policies which actively select
unlabeled instances for labeling. It has been puesly used for facilitating direct marketing
campaigns (Saar-Tsechansky and Provost, 2007)nglamexploration phasesome potential
customers are approached with a marketing offeseBan their response, the learner actively
selects the next customers to be approached, afafteoExploration does not come without a
cost. Direct costs might involve hiring special gmmnel for calling customers and collecting
their characteristics and responses to the campaigiirect costs may be incurred from
contacting potential customers who would normalbyy be approached due to their low buying
power or low interest in the product or servicesoff

An aspect involved in marketing campaigns is the ll-kreown concept of
exploration/exploitation trade-off (Kyriakopoulosica Moorman, 2004). Exploration strategies
interact with customers to explore their behaviavbjle exploitation strategies operate on a
firm’s existing marketing model. In the exploratiphase, a concentrated effort is made to build
an accurate model. In this phase, the firm maygei@mple, acquire any available information
which characterizes the customer. During this phts® results are analysed in depth and the
best modus operandi is chosen. In éxploitation phasehe firm simply applies the induced
model — with no intention of improving the modelte- classify new potential customers and
identify the best ones. Thus, the model evolvesnduihe exploration phase and is fixed during
the exploitation phase. Given the tension betwéesd two objectives, research has suggested
that firms first explore customer behaviors andnthHellow with an exploitation strategy
(Rothaermel and Deeds, 2004; Clarke, 2006). Thdtregthe exploration phase is a marketing
model that is then used in the exploitation phase.

The problem we address in this paper is which piatecustomers a firm should approach
with a new product offer in order to maximize thet profit. Specifically, our objective is not

only to minimize the net acquisition cost during #xploration phase, but also to maximize the



net profit obtained during the exploitation phag@ur problem formulation takes into
consideration the direct cost of offering a prodiacthe customer, the utility associated with the
customer’s response, and the alternative utilityha€tion.

We focus on ainary discrete choice problemvhere the customer’s response is binary,
such asacceptanceor rejectionof a marketing offer. Discrete choice tasks mayline several
specific problems, such as unbalanced class disiwitn Typically, most customers considered
for the exploration phase reject the offer, leading low positive response rate. However, an
overly-simple classifier may predict thelt customers in questions will reject the offer.

Another problem is that the predictive accuracyadtlassifier alone is insufficient as an
evaluation criterion. One reason is that differetdssification errors must be dealt with
differently: mistaking acceptance for rejectionperticularly undesirable. Moreover, predictive
accuracy alone does not provide enough flexibilibhen selecting a target for a marketing offer,
or when choosing how an offer should be promoted.example, the marketing personnel may
want to approach 30% of the available potentiatausrs, but the model predicts that only 6%
of them will accept the offer (Ling and Li, 199@), they may want to personally call the first
100 most likely to accept, and send a personalimgaib the next 1000 most likely to accept. In
order to solve some of these problems, learningrittgns for target marketing are required not
only to classify but to produce probability estimation as well. This enables ranking the
predicted customers by order of their estimatedtipegesponse probability.

Active learning merely aims to minimize the costacfjuisition, and does not consider the
exploration/exploitation tradeoff. Active learnirtgchniques do not aim to improve online
exploitation. Nevertheless, occasional income iByproduct of the acquisition process. We
propose that the calculation of the acquisitiont quexformed in active learning algorithms
should take this into consideration.

Most existing active learning methods assume thatfirst batch of labeled instances is
selected randomly or given as an input to the dlyor Mayer and Sarkissian (2003) illustrated
the usefulness of applying Design of ExperimentEPto active learning. We suggest using
DoE in the initial sample, followed by a differesitategy for selecting the subsequent unlabeled
instances for labeling.

In this paper, we present a new learning framevimrkhe discrete choice target marketing
problem: Pessimistic Active Learning (PAL). Whereséing the next batch of customers to be

courted by a marketing campaign, active learningctst addresses improved exploration.



However, PAL, like reinforcement learning, also swoers a secondary criterion: the
costs/profits of the exploration/exploitation traofé during the exploration phase. PAL applies a
novel incremental pessimistic measure, which rediesonfidence intervals. According to this
measure, during the exploration phase, PAL selgbish customers are to be approached. PAL
also employs a known simulated annealing modelthab the ratio between exploration and
exploitation is traded dynamically, and thus exalmn fades over time.

PAL offers four main innovations:

1) PessimismThe selection of instances to be acquired dutiegexploration phase
is based on the change in the lower bound of th&idence interval of the success
probability rather than on the probability itselfhere have been several successful attempts
to use the pessimistic approach in machine learrflg., Quinlan, 1993 and Saar-
Tsechansky and Provost, 2004). However, to the diesur knowledge, no cost-sensitive
method considers the effect of the confidence levehe estimated probability in classifier
learning problems.

2)  Working with batchesOur assumption is that a marketing campaignrisezhout
in batches. In other words, given a trained classithe campaign manager selects a batch of
customers to solicit. Only after obtaining the @sges of all customers in this batch is a new
classifier trained. Given this, the decision of Wieg to include a certain customer in the next
batch should take into account its contributiorthi® entire batch. In this study, we develop
an approximation method to estimate the potentatribution of then™ customer in the
batch.

3) Design of ExperimentsThe proposed algorithm employs well-known stadadt
design of experiment (DoE) methods in order toddlee first batch of labeled customers,
which are needed for the construction of the ihitkssifier in a non-random way.
Specifically, we integrate an orthogonal arrayratfional factorial designs.

4) Exploration-exploitation trade-aff While most cost-sensitive active learning
methods try to optimize some testing set meassted) as profit, in this study we are also
interested in training performance, namely the ipfloss incurred during the exploration
phase. We adopt and incorporate a well-known sitedlannealing technique to gradually

increase exploitation during the exploration phase.



The remainder of this paper is organized as folloBsction 2 introduces the problem
formulation. Section 3 presents the components réva active learning algorithm for decision
trees. Section 4 reports the experiments carriecontbenchmark datasets. Section 5 presents

related work, and Section 6 concludes the work.

2. Problem Formulation

The main objective of a marketing campaign is teewhich potential customers a firm
should approach with a new product offer, in ordemaximize the net profit. In the marketing
problem presented in this paper, we assume thafirtheholds an initial dataset of potential
customers that can be used during the explorati@sex This initial dataset does not, however,
cover all potential customers. We also assumewihde acquiring the customers’ response is
costly, some of the courted customers will resppasitively to the offer and the income from
their purchase will offset the cost. Thus, Mayed &arkissian (2003) proposed referring to the
net acquisition cost, which is the total cost ofjddng customer response, less the income
generated if the courted customers purchase tlieipi®

We also assume that during a marketing campaidmmawill not approach its customers
one by one, but it will rather approach a batcleugtomers simultaneously, so that the firm can
concentrate its exploitation of resources, sucimasketing personnel and equipment. After a
campaign session is over and a batch of custonardéen courted, the firm can analyze the
results and proceed to the next stage of the cgmp@ie assume a fixed batch size.

In our targeted marketing context, an instamde X is defined as the set of attributesuch

as age and gender, of a unique potential custontésr the sake of clarity, we will assume a
binary outcome for the target attribuye specifically y = {"accept”, "reject"}. Unlabeled
instances are defined as instances with an unkrtavget attribute. A sef of M unlabeled
instances from the s&tis obtained. The instances$are independent and behave according to
some fixed and unknown joint probability distritartiD of X andY. The cost of approaching

customeri with an offer is denoted a€ O . The probability that customerwill respond

positively to the offer is denoted as. If customer with some unknown probability, agrees

! In this research, we assume that the attribueemdependent and that there are no missing valugst is not the
case, we assume that dpta-processingnethods are used to complete the missing infoomatemove the
dependent attributes and scale the numbers.



to the offer, the utility obtained from this custems denoted ag ® 00 . If the customer rejects

the offer, the utility is denoted &~ 0. Thus, the net acquisition cost of customisrdefined
as:

C -U® if customeri acceptsthe off
C -U" if customei rejects the offe

NAGC ={ 1)

Note that all utility values are a functiointiee customer's attribute vector)(

Let the corresponding utility of inaction with resp to customer be denoted asV,. In

order to maximize the expected profit, the decigimaker should court customerif the
probability of a positive response is higher thhe tost of approach (Saar-Tsechansky and

Provost, 2007). This is represented in the foll@péguivalent equations:

B +(- -G > or > G -UT 0 @

whereo; andr; are merely shorthand for the numerator and deratariof the decision threshold

ratio. The notationp. represents the classifier's estimation for

A pseudo code for the active learning frameworkdufee the target marketing process is
presented in Figure 1. The received input includgsool of unlabeled instanced,(an inducer
(1), and a stopping criteriolCRIT). The first step is to initiate the labeled pdoid€ 1). An initial
set of labeled examples is selected in Line 3. Qnegotential customers are selected, they are
approached with a product offer (line 6). Accoglito the customers' response, the newly
labeled examples are added to the labeled poa ({filn The labeled pool is then used for
building the classifier (line 8Based on the classifier, the next subset from thabeled pool is
selected (line 10). This process is repeated trigijering some sort of stopping criteria (line 3),
such as running out of budget. The final classiftee output, line 12) is used to estimate the

probability of positive respons@ of new customers. Customers with an estimatedgtmitty

that exceeds the threshold in Eq. (2) are contacted

Based on the active learning framework presemé-igure 1, the marketing learning problem
can be defined as follows:
While keeping the total net acquisition cost to imimm, the goal is to actively acquire from

S mutually exclusive subsetS, S,..., § of a given batch sizkl, such that the final classifier



k
induced from US maximizes the profitability of the campaign. Thebsets are acquired
i=1

sequentially.

Active Learni ng Framework
Input:

S - An unlabeled pool of instances
I — An induction algorithm
CRI T — A stopping criterion
Output:
CL - Classifier for predicting customer response

1.L « [ /*the labeled pool */

2. i €1

3. S;€Select initial set of instances from S

4. While CRI T is not met do

5. Rermove S from S

6. Acquire | abels for exanples in S

7 Add S to L

8 Apply | to L, resulting in a classifier CL
9. i E o+l

10. Select subset S from S using CL

11. End While

12. Return CL

Figure 1: Pseudo Code for the Active Learning Framik

This is a Multiple Criteria Decision-Making (MCDMproblem. The first criterion is to
improve the decisions of the campaign manager.pbiséive reactions rate can be used to assess
the profitability during the exploitation phase.gHer rates indicate higher gross profit margins
and return of investments (ROI). The second cdatenis to acquire labeled instances with
minimal net acquisition cost during the exploratiphase. Both criteria deal with financial
utilities. Still, the two criteria cannot be summé&te cannot represent the first criterion as total
income during the exploitation phase, since we atdknow in advance how many customers are
going to be evaluated using the model. The onlyrapsion we make is that the instances in the
unlabeled instances set used during the trainiegep) and the instances examined during the
operational phase are both distributed according fised and unknown distributidD. In this
paper, we consider the first criterion as primang she second as secondary. Prioritization of
these criteria agrees with the assumption that dkploitation phase is longer than the
exploration phase.

In this paper, we uselecision Treeclassifier to estimate; . Decision trees are considered
to be self-explanatory models and easy to follovemvbompacted (Rokach and Maimon, 2005).
They have been previously used in marketing scesde.g., Levin and Zahavi, 2005; Saar-
Tsechansky and Provost, 2007). The principles uyidgrthe proposed PAL approach can be



adjusted to other induction methods, such as newg@®Vorks. Neural network classifiers have
also been applied to target marketing (Zahavi aevrl, 1995; Zahavi and Levin, 1997; Potharst
et al., 2002).

In order to estimate the probabilify with the decision tree classifier, the appropriatd k
in the tree that refers to the given instangeshould first be located. The frequency vector of
each leaf node captures the number of instances &ach possible class. In the usual case of
target marketing, the frequency vector has the J‘((mnp(’accept, m, rejec) where m . denotes the
number of instances in the labeled pool that réeatk and satisfyy = c. According to Laplace's

law of succession, the probability is estimated as:

I’n<,accept+ 1 (3)
I’n<,accept+ mk reject+ 2

Besides estimating the point probabilty we are interested in estimating a confidence

r)l = p(rm,accept’ n]( rejec) =

interval for this probability. An approach to a tareer can be considered as a Bernoulli trial.
For the sake of simplicity, we approximate the aterice interval of the Bernoulli parameter

with the normal approximation to the binomial distition:

Pi — 21-q /207 < Pi < P +21-4 /20
P d-p)
rnk,accept + rnk,reject

é\-i = U(mk,accept’ rnk,reject) = \/ (4)

whereg, represents the estimated standard deviationzapd denotes the value in the standard

normal distribution table corresponding to thex/2 percentile. For a smafl we can use the
actual binomial distribution to estimate the intdrvLeemis and Trivedi (1996) proposed
additional approximations.
To demonstrate the importance of a confidence Jeaisider two leaves: ledf and leafB

in a classification tree. Each leaf holds the amsis in the labeled pool that fit its path. These
customers are labeled as either “accept” or “rgjétcthe “accept” “reject” proportions are the
same, then according to Eq. (3), both leaves Hawesame estimated probability. Given this, if
leaf A has more customers than |I&fthen according to Eq. (4), leBfhas a larger confidence
interval. Thus, acquiring an instance to IBakill have a greater impact on the class distriruti

than adding an example to leAf In the initial iterations, when the data are texdi and the



confidence intervals are large, obtaining an addéi instance to the correct leaf is especially
important. Moreover, the potential contributionlabeling thei™ instance in the same leaf and
adding it to the labeled pool decreases ifihus, the calculation of the potential contribatof
each instance in the new batch depends on the io8tances that are selected to this batch.

3. The Pessmistic Active Learning Method

Figure 2 presents the pseudo code of the PAL (Res& Active Learning) method. The
algorithm receives as input the unlabeled Sgtgn inducerl which PAL uses for building the
classifier, and a certain batch siM)( First, the orthogonal arrays (OA) approach tsigieng
experiments (Hedayat et al. 1999) is used to séecfirst batch of instances (lines 2-3). The
first batch is labeled and is used to initiatelt#i®eled set. The algorithm actively selects the nex
batches of siz& until a given stopping criterion is met (Lines 8}1In order to select the next
batch, first an inducer is trained on the labeled(kne 5) and a new classifier (CL) is induced.
This classifier is then used to make a selectiorife next batch. The selected batch is labeled
and is added to the labeled set.

In the following subsections, we present the imguartelements of PAL: (i) the OA
approach to design of experiments used to selecfitst batch of instances; (ii) selection of
subsequent batches by combining random exploratohbiased exploration, which is intended
to improve future exploitation; and (iii) a pessstg profit estimator that is used for selecting
the instances to be explored.

3.1 Initial Sample Selection
Design of experiments seeks to minimize thenlper of experiments required to collect

useful information about an unknown process (Momgry, 1997). The collected data are
typically used to construct a model for the unkngwmocess. The model may be used to optimize
the original process.

A full factorial designis a design of experiment in which the experimergieoosesn
attributes that are believed to affect the targetbate. Then, all possible combinations of the
selected input attributes are acquired (Montgoni&97). Applying a full factorial design is

impractical when many input attributes are given.



Pessimi stic Active Learning
Input:
S - an unlabeled set
| —an induction algorithm which is capable of provi ding confidence intervals
M- the batch size
CRI T — a stopping criterion
Q - the confidence level
) - Simulated annealing decay factor
To — the portion of instances randomely selected
Output:
CL — Classifier
1. j<€O
2. Apply revised OA method to select the subset L containing Minstances from S
3.Remove L from S, and label L
4. While  CRI T is not met do
B Apply | to L, resulting in a classifier CL
6. For each instance in S calculate the pessimistic profit gain (Eq. 10) usi ng
the probability estimation obtained from CL.
7. Z, €< Select top (1-T;) L Mcustomers from S sorted according to pessimistic profit gain
8. S€S- 7,
9 Z < Randomly select T; L Mcustomers from S.
10. S¢SZ,
1. z «z,z
12. Label Zandadd Zto L
13. j € +1
14. Calculate T; using a simulated annealing technique (Eq. 11)
15. End While
16. Return CL

Figure 2: The PAL Pseudo Code

A fractional factorial desigris a design in which only a fraction of the condtians required
for the complete factorial experiment is select@ede of the most practical forms of fractional
factorial design is the orthogonal array (Hedayaale1999). An orthogonal arrdyk(d") is a

matrix of k rows andn columns, with every element being one of thealues. The array has

strengtht if, in everyn byt submatrix, thed' possible distinct rows all appear the same number
of times. An example of a strength 2 OA is presdmh Table 1. Any two attributes in this array
have all possible combinations (“11”, “12”, “21"22"). Each of these combinations appears an
equal number of times. In an orthogonal array rgjth 3 we can see all combinations in any
three attributes (Hedayat et al. 1999).

Constructing a new orthogonal array design for mmyber of attributes is not an easy task. In
this paper, we used a ready-made design for afgpeacmber of attributes. The orthogonal
designs were taken from Sloane's library of ortimadarrays (Sloane 2007). The number of
columnsn in the OA should be equal to the cardinality af thput attributes set. Moreover the
domain sized is usually set according to the nominal attribwith the largest domain. There
might be several suitable designs for a certaias#dt Thus, we selected the design with the

10



smallest number of rows aiming to include at least one complete desigieninitial subses,.

For some datasets, we did not find a design wehettact column cardinality. In such cases, we
chose a design with more attributes, removed tdarm@ant columns and kept only the distinct
rows.

The original domain of each input attribute shob&ltransformed to a domain dfdistinct
values. With nominal attributes, each attributestygpresents one of tkevalues. Discretization
methods address this issue for numeric attribuyegdnsforming their values intd ranges of
value$.

Most experimental design approaches aim atgsttivhere instances can be generated, as is
often the case in lab experiments. In a pool-basdetction setting, such as our own, we cannot
generate instances to fit the design because $tenices values are set in advance. Therefore, we
first derive the design and then identify for eactv in the design the instance in the unlabeled
pool that is most similar. This is done by meagytime normalized Euclidean distance with all
attributes having the same weight, and selectireg uhlabeled instance with the smallest
distance.

Table 1: The L8() OA’s design

Attributes
I nstances x| 2 % % % % &
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

3.2 Pessimistic Profit Using Confidence Bounds

2 In this paper we used a simple unsupervised digat®n of equal-width.
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In this section, we propose a new measure teiPessimistic Profit Gain. This measure is
used for ranking the customers as part of the seteof the next batch. The proposed approach
aims to improve decision-making by measuring theange in the profit gain when risky
profitable customers are acquired. We define ayrmlofitable customer as a customer about

whom the decision made according to the estimatethgbility p is not coherent with the

decision made according to the lower bound of tbefidence interval (the pessimistic
probability). Specifically, if the estimated proliélp of response suggests the customer is

profitable, but the lower bound of the confidenceival of p is below the threshold of Eq. (2),

then there is a non-negligible likelihood that tustomer is not profitable. Hence, suggesting an
offer to this customer is considered risky.

Our main goal during the exploration phaséndeed to explore the space. However, by
selecting customers who are expected to be priditgiet are considered risky, the Pessimistic
Profit Gain measure adds exploitive value to thpla@ation. By acquiring more information
about risky customers, a later classifier may infet these customers are indeed unprofitable.
Yet, we could equally consider an opposite strateggquiring information about customers for
which the estimated probability suggests the custasnot profitable, but the upper bound of
the confidence interval is greater than the thrieshalue, suggesting there is likelihood that the
customer is in fact profitable. Ignoring the latsémategy is motivated by the assumption that
most customers are likely to be unprofitable beeatmtacting a customer is costly. Hence, it
may be more beneficial to reduce the monetary ofskontacting unprofitable customers than
improving the estimation thereby identifying morefgable customers.

Approaching a new customer can improve the proipaleistimation and the current decision
tree must be updated accordingly. The decisiondaeebe updated in various ways, for instance
by adopting the incremental procedure of the ID&RrEhm introduced by Utgoff (1989). For
the sake of simplicity, we assume that the updateel is obtained by revising only the class
probability distribution of the corresponding leafyd that no new sub-branches are created.
Obviously, this is not always precise; however, wge it as a low-cost approximation of the
actual value.

3.2.1Definition of Pessimistic Profit

Let us define the notion gdrofit for a given leaf in the decision tree. Leahas m ,..,and
M et CUStOMers who were courted and responded pogitielnegatively, respectively.

Moreover, there are additiona e, customers in the unlabeled pool which belong &b keWe

12



assume that the decision rule presented in Eqis(8atisfied, and we decide to approach the
Mk newCUStOMers. For the sake of clarity, we assumeaihabsts and utilities are identical for all
customers (e.g.C = C). If a portion of p customers responds positively, then the total prsfi
calculated as the sum of four terms:

1. The utility from the customers who have respondesitively: pﬁ‘rknewﬂJS

N

. The utility from the customers who have respondeghtively: (1- p)UTLnewEUF
3. The cost of approaching tiné newcustomersm, ., [C
4. The alternative income we lose (when no actiorersgpmed):m, [ .
Therefore, the profit is:
profit = pin, ,,,, U+ (1= p)0n, o, V" -m, ., [C-m ., (W (5)

Simplifying the expression with the definitions mando — the numerator and denominator
defined in Eq. (2) — the expected profit is:
profit =m, ,,,,(FCp—m, [0 . ©)
We define the pessimistic probability as the loweund of (1a)% confidence interval
of the success probability. When payoffs are Baugldhe normal approximation to the
binomial distribution can be used to construct twnfidence interval. The pessimistic

probability is the lower limit of the confidenceténval presented in Eq. (4):
B=h-2.0. (7)
By incorporating the pessimistic probability in H§), we define thgessimistic profit
(PP) for a given leaf in the decision tree.

PP( rn(,accept’ nlg reject rnk ne\)/E rn,k ne@ E@ ~r‘)i_ mk n@ 0

i . ®)
- rrl(,newl:r[ﬁ p( mk accept mk rejet)_ Z—%U( rn,k accept mk rejf); - mk nQ/

Eq. (8) generates negative values when probabj|itand the pessimistic probabilitg
are on the opposite sides of the threshold valueeMbothp, and p; are higher than the

threshold valuecl:—i (Eq. 2),PP has a positive value. This means that bttand p; suggest
i

the same decision. Thus the reduction of the cenfid interval due to acquiring new
unlabeled instances will not improve the decisiime positivePP value is therefore replaced

with a value oD.

13



3.2.2 Calculation of Pessimistic Profit
Calculating the pessimistic profit for each customsedone in three steps. First, in order to

separate customers with a profitable probabglifyom others, the decision rule presented in Eq.

(2) is applied to all leaves in the decision tréastomers who correspond to leaves where the
probability p; is lower than the threshold receive a gain valli@,ahus placing them at the
bottom of the candidate list. The rest of the corglis are considered as potential candidates, and
move on to the second step: Eq. (8) is used talleaée the leaf's pessimistic profit for these
cases. The final step is to estimate how the péststnprofit will change if the response of a new
customer is acquired and added to the corresponidaiy Since the actual response of the
customer in not known prior to its acquisition, thessimistic profit is recalculated for each
possible outcome.

a) The customer accepts the new product offer; .., is increased by 1.
b) The customer rejects the new product offer; .. is increased by 1.

In both casesp, and p, are updated andy n.wdecreases by 1. The two possible pessimistic
profits above are weighted according to the esgohatobabilityp, .
The pessimistic profit gain is tréifferencebetween the estimated pessimistic prbéfore

and after approaching a customer. The customers are rankddsoending order according to

their gain, and those with the highest gain aresehdo be contacted.

3.3 Pessimistic Profit Gain for a Group of n Customers

The previous subsection presented a method fouledileg the pessimistic profit gain under
two assumptions: (1) the customers are courtedabree time; and (2) the next customer is
approached only after receiving the previous custresponse. However, this situation is not
typically the case in many targeted marketing aapilbns, since several salespersons can
simultaneously contact multiple potential customdiiserefore, the targeting policy should be
refined to allow a quota of customers to be appgredsimultaneously. The pessimistic profit for
the firstn customers of a certain lelafs:

PPGh ( rn«acceM’ rnﬁ reject rnk ne)/: (9)

1Ny . n-j . .
Z[ J]pj (rngaccepr mk rejec) (1_ F( mk accept rn,k reje)) J [q PlP mk acce-gt YJ mk rejé'(-:t f 1] m k r;w )ﬂ I:J + m )'
j=0

14



Eq. (9) calculates the expected pessimistic ptofitexamining all possible outcomes of
approachingn customers and weighting their corresponded prdiite refer to the process of
approachingn customers as a sequencenahdependent Bernoulli experiments, each of which

yields an “accept” outcome with a probability p{m, ,.ccoo My eiecr) - NOte that by setting=0 in

Eq. (9) we obtain the current pessimistic profitaofeaf, before any new customer is courted.
The gain obtained by th#" customer in leak is defined as:

Gy (M accenr My et Mene) = PPGL My Mot M bz PPGL Mhepr Miece ) (10)

The gain is decreasing m i.e., the contribution of adding instances to a certain leaf is
smaller thann times the contribution of adding the first instano that leaf. Note that our
measure focuses on massive leaves, leaves in Wieoh are more unlabeled customers; Hence,
if two leaves have the same confidence interval ther estimated probability and the only
difference between them is the amount of unlabel@desponding customers, then Eq. (10)
increases the priority of leaves correspondinglerger set of instances.

3.4 Selecting the Subsequent Batches

While active learning explicitly seeks only impravexploration, PAL selects the next batch
of customers to be courted by considering the eaptm/exploitation tradeoff explicitly, just as
reinforcement learning does. We employ simulatedeahng (Kirkpatrick et al. 1983) to
determine the amount of instances in a batch codaeexploitation purposes. The rest of the
instances in the same batch are courted for exarpurposes.

Simulated annealing is a generic randomized styafi@gglobal optimization problems. Its
key idea by default is to exploit, that is, to tdke action with the best estimated reward. Yet,
with some probability, exploration is performed bglecting an action at random. The ratio
between exploration and exploitation is traded dycally, so that exploration fades in time.

The parametef< <1 controls the rate of the decay. The paraméteil; <1 denotes the
proportion of customers to be courted (exploredpatchj. T, decreases over time to decrease

exploration. We used the following simple and comresponential schedule:

T = yT. 4 (11)

J I
The outcomeT, is multiplied by the batch si2d in order to determine the amount of customers

in the batch that are randomly selected. The comgteary proportion(l—Tj) Is again
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multiplied by M to determine the amount of customers that arecteeleaccording to their

Pessimistic Profit Gain.
4. Experimental Study

In this section we present empirical evaluadiof our approach for a set of benchmark
datasets. These evaluations also examine the bémefi each of the algorithms components
presented in the previous section.

4.1 Experimental Setup

4.1.1 The Benchmark Datasets Used in the Expergnent

Because the proposed method is designed for bidanyains, we selected ten publicly
available binary class datasets with an unbalamtzst distribution, so as reflect as much as
possible the characteristics of the direct marketlomains addressed here. Specifically, we
have used thelonation dataset, which has been used in the KDD cul) &8d theinsurance
companybenchmark, which has been used in ColL challel@§® ZPutten and Someren, 2000).
In these two datasets, the class refers to a esglonse of the person to buy a policy or
contribute a donation. The remaining datasets wbtained from the UCI repository (Blake and
Merz, 1998). In these datasets we selected theftegsient class to represent the positive
response.

Table 2 presents the characteristics of each datéhee number of attributes, the selected
training set size, the test set size, and the numbequally sized batches. The large datasets
were partitioned into 60 batches, while the smathdets were partitioned into 20 batches.

In real world applications, the actual valuesoadndr, as defined in Eq. (2), are estimated

from the specific application. In the donation gemb domain, the cost of approaf=C;) is
given and the positive response utility U °) can be predicted (for instance, see Saar-

Tsechansky and Provost, 2007 for a detailed ddsmripof how these values can be
appropriately estimated). We had to fabricateuviilees for the other datasets considering the
following arguments: (i) for values ofr much lower than the customers' positive respoaise r
a positive profit is guaranteed and the relativatgbution of an intelligent model is less

significant; (ii) for values ob/r much higher than the customers’ positive respoatge the risk

3 http://kdd.ics.uci.edu//databases/kddcup98/kddsupenl
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of incurring losses becomes too high, and riskynadges are unacceptable in most business
applications. Therefore, avoiding risky scenarithee maximum potential contribution of an
intelligent model is manifested when the valuebfis equalto the customers’ positive response

rate. Thus, we set the ratio@f at the proximity of the customers’ positive resp@nate.

Table 2: Summary of the dataset characteristicsl iis¢he experimental study

Dataset # Training | Test Set | # Positive | o Value r Value
Attributes | Size Size Batches | Response
Rate
Adult 14 10000 20000 60 24% 2.9 10
Anneal 39 797 99 20 4.5% 0.49 10
Breast C. | 10 500 199 20 34% 4.3 10
Credit 15 300 370 20 37% 3.5 10
Donation | 18 10000 | 96,357 | 60 5% 0.68 Varied
(Given) (mean 15)
German 25 469 530 20 30% 3.2 10
Heart 14 124 145 20 44% 4.3 10
Insurance | 85 5822 4000 60 6% 0.63 10
Mushroom| 22 4062 4062 60 10% 1 10
Thyroid 30 2799 971 60 6% 0.61 10

4.1.2 Alternative Acquisition Algorithms

In order to evaluate the benefit of the PAL aldurit we execute it with the following parameter

values: y=0.85 (the simulated annealing decay factor) amel5% (the confidence level). We

compared PAL to the following algorithms, which #ater described in Section 5:

1. An algorithm which acquires new customers drawrfiaunily at random.

2. Kaelbling's (1993) interval estimation algorithmavérs instances with high success
probability estimation, and also focuses exploratom the most promising, but uncertain
leaves. The confidence interval of the successalnitity is estimated for each leaf. Instances
are selected from the leaf whose confidence intéras the highest upper bound.

* Originally the donation datasets contain 479aités. For the classification task we have used il following
input attributes: ODATEDW , INCOME ,RAMNTALL, NGIFALL, CARDGIFT, MINRAMNT, MINRDATE,
MAXRAMNT, MAXRDATE, LASTGIFT, LASTDATE, FISTDATE, NEXTDATE, TIMELAG , AVGGIFT

® The original dataset contained 95,413 trainingainses, of which we randomly selected only 10,000.
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3. Randomized strategy using Boltzmann distributigaglbling and Littman, 1996): in this

®"%'T whereNAG denotes

case, an instandds probabilistically chosen proportionally
the net acquisition cost of customeandT is a temperature parameter that decreases over
time to decrease exploration.

4. The GOAL algorithm (Saar-Tsechansky and Provos@720GOAL, like PAL, aims to
minimize the cost of acquisition to obtain a giveerformance. However, unlike PAL,
GOAL considers only acquisition costs, but not rewe generated during the acquisition
phase.

We also evaluated each one of PAL’s four componprasented in Section 3 by examining the

following configurations:

1. PAL without Simulated Annealin@his variation of PAL includes the OA method tie
initial sample with random acquisition on the suhsnt batches. It does not include the
simulated annealing module for trading exploratisith exploitation (section 3.2). Any
difference between the performance of this algoritand PAL's can be attributed to the
simulated annealing module.

2. PAL without PessimismEmploying the OA method for the initial samplemsiated
annealing for trading exploration with exploitatjoput instead of using the pessimistic
estimate for the probability (sections 3.3 and 8vé)use the probability estimation from Eq.
(2). This PAL version aims to evaluate what pessmbuys us.

3. PAL without Orthogonal ArraysEEmploying the PAL with random initialization, i,evithout
OA. This PAL version is used to evaluate the vatugne OA initialization.

4. PAL with OptimismEmploying the OA method for the initial sample slatad annealing
for trading exploration with exploitation, but iesid of using the pessimistic estimate for the
probability (sections 3.3 and 3.4) we use the uggmemd (optimistic). This PAL version
aims to evaluate whether using the upper boundres mterval estimation techniques can
produce preferable results.

The C4.5 induction algorithm (Quinlan, 1993) witletLaplace correction (Cestnik 1990) was

employed in all the experiments to estimate théaldity of success.
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4.1.3 Evaluation Methodology

Each dataset was divided into two subsets. Thesfidsset was used as the unlabeled pool for
the iterative selection of the training instancefi¥ed number of instanced (the batch size)
was chosen in each iteration. The second subsetéast set of instances for which we compare
the profits generated by each approach after eemhisation phase. In order to provide reliable
estimates of the algorithms’ performance and amalyzthe differences between reported
performances are statistically significant, we gatexl ten stratified random partitions onto
training and testing datasets. To reduce the exjgertal variance, the same data partitions were
used by all methods. Moreover, methods that dicueetOA for the initial sample (i.e., Random,
GOAL, PAL without Orthogonal Arrays) were startedrh the exact same initial random
sample. Similarly, methods that employed OA wese atarted from the exact same OA sample.

We evaluated four performance measures for eadaritdgn and dataset: (i) training profit;
(ii) test set positive reaction rate; (iii) test peofit; and (iv) gain charts. The first two meees
represent the two criteria that were defined inghablem formulation. The last two measures
are used to obtain an additional assessment of éduitribution.

Because the curves of the compared algorithms migbtsect, we used the AUC (Area
Under the Curve) measure as a single value matricompare algorithms and establish a
dominance relationship among them. The reportedegatepresent the mean AUC performance
over the ten random partitions of the data. Thefidence interval of the AUC was estimated
using the Student's t distribution. The statistgighificance of the differences in performance
between the PAL algorithm and the other algorithwas verified by the one-tailed paired t-test,
with a confidence level of 95%.

Additionally, we provide the mean rank of each altpon across data sets. For this purpose,
we rank the algorithms for each dataset separagly provide the average rank of each
algorithm across data sets. The best performingyiéthgn is ranked 1.

To compute the mean normalized performance of esthod, we use simple linear scaling
within the dataseminimum and maximum performance valuHse normalized values are used
to quantify the differences across all dataséisrmally, the normalized performance of

algorithmi on dataseitis defined as
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AUC ; -min, AUC,
max, AUC, ; —min, AUC, . (12)

NAUG ; =

Thus, the mean normalized performance of algoritism
n NAUG .
MNAUG = Z—q'

- n

= (13)

In order to conclude which algorithm performs bagtr multiple datasets, we followed the
robust non-parametric procedure that was proposeddmsar (2006). In case of multiple
classifiers, we first used the adjusted Friedmast te order to reject the null hypothesis,
followed by the Bonferroni-Dunn test to find whetHeAL performs significantly better than

existing algorithms.

4.2 Experimental Results

In the following subsections, we report the evabratresults of the four performance
measures. Tables 3, 4, 5, and 6 report a 95% cockdaterval of the mean AUC for each
algorithm and dataset combination. The shaded boxesesent cases where the difference
between PAL and the corresponding algorithm idstteally significant with 95% confidence.

Also, a mean rank and a mean normalized AUC argepted for each algorithm.

4.2.1 Comparing the Training Profit

Consider the three typical training profit graphsFigure 3. Methods that do not employ
simulated annealing (Random, GOAL) have an almaosal behavior: the line either increases
linearly, if o/r is smaller than customers’ positive response iratbe training set, aBonation
andCredit, decreases linearly, @ir is greater than customers’ positive response aateAdult,
or oscillates around the x-axis, ofr is equal to the customers’ positive response ialeen
100% of the training data is used, all methods eoge to the same training profit because all

methods eventually acquire all the examples irutiiabeled pool.

® In this section we provide the results summarglbdatasets, but detailed graphs are providedrity three
selected datasets. A complete and detailed reptreaesults of the remaining datasets is avalétdm the first
author.
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Methods that attempt to balance the explorationexpdoitation trade-off (PAL, Boltzmann,
and Kaelbling's algorithm) display a large unimodabk and an initial quadratic-like growth.
The positive affect of simulated annealing on tlaéntng profit is observed until around 50% of
the training data is selected. While a relativadguaate classifier can be constructed with 50% of
the training data, there are many profitable custsramong the remaining 50% of customers.

Table 3 presents the 95% confidence interval ofntlean AUC of the training profit graphs.
The highlighted values represent cases where ffeatice between PAL and the corresponding
algorithm is statistically significant with 95% dadence. As can be clearly seen from the
results, the simulated annealing feature in PAlnificantly improves the training profit. The
OA method, on the other hand, did not seem to émide the performance of PAL. Using
optimistic upper bound undermines performance.

The train profit ranking indicates that PAL is thecond best to Boltzman. However, as we
will see later, the superiority of the Boltzman eggrh comes at the expense of its test set
positive reaction rate performance. The adjusteeldRran test with a confidence level of 95%
rejected the null-hypothesis that all classifieesfgrm the same. The Bonferroni-Dunn test
concluded that PAL significantly outperforms Rando@OAL and Kaelbling at a 95%

confidence level. However, we could not concluds Boltzman significantly outperforms PAL.
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Figure 3: lllustration of Training Profit Graphs
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Table 3: 95% confidence interval of the mean AU@eftraining profit graphs. Highlighted values iodte that the PAL performance is

significantly different from the performance of ttwresponding algorithm at a confidence level 5%®

PAL without | PAL without PAL without PAL_ With
Dataset Random GOAL Boltzman | Kaelbling PAL Orthogonal | Simulated Pessimi Optimism
) essimism
Arrays Annealing
Adult |16015.8+58]16169.17+55{17445 +10315857+102516850.34+336875.66+45|16051.02+78|16425.17+40|15727 +209
Anneal | -182.1+20| -192.72+26| -67 £16 -173 72 -53.62+2 -58.72+17 -180.92+19 -54.02+3 |-82 +16
Breast C.| 51.2+16 156.03+59| 278 £27 | 87 +305 201.57+£37 209.32+271 24.45%26 270.15+17| 196 +51
Credit | 161.24+73| 199.09+20 | 344 +1 182 +9 362.26+22 362.44+13 172.61+13 390.71+24{195 +2
Donation | 175.7+69 | 208.59+77 | 616 #81 | 183 £141 583.78+95 568.01+94 169.39+98 632.29+88440 +80
German | -106.21+28| -105.01+16| 4 +23 -105 +107 -0.01+20 12.89+36| -118.84+21 14.84+28 |-125 +29
Heart 9.97+9 21.15+23 | 77 10 17 £58 58.47+9 59.5+13 25.6+22 76.45+9-8 +16
Insurance| -94.87+56 | -59.03+48 340 +40| 229 +177 | 413.31+41 374.03+4] -80.87+57 400.11+47|319 +29
Mushroom| 52.63+6 |-1388.28+56( 1579 +8 | 1564 +227| 1690.63+8  1659.93+71 207.15%5 1712.16+£5(557 +16
Thyroid | 31.16+16 | 16.72+66 635 +17| 308 +278 678.61+8 668.48+54 10.92+6 682.35+49|191 +65
Mean Rank 7.4 3.9 5.4 7.3 1.7 3.7 6.8 4.9 3.9
Mean
Nor;ﬂjgzed 45% 79% 42% 31% 96% 84% 55% 64% 75%
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4.2.2 Comparing the Test Set Positive Reaction fatdit Margin)

Cost-sensitive active learning methods are typrcadeasured on their test set performance. In
this subsection, we examine the positive reactba as a function of the percentage of acquired
responses from the training pool.

Figure 4 illustrates three typical positive reactiate graphs. The positive reaction rate
increases as more instances become available.dNgtwall methods converge to the same rate
when using the entire training set.

Table 4 presents the 95% confidence interval ofnlean AUC of the positive reaction rate
graphs. The highlighted values represent casesewther difference between PAL and the
corresponding algorithm is statistically signifitamith 95% confidence. As before, adding the
simulated annealing feature, which also takes ounsideration the fact that customers are
acquired in batches, but without pessimism, impsolRandom’s results. Adding pessimism
further improves performance. Nevertheless, if wmaove OA from PAL, we obtain almost
similar results. This implies that the OA methogmaves the positive reaction rate only slightly,
if at all.

PAL obtained the best rank among all algorithmse Hdjusted Friedman test with a
confidence level of 95% rejected the null-hypotkdkiat all classifiers perform the same. The
Bonferroni-Dunn test concluded that PAL signifidgnbutperforms Random, Kaelbling,
Boltzmann and GOAL at a 95% confidence level. Néhadess, we could not reject the null
hypothesis that PAL and PAL without Pessimism penféhe same. One might conclude that
pessimism does not significantly improve resultsowldver, when we set PAL without
Pessimism as the control classifier, the Bonferfoumn test indicates that it does not
significantly outperform GOAL. Thus, the pessimideature is required in order to obtain
significant superiority to existing methods.

Recall that our problem is a Multiple Criteria Dgon Making, and thus, we are interested in
maximizing both the Positive Reaction Rate andTren Profit which were evaluated in the
previous section. Figure 5 presents the PositiveciRan Rate vs. Train Profit. Note that higher
values are preferred to lower values in both akRemdom, Kaelbling and GOAL are not on the

Pareto Frontier because they are dominated by®#thand Boltzmann.
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Table 4: 95% confidence interval of the mean AU@efTest Set Positive reaction Rate Graphs. Hihitéid values indicate that the PAL

performance is significantly different from the feemance of the corresponding algorithm at a cosrfice level of 95%.

PAL PAL PAL with
, without without |PAL without| Optimism
Dataset Random GOAL Boltzman | Kaelbling PAL Orthogonal | Simulated | Pessimism
Arrays Annealing

Adult 57.11%+0.7557.85%+0.3] 59%+0.92| 57%+2.54 | 60.88%+0.6560.86%+0.657.11%+0.51 59%+0.53 |57.6%+0.92
Anneal 77.7%+6.68| 76.23%+9.4180%+5.89| 74%+6.12 | 82.04%+0.780.73%+5.7473.97%+8.5380.95%+2.02 78%+10.96
Breast C. | 76.26%+2.5574.62%+2.1]77.5%+3.46 75.2%+6.9382.42%=+1.8({80.88%+1.4{76.57%+3.3( 79.76%+2.27 69.3%+3.46
Credit 73.63%16.65 75.69%+2.979.8%+2.47 74.2%+3.9279.09%+2.2178.49%+3.1374.9%+2.97/77.16%+12.3} 78.7%+2.42
Donation | 5.86%+0.44| 6.26%+0.8|5.97%+0.58 6.26%+0.23 6.36%+0.33 6.39%=+0.35 5.89%+0.43 6.19%=+0.33|6.22%=+0.35
German | 47.03%+2.25 47%+1.81 | 48%+2.77 46.4%+2.1948.28%+1.6%8.86%+2.1245.77%+1.9746.98%+1.07 46.3%+1.5
Heart 66.29%+10.3%56.82%+5.2568.8%+2.31 67%+3.46 | 68.14%+4.768.11%+3.163.55%+4.1767.39%+4.17 67.9%+3.46
Insurance | 10.32%+0.6111.27%+0.3411.3%+0.46 10.8%+0.4612.26%+0.6511.19%+0.5410.65%+0.4211.25%+0.47 10.7%=+0.35
Mushroom| 19.14%+0.2| 18.54%:+0.318.6%+0.4€ 18.2%+2.3118.56%+0.2118.55%+0.4%519.3%+0.33| 18.79%+0.39 18.4%+0.12
Thyroid 48.69%+2.5249.19%+1.2] 46 +3.69 | 48.95%+5.891.23%+1.2150.84%+1.2248.77%+2.5550.32%+0.92 48.2%+7.04
Mean Rank 6.8 5.6 3 6.9 19 3 7 4.1 6.4
Mean
Egrg“a“zed 33% 45% 69% 34% 78% 73% 30% 56% 40%
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Test Set Positive Reaction Rate vs. Train Profit
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Figure 5: Positive Reaction Rate vs. Train Profit
4.2.3 Comparing the Test Set Profit

In the previous section we evaluated the test sdopnance by measuring the positive
reaction rate. However, a superior response raghtmalso be obtained at the expense of
approaching fewer customers (low recall). In thest®n, we will examine the actual test set
profit.

Table 5 presents the 95% confidence interval ofntliean AUC of the test set profit graphs.
The highlighted values represent cases where ffexatice between PAL and the corresponding
algorithm is statistically significant with 95% dafence. As expected, the Random method
often yields the most inferior results, while PAbhdaGOAL often yield the best results. The
adjusted Friedman test, with a confidence leveR%%, rejected the null-hypothesis that all
classifiers perform the same. The Bonferroni-Dumest tconcluded that PAL significantly
outperforms Random, Boltzman, Kaelbling, PAL with&essimism and PAL without simulated
annealing at a confidence level of 95%. Nevertisele®g could not reject the null hypothesis that
PAL and GOAL perform the same at a confidence l@#e95%. We conclude that pessimism
and simulated annealing significantly improve tlesttset profit. OA's contribution is not

substantial.
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Table 5: 95% confidence interval of the mean AU@efTest Profit Graphs. Highlighted values indec#tiat the PAL performance is

significantly different from the performance of ttwresponding algorithm at a confidence level 5%®

PAL without | PAL without | o | PAL with
Dataset | Random GOAL Boltzman | Kaelbling PAL Orthogonal | Simulated Pecsimi Optimism
: essimism
Arrays Annealing

Adult 16015.8+58|16169.17+55|16328+23:|{16564+106|16850.34+34|16875.66+45|16051.02+78|16425.17+40|16150+£32
Anneal 46.7+3 46.87+3 49 +3 48 +2 49.73+0 48.78+3 46.4+0 49.83+3 47 +5
Breast C. 463.97+1t | 502.78+2: 498 £3: 442 +8! 513.73+2! 502.46+2. 486.8+2: 461.38+2! 499 £3¢
Credit 857.33+62 870.86+35 589 +2 548 +3 883.47+£80 8723824 855.88+32 | 839.21+131 879 +2
Donation | 7399.45+69 9462.37+80| 7980 +12| 7620 +40 | 10557.61+5410477.28+74 7450.01+106 8440.5+88 | 7720 +55
German 2720.21+31| 2816.37+3! | 269 +4( 261 +4¢ 2818.07+2 | 2675.83+2! | 2584.71+3 | 2599.92+3. | 2819 +3:
Heart 148.61+1- 164.81+2' | 165.1 +1:| 157.3 1! 167.2+1¢ 158.03+1. 152.36+1- 150.51+1+ | 172.3 +1!
Insurance | 404.77+28 424.01+23| 431 +£23 | 373 £37 457.81+39 415.73+28 428.54+39 417.954 423 +14
Mushroom | 1746.77+21 | 1884.68+6: | 1803 4« | 1772 +46. | 1868.57+2! | 1858.27+6! | 1776.7+4. 1879.8+5! | 1871 +3:
Thyroid 486.06=: 489.73+1 341 +1¢ 470167 494.98+: 494.26+1 483.52+11 492,99+ 492 +¢
Mean 7.4 3.9 5.4 7.3 1.7 3.7 6.8 4.9 3.9
Rank
M ean
Egré“a“zed 45% 79% 42% 31% 96% 84% 55% 64% 75%
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4.2.4 Comparing the Gain Charts (Market Share)

In this section we examine a scenario in which nierketing budget is limited and the
classifier is used to select a subset of customérs scenario occurs, for example, when a
corporation aims to increase its market share,gpsrfat the expense of immediate profitability.
Thus, in this scenario we are interested in reachipre-specified quota (e.g., 75%) of potential
respondents. In these cases it is useful to Waim Chart A gain chart presents the cumulative
gains (e.g., profitability or response) accrued mhesing a predictive model versus those
obtained via a default approach, which assumesathatistomers are identical. The cumulative

proportion of the population being targetefd=1000/n (wheren is the size of the audiende;

customer index), is shown on the x-axis. The cutiugda positive response rate,
Y, =100* 2 Y, Zn: Y, , is shown on the y-axis.
=L =

Table 6 presents the 95% confidence interval ofrttemn AUC of the gain charts. The
highlighted values represent cases where the €ifter between PAL and the corresponding
algorithm is statistically significant with 95% dolence. The gain chart is calculated when 50%
of the training data is selected by each algorit#®.in the previous measures, PAL is the
dominant algorithm. The adjusted Friedman testhwitconfidence level of 95%, rejected the
null-hypothesis that all classifiers perform thenga The Bonferroni-Dunn test concluded that
PAL significantly outperforms Random, Boltzman, Kdieg at a confidence level of 95%. PAL
significantly outperforms GOAL at a confidence leeé 90%. Finally, as shown, all of PAL's

elements contribute to its performance.

4.2.5 Confidence Intervals

The purpose of this subsection is to examine if AL provide a tighter confidence interval for
risky decisions, i.e., when the mean and the ldveemds are located on opposite sides of the
threshold value defined in Eqg. (2). The learningcess shrinks the confidence interval, and thus,
as the learning progresses, less risky decisionsldglbe made. Table 7 presents the percentage
of risky decisions after acquiring 50% of the Domiatdataset. Note that in this case, lower
values are considered better. As can be seen fiertable, GOAL, PAL and Kaelbling perform
similarly, but better than Random and Boltzmanrsiilar behavior has been revealed in all the

other datasets.
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Table 6: 95% confidence interval of the mean AU@efLift Charts. Highlighted values indicate thlaé PAL performance is

significantly different from the performance of teresponding algorithm at a confidence level %®

PAL PAL PAL |PAL with

Dataset | Random | GOAL |Boltzman|Kaelblingl PAL without | without | without |Optimism
Orthogonal|Simulated |Pessimism
Adult 63.33+4.7/78.691+2.4 69 £9.2 | 73 £10.4| 79.8243.7| 79.54+5.6| 77.62+5.579.11+2.9 739.5
Anneal 84+20 85+2€ | 80+1.z | 80+1.4 | 85+2.C 85+11.¢ | 85+19.. | 85+2.7 | 800.]
Breast C. |62.85+11./66.98+9.( 63.4+3.5| 61.8+2.¢|70.91+12.|68.65+13.!|67.4847..| 67.6+9.t | 63.2+0.1
Credit 70.8941.(|72.72+1.72.94+0.175.94+0.{| 74.06+1.:| 73.51+1.; | 71.2840.(| 72.86+1.¢|72.88+0.!
Donation | 50.36+1.2 56.15+1| 61+2.2 | 54+17.3| 59.58+1.2 58.78+1 | 54.88+0.8 59.31+1 | 51+1.5
German | 64.76+2.(| 64.5+1.]| 66.8+1.7| 65.3+]1 | 65.98+1..| 62.67+0.c [58.62+1..|58.62+1..| 62+1.2
Heart 17.19+3 | 18.3242)20.2 +4.6 20.3 +0.3 19.4+3.5| 18.78+3.7 18.46+2 18.5+217.9 £0.2
Insurance | 61.84+0.164.16+0.166.2+0.1| 60.1+5.9| 68.18+0.1 66.2+0.1 | 63.64+0.166.79+0.1 63.5+0.1
Mushroom | 85.43+0."|93.97+0..| 89 +2.1 | 86 +0.f | 93.9740..| 93.98+0.c |93.98+0../93.98+0."| 88+0.Z
Thyroid 94+1.8 |93.87+1./96.4 +0.3 91 +1.3 | 93.85+1.8 93.85+1.8| 93.85+1.893.85+1.8 95.9 +1
Mean 7.4 4.8 3.9 6.1 2.3 3.2 5.1 3.8 5.9
Rank
Mean
Eaf(f:na“zed 26% 56% 67% 42% 77% 64% 45% 57% 49%
Table 7: Percentage of Risky Decision in Donatiatd3et
Random GOAL Boltzman |Kaelbling |PAL
19.53% 11.17% 14.33% 8.13% 10.05%
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4.2.6 Simulated Annealing

As demonstrated in the previous subsections, sdiRA0's capabilities are due to the simulated
annealing algorithm (Eqg. 11). We examined differealues of the simulated annealing decay
factor, and found that the best results are obtdawigen y is set to a value in the range [0.7,1];
however, the best value depends on the datasetreFillustrates the train profit and positive

reaction rate as a function ¢f in the donation dataset. In this dataset the \mse is obtained

for y=0.88. Note that for the previous experiments we ustxiea value of y=0.85
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Figure 6: The train profit and positive reactioteras a function of in the donation dataset

4.2.7 The Effect of Batch Size

We explored the effect of the batch size on PAL&f@rmance. We tried using batches
which are 1%, 5% or 10% of the total training Sedble 8 presents the mean net profit per
approached customer in the donation dataset usifegesht batch sizes. The highlighted values
represent cases where the difference between PAL tha corresponding algorithm is
statistically significant with 95% confidence. Weuhd that the smaller the batch is, the better
the total profit will be. This is expected, sincemaller batch means the classifier is rebuilt more
often and is thus finer tuned to the obtained mi@atiion. Although it gives the best results, in
real-world campaign we can not approach the custoomee at a time.
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Table 8: The effect of the batch size on the meaiit per approached customer in the donation
dataset. Highlighted values indicate that the PA&kfgrmance is significantly different from the
performance of the corresponding algorithm at afmence level of 95%.

1% 5% 10%
PAL 0.594 0.558 0.532
GOAL 0.552 0.522 0.468
Random 0.434 0.428 0.424

5. Related Work

In this section we discuss how our method relaiesxisting work. The underlined problem
and the proposed solution share some common pieperith Reinforcement Learning and
Active Learning. In the following sections, we pras these methods and discuss how our
proposed solution differs from the existing methods

5.1 Reinforcement L earning

Reinforcement learnin@Kaelbling and Littman, 1996&utton and Barto, 1998) is concerned
with how anagentought to takeactionsin anenvironmenso as to maximize some notion of a
long-termreward At each step of the interaction between an agedtits environment, the
agent receives as input some indication of theecdrstate of the environmertos. For
example, a sales agent with a set of potentiabousts’ receives as input the willingness of each
potential customer to buy. The agent then choosext@on adA from a discrete set of actions
to generate as output. The action changes the aitdtee environment. The value of this state
transition is communicated to the agent throughkadas reinforcement signal For example, a
sales agent chooses to make an offer to a potensédmer, and the reinforcement signal is the
accept/reject decision of the potential customethe revenue from its purchase. Reinforcement
learning algorithms attempt to find a policy to mstates to actions:S -~ A that maximizes
some long-run measure of reinforcement, e.g., skim& of discounted revenue stream. We
expect the environment to be non-deterministicintakhe same action in the same state on two
different occasions. For example, approaching twala potential customers may result in
different next states and/or different reinforcemeignals. However, we assume that the
environment is stationary, that is, the probaleitiof making state transitions or receiving

specific reinforcement signals do not change owee.t The main difficulty is that the agent is
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not told if the immediate reward after taking ami@c means that he took the best action for its
long-term interests. For example, high revenue femproaching a particular potential customer
does not necessarily mean that approaching the $gmeeof potential customers is always

profitable. Pednault et al. (2002) modeled the iooiwius relationship between a retailer and its
customer as a Markov Decision Process. The se@leffiers of the retailer can probabilistically

alter the state of the customer, and potentiallgegate a reward to the retailer. They used
reinforcement learning to find the policy of theéaiker toward its customers.

Reinforcement learning is considered a difficulbldem in its most general formulation,
and it typically requires thousands of learningst® find a good policy. A practical difficulty
in the context of target marketing is that thisraagh requires that the past history of purchases
and promotions for each customer be available. iBhigie for some datasets. For example, the
donation dataset from the KDD Cup 1998 competition contapproximately two years of
direct-mail promotional history for each donor. Hmxer, in many other datasets, this
information is not available.

Alternatively, when no information regarding prewso purchases is available, a
reinforcement learning problem is considered t@Iproblem of only one state i.e., there are no
state transitions, but multiple actions, such astamiing different prospective customers, can
take place, and exploration/exploitation tradeaftes. An example is the classic k-armed bandit
problem (Robbins, 1952).

The problem of choosing which leaf in the decidi® to explore is similar to the k-armed
bandit. Each leaf can be treated as a one-armatitlzand the batch size can be referred to as the
allowed number of pulls. Still, our problem has goommique properties. First, the classic k-
armed bandit does not enforce any restriction ow hwany times we can pull each arm. It
assumes that each arm can be selected as manyaswes want as long as the agent does not
exceed the fixed number of pulls, However, in our problem each customer can bectezle
only once. Thus, the number of times we can sedach leaf is bound by the number of
customers in the unlabeled training set who comegpo this leaf. On the one hand, this sets a
restriction on selecting the next action; on thieeotit also implies which arms (leaves) should
be explored better. Specifically, we should catgflbok into the leaves with which many
unlabeledinstances are associated. Assuming that the Uaethleaining set represents the

overall distribution D, making wrong decisions abdiese leaves may result in low quality
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decisions in the long run exploitation phase fdurfe customers who are currently not included
in the training set.

Additionally, the k-armed bandit assumes a purehline environment, namely the
algorithm makes a decision and it is told the omtedoefore it makes the next decision. In a
direct marketing campaign, it is more reasonableasgsume that we approach a batch of
customers at a time, and only then are we toldbtlieome. Finally the k-armed bandit assumes
that there is no cost associated with each pullerothan the opportunity cost from playing a
suboptimal machine.

Nevertheless, the resemblance of the k-armed bprablem to our problem encouraged
us to look into known solutions. Kaelbling and mtn (1996) divide the techniques for solving
the single-state case such as the k-armed banditwo types: Formally Justified Techniques
and ad-hoc Techniques. In this paper we focus emadihoc Techniques which are considered to
be computationally tractable heuristics. Intervalireation techniques are ad-hoc Techniques
that use second-order information about the cdytann variance of the estimated values of
actions, such as the Kaelbling's interval estinmatitgorithm. While it is not formally justified,
this interval estimation algorithm has been wideted and can be applied to our problem. It
stores statistics for each action: the number ofssses and the number of trials. For each arm, a
confidence interval centred on the sample meaal@itated. The arm whose confidence interval
has the highest tail is chosen. Larger intervalsoerage greater exploration. Fong (1995)
introduced they -IE strategy, which is a generalization of Kaeigls IE (Interval Estimation)
Strategy. The parametgraffects the size of the confidence intervals aftdnoimproves the
performance of the algorithm.

Model-based Interval EstimatiqiMBIE) is another learning algorithm that buildsnadel to
construct an exploration policy (Wiering, and Sctimiber, 1998). More recently, Strehl and
Littman (2005) introduced a version of MBIE, whisht only combines Interval Estimation with
model-based reinforcement learning, but also comils a formal PAC-like learning-time
guarantee. Nevertheless, to the best of our kn@eledo cost-sensitive method considers the
effect of the confidence level of the estimatedbpimlity in classifier learning problems.
Previous research studies, such as Cohn et al6),1@8ich tried to minimize the variance, have
not been developed in a full cost-sensitive cont8xhein (2005) uses A-optimality, a strategy
for minimizing the variance to examine which poakbd active learning methods will work

well with logistic regression. He considers theelaimy cost, but not the utility costs.
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There are four issues which differentiate our meétfrom existing interval estimation

methods:

1.

Interval Changeiln existing interval estimation methods, instanaesselected according
to the interval bound value. In this research, w@ppse to select instances according to
the estimatedhangein the interval bound if exploration is indeed read that interval.
The change indicates to what extent the interval Ibeen decreased. Large intervals
indicate that additional exploration is requirechus$, the anticipated reduction in the
interval size that a certain instance providesdscative of the explorative contribution of
that instance.

Profit Interval: Existing methods use the probability interval. #leve use the profit
interval instead. The profit interval takes intoxsmleration how many unlabeled instances
are associated with the interval. Thus, the sarbgility interval reduction is obtained
for different leaves, regardless of the numbemnsfances corresponding to each leaf. This
approach is conceivable because change in thelghtypastimation of a massive interval
has an effect on further decisions to be madeerfuture. Note that our main goal is not
to improve the class probability estimations, lutrhprove the marketing decisions. A
trade-off between the two goals might exist (Sase€hansky and Provost, 2007).
Assuming fixed distribution of the instances, pitiaing large leaves has a positive effect
on larger number of examples in the population.

Using a Lower Bound (Pessimistic) of the Confideroterval: Existing interval
estimation methods prefer instances with a higipgeubound. The idea is that a higher
upper bound indicates both a high success probahilhich is good for exploitation, and
a wide confidence interval, which is good for exptmn. Thus, the fact that we are using
the lower bound seems odd. However, we are nogubmvalue itself, but the anticipated
change in the value. Recall that we aim to impréiwe decision-making for risky
customers whose estimated probabilities suggesthis are profitable. Thus, selecting
customers according to the change in the lower thodmes not prioritize profitless
customers, but does prioritize customers who atenpially profitable and can add the
most benefit by additional exploration.

Using BatchesOur new measure, as discussed in Section 3.4, tatkesonsideration the
fact that in every iteration, we select a batchcaktomers to approach. Thus, the

explorative contribution of acquiring the first toer in a certain interval is greater than
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the contribution of the subsequent customers fitwersiime interval. The reason for this is
that the reduction in the interval confidence dgeot linear. Considering the normal

approximation to the binomial, the confidence imérshrinks at the approximate rate of
JRLER < L wheremis the number of acquired customers for a ledfiéndecision tree.

Randomized Strategies are another group of adduabmiques that are widely used to trade
exploration and exploitation in practice. The idsato choose the action with the highest
estimated expected reward by default, but with gbilty p, to choose an action at random.
Some versions of this strategy begin with a largeier ofp to encourage exploration, which is
gradually decreased. (Kaelbling and Littman, 1996)particular, Boltzmann distribution has
been frequently used in order to ensure sufficexgtioration while still favoring actions with
higher value estimates. The Boltzmann policy che@s®ions according to a stochastic function
of their associated expected rewards. The expeetedrd from an action is used to choose an
action probabilistically according to the Boltzmadistribution. The likelihood of picking an
unlabeled customer is exponentially weighted byutthty via the Boltzmann distribution. The
ratio between exploration and exploitation is tchdiynamically so that exploration fades in
time. A “temperature” parameter controls the rafetle convergence. The temperature
parameter can be decreased over time to decrepkeation. This strategy may suffer when the
values of the actions are close (Kaelbling andnait, 1996).

In PAL, as well, we dynamically reduce the relatpart of the exploration in every new

batch. However, we do it directly usipgand do not consider the utility of the customerira

Boltzmann. In this sense, our approach is simpler.

5.2 Active Learning

Several active learning frameworks are presentethénliterature. In pool-based active
learning (Lewis and Gale, 1994) the learner hagsscdo a pool of unlabeled data and can
request the true class label for a certain numberstances in the pool. Other approaches focus
on the expected improvement of class entropy (RwlyMcCallum, 2001), or minimizing both
labelling and misclassification costs (Marginead05). Zadrozny (2005) examined a variation
in which instead of having the correct label focle&raining example, there is one possible label
(not necessarily the correct one) and the utilggomiated with that label. Most active learning
methods aim to reduce the generalization accurédiyeomodel learned from the labeled data.

They assume uniform error costs, and do not condideefits that may accrue from correct
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classifications. They also do not consider the Hiengnat may be accrued from label acquisition
(Hollménet al,, 2000, Turney, 2000).

Rather than trying to reduce the error or the ¢dStar-Tsechansky and Provost (2007)
introduced the GOAL method that focuses on acqorstthat are more likely to affect decision-
making. GOALacquires instances which are related to decisimna/fiich a relatively small change
in the estimation can change the preference ordehace. In each iteration, GOAL selects a batch
of instances based on their effectiveness score.sthre is inversely proportional to the minimum
absolute change in the probability estimation tauld result in a decision different from the
decision implied by the current estimation. Inste&delecting the instances with the highest scores
GOAL uses a sampling distribution in which the sata probability of a certain instance is

proportional to its score.

0. Limitations and Conclusions

Target marketing is a multi-million dollar industryhis paper presented the PAL active
learning algorithm, which considers the long-ter@eah to increase the positive reactions rate and
the short term need to decrease the total net sitiquicosts.

The experimental study indicates that PAL can imprthe profit of a marketing campaign.
PAL achieved the best rank for the Test Set P@siReaction Rate criterion, the Test Profit
criterion, and theLift Charts criterion. It was second only to Boltzmann for theain Profit
criterion. This indicates that PAL provides a gobdlance of the exploration/exploitation
tradeoft.

Closer examination indicates that PAL is partidylaadvantageous when the estimation
confidence intervals are relatively large. Once dleeision tree obtains sufficient evidence for
each leaf, the relative advantage of PAL is dinfiadc

Our results suggest that on average, all PAL's ehgsncontribute to its performance. The
PAL configurations with simulated annealing demaatst a significant improvement in the train
profit. It seems that of the four key elements leé PAL algorithm, the simulated annealing
element was responsible for most of the improveme&hts is not surprising, as simulated
annealing is an effective, generic method for glapdmization.

The second most beneficial element of PAL is thespeistic learning mechanism. The

proposed method is differentiated from existingeiaél estimation algorithms in that it takes
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into consideration interval changas opposed to the actual bounds values. The exgeidn
study shows that this approach is preferable fempttoblem addressed here.

The OA DoE methodology is another element usech@éRAL algorithm. It is a generic
element that can easily be integrated into anyrabgve learning algorithm. To the best of our
knowledge, this is the first time that the potdnt@ntribution of this methodology was measured
explicitly.

Boltzmann and GOAL's algorithms require that theebelassifier be probabilistic, i.e., that
given the input attributes, it provides an estimatehe conditional success probability. The
Kaelbling algorithm requires an estimate of the fictamce interval. This is a drawback, as
currently not all classifiers can provide this measexplicitly. The confidence interval can be
estimated for certain induction algorithms, suclmesral networks (Hwang and Ding, 1997) and
Logistic Regression (Sofroniou and Hutcheson, 2@0Rich are used in marketing problems.
Additionally, the PAL algorithm requires an estimatf how a new acquired instance changes
the confidence interval of the success probabilityis can be done, for example, by calculating
the difference between the confidence interval teeénd after acquiring an instance. However,
it might be computationally expensive, since ituiegs rebuilding or updating the classifier for
each candidate instance. Therefore, it is recometnal develop a low-cost approximation for
classification trees, as we did in this paper.

Another limitation of the PAL algorithm is the need fit an orthogonal array to the
examined dataset. Selecting an orthogonal arrpgr®rmed according to the cardinality of the
input attribute set. However, the available libearfor orthogonal arrays do not include an array
for any cardinality. Therefore, if no suitable gr@an be found, a larger array must be used and
adjusted to the dataset.

Current PAL implementation uses a static batch.sizeere may be a benefit to using
dynamic batch sizes which evolve along the explomaprocess (Weiss and Tian, 2008).
Moreover, we assume that the number of batchesdsotire exploration phase. Alternatively,
one may consider any other constraint which bouhdsexploration phase, such as total gross
acquisition cost, total net acquisition cost ordim

While this paper focuses on direct marketing appions, similar settings may arise in other
domains, such as medicine (Percus and Percus, Pkau, 1978), where the pessimism
mechanism can be useful. Consider, for examplesergpatients volunteering to participate in a

medical experiment, such as the study of the efiicy of a new chemotherapy drug. Only some
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of the patients would benefit from the experimemtialg, while the rest may suffer from severe
side effects. Typically, volunteer patients arerudged over time. Therefore, the statistics
accumulated from the first volunteers, togethehwite pessimistic measure can be used as an
additional criterion to decide which additional unteers may be particularly beneficial for the

study while reducing the cost.
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