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Abstract

Feature set partitioning generalizes the task atufe selection by partitioning the feature set Bubsets

of features that are collectively useful, ratherthy finding a single useful subset of featurdss paper
presents a novel feature set partitioning appreiaahis based on a genetic algorithm. As part isf tiew
approach a new encoding schema is also proposedtsapdoperties are discussed. We examine the
effectiveness of using a Vapnik-Chervonenkis dimr@mdound for evaluating the fitness function of
multiple, oblivious tree classifiers. The new algon was tested on various datasets and the results
indicate the superiority of the proposed algoritionother methods.

1. Introduction and Motivation

An inducer aims to build a classifier (also knovenaaclassification model) by learning from a set of
pre-classified instances. The classifier can theruged for classifying unlabelled instances. Kvédl
known that the required number of labeled instarfloesupervised learning increases as a function of
dimensionality [1]. Fukunaga [2] showed that thguieed number of training instances for a linear
classifier is linearly related to the dimensionalind for a quadratic classifier to the square haf t
dimensionality. In terms of nonparametric class#fisuch as decision trees, the situation is evere mo
severe. It has been estimated that, as the nuniltBmensions increases, the training set size needs
increase exponentially in order to obtain an effectstimate of multivariate densities [3].

Bellman [4], while working on complicated signabpessing problems, was the first to define this
phenomenon as the "curse of dimensionality." Tejes that are efficient in low dimensions, such as
decision trees inducers, fail to provide meaningigults when the number of dimensions increases
beyond a 'modest' size. Furthermore, humans arer lzdtle to comprehend smaller classifiers invavin
fewer features (probably less than 10). Smallessifi@rs are also more appropriate for user-dridata
mining techniques such as visualization.

In this paper we propose a way to avoid the cofsgimensionality by decomposing the original
feature set into several mutually exclusive subsitss is known as feature set partitioning and rnay
regarded as a generalization of the feature sefetdisk. Moreover, feature set partitioning is rdgd as
a specific case of ensemble methodology in whicimb@s use disjoint feature subsets, i.e., every
classifier in the ensemble is trained on a diffegrnjection of the original training set.

As an example of some of the aspects involved atufe set partitioning, consider a training set
containing data about health insurance policyhsldéach policyholder is characterized by four fesgu
Asset Ownership, Education (years), Car Engine Melijin cubic centimeters) and Employment Status.
The target feature (i.e., the label) describes hdretn specific policyholder was willing to purchase
complementary insurance and what type of compleangrihsurance she was willing to buy. A possible
feature set partitioning ensemble for resolvingdbestion includes two decision trees. The firgiglen
tree uses the features Asset Ownership and Volwhae the second uses the features Employment
Status and Education.

The aim of this work is to examine whether genaligorithm-based feature set partitioning can
improve classification performance. We propose s eacoding schema. Theoretical results are used to
explain why this new encoding is more suitable thmme straightforward encoding schemas. In order to



avoid long training time, a Vapnik-Chervonenkis dmsion bound for multiple oblivious trees evaluates
the fitness function. A caching mechanism is sugges order to reduce further the computationat co

of the genetic algorithm. The superiority of theggested algorithm to other methods is illustrated o

various datasets.

The rest of this paper is organized as followstiSe@ reviews related works in the field of featur
selection, feature set partitioning, and the usdgmsemble of feature selectors. Section 3 forteslthe
problem. Section 4 presents a new algorithm forisglthe problem discussed here. Section 5 reploets
experiments carried out to examine the new algworitkinally, Section 6 concludes the work and presen
suggestions for further research in the field. Bydor the theoretical claims presented in thisgvap
appear in the appendix.

2. Related Works
In this section we briefly review some of the cahtissues that have been addressed, and their
treatment in the literature. The related work diégsct in this section falls into three categories:
» First, we discuss three feature oriented tasks ¢hafeature selection, feature set partitioning,
and feature subset based ensemble) in patternméoogand the relations among them.
* Then, we survey the usage of genetic algorithmsdbiing the above-mentioned tasks.
* The oblivious decision tree and it usage for sg\eature selection problems.

Finally, in the light of previous work, we summagithe original contribution of this paper.

2.1 Feature selection

Most methods of dealing with high dimensionalitycise on feature selection techniques, i.e.,
selecting a single subset of features upon whiehitiducer will run, while ignoring the rest. The
selection of the subset can be done manually ysiitg knowledge to identify irrelevant variables or
feature selection algorithms. In the last decadmmymesearchers have shown increased interesatunrée
selection, and consequently many algorithms haem lpeoposed, with some demonstrating remarkable
improvements in accuracy. Since the subject isnige to survey here, the reader is referred to [éf.
for further reading.

Despite their popularity, there are several drakbao using feature selection methodologies inrde
to overcome the dimensionality curse:

* The assumption that a large set of input featuaesbe reduced to a small subset of relevant
features is not always true; in some cases thettégture is actually affected by most of the
input features and removing features will causigificant loss of important information.

* The outcome (i.e., the subset) of many algorithonddature selection (for example, almost
any of the algorithms that are based on the wrapmthodology) is strongly dependent on
the training set size. That is, if the training isesmall, the size of the reduced subset will be
small also. Consequently, relevant features mighbbt. Accordingly, the induced classifiers
might achieve a lower degree of accuracy compamedadssifiers that have access to all
relevant features.

* In some cases, even after eliminating a set dewemt features, the researcher is left with a
relatively large number of relevant features.

* The backward elimination strategy that some methogdéement is extremely inefficient for
working with large-scale databases, where the nuwibariginal features is greater than 100.

2.2 Feature subset-based ensemble methods

Ensemble methodology, which builds a predictivessiféer by integrating multiple classifiers, can be
used to improve prediction performance. Duringphst few years, experimental studies have shown tha
combining the outputs of multiple classifiers reelsithe generalization error [6]. Ensemble methoes a
very effective, mainly due to the phenomenon ttatous types of classifiers have different “indueti
biases” [7]. Indeed, ensemble methods can effdgtimake use of such diversity to reduce the vaganc
error [8] without increasing the bias-error.



Bagging [9] and AdaBoost [10] are popular implenag¢ionhs of the ensemble methodology. Bagging
employs bootstrap sampling to generate severatitigisets and then trains a classifier from each
generated training set. Note that, since sampliiiy kgplacement is used, some of the original imsta
may appear more than once in the same generateihgraet and some may not be included at all. The
classifier predictions are often combined via mgjoroting. AdaBoost sequentially constructs aesgof
classifiers, where the training instances thatvangly classified by a certain classifier will getigher
weight in the training of its subsequent classifigne classifiers’ predictions are combined viaghédd
voting where the weights are determined by therdlguo itself based on the training error of each
classifier.

Feature subset based ensemble methods are thbseatiipulate the input feature set for creating the
ensemble members. The idea is simply to give etdsitier a different projection of the trainingt.se
Tumer and Oza [11] claim that feature subset-basetmbles potentially facilitate the creation of a
classifier for high dimensionality datasets withdbe feature selection drawbacks mentioned above.
Moreover, these methods can be used to improvecldssification performance due to the reduced
correlation among the classifiers. Brgtl al. [12] also indicate that the reduced size of thaskt implies
faster induction of classifiers. Feature subsetids/the class under-representation which may occur
instance subsets methods such as bagging. Thradapatrategies for creating feature subset-based
ensembles exist: random-based, reduct-based, afodrpance-based.

Random-based strategy

The most straightforward techniques for creatinfeature subset-based ensemble are based on
random selection. Ho [13] creates a forest of dacitrees. The ensemble is constructed systemigtical
by pseudo-randomly selecting subsets of featuries.tfining instances are projected to each swaivskt
a decision tree is constructed using the projettdding samples. The process is repeated severas t
to create the forest. The classifications of thadviidual trees are combined by averaging the cidit
probability of each class at the leaves (distrdousummation). Ho shows that simple random selectio
feature subsets may be an effective technique becdlie diversity of the ensemble members
compensates for their lack of accuracy.

Bay [14] proposed using simple voting in order tmbine outputs from multiple KNN (K-Nearest
Neighbor) classifiers, each having access onlyr@andom subset of the original features. Each ifieiss
employs the same number of features. Beyldl. [12] introduce attribute bagging (AB) which coméin
random subsets of features. AB first finds an appate subset size by a random search in the featur
subset dimensionality. It then randomly selectssetghof features, creating projections of the ingirset
on which the classifiers are trained. A techniquebiuilding ensembles of simple Bayesian classfier
random feature subsets was also examined [15].

Reduct-based strateqy

A reduct is defined as the smallest feature sulvb@th has the same predictive power as the whole
feature set. By definition, the size of the ensamslthat were created using reducts is limited & th
number of features. There have been several attaimptreate classifier ensembles by combining séver
reducts. Wuet al. [16] introduce the worst-attribute-drop-first atgbm to find a set of significant
reducts and then combine them using naive Bayes.aBd Ishii [17] examine the idea of combining
multiple K-nearest neighbor classifiers for texasdification by reducts. Het al. [18] propose several
techniques to construct decision forests, in whéstery tree is built on a different reduct. The
classifications of the various trees are combirgdgua voting mechanism.

Performance-based strategy

Cunningham and Carney [19] introduced an ensemidgufe selection strategy that randomly
constructs the initial ensemble. Then, an iteratefsmement is performed based on a hill-climbiegreh
in order to improve the accuracy and diversity lué base classifiers. For all the feature subsets, a
attempt is made to switch (include or delete) deekure. If the resulting feature subset produckestter
performance on the validation set, that changeetaimed. This process is continued until no further
improvements are obtained. Similarly, Zenobi anchiiaigham [20] suggest that the search for the




different feature subsets will not be guided solghthe associated error but also by the disagretore
ambiguity among the ensemble members.

Tumer and Oza [11] present a new method called id@cimation (ID), which selects feature subsets
based on the correlations between individual festand class labels. This experimental study slioats
ID can outperform simple random selection of featsubsets.

Tsymbal et al. [21] compare several feature selection methods ith@orporate diversity as a
component of the fitness function in the searchterbest collection of feature subsets. This ssiuyws
that there are some datasets in which the ensdedilere selection method can be sensitive to tbeceh
of the diversity measure. Moreover, no particul@asure is superior in all cases.

Gunter and Bunke [22] suggest employing a featubset search algorithm in order to find different
subsets of the given features. The feature sulsetts algorithm not only takes the performancehef t
ensemble into account, but also directly suppovsrsity of subsets of features.

2.3 Feature set partitioning

Feature set partitioning decomposes the originalogdeatures into several subsets and builds a
classifier for each subset. Thus, a set of classifis trained such that each classifier emplogferent
subset of the original feature set. Subsequentiyyrdabelled instance is classified by combining th
classifications of all classifiers.

Feature set partitioning is a particular case afuiee subset-based ensembles in which the subsets a
pairwise disjoint subsets. At the same time, itegahizes the task of feature selection which aims t
provide a single representative set of featura® fndnich a classifier is constructed.

Several researchers have shown that the partijomrethodology can be appropriate for
classification tasks with a large number of feadU@8, 24]. Figure 1 presents the Venn diagrarthef
search space of the feature-oriented tasks. Asbeaseen, the search space of a feature subset-based
ensemble contains the search space of featureagéioming, and the latter contains the searclrcepH
feature selection.

Fzaturz 2ubszt Based Ensemble

Fzature 82t Partitionins

Figure 1: Venn diagram for the search space of thieature-oriented tasks

While mutually exclusive partitioning restricts tBearch space, it has some important and helpful
properties:

1. Compared to non-exclusive approaches, this approffets a greater possibility of achieving
reduced execution time. Since most learning algast have computational complexity that
is greater than linear in the number of featurestuples, partitioning the problem
dimensionality in a mutually exclusive manner resuh a decrease in computational
complexity [25].

2. Since mutual exclusiveness entails using smalléaséss, the classifiers obtained for each
sub-problem are smaller in size. Without the muyuekclusive restriction, each classifier
can be as complicated as the classifier obtaineth&original problem. Smaller classifiers
contribute to comprehensibility and ease in mairitagj the solution.

3. According to Ref. [14], mutually exclusive partiting may help avoid some error
correlation problems that characterize feature etubsased ensembles. However, Sharkey



[26] argues that mutually exclusive training sets mbt necessarily result in low error
correlation.

4. In feature subset-based ensembles, different Gkxssimight generate contradictive
classifications using the same features. This isisbency in the way a certain feature can
affect the final classification may increase mistramong end-users. Accordingly, Rokach
[23] claims that end-users can grasp mutually escedupartitioning much more easily.

5. The mutually exclusive approach encourages smadigasets which are generally more
practicable. Some data mining tools can processlonited dataset sizes (for instance, when
the program requires that the entire dataset bedsto the main memory). The mutually
exclusive approach can ensure that data mining toah be scaled fairly easily to large
datasets [27].

The literature includes several works that de#h fe@ature set partitioning. In one research sttioy,
features are grouped according to the feature typetinal value, numeric value, and text value [24].
similar approach was also used for developingitieat Bayes classifier [28]. The basic idea coasit
aggregating the features into two subsets, the dostaining only the nominal and the second ohby t
continuous features.

In another research study, the feature set waswsased according to the target class [29]. For each
class, the features with low correlation relatiodiat class were removed. This method was appliea
feature set of 25 sonar signals where the targsttavadentify the meaning of the sound (whale, kirag
ice, etc.). Feature set partitioning has also besed for radar-based volcano recognition [30]. The
researcher manually decomposed a feature set ahid 8 subsets, grouping features that were based
different image processing operations togethera&snsequence, for each subset, four neural neswork
of different sizes were built. A new combining frework for feature set partitioning has been used fo
text-independent speaker identification [31].

The feature set partitioning can be achieved byugrg features based on pairwise mutual
information with statistically similar features ap®ed to the same group [32]. For this purpose, came
use an existing hierarchical clustering algorithAs a consequence, several feature subsets are
constructed by selecting one feature from eachggréuneural network is subsequently constructed for
each subset. All networks are then combined.

As part of our previous work [33], a simple hilimbing algorithm, decomposed-oblivious-gain
(DOG), was proposed. This algorithm searches fergiptimal partitioning using incremental oblivious
decision trees. One limitation of the DOG algorittisnthat it has no backtracking capabilities (for
instance, removing a single feature from a subsatmoving an entire subset). Furthermore, DOG
begins the search from an empty partitioning stmggtwhich may lead to subsets with a relativelalém
number of features. The limitations of DOG led agdnsider a more profound exploration of the dearc
space. This in turn led us to employ a GA, sincexdraustive search for large problems is impralkctica

2.4 Genetic Algorithms and their Applicability in Feature Oriented Tasks

GAs are a popular type of evolutionary algorithm\YEhat have been successfully used for feature
selection. Inspired by the Darwinian process ofl@ian, EAs are stochastic search algorithms. The
motivation for applying EAs to data mining taskshat they offer robust, adaptive search technidfoats
search the solution space globally [34]. When an i§Avell-designed, it continually considers new
solutions. Thus, it can be viewed as an "anytineglrling algorithm [35]. Such a learning algorithm
should produce a good-enough solution quite quickithen continues to search the solution space,
reporting the new "best" solution whenever oneoimntl. Figure 2 presents a high level pseudocode of
GA adapted from Ref. [34].

GAs begin by randomly generating a populatioih @andidate solutions. Given such a population, a
GA generates a new candidate solution (populatiement) by selecting two of the candidate solutions
as the parent solutions. This process is termgurddeiction.” Generally, parents are selected ratglom
from the population with a bias toward the bettendidate solutions. Given two parents, one or more
new solutions are generated by taking some chaistate of the solution from the first parent (the
"father") and some from the second parent (the Hexd). This process is termed "crossover." For



example, in genetic algorithms that use binary dimgpof n bits to represent each possible solution, we
might randomly select a crossover bit location deticaso. Two descendant solutions could then be
generated. The first descendant would inherit tret & string characteristics from the father and the
remainingn-o characteristics from the mother. The second delscgnwvould inherit the firsb string
characteristics from the mother and the remaimng characteristics from the father. This type of
crossover is the most common and it is termed &-fmmnt crossover." Crossover is not necessarily
applied to all pairs of individuals selected fortimg: a P.ossover probability is used in order to decide
whether crossover will be applied. If crossovenas applied, the offspring are simply duplicatiarighe
parents.

Once descendant solutions are generated, GAs al@anacteristics of the solutions to be changed
randomly, that is, to mutate. In the binary encgdiapresentation, according to a certain probgbilit
(Pmu) €ach bit is changed from its current value todpposite value. Once a new population has been
generated, it is decoded and evaluated. The precessues until some termination criterion is Siaid.

A GA converges when most of the population is iab&ht or in other words, the diversity is minimal.
Louis and Rawlins [36] analyzed the convergencéinfiry strings using the Hamming distance and
showed that traditional crossover operators (siclore-point crossover operators) do not change the
average Hamming distance of a given populationfalit, selection is responsible for the Hamming
distance convergence. When the GA solves a paititiopproblem, then the Rand index [37] is more
appropriate than the Hamming distance.

Empirical comparisons between GAs and other kifdeature selection methods can be found in
Ref [38] as well as in Ref [39]. In general, thesapirical comparisons show that GAs, with their
associated global search in the solution spacallygthough not always) obtain better results taoal
search-based feature selection methods. In paatjckldo and Skalansky [39] compared a GA with 14
non-evolutionary feature selection methods (somthein variants of each other) across eight differen
datasets. The authors concluded that the advawfatiee global search associated with GAs over the
local search associated with other algorithms réqudarly important in datasets with a large numbg
features, where ‘large’ was defined as includingernithan 50 features. Hsu [40] developed the idea of
using genetic algorithms for feature selection.cHmally he developed two GA wrappers, one for the
variable selection problem for decision tree inda@nd the other for the variable ordering probfem
Bayesian network structure learning.

Create initial population of individuals
(candi dat e sol utions)
Comput e the fitness of each individual
REPEAT
Sel ect individuals based on fitness
Apply genetic operators to sel ected individuals,
creating new individual s
Conpute fitness of each of the new individuals
Update the current popul ation
(new i ndi vidual s replace ol d individuals)
UNTI L (stopping criteria)

Figure 2: A Pseudocode for GA

Opitz and Shavlik [41] applied GAs to ensemblesweeer, in the algorithm which they developed,
the genetic operators were designed explicitlynidden nodes in knowledge-based neural networks and
the algorithm does not work well with problems leckprior knowledge. In a later study, Opitz [35ledl
genetic search for ensemble feature selection. géigetic ensemble feature selection (GEFS) strategy
begins by creating an initial population of claiesg where each classifier is generated by randomly
selecting a different subset of features. Then, camdidate classifiers are continually producedising
the genetic operators of crossover and mutatiotherfeature subsets. The final ensemble is compafsed



the most fitted classifiers. Similarly, the genetigorithm that Hiet al. [18] use for selecting the reducts
to be included in the final ensemble first credtegducts, and then it traidd decision trees using these
reducts. It finally uses a GA for selecting whidtitee N decision trees are included in the final forest.

Given the positive evidence of the benefits of ggienetic algorithms for feature selection tasi& [3
39], on the one hand, and for creating an ensewibbldassifiers [35] on the other, the rationale for
implementing a genetic algorithm for feature settipaning is self-evident. In fact, Hset al. [42]
presented this idea as part of a position papeweder, there has been no report about whethedtee i
was implemented and whether it can improve clasditin performance.

2,5 Alternatives for the Fitness Function

The wrapper approach for evaluating the fitnesstfan has been used in all reported works which
utilize either genetic algorithms for feature set@tper seor feature selection for creating an ensemble
of classifiers. In this approach, a certain solui®evaluated by repeatedly sampling the traisitgand
measuring the accuracy of the inducers obtainetefiure subsets over a holdout validation datd$et.
main advantages of this approach are that it geen&liable evolutions and can be used for any
induction algorithm. A major drawback, howeverthat the wrapper procedure repeatedly executes the
inducer. For this reason, wrappers may not scaletoviarge datasets containing many features.

An alternative approach to evaluating performasde iuse the generalization error bound in terms of
the training error and concept size. In his boolathematics of Generalization,” Wolpert [43] dis@ss
four theoretical frameworks for estimating the gafization error, namely: probably approximately
correct (PAC), Vapnik-Chervonenkis (VC), Bayesiamd statistical physics. All these frameworks
combine the training error (which can be easilycul@ted) with some penalty function expressing the
capacity of the inducers. In this paper we uséA@igheory for evaluating the generalization errouid.
This choice follows from the use of VC theory ireyious works to evaluate decision trees [44] and
oblivious decision trees [33]. Frohliat al. [45] have used a VC dimension bound for guidinG/A
while solving the feature selection problem in suppector machines. In the same spirit we opt for
using VC dimension theory in this paper.

2.6 Oblivious decision trees (ODTSs)

When dealing with classification problems, decisioe induction is one of the most widely used
approaches (see, for instance, Ref. [46]). Decitieas are considered to be comprehensible classifi
and easy to follow when they include a few nodéss Ppaper focuses on feature set partitioning desig
for decision trees which are combined using theen®ayes combination [47]. For this purpose, each
decision tree should provide a probability estiméatsing the class frequency in the tree leaves agH
typically overestimate the probability. In order awoid this phenomenon, it is useful to perform the
Laplace correction. According to Laplace's law otwession, the probability of the evemic; is

(M + KR i ) /(M+ B wherey is a random variable; is a possible outcome gfwhich has been

observedn times out ofm observationsp..ioi IS an a-priori probability estimation of the eveatdk is
the equivalent sample size that determines thehweifythe a-priori estimation relative to the olvsef
data.

This paper concentrates on a specific type of aecigee, the oblivious decision tree (ODT) in
which all nodes at the same level test the sameirt2aODTs are found to be effective for feature
selection which is a simplified case of the probkotved here.

Figure 3 demonstrates a typical ODT with three irfpatures: the slicing machine model used in the
manufacturing process; the rotation speed of tisingl machine and the shift (i.e., when the itenswa
manufactured); and the Boolean target feature septang whether that item passed the quality assara
test. The arcs that connect the hidden termina¢siathid the nodes of the target layer are labelddtiag
number of records that fit this path. For instandabe twelve items in the training set, which were
produced using the old slicing machine that wasipdb rotate at a speed greater than 1000 RPM; wer
classified as “good” items (i.e., passed the guali#surance test).
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Figure 3: Oblivious Decision Tree for Quality Assuance

The principal difference between the ODT and a l@gdecision tree structure is the constant
ordering of input features at every terminal notl®DT, the property which is necessary for minimgi
the overall subset of input features (resultingdimensionality reduction). Therefore, despite its
restriction, an ODT is found to be effective aseatfire selection procedure. Almuallim and Dietteric
[48], as well as Schlimmer [49], have proposedravéod feature selection procedure using constractio
of ODTs, while Langley and Sage [50] suggested Wwac#t selection using the same means. Recently,
Last and Maimon [51] have suggested a new algoritbimconstructing ODTSs, called an info-fuzzy
network (IFN) based on information theory.

Since the degree of accuracy of an ODT is usuallief than that of a regular decision tree [51], and
since the amount of instances that are ascribedniode exponentially fades as we draw away from the
root, an ODT might require more leaves than a sagDIT to represent the same classifier. Thus, its
leaves are based on a smaller amount of instantesh also leads to less reliable classificatidment
those of regular decision tree. Nevertheless, & been shown that the effect of this drawback is
diminished for small sets of attributes [51]. Adllially, previous studies have shown that an enteigb
useful for small classifiers (see for instance R8&2]). Specifically, it has been shown that featget
partitioning is particularly effective with smallilssets [13].

Because we are interested in mutually exclusivéufeaset partitioning, each feature subset is
represented by a single ODT and each feature &ddcon a different layer. As a result, adding & ne
feature to a subset is performed by adding a nger land connecting it to the nodes of the lastrlaykee
nodes of a new layer are defined as the Cartes@tupt combinations of the previous layer’'s nodéh w
the values of the new added feature. In order tdanMnnecessary splitting, the algorithm splitsoalen
only if it is useful. In the study reported in tipaper, we split a node if the information gairtieé new
feature in this node was strictly positive.

The unique structure of the ODT is very convenfentour GA approach. First, because the search
space of an ODT is smaller than the search spaaer@jular DT, it is possible to develop a tight€r
dimension bound, which makes it more practical $& WC dimension bound as a fitness function.
Furthermore, using ODTs, moving from one generatiiotihe other usually requires small changes to the
subset structures; because each feature is loocatadlifferent layer, it is relatively easy to agdemove
features incrementally. This approach stands irtrashito regular decision tree inducers, in whicarg
iteration of the search may require generatingdéh@sion tree from scratch. Thus, we assume thatsOD
are suitable for the problem discussed in this paphis hypothesis will be put to the test in the
experimental study.



2.7 Originality and contribution
The novel contributions of this paper include:

* A new encoding schema specifically designed fotufeaset partitioning. The new encoding
eliminates the redundancy of existing encodingsgyetiwer with the new encoding, we also
suggest a new crossover operator called "group-arisssover" (GWC). The new encoding
ensures the convergence of the genetic algorithm.

» The use of a structural risk measure to computefithess function. The new measure is
much faster than the wrapper approach, which gufeatly used in studies reported in the
literature.

* A new caching mechanism to speed up the executmshawoid recreation of the same
classifier.

* An examination of the hypothesis that ODTs areabilet for feature set partitioning.

* A detailed experimental study encompassing bendhdeta and synthetic data.

3. Problem Formulation

In a typical classification problem, a training sétlabelled examples is given. The training set ba
described in a variety of languages, most freqyerds a collection of records that may contain
duplicates. A vector of feature values describezh eacord. The notatioA denotes the set of input

features containing features: A={a,,....a,...,8,} -and y represents the class variable or the target
feature. Features (sometimes referred to as atspare typically one of two types: categoricall(es
are members of a given set), or numeric (valuesesmenumbers). When the featuse is categorical, it

is useful to denote its domain valuestgm( @) . In a similar way,dom(y) :{Cu---’%om(y)\} represents
the domain of the target feature. Numeric feathesse infinite cardinalities.

The instance space (the set of all possible exangalefined as a Cartesian product of all thetinp
feature domainsX = dom(a,) xdom(a,) x...xdom(a,) . The universal instance space (or the labelled
instance spacd) is defined as a Cartesian product of all inputeadomains and the target feature
domain, i.e.,U = X xdom(y) .The training set consists of a set mf records and is denoted as
S=(< Xy Y =< Xy, Y, >) where x, 00X and y, Odont(y).

Usually, it is assumed that the training set resoatle generated randomly and independently
according to some fixed and unknown joint probabililistribution D over U. Note that this is a
generalization of the deterministic case when &suigor classifies a record using a functigrr f(X).

The notation represents a probabilistic inducer (i.e., an allgor that generates classifiers that also
provide estimates of the conditional probabilitytieé¢ target feature given the input features), h(fs)

represents a probabilistic classifier which wasugedl by activating the induction methbdnto dataset
S In this case it is possible to estimate the domatl probability Pl(s)(yz C ‘xq)of an observatiomn,

Note the addition of the “hat” - ~ - to the condital probability estimation is used to distinguisirom
the actual conditional probability. We denote thejgction of an instance, onto a subset of featur&s

as 71, X, . Similarly the projection of a training s8bntoG is denoted asr.S.

The problem of partitioning an input feature setadind the best partition such that, if a specifi
inducer is trained on each feature subset data,ttieecombination of the generated classifiers hale
the highest possible degree of accuracy. Consdgubatproblem can be formally phrased as follows:

Given an inducer I, a combination method C, andraining set S with input feature set

A={a,a,,...,.a,} and target featurey from a distribution D over the labeled instancasp, the goal

is to find an optimal partitioningZ_, ={G,...G,..., G,} of the input feature set A inta mutually

opt
exclusive subsets5, [1 A that are not necessarily exhaustive. Optimality disfined in terms of



minimization of the generalization error of the unéd classifiersl (kauyS) ' k=1,....o combined

using method C over the distribution D.

In this paper we assume thHabt any decision tree inducer a@ds the naive Bayes combination. In
the naive Bayes combination, a classification néwa instance is based on the product of the camgiti
probability of the target feature, given the valeéshe input features in each subset. Mathem#yidal
can be formulated as follows:

~ © ﬁ(nGJyS)(yzcj‘”kaq)
VMAP(Xq) =arg maXPI(S) = Y ):l_' — — (1)
¢;Cdon( y = Re(y=¢)
or:
w ~
| o) (y: Cj‘ﬂGqu )
Ve (X,) = arg max<= 2

¢;Udon( y R (y= Cj)w_l

In the case of decision treeé

M (70yS)

frequencies in the relevant leaf. It should be didtat the optimal partitioning structure is notessarily
unique. Furthermore it is not obligatory that alput features actually belong to one of the subsets
Consequently, the problem can be treated as ansateof the feature selection problem, i.e., fingdihe

optimal partitioning of the fornZ,,, ={G} , as the non-relevant features are in RRRt=A-G,. Moreover,

(y= Cj‘ﬂGk Xq )can be estimated by using the appropriate

when using a naive Bayes for combining the clagsifas in this case, the naive Bayes method can be
treated as specific partitioning ={G, G,,..., G}, whereG ={a} .

Definition 1: Classification-Preservation Partitioning
The partitioning Z :{q,..., q,...,Gw}is said to be classification-preservation if, fach instance in

the support of P(X,) , the following is satisfied:

Ox, O X argmaxl:l P(y:q‘ﬂekxq)

q

= argmai?(y:c:J xq) . 3

¢;0don( ) P(y= C )t ¢, 0don y

Since the right term of the equation is optimafpltows that classification-preservation partitiog
is also optimal. The importance of finding clagsifion-preservatiopartitioning is derived from the fact
that in real problems with limited training setsist easier to approximate probabilities with fewer
dimensions.

The following four lemmas are presented in ordestted light on the suggested problem. This set of
lemmas defines classification-preservatiand demonstrates that conditional independenceotisan
necessary precondition. More specifically, thesenhas show that the naive Bayes combination can be
useful in various cases of separable functions ewdren the naive assumption of conditional
independence is not necessarily fulfiled. Furthmmnbecause these lemmas provide the optimal
partitioning structures, they can be used for eatadg the performance of the algorithms proposed in
Section 4. The proofs of these lemmas are straightird and appear in the appendix.
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Lemma 1: Sufficient condition
Let Z be a partitioning that satisfies the follogiconditions:

1. The subset$5, ,k=1,... w and the NR= A—U v, G are conditionally independent given

the target feature;
2. The NR set and the target feature are independent.

then Z isclassification-preservation

Lemma 1 represents a sufficient condition for d¢facsgion-preservation. It is important to note tfita
does not represent a necessary condition, agdtestin the following lemma:

Lemma 2: The Read-Once DNF Case
Let A={4,..., 8,..., g } denote a group of n independent input binary festand letZ ={G,..., G}
denote a partitioning. If the target feature follwhe function

y=f,(a,i0R)0 f(a,i0R)D..0 f,(a, 0 R) or

y=1(3,i0R)0 f,(3,i0 R)0...0 {,(a,i0 R)
where f,,...,f, are Boolean functions an®,...,R, are mutually exclusive, then Z dassification-
preservation

Lemma 3: The Additive Case
Let A={q,..., 8,..., 8} be a group of n independent input binary feataned let

Z ={G,..., G} be a partitioning. If the target feature followsetfunction
y=2"h(a,iOR)+2',(a,i OR,) +..+ 27", (&,i OR,)

where f,,...,f, are Boolean functions an®,...,R, are mutually exclusive, then Z dassification-
preservation

Lemma 2 and Lemma 3 illustrate that, although thadi@ionally independence requirement is not
fulfilled, it is still possible to find a classifation-preservation partitioning.

Lemma 4: The XOR Case
Let A={aq,..., &,..., @ } be a group of n input binary features distributedformly. If the target feature

behaves ayy = g [l a, U...0 g, then there is no partitioning beside={ A , which isclassification-
preservation

Lemma 4 shows that there are problems such thatassification-preservation partitioning can be
found, besides the obvious one.

The number of combinations into which input features may be decomposed exaatlyrelevant
subsets is:
1&3(w - N
Q) =—,z( .j(—l)' (- i) @
w5\ )
Evidently the number combinations into whithinput features may be decomposed up*tsubsets
is:

em =S ana =523 - ©
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In the feature set partitioning problem defined\ahat is possible that part of the input featurié w
not be used by the inducers (the irrelevant sét)sTthe total search space is then:

n n n n n 1 w w ] N
=3[ Jam=3( 1SS @)y (w- g ©
=0\ N o\ )= W)

Equation (6) implies that an exhaustive searcmiiactable for large problems. Thus, a heuristic
search algorithm is required. The next sectiongssa genetic algorithm for solving this problem.

4. A Genetic Algorithm Method for Feature Set Parttioning

In order to solve the problem defined in Sectiorw8, suggest using a genetic algorithm (GA) search
procedure. Figure 4 presents the proposed prochssnatically. The left side in Figure 4 specifige t
creation of the oblivious decision trees (ODTs)esnisle based on feature set partitioning. Seardioing
the best partitioning is governed by a GA searcchEpartitioning candidate is evaluated using a VC
dimension-based evaluator. For this purpose, an @Djenerated for each feature partition. The ODT
generator utilizes a caching mechanism in ordeedioice the generation time. The output of this ggec

is an ODT ensemble that is then used to classighehed instances (the right side of Figure 4).eNbat

in the suggested procedure, the ensemble's craatiembedded in the partitioning process. One could
also consider a slightly different procedure in ethihe output of the partitioning phase is theipaning
itself and not the ensemble of classifiers. Thatoe of the ensemble is then performed in a sukes®q
phase using an inducer that is not limited to ODfe following sections specify in-depth each of the
above-mentioned components.

Feature Set Partitioning

Unlabeled Instance

Caching
GA Partitioning oDT
Search Generator

r

h 4

Fitness value

Nalve Bayes
l Combiner
VC
Evaluator il

Labeled Instance
Figure 4: Overall Diagram of the GA-based Proposed/lethod

4.1 Genetic Algorithm Search

To implement a genetic algorithm, a schema for dmgp manipulating, and evaluating the solution mus
be provided. A candidate solution consists mairilyadues of variables - in essence, data. In paei¢
GA individuals are usually represented by a fixedgth linear genome.
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A straightforward individual representation for tig@ set partitioning consists simply of a strifigno
integers. Recall that is the number of features. Tiwh integer,i=1,..., n, can take the value,...,n
indicating to which subset (if any) théh feature belongs. A value of 0 indicates that ¢brresponding
feature is not selected and is filtered out. Fetance, in a 10-feature dataset, the individu@l210 1 3 3
2 0 1' represents a candidate solution where thésttsand 10th features are located in the fiubisst.
The 3rd and 8th are located in the second subket6Th and the 7th are located in the third graéup.
other features are filtered out. This individuapresentation is simple, and a traditional one-point
crossover operator can easily be applied. As femtiutation operator, according to a certain prdivabi
(Pmuy, €ach integer is changed from its current vadue different valid value.

The last representation has redundancy, i.e. aime solution can be represented in several ways. Fo
instance, the illustrated solution 1 02 0 1 3 8 2' can be also represented as '3010323'10
Moreover, similar solutions can be represented uiteqdifferent ways. This property can lead to
situations in which the offspring are dissimilartb@ir parents. For example, if we perform the poe
crossover operator on the two equal solutions abo\e020133201'and 301032210 ®&e
may obtain the following descendant solution '1®@25 5 1 0 3'. Because the two parents are egeal,
expect that the descendant (before mutation) shalattibe equal. However, this is not the case fede
the descendant represents quite a different salufitthough the above case is rare, it still illasts the
problematic character of the above representaBesides not being compact, the above encoding may
result in a slow convergence of the genetic algoritWe begin by defining a measure called pariitign
structural distance. This measure can be usedtésnti@e the distance of two partitioning structuass
follows:

Definition 2: Partitioning Structural Distance (Revised Rand index):

5(21'22)=nz“_1 Zn: 2|]7(a1’aj’z ’Z )

im=n nln-) @)
where7(a,, ! Z ZZ) is a binary function that returns the value "Othié featuresa,, 2 belong to the

same subset in both partitioning structurgs, Z% or if a,8 belong to different subsets in both
partitioning structures. In all other cases thecfiom returns the value "1".

Wy w, 2} W,
0 i0|JR;iIOJRE and jO(JRE;TO(JR?
k=1 kp=1 k=1 k,=1
2] (23 2] W
0 iOJR;iOJR and jO(JR:JOUR?
k=1 k=1 k=1 k,=1
1 2 - Wy W Wy Wy
1&.8,2527) =1 ioJRLiO|JR and jO R jOJR ®)
k=1 kp=1 k=1 kp=1
O Eklikz;i!jDRtl’i’jDRli
0 Ekn 7 k1,2’k2,1 7 kz,z;i u Rtua J 0 Rtm;i [ szZ,l’ J 0 szz2
1 otherwise

For  example, given that A={a,a,a,a, a3}, Z'={{a, a}{ a &} and
z?={{a, a a}{ a 3 }then:
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ol 0 20H(a,a,,2",2%) 2
o(z4,2%) = — = a,,2",Z° ,a,,2",2°
( ) izz;j;1 n{n-1) 5[({5(,7(a1 % )+11(303 )

+n(a,,a,,2",2%) +n(ay, a5, 2", 2%) +n(a,,a5,2*,2%) +n(a,,a,, 2*,Z%)
+n(2,8,,24,2%) +1(a,,85, 2", 2%) +11(28,,84, 2", 2%) + (25, 8,, 2", %)

+n(ay,a5,2',2%) +n(a,,8,, 2, 2%) +n(a,, 85, 2", 2%) +n(a,,a, 2", 2%)

+n(as,a,,2%,2%)) :3—20(1+1+1+1+1+O+O+O+O+O+O+O+O+O+O) :%

By using an adjacency matrix-like encoding, one tgpresent any partitioning structure rax n
matrix B in which B ; = 1 if featuresa; anda, are located in the same group. Additionally; B 1 if
featuresa; and g are both filtered out. In any other casg;#). The values on the diagonal indicate
whether each feature is included in one of theeishd) or not (-1). For example, Table 1 illustsathe

representation oZ' ={{a, a};{ a &} given thatA={a,a,,a,a,,a;,a;} . Note that because the
above matrix is always symmetric, we can specify time upper triangle.

Table 1: lllustration of adjacency matrix like encaling

A | |[XB|H|5)|
a|-11]0[{0]0[0] -1
&|0]1[0]1[0] O
a|0]0f1]0[1]O0
a|0]1{0]1[0]O
a&|0|0[1[0]1]0
8&|-1]{0[{0[0] 0]-1

Definition 3: Encoding Matrix B is said to be well-defined if:

1. Commutative:Ui # ;B ; =B,
2. Transitive:0i # j #k;if B, ;# Oand B, # 0 then B # 0
3. Sign Propertytli # j;if B;; #0then B, = B, .

We now suggest a new crossover operator calledipgnase crossover" (GWC). In this operator, we
select one anchor subset from the subsets thateddfe first parent partitioning and one anchorsstib
from the subsets that define the second parerntipaing (the selected subset can also be thedidt@ut
subset). The anchor subsets are used as is, wahgddition or diminution of features.

The first offspring is created by copying the cohsand rows of the features that belong to the firs
selected anchor subset from the first parent. Alnhaining elements iB are filled in with the
corresponding values that are obtained from therskparent. The second offspring is similarly cedat
using the second anchor subset by copying the ppate columns and the rows from the second parent.
The remaining elements are filled in with the cep@nding values from the first parent.

Example: Assume that two  partitioning  structures Zl={{a4, ah{ & %} and
z?={{a, a};{ & a & Ja} are given over the feature sat={a,,a,,a,,a,,3,35} . In order to use

a GWC operator, two anchor subsets are selectesl,from each partitioning{a,, a,} from Z" and
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{a, a, a} fromZ*. Table 2 illustrates representations of Zhandz* and their offsprin@® andz*. Z*is
obtained by keeping the grog@,, a} while the remaining elements are copied fifimz* is obtained
by keeping the group{a, a, a} while the remaining elements are copied frath Thus,
Z°={{a, a}{ a &{ B }a} and Z*={{a, a, a;{ &{ B}. The highlighted elements

indicate the selected group that was copied irgaffspring.

Table 2: lllustration of GWC operator
1

Z zZ
EEIEIENEI " IEIEIENEI "
al-1{oflo]o|0] -1 ali1]ofl1]1][o0] o0
(01|00 1] 0] O ao0|1|lo0]o0fo0] 1
alo{of[1]o0f 1] 0 a1]lol1]1[o0] o0
alo[1|0] 1] 0] O a1lofl1]1]o0|o0
alo{o|[1]o0f 1] 0 alololo]of 1] 0
al-1]{0|lo0]o|0] 1 alo|1|lo]of o] 1

Z z
AEIEIENET Y Al |a|a|a|a
alr1]lof1]lo]o]o0 allt|o]|1[21]o0]o0
al0o|1[o|1]0]0O alo|1]lo|o|o]|O
al1]lof[1]l0]0]O alt|(o]|1[1]0]0
alo|1|[o|1]0]|0O al1]of1]|1]o]o0
alo]o|[o|o]1]0 alofo|ofo]|1]o0
alo]ofo|o]o|1 alofolofo]o] -1

The following set of lemmas shows that thell-definedproperty of an adjacency matrix is preserved
under a group-wise crossover operator.

Lemma 5: Structural Distance Measure Properties

The structural distance measure has the followinggrties:

1. Symmetryd(Z*,2%) = 6(Z?,Z2Y)

2. Positivity: 0(Z*,Z?) =01Iff Z' =22

3. Triangular Inequality 6(Z*,Z?) <o(Z*,Z°%) + 0(2%,Z%).

Lemma 6: A projection of a well-defined encoding maix is a well-defined encoding matrix.

Lemma 7: Using a GWC operator on two well-defined mcoding matrices generates a new well-
defined encoding matrix

Lemma 8: Operator GWC creates two offspring with aninter-distance that is not greater than the
inter-distance of their parents.
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Lemma 8 indicates that the GWC operator togethér thie proposed encoding does not slow down
the convergence of the genetic algorithm. Togetbithr the selection process that prefers solutioite w
higher fithess values, one can ensure that theiigoconverges.

As to the mutation operator, according to a cenpaobability P...) each feature can be cut off from
its original group to join another randomly selécggoup.

4.2 Fitness Function

In each iteration, we have to create a new pomuidtom the current generation. The selection djmara
determines which parent chromosomes participatgroducing offspring for the next generation.
Usually, members are selected for mating with acteln probability proportional to their fithesslwes.
The most common way to implement this method isetathe selection probabilify equal to:

9)

For a classification problem, the fithess valuef thei-th member can be thgeneralized accuracy
Note that using training accuracy as is does nfficeuto evaluate classifiers due to the oversiti
phenomena.

The most straightforward way to estimate generédineerror is to use the wrapper procedure. In this
approach the partitioning structure is evaluateddmeatedly sampling the training set and measuhieg
accuracy of the inducers obtained for this partitig on an unused portion of the training set. Thihe
most common approach for evaluating the fitnesstion in feature selections problems. However, as
stated in Section 2, the fact that the wrapper gatoce repeatedly executes the inducer is considered
major drawback. According to the VC theory, thertmbon the generalization error of hypothesis sjphce
with finite VC-Dimension d is given by:

2m o
dEQIn?+1)—InZ OhOH

m 00>0 (10)

e(h,D) - &(h, )| <

with probability of 1— J where £(h, S) represents the training error of classifiemeasured on training
set S of cardinality m, and £(h, D) represents the generalization error of the cliassif over the
distributionD. Note that in this cade= 1-£(h, D).

In order to use the bound (Equation 10), one needseasure the VC dimension. The VC dimension
for a set of indicator functions is defined as teximum number of data points that can be shatteyed
the set of admissible functions. By definition,ed af m points is shattered by a concept class if theze ar
concepts (functions) in the class that split thmfsointo two classes in all of tH#' possible ways. The
VC dimension, which might be difficult to computecarately, depends on the induction algorithm.

As stated before, using an ODT may be attractivihigi case since it adds features to a classifier i
an incremental manner. Due to the fact that ODTrs lma considered as restricted decision trees, any
generalization error bound that has been develépedecision trees in studies reported in the ditigre
can be used in this case as well. However, thersareral reasons for developing a specific bokinst,
by utilizing the fact that the oblivious structusemore restricted, it might be possible to develdjghter
bound. Second, it is necessary to extend the btamseveraloblivious trees combined using the naive
Bayes combination.

The following theorem introduces an upper and lol@uind of the VC dimension that was recently
used by the DOG algorithm. The hypothesis classmoftiple mutually exclusive ODTs can be

characterized by two vectors and one scalar (I,...0,) T= (t,...t,) andn, wherely is the
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numbers of layers (not including the root and taiggers) in the tred, ty is the number of terminal
nodes in the trele, andn is the number of input features.

For the sake of simplicity, the bound describethia section is developed on the assumption tteat th
input features and the target feature are bothrhirghis bound can be extended for other cases in a
straightforward manner. Note that each ODT with -horary input features can be converted to a
corresponding binary ODT by using appropriate iaréf features.

Theorem 1: Upper and lower bound for VC dimension ® multiple oblivious decision trees
combined with naive Bayes

The VC dimension ofv mutually exclusive oblivious decision trees onimaty input features that are
combined using the naive Bayes combination and Hhae L= (,...1,) layers andT = (t,....t,)
_ , F +logU w=1
terminal nodes is not greater than:
2(F +1)log(2)+ 2logu w> !
and at leastF —w+1

where: F :Zw:ti U= n! _ S @-a
-3 = G -2 -2

The proof of this theorem is provided in Appendi&. A

4.3 Caching Mechanism

The Achilles heel of using GAs in feature set piarting problems is the requirement to create a
classifier for each subset in each solution candidassuming that there af@ generations, that the
population size i&, and that each solution has on avefdagribsets, thefs [L [ D classifiers are created.
Recall that by using ODTs we might not need totereach classifier from scratch but rather be tble
reuse classifiers that have already been createde 8 is well known that one can trade computslo
complexity with storage complexity, we suggest gshme caching mechanism presented here.

First, when moving from one generation to the cquset generation, we can exploit all subsets that
have remained unchanged. By means of the GWC apeaat ignoring the mutation, each member in
the new population has at least one subset (tHeoascbset) that has not been changed at all. Mergo
all other subsets have some common members. Howevénat case, we cannot use the ODT as is
because the original ODT might have unused featimethe inherited subset. For this purpose we
eliminate features from the original ODT, layerlbyer, until we obtain an ODT, which can be used in
the inherited subset.

Example: Assume that two  partitioning  structures Zl={{a2, ah{ & Q;} and
z?={{a, a}{ a a & Ja} are given over the feature sé={a,a, a,a, a,3a;}. We also

assume that in the previous generation the follgwWeature order has been used in the created ODT:
&Y - & > &8 - 88~ & 9 &

Recall that by using the GWC operator (and ignothngy mutation operator), the following subsets
may be obtainedZ® ={{a, a}:{ a &{ B la} andZ*={{a, a, a}{ &{ B }. Thus, in order
to create the ODTs faZ® andZ’, we can use the following ODTs as &;, —» a,; & — 3 — 3, &.
The ODT for{ag will be created from scratch. The remaining subsan be (partially or completely)
obtained by removing features from the existing @DThe ODT for{a, a} can be obtained by
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removing featurea, from a — a, —» a,. This removal is possible sina, is located last. The ODT

for {a} can be obtained by removing feat@efrom a, - ;.

In addition to the ODTs of the previous generatiame can use the existing ODTs in a different
subset of the current generation. While generaam@DT, we check at the end of each iteration, (i.e.
after adding a new feature to the ODT) whetherethgranother solution in the current generationt tha
also groups these features together in the sansetsulf this is the case, we store the current @Dihe
cache for future use. Later, when the time has ctongenerate the ODT for the solution with the
common subset, instead of creating the tree framat we make use of the tree that was storedein th
caching mechanism. For example, we are given ifiitstegeneration the following members:

Z'={{a,a.a a:{aaa&{ akl
Z?={{a a3, 8 {3 a a &{ 3Rk
Z={aaaa ai{aaad{ 3k}

Assuming that we are evaluating the members onenlgyaccording to the above order, and that
while creating the tree for the first subset in tinst solution we get an ODT with the followingdar

a, - & — g , then we might want to store this ODT in the ¢aghmechanism, and use it also for

members 2 and 3.
It should be noted that utilizing this caching magism reduces the search space, because it dictates
the order in which the features are located inQRE . For instance, in the last example, the firsé tof

solution 2 could have the following structura;, — & - @ — @ . However, by using the ODT

a, - @ — gy that was stored in the cache, we a priori ignbis $tructure. In order to solve this

dilemma, we decide not to store small ODTs (in gaiper fewer than 3 features). In such cases thegsa
in computational cost is not worth the loss in galization capability.

Obviously, it is desirable to store the longest omn subset in the cache. Thus, in each iteration we
check if the current ODT can still be used by tame number of solutions. If this is the case, tireent
ODT will replace the older one.

4 .4 Classification of an Unlabeled Instance

After multiple ODTs have been created, the follogveteps may be performed to classify an unlabeled
instance:
A. For each tree:
1. Locate the appropriate leaf for the unseen instdfmeevery instance there
is exactly one path from the root to the relevayaif.| The relevant leaf is
chosen by navigating from the root of the tree doeva leaf, according to
the outcome of the decision tests along the path.
2. Extract the frequency vector. The frequency vebss an entry for every
possible class value. The value in a certain @stpalculated according to
the number of training instances that have beefgatad to the selected
leaf and have been labeled with that class.
3. Transform the frequency vector to a probability teecaccording to
Laplace's law of succession, as described in Se2tio
B. Combine the probability vectors using the naiveddagombination.
C. Select the class that maximizes the naive Bayedioaton. In the case of a tie, we
select the class with the highest a-priori probighbil

5. Experimental Study

In order to illustrate the potential of the feataes partitioning approach in classification proldeand to
evaluate the performance of the proposed gengtaritim, a comparative experiment was conducted on
benchmark datasets. The following subsections destite experimental set-up and the results oldaine

18



5.1 Algorithms Used

This study examines an implementation of a genaligorithm in feature set partitioning using the
suggested adjacency matrix-encoding, GWC operatat fithess function based on the VC dimension of
multiple ODTs combined with naive Bayes. This aidpon is called GOV (genetic algorithm for ODTs
using VC dimension upper bound). It uses a poparatif 50 chromosomes and has been executed for no
more than 50 generations.

The GOV algorithm is compared to DOG, our previduk-climbing algorithm for feature set
partitioning, as well as to the following singleassifier algorithms: IFN (a greedy ODT inducer ths¢s
gain ratio as the splitting criteria), naive Bagesl C4.5. The first two algorithms were chosen beea
they represent specific points in the search spatiee GOV algorithm. The C4.5 algorithm was seddct
because it is considered a state-of-the-art decisee algorithm which has been used widely in many
other comparative studies.

In the second part of the experiment, the new dlguris also compared to GEFS (genetic ensemble
feature selection), AdaBoost, AB (Attribute Baggiradi of which are non-mutually exclusive ensemble
algorithms, i.e., algorithms that may use the stature in several classifiers of the ensemblettfdbe
ensemble methods use the C4.5 as the base clasHifeeGEFS employs a wrapper evaluator, which was
set to perform five folds.

5.2 Datasets

The selected algorithms were examined on 26 data&&tof which were selected manually from the UCI
Machine Learning Repository [53] and are widely cud®y the pattern recognition community for
evaluating learning algorithms. The remaining detasvere chosen from the NIPS2003 feature selection
challenge (see http://clopinet.com/isabelle/Prej@iPS2003/). The datasets vary across such
dimensions as the number of target classes, ofirines, of input features and their type (nominal,
numeric).

5.3 Metrics Measured

In this experiment the following metrics were maasiu

A. Generalized Accuracy: This represents the prolmbiliat an instance was
classified correctly. In order to estimate the gehleed accuracy, a 10-fold
cross-validation procedure was repeated five tinfem. each 10-fold cross-
validation, the training set was randomly partiédninto 10 disjoint instance
subsets. Each subset was utilized once in a tesinsenine times in a training
set. The same cross-validation folds were implesteifdr all algorithms. Since
the average accuracy is a random variable, thadmorde interval was estimated
by using the normal approximation of the binomiistribution. Furthermore, the
one-tailed paired t-test with a confidence level9826 verified whether the
differences in accuracy between the DOG algoritimd #he other algorithms
were statistically significant. In order to conatudrhich algorithm performs best
over multiple datasets, we followed the proceduapgsed in Ref [54]. In the
case of multiple classifiers we first used the amjd Friedman test in order to
reject the null hypothesis and then the Bonferiduin test to examine whether
the new algorithm performs significantly better rthexisting algorithms. In the
case of only two classifiers, we use the Wilcoxest.t

B. Classifier Complexity: Since this paper focuses dmtision trees, classifier
complexity was measured as the total number of syadeluding the leaves. For
multiple decision trees classifiers, the complexitgs measured as the total
number of nodes in all trees.

C. Computational Cost: The running time required fooducing the composite
classifier.
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The following additional metrics were measured ides to characterize the partitioning structures
obtained by the GOV algorithm:

A. Number of subsets
B. Average number of features in a single subset.

5.4 Comparing Single-Classifier Algorithms

Table 3 presents the results obtained by averdgieagtandard 10-fold cross-validation experimefitse
results indicate that there is no significant cabere either naive Bayes or IFN was more accurate t
GOV. On the other hand, GOV was significantly maceurate than naive Bayes and IFN in 16 databases
and 14 databases, respectively. Moreover, GOV wgsifisantly more accurate than C4.5 in 13
databases, and less accurate in only two datab@&®#'s classifier complexity (total number of nodes
was comparable to the complexity the C4.5 algoritiintained in most of the cases.

The results of the experimental study are encongagDn the datasets obtained from the UCI
repository, the GOV outperformed naive Bayes masthen the data were large in size or had a small
number of features. For moderate dimensionalitynff60 features up to 500), the performance of naive
Bayes was not necessarily inferior. More specifycategarding the datasets OPTIC, SONAR, SPI,
AUDIOLOGY, LUNG-CANCER, the superiority of GOV overaive Bayes was statistically significant
only in three features (SPI, AUDIOLOGY, LUNG-CANCERHowever, for high dimensionality datasets
(having at least 500 features), GOV significantlyperforms naive Bayes in all cases.

The null-hypothesis, that all classifiers perforne tsame and the observed differences are merely
random, was rejected using the adjusted Friednsin\Wée proceeded with the Bonferroni-Dunn test and
found that GOV statistically outperforms naive Bayand IFN with a 95% confidence level. Using
Hochberg's step-up procedure, we found that GOVssizally outperforms C4.5 with a confidence level
of 90%.

Analysis of the number of features in each sublsetvs that the GOV algorithm tends to build small
subsets. Moreover, there are two cases (OPTIC aDdIKE3) in which the GOV algorithm used only
one feature in each tree. In these cases thef@asshat were built are equivalent to naive Bayldss
suggests that in some cases GOV acts as a feataotien procedure for naive Bayes.

A comparison of the accuracy of GOV and DOG indidathat in most cases GOV obtained better
results. This observation is not surprising, coasidy the fact that GOV performs a more intensive
search than DOG. A comparison of the mean numbeubgets obtained by DOG (11.58) and that
obtained by GOV (6.7) indicates that DOG tendsaweehmore subsets. Moreover, in 16 datasets ou of 2
DOG incorporated more features than GOV. Howewar high dimensionality datasets (having at least
500 features), GOV significantly used more feattineas DOG.

5.5 Comparing to Ensemble Algorithms

Since the accuracy and the classifier complexigyadfected by the ensemble size (number of classjfi
we examined various ensemble sizes. Following theirkcal results for asymptotic convergence of
ensembles [6], the ensemble sizes created usingsHIeS algorithm included up to 15 classifiers.
Similarly, the ensemble size created with the AdaBancluded up to 25 classifiers. Table 4 prestmds
results obtained based on a 10-fold cross-validagiocedure which was repeated five times.

20



Table 3: Comparing single-classifier algorithms: smmary of experimental results. The superscript "+" indicates that the degree of accuracy

of GOV was significantly higher than the corresponthg algorithm at a confidence level of 95%. The

was significantly lower.

superscript indicates the accuracy

[Dataset # i Naive Bayes|C4.5 IEN DOG GOV
InstanceFeaturegsAccuracy |Accuracy | # |Accuracy |# Accuracy |# i AveraggAccuracy |# # Average
Node: Node: Node:|Subsetsubset Node:[Subsetsubset
Size Size
Ausl 69C 15 84.93+2." [85.36%5.. |30 [84.49+5.. 27 186.52+2.! 84 |11 1.27 185.35#4.t 56 [3 3.38
Audiologyl20C 7C '65.5+7.3¢ [75+6.9* |52  ['74+7.9® |10C ['78.5+6.5: |64 |3 4.67  181.5+4.2¢ 1124 |7 2.12
[Bcar 69< 1C 07.4249+1.1['92.99+2.87 |61  ['94.39+3.! |55 [97.42+1.1 99 |9 1 97.13+1.t [7/€ 5 1.12
[Hepatitis [15E 20 82.58+7.5( 81.29+5.41 |7 78.97+8.9! 168 |80+6.8¢ 38 |2 2 81.29+5.4( |7 1 3
[Iris 15C 5 95.3345.0! [96+3.33 11  9643.3¢ 90 [95.3315.0' 4C 4 1 96+3.37 |11 |1 4
[Kr-vs-kp [3197 |37 '87.8641.41 [99.44+0.5! [87  [98.06+0.4. [22C [98.47+0.6333C |2 7 99.44+0.3! [14C |3 7.5
[Labol 57 17 02.98+4.5. [73.72+12.7(12  ['84.63+8.1. 32  [96.49+5.! |67 |16 1 95.17+#3.1 2C 4 2
[LED17 [22C 25 '63.18+8." ['59.09+6.¢ |69  ['55.5546.. [73  |[73.64+5.! |37C [7 3.2  [72.36+3." 47 4 3.32
[LETTER [1500C [17 73.29+! 74.96+0.8  1116¢'69.56+0." 5321 [73.46+0.6. 272 (16 1 75.02+1." 315 J1C 1.67
[Lung 31 56 41.94+19.9['38.71+17.8[16  ['38.71+17.8[16  |53.55+10.027 4 2 53.55+10.027 |5 2
[Monks1 [124 6 '73.39+6." ['75.81+8.. [18 ['75.00+10. {40 98.39+2.928 |5 1.2 98.51+1.. 12 3 2
[Monksz [16¢ 6 '56.21+6.. [61.54+8.( 31  |62.72+10.. (194 160.36 +7.53C 4 1.5 61.56+7.¢ 24 |1 5
[MonksZ 122 6 93.44+3." [93.44+3.° 12 92.38+3.0 [12 |93.442+3..11¢ |5 1.2 93.44+5.3- |6 4 1
[MUSH [812¢ |22 95.48+0.¢  [100( 28  1100+(C 30 1100+(C 28 1.2 7.67  100+C 37 11 5
Nurse 1296( |8 '65.39+2: [97.45+0.« [527 (92.47+0.! [135 ['91.65+0.( |38 |6 1.35  96.82+1.1133€ 2 4
OPTIC |562¢ |64 01.73+1..  [62.42+.  |405¢ ['48.90+2.! (1257 [91.73+1.. 981 |64 1 91.84+1.. 981 |6C 1
Sona 20¢ 60 75.48+7.. [69.71#5.4 |51 [76.48+6.. 97 [77.12+8. |98 |35 1.657 [76.42+3.2: 125 |5 2.2
Soybea [68< 35 +91.95+1.9'['92.83+1.5: |85 [92.24+2.41 [72  [92.9+2.5¢ 12z |3 4 94.95+0.. |134 |2 5
Splice 100C  |6C [94.1+0.«  ['91.2+1.¢ 117 ['87.00+2.( [52Z [95.8+0.¢ [30C |50 1.2 96.3+0.. 142C |15 3
TTT 958 9 '69.27+3.. [85.7+1.6! [14Z [73.19+3.¢ [54C [73.33+« |51 |6 2.5 80.24+2." 95 |2 4.5
\Vote 29C 16 '90.34+3.4. [96.21+2.4' [16  93.79+2.¢ [23  ['90.52+1.2:|18 |6 1.33: 93.79+2.( 23 1 7
Wine 17¢ 13 06.63+3.¢ [85.96+6.¢ 41 [91.45+f 41 [96.63+3.0 [14Z |13 1 95.92+4.4 165 |5 1.8
Z0a 101 8 '89.11+; [93.07+5.4 21  ['90.89+9." 21  198.02+3.0:5C |4 4 07.21+3.4. 118 3 2.5
UCIAv, 122149 25.42 81.2( 8182 [72441 804: [390.74 86.1: (143391201 2.34 87.0¢ 134,74 6.3¢€ 3.22
Arcene  [10C 1000 ['70+12.: 7549.2 9 '54+8.% 46 [76+8.1 97 12 3.2 [ 7+7.2 11¢ 8 7.2
[Dexter  130C 2000C ['86.33+3.¢ ['78.33+3.0 |53  [76.13+2.. 47 189.33+2." [562 [11 52.72 190.28+1.¢ [78¢ |16 52. 4]
[Madelor [200C _ [50C '58.3+1.!  169.8+4.’ 25¢  ['62+3. 127 [71.4+2.¢ |66C 2 117.6 [71.2+2.¢ 199C [3 97.81
NIPS Av.| 80C 110166.6 71.5¢ 7438 [107.00 64.0¢ 7331 7891 1439.61 8.3¢ | 57.91] 79.4¢  1632.61 9.0C | 52.51
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Table 4: Comparing ensemble algorithms: summary oéxperimental results for . The superscript "+" indicates that the degree of accuracy of
GOV was significantly higher than the correspondingalgorithm at a confidence level of 95%. The "-" sperscript indicates the accuracy was

significantly lower.

Dataset GEFS | Adaboost AB GOV |
IAccuracy # Noddg&nsemblAccuracy |# Ensemble|Accuracy | # EnsembAccuracy |# Nodes # SubsetslAverage  subs
e Size Node:(Size Node:|e Size size
Aust 86.96+2.1 | 517.7 10| 85.36+3.630 1 86.81+2.83 9 2 85.35+4|6 56 3 3.33
Audiology| 81.1+7.29 | 562.7 12 | 83.5+4.2871.2 8 '76+6.9 | 525 10 | 81.5+4.20 124 7 2.12
Bcan '94.66+2.17| 822 14 | 96.71+2| 71793 19 '93.4+2.8| 117 3 97.13+1.6 76 5 1.12
Hepatitis | 83.92+5.41] 91.4 6 | 81.29+5467 1 81.315.8| 7 1 |[81.29+5.46 7 1 3
Iris 97.11+2.27| 77.1 8 96+3.33 11 1 95.38 92 11 96+3.33 11 1 4
Kr-vs-kp | 798.31+0.79| 567.2 13| 99.69+0)5821 5 99.4 +0.4 592 23 | 99.44+0.35 140 3 7.5
Labor '91.22+10.12 67.2 8 71000 59 5 [89.7+12.7 67 9 95.17+3.5 20 4 2
LED17 66.73+5.2 | 611.5 11| 65.91+4.265.8 5 '60.4+3.7| 716 10 | 72.36x£3.7 47 4 3.33
LETTER | 81.69+1.4 | 1065.2 15 |[87.72+2.324031 20 |92.13+1.11923| 19 | 75.02+1.7 313 10 1.67
Lung "48.22+10.82 99.9 10 |57.5+12.4 32.8 3 |746.9+14.1 142 10 | 53.55+10/0 27 5 2
[Monks1 | "81.36x8.2| 51.6 2 97.56+7|807.1] 18 "92.74+ | 15 3 98.51+1.3 12 3 2
[Monks2 61.22+9.1| 474.8 14| 62.76x6371.5( 13 62.13+2| 8 4 615676 24 1 5
[Monks3 "89.1+2.6 447 3 93.73+2|297.1] 14 93.445.3| 24 2 | 93441534 6 4 1
IMUSH 100+0 90.4 3 100+0 30 1 100( 328 10 10040 37 1 5
Nurse 96.64+1.2 | 5495.9 12 | 98.2+1.5| 6069 19 |97.4+0.31 55 9 |96.82+1.1p 339 2 4
OPTIC "78.22+1.5| 45111 5 ['87.24+2.17383§ 20 ['60.53+1.240704 11 | 91.84+1.1 981 60 1
Sonar 74.95+1.6 502 3 [79.24+6.1 994 16 71.1488.1| 107 2 | 76.42+3.2B 125 5 2.2
Soybean | 94.44+251 1257.6 13 |93.47+2.511271 15 91.8+1.7| 967 10| 94.95+0{4 134 2 5
Splice "92.1+2.1 | 10426 9 "93.7+4.6| 2331 19 "94.5+1.7/1170| 19 96.3+0.7 420 15 3
TTT 94.58+0.59| 1959.2 15 |97.29+3.9 1906 15 88+1.67| 1721 12 | 80.24+2.7 95 2 4.5
\Vote 96.55+3.21| 156.2 12 |796.21+2.3 16 1 95.86+2.8 76 10 | 93.79+2.4 23 1 7
\Wine 89.87+4.1 256 5 95.56+6|1513 11 90.44+3.2 391 14 | 95.92+441 65 5 1.8
Z00 94.09+2.4 | 141.6 9 | 1000 | 110 7 [792.0+4.52 127 8 |97.21+3.4p 18 3 2.5
UCI Av. 85.7¢ 2655.0(] 9.27 89.07 [1441f 10.3( 84.87 |216¢| 9.2 87.0¢ 134.7¢ 6.3¢ 3.2z
Arcene 76+8.4 161 16 78+5.2 | 467 10 7549.0¢ | 14¢ 11 77472 11¢ 8 7.2
Dexter "80.12 +1.9| 478 9 ['81.13+3.1 391 7 87+2.4| 1720 25 |90.28+1.9 789 16 52. 41
|Madelon 70.945.1 2725 10|'67.77+4.1 3693 14 70.5+3.9] 3090 15 71.2+2.9 990 3 97.81
NIPS Av. 75.67 1121.3811.67 75.63 | 151y 10.33 77.5 1653 17 79.49 632.67 9.00 52.51
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As can be seen from Table 4, the predictive acguaddGOV algorithm tends to be only slightly
worse than that of AdaBoost. There are datasetshich the GOV algorithm obtained a degree of
accuracy similar to that of GEFS and AdaBoost (\hign AUST dataset). There are cases in which GEFS
or AdaBoost achieved much higher degrees of acgy®dDIOLOGY and HEPATITIS) and there are
cases in which GOV achieved the most accuratetse@uith the BCAN or MADELON datasets).

A statistical analysis of the results of the enti@aset collection indicates that in nine datasets
AdaBoost achieved significantly higher accuraciestd that the compared value is the best degree of
accuracy achieved by enumerating the ensemblefgine 1 to 25). On the other hand, GOV was
significantly more accurate than AdaBoost in ordurfdatasets including the high-dimensional dasaset
MADELON and DEXTER. GOV was significantly more acate than GEFS in nine datasets while
GEFS was significantly more accurate than GOV ity daur datasets. GOV was significantly more
accurate than AB in eight datasets, while AB wggificantly more accurate in four datasets.

The null-hypothesis that all classifiers perforra #ame was rejected using the adjusted Friedman tes
with a confidence level of 95%. However, when weduthe Bonferroni-Dunn test, we could not reject
the null-hypothesis that GOV and AdaBoost perfoha same at confidence levels of 95% and 90%,
respectively. Moreover we could not reject the dmytbothesis that GOV and GEFS perform the same at
confidence levels of 95% and 90%, respectively. ey, using the same test, we found that GOV
significantly outperforms AB with a confidence léwaé 95%.

The above results disregard the classifier comple@enerally, in the UCI datasets, a small loss in
accuracy (the mean difference is about 2%) is cosged for by a considerable reduction in the numbe
of nodes (on average, the algorithm uses aboutfltteanodes that are used by AdaBoost). In the NIPS
datasets, which are articulated by many input featu GOV gained an improvement of about 4% in the
degree of accuracy, but still kept the lowest nundfenodes in the forest (on average, the algoritises
about 40% of the nodes that are used by AdaBoB&FS does not show any advantages at all since it
has the lowest average accuracy while using madesithan GOV.

By taking into consideration the classifier's compty, we compared the accuracy obtained by the
AdaBoost algorithm with that of the GOV algorithreing the same complexity of the GOV classifier.
Because it is impossible to tune the AdaBoost iflass complexity to a certain value, we interp@dhe
two closest points in the AdaBoost’s accuracy-caxipy graph that bounds this value, on conditicat th
these points are “dominant,” i.e., there are ne tesnplicated points in the AdaBoost’s graph tlzateha
higher degree of accuracy. Geometrically this mehat we examined the datasets in which the GOV
point is significantly above or below the AdaBosst'end line. If no such pair of points could barfd,
we used the highest degree of accuracy whose cgitypleas less than or equal to the GOV'’s classifier
complexity. If no such point could be found, we digbe first point (ensemble of size one). Figure 5
illustrates the complexity-accuracy trade-off foe tAudiology dataset. The X-axis refers to the sifaes
complexity (the total number of nodes) and the Ysafers to the classification accuracy. The seovie
guadrangle points AdaBoost 1 to AdaBoost 4 refeart AdaBoost ensemble with 1 to 4 classifiers,
respectively. The circle point refers to the resilitained by GOV. Because the complexity of GOV is
greater than that of AdaBoost 2 but less thandghaidaBoost 3, we interpolate these two points {thle
line). The triangle point indicates the interpothi@lue with the same complexity as GOV (the dashed
line). Because GOV has a higher degree of accuiityyconsidered to be the winner in the Audiology
dataset.

23



84 1 AdaBoost 3
B AdaBoost 4

82 GOV ® /
80 A/
78

/Adasoost 2

Accuracy

76
M AdaBoost 1
74 T | T |
0 100 200 300 400
Mod el Complexity

Figure 5: The complexity-accuracy trade-off for tre audiology dataset

The accuracy-complexity tradeoff analysis indicdteg GOV significantly outperformed AdaBoost
in 13 datasets while AdaBoost significantly outperied GOV in only three datasets (TTT, VOTE,
LABOR). With two of these datasets, the complextyAdaBoost was much higher than the GOV
complexity (because the single C4.5 decision trieady contained more nodes than the GOV
classifiers). In other words, the AdaBoost is netassarily better in these cases because GOV uteed
new points in the complexity-accuracy tradeoff. tRarmore, in two of these three datasets (TTT,
VOTE), a single C4.5 has already significantly enfprmed the GOV algorithm. This observation seems
to imply that the limited structure of ODTs usedhie GOV algorithm compared to the C4.5 decisier tr
implemented in AdaBoost might be the reason forgber results in these cases. In addition, GOV
obtained better accuracy-complexity tradeoff thalaBoost for all datasets with moderate dimensignali
(number of features between 50 and 100) and wgh Himensionality (number of features greater than
100). The accuracy-complexity tradeoff analysiddates that GOV significantly outperformed GEFS in
16 datasets, while there is no significant caserevliE=FS outperformed GOV.

The null-hypothesis that all classifiers perforre #ame for the same complexity level was rejected
using the Friedman test with a confidence leveB8%. The Bonferroni-Dunn test indicates that the
hypothesis that GOV and AdaBoost perform the sancersidence levels of 95% and 90%, respectively,
cannot be rejected. However, the same test indiddhi@ GOV significantly outperforms GEFS at a
confidence level of 95%.

5.6 Analysis of Computational Cost

The aim of this section is to compare the componati cost of the various methods by measuring the
running time. Table 5 presents the actual time s@eonds) required for producing the composite
classifier. We conducted all of our experimentstba following hardware configuration: a desktop
computer implementing a Windows XP operating systeith Intel Pentium 4-2.8GHz, and 1GB of
physical memory.

GOV is consistently faster than GEFS, with the 3gwiin time becoming more significant when the
data dimensionality increases. These results mightdue to three different properties of the GOV
algorithm. First, instead of using the wrapper apph, which requires several repetitions of thesiat
tree training, we used the VC-based evaluationagmbr. Second, since GOV uses a caching mechanism
together with the ODT representation, most of tlaning is not performed from the very beginning.
Third, due to the feature set partitioning, thessiiers members are simpler than the GEFS (fewer
nodes), and thus require less time to be trained.

Adaboost and DOG have a similar running time, D@ slightly faster. Both Adaboost and DOG
are faster than GOV. This may be due to the fatt@0OV, like any other GA-based algorithm, performs
a much more extensive search. However, it is eagig that the running time of GOV is not
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intrinsically longer than that of Adaboost and DOaturally the single classifiers took the shortest
running time.

Table 5: Comparing the Execution Time

Dataset [Naive Baye [C4.5 IFN DOG GOV GEFS Adaboogt
Aust 0.01 0.02 0.032 0.234 0.16 23.52 0.282
Audiology 0.016 0.06 0.063 0.25 0.93 111.31 0.375
Bcar 0.01 0.02 0.01 0.047 0.16 5.53 0.078
Hepatitis 0.01 0.01 0.016 0.031 0.16 5.67 0.02
lIris 0.016 0.02 0.015 0.016 0.15 0.58 0.047
Kr-vs-kp 0.016 0.125 0.125 1.797 3.28 407.2b 3.6]
Labol 0.01 0.02 0.01 0.016 0.1 6.39 0.04
LED17 0.01 0.03 0.015 0.125 0.16 39.42 0.156
LETTER 0.032 1.19 1.469 9.766 17.5 1351.23 14.734
Lung 0.01 0.01 0.01 0.031 0.16 7.56 0.014
IMonks] 0.01 0.01 0.01 0.016 0.1 0.703 0.04
[Monks: 0.01 0.01 0.01 0.015 0.15 0.547 0.031
|M0nkSE 0.01 0.01 0.01 0.023 0.1 0.797 0.016
[MUSH 0.031 0.13 0.125 0.625 4.69 247.03] 0.094
Nurse 0.016 0.41 0.14 1.781 1.56 152.27 2.672
OPTIC 0.047 0.765 1.156 5.828 26.41 1247.562 7.516
Sona 0.01 0.11 0.016 0.109 0.94 70.13 0.125
Soybea 0.01 0.13 0.047 0.484 1.25 176.09 0.672
SP 0.015 0.047 0.079 0.532 2.81 2638.86 0.65[
TTT 0.016 0.03 0.015 0.156 0.16 17.313 0.172
\Vote 0.01 0.01 0.016 0.219 0.16 2.437 0.047
\Wine 0.01 0.02 0.01 0.031 0.15 4.984 0.016
Z0Q 0.01 0.05 0.015 0.015 0.1 3.766 0.015
UCI Av. 0.01¢ 0.14073' | 0.14843! | 0.96291: | 2.66695 | 283.519! [ 1.36639:
Arcene 0.65¢ 4.45: 2.34: 37.46¢ 7366.¢ 2320; 53.64!
Dexte! 1.469 11.953 5.125 116.328 9233.75 54336 141.172
IMadelor 0.812 10.281 4.671 165.859 253.205 56718 249.%31
NIPS Av. 0.97¢ 8.89566 | 4.04633: | 106.55: | 5617.91i | 44753.6° | 148.114

5.7 Evaluation of the new contributions

In this section we compare five different variagasf the proposed algorithm. First, we evaluate the
contribution of the new fithess function by compariit to the wrapper approach, which is frequently
used by other GA-based algorithms. The wrapperagmbr usually provides a better approximation to the
generalization error than do theoretical methoHewever, it adds considerable overhead to an ajread
expensive search process. Moreover, we evaluatedh#ibution of the new encoding schema by
comparing it to the straightforward representatibrintegers presented in Section 4.1. Finally wewsh
which of the VC's bounds (lower or upper) is mariable as a fitness function.

Table 6 presents the results of the five differanriants. Each variant is based on a differenefn
function (wrapper, upper VC, lower VC) and on daeatént encoding type (simple, new). All variants
have been executed with the same population sidetta same number of generations. The wrapper
variants have used the IFN algorithm for creatihg ODT. The last row in the table presents the
corresponding average ranks. The null-hypothesas @i classifiers perform the same for the same
complexity level was rejected using the Friedmast & a confidence level of 95%. Implementation of
the Nemenyi test to compare all classifiers witttle other indicates that there are no significance
differences between "upper VC-new" (GOV) and "weppew." The same conclusion is obtained when
comparing "upper VC-simple" and "wrapper-simplddfowever, the Nemenyi test indicates that "upper
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VC-new" significantly outperforms "lower VC-new" abnfidence levels of 95%. Moreover "upper-VC-
new" significantly outperforms "upper-VC-simple'hds, we can conclude that:

1. The new encoding is better than the simple encoding

2. The upper-VC based fitness function and the wrappsed fitness function provide
equivalent accuracies. Since the upper-VC is mastef, it is preferable.

3. The VC lower bound is too "rough" to be used by@#gs fitness function.

It is well-known that VC dimension theory does @agturately evaluate generalization capabilities
(see, for instance, Ref [55]). However, the lagulieindicates that in our case using the upper VC
dimension bound is sufficient. This is due to thetfthat we are not interested in the accuracif,itsat
use the bound only to compare solutions. Thusintipeecision is less crucial, especially if in mo$the
cases the pair-wise dominance is retained, narifghe generalized error of solution A is lower thinat
of solution B, then the VC bound of A is also loviiean that of solution B. Moreover, because we take
specific account of the restricted structure ofigien tree (ODT), the obtained VC bound is tightean
those provided for a general decision tree. Thikasathis bound more applicable pnactice than
previous existing VC bounds.

Table 6: A comparison of five variants of the prposed algorithm. Each variant is defined based
on a different fitness function (wrapper, upper VC,lower VC) and on a different encoding type

(simple, new).

Fitness | Wrapper | VC Upper Wrapper VC Lower VC Upper
Function Bound Bound Bound
Encoding  Simple Simple New New New

Aust 82.36+3.7¢ | 83.2+4.6: | 86.52+2.6 83.83+4.2 85.3544.
Audiology| 78.95+; 78.1+3.. | 81.68+3.8' | 77.25+4.0¢ 81.5+4.2¢
Bcar 96.24+1.11 | 96.6+1.3" | 96.82+1.1 96.67+1.0( 97.13+1.
Hepatitis | 79.142.. | 79.9+..12 | 83.67+5.4. 76.1545.0! 81.29+45.4
Iris 92.86+3.6¢ | 94.094£3.0. | 94.87+3.3- 94.47+3.3: 96+3.3¢
Kr-vs-kp | 98.37+0.6! | 98.45+0.4! | 99.35+0.3. 99.27+0.6. 99.44+0.3!
Labol 94.13+3.6" | 94.2+3.6. | 95.64+3.6! 94.54+3.6! 95.17+3.!
LED17 70.68+£3.4' | 69.3544 73.6743.2C 70.97+3.6! 72.36%3.
LETTER | 73.87+1.4. | 73.96+0.7: | 77.34+1.1 74.72+1.0. 75.02+1.”
Lung 47.65 6. | 49.04+9.1"| 50.03+£10.0 | 45.74+10.3 | 53.55+10.0
= Monks] 97.5+1.¢ [98.33+1.1.| 98.67+0.7 98.41+1.5! 98.51+ 1.
2 Monksz 58.4+7.2¢ | 57.37+£7.3.| 6348+7.4: 58.91+7.6. 61.56+7.
© Monks: 9245.47 | 92.7745.6!| 94.4445.5! 92.96+5.1! 93.4445.3
© MUSH 99.17+1.; | 99.17+1.; | 100.00 100.00+( 100=(
Nurse 93.01+1.1! | 92.59+1.0: | 96.85+1.1! 93.35+0.9¢ 96.82+1.11
OPTIC 92.89+0.8¢ | 92.71+1.2 | 91.91+0.8i 91.11+40.7 91.84+1.:
Sona 74.8442.6. | 74.842.5 | 75.6042.6! 75.20+2.7. 76.42+3.2.
Soybea | 94.48+0.1. |94.324-0.15| 95.0440.5. 94.57+0.2 94.95+0.-
SP 95.3+0.1! | 95.7+0.9¢ | 96.31+0.1! 96.00+0.5. 96.3+0."
TTT 78.04+2.3' | 77.82+2.1 | 80.04+2.3 78.76+2.2 80.24+2.°
\V ote 90.77+2.9. | 89.63+2.6¢| 94.16£2.5 90.99+2.9: 93.79+2.¢
Wine 93.05+4.2 | 93.02+4.1| 94.27+3.9 93.98+4.2! 95.92+4.4.
Z00 96.22+2.4: 1 96.22+2.4! | 98.69+2.7. 97.02+2.7! 97.21+3.4.
Arcene 67.69+6.3¢ | 71.21+6.3.| 73.43+6.6! 71.87+6.7. 77+7.2
Dextel 89.7342.0z | 89.31+1.71| 91.09£1.5. 90.23+2.2 90.28+1.¢
Madelor | 68.89+5.1. | 68+4.3¢ 71.87+2.3: 67.59+3.1¢ 71.2 £2.¢
Average Rank
4.2 4.22 1.42 3.37 1.77
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5.8 The suitability of ODTs to feature set partiti;ing

As Table 3 shows, a single, regular DT usually etftpms a single ODT. In this section we examine
the suitability of ODTs for feature set partitioginVe compare the performance of the new encodstg i
with the ODT (with IFN algorithm) and then with egular DT (with C4.5 algorithm). In both cases the
wrapper approach is used to calculate the fitnesstibns, Table 7 presents the results obtaineddoh

method.

It can be seen that in most of the datasets theseniethods obtained similar results. There are two
datasets (TTT and Vote) in which the superiorityC#.5 is statistically significant. On the othenta
there are two datasets (SPI and Zoo) in which ORS superior. The last row in the table presents the
corresponding average ranks. This measure indicatgsthe regular DT slightly outperforms ODT.
However, the null-hypothesis that the two classsfiperform the same cannot be rejected using the
Wilcoxon test with a confidence level of 95%. Thw®, conclude that there is no reason to preferlaegu

DT to ODT in feature set partitioning.

Table 7: Comparing ODT and regular DT in feature s¢ partitioning

Dataset ODT (with IFN) Regular DT (with C4.5)

AUSI 86.52+2.6! 86.72+3.36
Audiology 81.68+3.8! 81.38+5.3
|Bcar 96.82+1.1 96.48+1.62
[Hepatitic 83.67+5.4. 83.6416.4
[iris 94.87+3.3 95.2+4.27
[Kr-vs-kp 99.35+0.3. 99.41+0.39
[Labol 95.64+3.6! 95.95+4.99
[LED17 73.67+3.2 73.77+3.8
[LETTER 77.34+1.1. 77.45+1.3
[Lung Cance 50.03+10.0. 50.31+13.23
[Monks1 08.67+0.7! 98.29+0.91
[Monksz 63.48+7.4 63.74+10.02
[Monks? 94.4445.5! 94.59+6.42
IMUSH 100.00+( 100.00(
Nurse 96.85+1.1! 97.49+1.52
OPTIC 91.91+0.8: 92.93+1.18
Sona 75.60+2.6! 76.07+3.25
Soybea 95.04+0.5. 95.47+0.72
SP 96.31+0.1! "94.73+0.29
TTT 80.04+2.3I '86.2+1.6:
\Vote 94.16+2.5 9651+1.2
\Wine 94.27+3.9! 96.9+2.6
Z0oa 98.69+2.7: "05.14+1.9
Arcene 73.43+6.6! 73.248.35
|Dextel 91.09+1.5. 93.01+2.04
[Madelor 71.87+2.3 72.32+2.71
Average Rank 1.67 1.33

5.9 The Performance of the GOV Algorithm in Artificial Cases

This section examines the capability of the GOVodtgm to converge into the classification-
preservation partitioning structure. Recall thatertain artificial cases Lemma 1 and Lemma 2 @efin
efficient partitioning structures that are clagsifion-preservation. Thus, having syntheticallyated
datasets according to the conditions of Lemma l1lamdma 2, we now examine the convergence of the
GOV algorithm as a function of the training seksiz

27



The first group of synthetic datasets is basedeawlHonce DNF functions (each variable appears at
most once). This experiment examined 16 dataseteh Elataset is denoted BNF(m,I), wherem
indicates the number of disjunctions dnithe number of features in each disjunction. Thmutirfeature
values were drawn from a uniform distribution. Nttat the read-once DNF problem was investigated in
the past and there are several polynomial timedtiolu algorithms that are PAC-learnable under unifo
distribution (see, for example, Ref [56]). It shdble noted that, although these algorithms are very
efficient in learning specific Boolean functiongustures, they are limited in their capability &ain
general domain problems as required in practice.

The second synthetic dataset group examined thigyalfithe proposed algorithms to converge to the
optimal partitioning structure as presented in LemimAll datasets in this group contained severadry
input features and a binary class. The synthetia deere generated in such a manner that all feature
were relevant for modeling the class and the featet could be divided inta conditionally independent
groups ofl features each. In order to obtain this synthetiaskt, the following procedure was performed
for each class:

1. Allinput features were randomly allocated imieequally-sized groups éffeatures.

2. For each value combination ©f each groupj) and for each value of the target feature, a value

2I
O<p, <1 is randomly selected such thi Pk =1 :0j,k, where p;, denotes the
i=1
probability of the features in grogo get the value combinatiérwhen the target feature obtains
the valuek. Note that, because in each group there are g)dithary features, then there &'e
value combinations.

In order to fabricate one instance, the value efttiiget feature was sampled first (assuming umifor
distribution). The values of all input featuresrevéhen sampled according to the appropriate digidn.

Table 8 presents the results obtained by execthmg@OV on each problem on different training set
sizes. It can be seen that the partitioning strattdistance (PSD) of GOV from the classification-
preservation partitioning decreases with the sizbetraining set. Moreover, in simple cases hguanly
three disjunctions, the distance algorithm converge0 with a training set of 400 instances. A Emi
observation can be identified in the INDEP datasBte GOV algorithm converges to the classification
preservation partitioning as the training set simreases. When the problem is simpler (i.e., tlaeee
fewer features), then the distance is shorter Hergame training set. This is not surprising bezans
larger problems the search space increases in@mnemntial manner. Evidently the GOV algorithm is
capable of identifying the desired structure.
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Table 8: Partitioning structural distance (PSD) ofthe structure obtained by the GOV algorithm for
the classification-preservation partitioning structures described in Lemma 1 and Lemma 2.

Training Set Size Training Set Size

Function | 100 | 200| 300| 400 Function 100 200 3Q0 400

DNF(3,3) | 0.29| 0.25]| 0.00| 0.00| INDEP(20,4) | 0.34| 0.16| 0.25| 0.05

DNF(3,4) | 0.26| 0.09]| 0.00| 0.00| INDEP(30,4) | 0.30| 0.05] 0.20| 0.04

DNF(3,5) | 0.28| 0.26| 0.06| 0.00| INDEP(40,4) | 0.49| 0.10| 0.04| 0.08

DNF(3,6) | 0.21| 0.03| 0.16| 0.00| INDEP(50,4) | 0.49] 0.40| 0.14| 0.09

DNF(4,3) | 0.20| 0.13| 0.20| 0.02| INDEP(20,5) | 0.51| 0.25| 0.14| 0.14

DNF(4,4)| 0.18| 0.16]| 0.17| 0.01 | INDEP(30,5) | 0.47] 0.25] 0.17| 0.15

DNF(4,5) | 0.28| 0.26| 0.19]| 0.07| INDEP(40,5)| 0.29] 0.16] 0.21| 0.12

DNF(4,6) | 0.39] 0.11| 0.15| 0.09| INDEP(50,5) | 0.36| 0.37| 0.26| 0.16

DNF(5,3) | 0.32] 0.15]| 0.16| 0.05| INDEP(20,6) | 0.26] 0.21| 0.19| 0.19

DNF(5,4)| 0.11| 0.27] 0.18| 0.02 | INDEP(30,6) | 0.41| 0.30| 0.27| 0.25

DNF(5,5)| 0.14| 0.06| 0.10| 0.03| INDEP(40,6) | 0.46| 0.36| 0.24| 0.21

DNF(5,6) | 0.14| 0.23| 0.12| 0.09| INDEP(50,6) | 0.27] 0.40| 0.18] 0.29

DNF(6,3) | 0.39] 0.24| 0.24] 0.16

DNF(6,4) | 0.23] 0.39] 0.18| 0.17

DNF(6,5) | 0.52| 0.46| 0.20| 0.19

DNF(6,6) | 0.29)| 0.33] 0.29] 0.23

5.10 Discussions

The advantages of the new GOV algorithm, as madar drom the experimental study, can be
summarized as following:

1. When compared to the state-of-the-art ensembleadsttGOV provides
classifiers which are of an equivalent or slighttywer degree of
accuracy, but which have much fewer nodes. Usenrergly regard
smaller decision trees as more comprehensible. gihthe choice of the
best model (either the most accurate or the siplspends on a
specific application, we believe that, in many sase small degree of
accuracy can be sacrificed for the sake of obtgirén much more
compact and interpretable model, such as the ooduped by GOV.
There are, however, certain cases in which themiffces in the degree
of accuracy are not negligible. For instance, Ada®oobtained an
accuracy of 87.72% for the LETTER dataset (compéaoedn accuracy
of 75.02% obtained by the GOV algorithm). Nevertss| the average
complexity of the AdaBoost classifier in this casas 240319 nodes
(compared to only 313 nodes of GOV in this case).

2. The mutually exclusive property of GOV makes thasslfiers more
interpretable. Consider a classifier which is deatgd to improve the
guality of a certain manufacturing line. In thisseathe target feature
stands for the quality of a certain product (high) and the input
features represent the values of various manufagtyparameters (such
as speed, temperature, etc.). In a mutually exauisirest, the user can
easily find the best parameter values by selectiveg path in every
decision tree that most favors the "high" labed.(iwith the highest
probability). If the mutually exclusive propertynst retained (such as in
the case of GEFS or AdaBoost), finding the bestmater values
becomes a complicated task since paths from diffeteees might
incorporate the same features but not necessaelysame values. The
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user is compelled to resolve these conflicts, & alants to best tune the
manufacturing process.

3. In GOV, the decision trees are based on the ofligiistribution of the
training set. The class distribution at the tréeeds is supported by the
training set. In Adaboost (starting from the secdedision tree) and in
GEFS, the class distribution at the leaf level doatsnecessarily fit the
original distribution. This makes it difficult tagtify the results to a non-
professional user.

4. The new algorithm is faster than existing GA-basadembles methods
for to the following two reasons:

a. The fitness function uses a VC dimension boundgcivis faster
than the wrapper estimation.

b. A new caching mechanism reduces the need to blild foom
scratch.

5. The new encoding schema is more efficient thanigstif@rward

encoding, because it provides better results ferstme population size

and number of generations.

The use of ODT as the base classifier provideredde results.

In artificial cases, we have shown that the GOWwatgm usually almost

converges to the optimal partitioning.

No

The GOV algorithm has also several drawbacks:

1. Itis slower than non-GA feature set partitioningthods.

2. The fact that it is specifically designed for an DI3 considered to be its
Achilles' heel. Potentially, there might be dongain which using the
ODT as the base classifier will dramatically redaceuracy. A partial
solution in such cases would be to use ODTSs inligrrees an agile
inducer only for the feature set partitioning ph&ebsequently, when a
good partition is obtained, we can employ more sijglated inducers
on each subset. Similarly, as stated in Sectian sIngle ODT has been
used for the preprocess phase of feature selection.

6. Conclusions

In this paper, we have presented a novel genggigrithm for finding the best mutually exclusive
feature set partitioning. The basic idea is to dguuse the original set of features into severassis)
build a decision tree for each projection, and tb@mbine them. This paper examines whether genetic
algorithms can be useful for discovering the appadg partitioning structure.

For this purpose we suggested a new encoding sclhenh fithess function that were specially
designed for feature set partitioning with oblivsodecision trees. Additionally a caching mechanism
was implemented in order to reduce computationst. co

The algorithm was evaluated on a wide range ofdstah datasets containing continuous,
categorical, and binary-valued attributes. Theltesihow that this algorithm outperforms otherestat
of-the-art ensemble methods in the accuracy-contgldrade-off. This observation leads us to
conclude that the proposed algorithm can be usectéating compact ensemble structures.

Additional issues to be further studied includewhthe feature set partitioning concept can be
implemented with other inducers such as neural ortsvand other techniques for combining the
generated classifiers (such as voting).
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Appendix: Proofs

A.l. Proof of Lemma 1

fy-ch)-r{

According to Bayes' theorem:

A q)_ ¥ g7 NRDOkaq

Pl . x|y=¢|Ry=¢)

NRO(J G
P(XQ)

Using the independence assumption:

w

P(nNqu‘y: Cj)ED P(nGqu‘ y= q) Ry © )

P(XQ) B

Using Bayes' theorem again, the last term becomes:
P(y— 7 | hr%q ) P(nNqu) w
ﬂ P(y: K ‘”e “q ) P(’TGKXQ) '

P(y=0,)“’DP(xq) - k

Due to the fact that thdR set and the target feature are independent:
( T X )EH P(y c‘nq q)DP(”q q)

w-1
P(y=6)" TPl

As the value of the expression

P(7rx )El_l P(ﬂ X )

P(xq)
is constant given specific values of the inputdesd
H P(y= G |7&, %)
arg maxP X arg max —
chgdoniy) 6/ ‘ )= cjOdom( y) (y_cj) '

i.e.,Zis classification-preservation.

A2 Proof of Lemma 2

It is obvious that all input features which do betong to any of the sefs,,...,G, can be ignored. The
proof begins by showing that i fulfills y= f(G)U...0 f (G,) and that the values of the functions
are independent, then the partitionidg={G, ..., G} is classification-preservation.
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For the sake of simplicity we will denot§ (77 x) as f,

Case 1: At least one of the functions of the instato be classified gets the value 1. Because auch
function also fulfillsP(y=0| f, =1)= 0:

HP y=¢| )
ok, f =1 arg max = F argmaR ¥(= ¢ |x

¢odomy P(y= C )t ¢, 0dom )

Case 2: The values of the functions of the ingaade classified are all zeros.
In this caseP(y=0) = P( f=0n..n f = Q . Due to the fact that the input features are iedépnt:

P(y=0)= |‘l P(f=0)
Furthermore:P(y=0[f =0) =[] P( f, = 0)
According to the complete proba¢lt)ility theorem:
P(y=1)=1- |‘J P(f=0

and

P(y=11=0) 1—l<_|PfK 0.

What is left to prove is:

ﬁ ] P(f,=0) Ij(l_up(szo)j i

arg ma =(

o (m P(t =o))w1 ’[1— w P(f= O)J‘H

As the first argument of the argmax function equaais, it is required to show that:
”(1— ﬂ P(f,= o)j

1= £l — <1

[1— P(f= o)j

The last inequality can be validated by multiplyindhe numerator and denominator by
(1— [ P(f = O)j with the assumption that (1— [ P(f = 0)) > Q.
1=1 =1

(Note: If the term is equal to 0, thé?(y =1) = 0 and if the term is equal to 1 thé?¥(y =1) = 1. In both
cases the partitioning Z is classification-preseova)

80 )
B S )
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Skt jq—l(

Becauseﬂ P(f,=0)= P( f, = O) :

j=

. (1-[P-9)
efe(e-a)

. J11-T1P(f.=0)
e I

To complete the proof, it is required to show ih& true also for the case of

z:

or:

y= 1:1(G:|.)[| 1:2(G2)|:J|:J fw(Gw)

For this purpose it is sufficient to show thatsttiue for the opposite target featu}e According to
Morgan's law:

y=f(G) 0 ,(G)0..0 £,(G)
y=1(G)0 (G)0..0 {,(G)=
f(G)Of,(G)0..01 (G,)

Becausé is classification-preservation for it is classification-preservation foy as well.

A.3. Proof of Lemma 3
In order to prove this lemma it is useful to defihe following functions:

bit(i,x) = Thesth bit of x =L (x- 20 x/2] )/'zlj
XNORX,y) =x[ly+@-x) [1-y)
HWycm) HRTQH)

arg max ——= arg ma
codon(y P(y= Cj) 1 godoty (Y= 9)

H{XNOR" f btk ¢)UR f= bt jOU F K
= arg max

ciDdon( Y P(y C)w_l

As the input features are independent:
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[JOXNOR f, biC k ) (7] ® f= bit 9}

= zk
= arg max '
¢;0don y P(y=¢)“"

=arg mavlj P mhe ))“*le XNOR L. btk )
- cdon( 9 P(y=¢)""
. P(y= q)m[lj XNOR f, bi¢ k £))

Bt Al P(y=¢)""

- arg maxlj XNOR(f it ) argma® ¢ g

c;Udon( y) jCdor( y)

A4 Proof of Lemma 4
Obviously if Z Z{A then Z contains at least one subset. If thereaaredd number of input features

with the value "1" then the target feature showdt the value "1" as well. For that reason the pmste
probability for the target feature to get "1" givemly subset of the input feature set is %.

1
P(y=1SO A==
(y=1 >
That is to say:
HP(y=1‘ﬂka) HP(y=O‘ﬂGKx)
P(y=0"  P(y=0f""

A.b. Proof of Lemma 5

The proof of the first property of Lemma 5 res@igplicitly from definition. So does the proof oftlffirst
direction of property 2 of Lemma 5, namely 4f = Z? thend(Z*,Z%) =0.

The opposite direction, namely &(Z*,Z?) =0 then Z' = Z?, is proved by contradiction. We assume
that there are cases whedZ',Z?)=0 but Z'#Z>. If Z'# Z*then without loss of generality
O0G'OZ" such that there is n@&;*0Z* which fulfill G*=G,”. Consequently(h,a, such that
n(a; 8, ,Zl,Zz) =1, which contradict the assumption and therefore oxiginal assumption that

J0(Z',Z2%) =0 but Z' # Z*must be false.
In order to prove property 3 of Lemma 5, note that:

-l o ,a,2,2% +n(a,a,,2%,2°
5(21,23) + 5(22'23) — Z Z 2D’7(a1 j ) ,7(81 j ) )
=1 j=i+1 n{n-1)
Because the following arguments hold:

1. If n(a,a;,Z2",2%) +n(a,a;,2%,2°) =0 thenn(a,a,,2*,2%) =0
2. If n(a,a,,2",2°)+n(a,a,,2%,2°) = 2 thenn(a,,a;,2*,2*) =0
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3. If n(a,a,,2",2°)+n(a,a,,2%,2°) =1 thenn(a;,a,,2",2*) =1.

Then also the triangular inequality is true.

A.6. Proof of Lemma 6

A projection of matrix is obtained by removing eént features (i.e., removing their corresponding
rows and columns). Without the loss of generalitg, assume that the removed features are the last
features. Let us assume by contradiction that theegted matrix is not well-defined but that thegoral
matrix is well-defined. Because the projected matsi not well-defined then(, j,k <n—t. This
violates one of the constraints specified in d&bni 3. However, because the original matrix islwel
defined then fotli, j .k <n or more specifically foti, j k <n—t the above constraints hold. We have

reached a contradiction and therefore our origaggumption according to which the projected masrix
not well-defined, is not true.

A.7. Proof of Lemma 7

If the GWC operator is used then the new offsprang obtained by diagonally concatenating the
projections of the anchor subset from one paredtthe remaining features from the second parent.
Based on Lemma 6, because the parents were waikede$o are their projections. It remains to show
that the elements that are not obtained from thggtion do not violate definition 3.

We denote byR the original feature index of the anchor subseth setA. Because the rows and the
columns of the anchor subgetire copied as is, théh;= Bj;=0 for [i UR; j T R. Therefore constraint

1 in definition 3 is always true and constraintn2l 3 are not relevant in this case.

A.8. Proof of Lemma 8
We denote by Zand Z the parent solutions and by @nd Z the offspring. Because each element of the
offspring is obtained from one of the parent then,

328,74+ (28, 2%) = (24, D)
3(2%, 74+ 3(Z*, 22) = 8( 2, Z2).

The last equation is true because in Equationtli§)term/(a, &, Z',Z°)= 0 if B, in both matrices
are equal.

Using the triangular inequality we obtain that:

3(Z%,24) < 8(Z3, 24+ (2%, 2
3(Z%,24) < 8(Z2, 22)+ (2%, D).

Thus:
25(23,24)5 5(23, Zl)+ 5(24, Zl)+ 5(23, Zz)+ o( al Zz)
or:

3(Z%,2%) < (2, Z2).
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A.9. Proof of Theorem 1
To prove Theorem 1, it is useful to consider Len®hand Lemma 10 first.

Lemma 9: The VC dimension of an oblivious decisiotree onn binary input features with | layers
andt terminal nodes is not greater than:
n! 2t—4)!

o (2t-4) ).

(n=ND! (t-2)I[qt —2)!

Proof of Lemma 9:
Any oblivious decision tree can be converted taiigable classification tree with leaves labeled1}0,
according to the highest weight of each of the teainnodes in the original tree. Because the
probabilistic oblivious tree and its correspondtigssification tree shatter the same subsets, YHeir
dimensions are identical.

The hypothesis space size of a classification mwhls/tree withl layers,t terminal nodes and input
features to choose from is not greater than:

t+log, (

Ny (2-4)
(n-1! (-2 -2)

The first multiplier indicates the number of comdtions for selecting with ordérfeatures fromm.
The second multiplier corresponds to the diffex@assification options of the terminal nodes. Timiedt
multiplier represents the number of different byndree structures that containleaves. The last
multiplier is calculated using the Wallace [57]ergtructure. Note that in the case of the binarg there
is exactly one more leaf than inner nodes. Furtbegnthe tree string always begins with an inneteno

(whenl| =1) and end with at least two leaf nodes. Based erfamiliar relationVC( H) < Iogzq H|)for
finite H, the lemma has been proved.

Lemma 10: Consider w mutually exclusive oblivious decision trees thatra combined with the
naive Bayes and that have a fixed structure contaiimg T= (t,...,t,) terminal nodes. The number
of dichotomies it induces on a set of cardinality nis at most:

w
WYt
i=1

em

S
i=1

2

Proof of Lemma 10:
The proof of this lemma, uses a similar lemma ohiiced by Schmitt [58]: the number of dichotomies
that a higher order threshold neuron with k mondsniaduces on a set of cardinality is at most

k (m-1 “
ZZ( _ J<2(inj for m> k>1.

izo\ | K
A definition of a higher-order threshold neuron taesform:
WM, + WM, +..+ w M, — ¢

whereM ,M,,...,M, are monomials.
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woblivious decision trees which are combined witiveeBayes can be converted to a higher order
threshold neuron, where the set of terminal nodestitutes the neuron's monomials and the log-odds
favor of y =1 in each terminal node is the corresponding nesinepight. Furthermore, in order to use

the sign activation function, the threshold hastsst to the sum of all other monomials.

Now it is possible to prove Theorem 1. The prooftte# upper bound is discussed first.af=1,
then Lemma 9 can be used directly. For the easel , the bound of the number of dichotomies induced
by w mutually exclusive oblivious decision trees onaabitrary set of cardinality m is first introduced.
Because the biggest shattered set follows thisdasmwell, the statement of the theorem is derived.

There are at most:

n! w (2t| _ 4)|
-3y (672 =2)

different structures forw mutually exclusive oblivious trees on n binary utpfeatures with
L= (,,...1,) layers andT = (t,...,t,) terminal nodes. Notice that the division by is required as
there is no relevance to the order of the trees.

According to Lemma 10, a fixed structure and vdeateights can induce at most:

[2)

Yyt

i=1

dichotomies on a given set of cardinality Enumerating over all structures, it is conclutieat there are
at most:

2
n! o (@-4 | em
witn-3 1y G2 5y

dichotomies on a given set of cardinalitythat are induced by the class considered. If teve class
shatters the given set, then:

omg n! _ 2 (2t —4)! pl __€m
CJ[C“‘Z'.)' 1=1 (t| _2)”11| _2)| 1+ ztl
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However, the last inequality will not be true > 2+ (F+1)log(2e)+ 2logUwhere F = Zti and

i=1

n! © (2 -4)!

U= |
w![ﬂn—zwlh)! L (¢ -2) - 2)!

The lower bound is true due to the fact that anyo$ev trees with a fixed structure has the above
VC dimension. The result can be achieved by seitingach tree (besides one) a neutralized terminal
node (i.e., a terminal node with posteriori proba®s that are equal to the a-priori probabilijie€his
concludes the proof.
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