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Abstract— Most of the existing data mining algorithms are 

'passive'. That is, they produce models which can describe 

patterns, but leave the decision on how to react to these patterns 

in the hands of the user. In contrast, in this work we describe a 

proactive approach to data mining, and describe an 

implementation of that approach, using decision trees. We show 

that the proactive role requires the algorithms to consider 

additional domain knowledge, which is exogenous to the training 

set. We also suggest a novel splitting criterion, termed maximal-

utility, which is driven by the proactive agenda. 

Index Terms— Knowledge Discovery from Databases, Active 

Data Mining, Classification. 

I. INTRODUCTION 

Data mining, the science of algorithmic analysis of data and 

pattern extraction, is common in support of organizational 

decision-making ‎[2], ‎[3], ‎[5], ‎[9], [10], ‎[13]. In most of the 

cases, the patterns that are extracted from the input datasets are 

subjected to human evaluation, in order to decide on how to 

use them ‎[2], ‎[3], ‎[5], ‎[6]. Although widely applicable, these 

works leave an overly complex task in the hands of humans - 

they do not produce any explicit actions or suggestions ‎[2], ‎[3], 

‎[5], ‎[6].  

For example, the average customer churn rate, experienced 

by wireless operators is known to be around 2% per month ‎[9]. 

Traditional data mining algorithms can receive churning data, 

extract churning patterns and provide the subsets of customers 

that are most likely to churn. These algorithms provide helpful 

answer to the question: “Who are the most likely customers to 

leave the operator?” However, in many cases the questions that 

are mostly important for the operator are actually more like: 

“How can we intervene, to reduce the churn rate of preferable 

customers?” “What are the potential benefits and costs of our 

means of intervention?” “Which subset of customers is most 

potentially beneficial for us to concentrate on?” 

The data mining literature does includes a branch of active 

methods ‎[7], ‎[12]. However, this branch mainly focuses on post 

processing procedures. That is, the intervention with the input 

data is based on a given model, which is typically produced by 

a passive (non-proactive) algorithm. In these works, the passive 

models are blind and indifferent to the proactive agenda -  

embodied by the post-processing phase.  

Another shortcoming of most of the proposed data mining 

algorithms is in the lack of consideration of specific domain 

knowledge. It is hard to believe that the same algorithm can do 

well on two different domains, without any modifications. 

Moreover, the consideration of domain knowledge is 

mandatory when pursuing the proactive agenda, since the 

training set by itself indicates nothing on what kinds of actions 

are possible (or practical). 

Despite the relative maturity of the research on data mining, 

there is no data mining method that inherently extracts specific 

means of actions, while considering domain or problem 

knowledge. In this work we introduce a novel proactive data-

mining approach. We show that considering domain 

knowledge, which is exogenous to the training data, is 

mandatory in proactive data mining. We describe an 

implementation of our approach, using decision trees, and 

propose a novel splitting rule that is driven by the proactive 

agenda. 

II. PROACTIVE DATA MINING 

Let A = {A1, A2,…,Ak} be a set of explaining attributes that 

were drawn from some unknown probability distribution p0, 

and D(Ai) be the domain of attribute Ai. We denote by D = 

D(A1)D(A2)… D(Ak) the Cartesian product of D(A1), 

D(A2),…, D(Ak) and refer to it as the input domain of the task. 

Similarly, let T be the target attribute, and D(T) = 

{c1,c2,…c|D(T)|} the discrete domain of T. We refer to the values 

in D(T) as the possible classes. It is assumed that T depends on 

D, usually with an addition of some random noise. 

Classification algorithms receive training data, as input. Let 

<X;Y> = < x1,n, x2,n,…,xk,n ; yn >, for n = 1,2,…,N be a training 

set of N classified records, where xi,nD(Ai) is the value of the 

i-th explaining attribute in the n-th record, and ynD(T) is the 

class relation of that record. In an ordinary classification task, 

we search for a function f : D  D(T), so that given xD, a 

random realization of the explaining attributes, and yD(T), 

the corresponding class relation, the probability of correct 

classification, Pr[f(x) = y], is maximized. 

In ordinary classification tasks, the underlying assumption 

is that the target class, for a given record, cannot be changed. 

This assumption is often incorrect. For example, consider the 

business case of customer retention, which often triggers the 

extraction of churn-prediction models ‎[9]. Churn-prediction 

models explain churning patterns. Clearly, by taking some 

means of action (for example, offering the customer a more 

attractive price plan), the company can affect the explaining 



 

 

attributes and in turn change the actual churning probability. 

Namely, in some scenarios, rather than asking "what will be 

the target result in that case?" the business user is actually 

interested in knowing "what should I do, in order to affect the 

value of the target result according to the company's interests?" 

‎[1], ‎[8], ‎[4]. In this work, we allow the values of the explaining 

attributes to be proactively changed by the user. Changing the 

values of the explaining attributes can subsequently affect the 

value of the target attribute in the direction of desired values. 

The shift from classification to optimization requires us to 

consider additional knowledge about the business domain, 

which is exogenous to the actual training records. The 

additional knowledge is intended to cover various aspects of 

the business case, and the potential of changing the input 

values, such as: what is the objective function that needs to be 

optimized? What changes in the explaining attributes can and 

cannot be achieved? At what costs? etc. The exact form of that 

knowledge may differ from one task to another. In this work 

we consider a certain form of additional knowledge, which 

consists of an attributes-change cost and a benefit functions. 

The attributes-change cost function C: D  D  R assigns a 

real-valued cost for each possible change in the values of the 

explaining attributes. If a particular change is not allowed, the 

associated cost is infinite. The benefit function B : D  D(T)  

R assigns a real-valued benefit for each possible observation 

(potentially customer). This benefit depends both on the 

explaining attributes and the class relation. 

The objective of the task that is implied is finding the 

optimal change (move) in the values of the explaining 

attributes: O : D  D, which maximizes the expected value of 

some utility function. The utility function, we consider in this 

work, consists of the contribution to the benefit due to the 

move, minus the associated attribute change cost. The cost is 

provided directly from C, but the contribution to the benefit 

requires us to know the effect of the change on the target 

attribute. For this reason, we need to follow a two-phase 

procedure. In the first phase, we train some classifier, and in 

the second phase we utilize that classifier to find the optimal 

change. 

The main limitation of the ordinary classification task, 

which we tackle, is the unfixed nature of the explaining 

attributes. Nonetheless, the explaining attributes are not typical 

decision-variables, which can be changed and set as desired. 

When one changes the probability distribution of the input 

variables, can she or he be sure that the classification model 

still correctly describes the functional dependency between the 

(changed) explaining attributes and the target? The answer to 

this question is not answered in this work. Instead, we refer to 

the optimal change O as a recommendation on seemingly 

attractive means of actions, and not as an automatic mechanism 

that set values to decision variables. Another question that rises 

from the above task statement is whether the ability to change 

the value of the explaining attributes is deterministic or not. 

The empirical probability for succeeding in the change can be 

added as part of the exogenous additional knowledge, but we 

do not consider it in this research. 

III. A PROACTIVE APPROACH USING DECISION TREES 

Let DT = (V,E) be a decision tree with the set of vertices 

V={v0,v1,…,v|V|}, were |V| is the finite cardinality of V, and the 

set of edges (arcs) E, where each eE is an ordered pair of 

vertices: e=<vi,vj> indicating that vj is a direct son of vi. We 

denote the decision-tree's root by v0. Let us consider decision 

trees that were trained based on the training set: <X;Y>. We 

define |vi(<X;Y>)| as the size of the vertex vi, that is, the number 

of records in <X;Y> that reach the vertex vi, when sorted by DT 

in a top-down manner. Let us further define p0(cj,vi) as the 

estimated proportion of cases in vi that belong to class cj. We 

calculate p0(cj,vi) according to Laplace's law of succession: 

 

p0(cj,vi) = [m(cj,vi)+1]/[vi(<X;Y>)+2],  (1) 

 

where m(cj,vi) is the number of records in <X;Y> that reach the 

vertex vi and relate to class cj. We refer to nodes with no direct 

sons as leaves (or terminals), denote the set of leaf-nodes by L 

and define a branch of the tree (denoted by ) as a sequence of 

nodes v(0), v(1), v(2), ..., v(||), where || is the length (number 

of nodes) of the branch, so that:  

(i) v(0) = v0 (i.e., v(0) is the decision-tree's root),  

(ii) for all i = 0,1,…,||-1, v(i+1) is a direct son of v(i), and  

(iii) v(||)L. 

We define the total benefit of a branch, as the sum of 

benefits of all the observations that if sorted down the tree, 

reach the branch's terminal, and denote the total benefit of the 

branch  by TB(). We denote the total benefit of the entire 

tree DT: 

 

TB(DT) = ∑DTTB().   (2) 

 

We can use any given decision tree to examine the expected 

consequences of proactively act on the records of a certain 

branch, in order to change the values of their explaining 

attributes. Such a change actually "moves" records from one 

branch to another. Let 1 and 2 be the source and destination 

branches, respectively. The estimated merit of moving from 1 

to 2, may be defined as the difference in the total benefits of 

2 to 1, minus the cost that outcomes from the change in 

values that is required in order to move from 1 to 2: 

 

 

, (3) 

 

where D1 and D2 are the sub-domains of D that correspond to 

the terminals of 1 and 2, respectively. The term 

|v(|1|)(<X;Y>)|/|v(|2|)(<X;Y>)| normalizes the total benefit of 

2 to the number of records that are currently in 1. We refer to 

moves from one branch to another as single-branch moves. 

When assessing the attractiveness of a branch, we must 

consider the number of records in it. A branch that has a small 

number of records is inherently less certain than a branch with 

large number of records. More specifically, even if moving 



 

 

from 1 to 2 is associated with positive merit, knowing that 

there are only few records in 2 we might want to avoid the 

move, since we are unconfident regarding that merit. We take 

the number of records in a branch into consideration by adding 

a weight to each possible single-branch move. We denote the 

weight associated to the move from 1 to 2 as w(1,2), define 

the utility of a single-branch move, as follows: 

 

, (4) 

 

and consider the move as advantageous, if utility(1,2) 

exceeds some pre-defined threshold.  

In this work, we have used the lower bound of a 1-=95% 

confidence interval, on the probability of the majority class as 

the weight. That is, denoting the majority class by c*, we use 

the following weight: 

 

,  (5) 

 

We use these weights as a heuristic, noticing that fewer are 

the observations in 2, the smaller is the lower bound of the 

confidence interval, and the more significant is the suppression 

of the difference in the total benefits. We do not allow negative 

weights, and in practice use the maximum between w(1,2) 

and zero as the weight. 

Having the utility function being defined for single-branch 

moves, we propose a simple algorithm for systematically 

scanning the branches of any given decision tree, and 

extracting a list of all the advantageous single-branch moves 

(i.e., all the single-branch moves, which provide a utility that 

exceeds a pre-defined threshold). It can be seen that as long as 

the attribute-change cost and benefit functions maintain the 

Triangular Equality, the selected single-branch moves can be 

used in any order (and still result in the same total gained 

utility). From our experience with real-life examples, it is often 

the case that the Triangular Equality is indeed maintained. 

Although a decision tree is the main required input to the 

scanning algorithm, using a decision-tree that was trained 

while pursuing classification accuracy might miss the 

maximal-utility objective. For example, certain attributes might 

highly contribute to the classification accuracy, but be 

impossible for change, whereas different attributes might be 

slightly inferior in terms of accuracy, but be changed easily, 

with a significant potential utility. In order to tackle the 

motivation for maximal-utility, we define a novel splitting 

criterion for decision-tree algorithms. The novel criterion is 

termed maximal-utility criterion, and means: "split according to 

the values of the explaining attribute that maximizes the 

potential total utility that can be gained from the tree". This 

splitting criterion is described in Fig. 1.  

In the following section we provide an illustrative example 

and compare the utility enhancements from two different 

decision trees: a traditional, passive, decision tree and a 

proactive decision tree which is built using the maximal-utility 

criterion. 
 

IV. ILLUSTRATIVE EXAMPLE 

In this section we demonstrate the properties and potential 

usage of the proposed approach and its implementation with 

two different decision trees: passive and proactive. We use a 

toy dataset of 160 historical observations: 68 churners and 92 

non-churning customers, of a wireless operator. This toy 

example tries to be like a real case study. 

The customers are described by three explaining attributes: 

A1 – describing the customer's package, which can take the 

values: 'Data', 'Voice' and 'Data&Voice'; A2 – describing the 

customer's sex, which can be either 'Female' or 'Male' and A3 – 

describing the customer's monthly rate in US dollars, with the 

following possible values: 75, 80, 85, 90 and 95. Table 1 

describes the empirical joint distribution of the explaining and 

the Target attributes. 

We begin our illustration by generating a decision-tree for 

predicting the target attribute. We used the well-known J48 

implementation of Weka ‎[11]. The output decision tree is 

described in Fig. 2. J48 builds the tree without considering the 

benefit of having a customer staying or leaving, and the costs 

of potential changes in the values of the explaining attributes. 

Notice that the most explaining attribute in this tree is the 

Fig. 1. The maximal-utility splitting criterion: split a node according to 

the values of the explaining attribute, which maximizes the potential for 
benefit enhancement. 

 



 

 

customer's sex, which clearly cannot be changed by the 

company.  

The tree in Fig. 2 was built while completely ignoring the 

objective of maximum utility. In order to create a meaningful 

utility, we specify the following costs for changes in the values 

of the explaining attributes. First, we have specified infinite 

costs for changes in the customer's . Moreover, we have 

assumed that due to regulations, the customer's monthly rate 

can only be reduced (having the magnitude of the reduction 

stand for the cost of the reduction) and not increased. Finally, 

the costs we've assumed for changes in the Package attribute 

are described by the following matrix. 

 

 Data Voice Data & Voice 

Data 0 5 10 

Voice 0 0 5 

Data & Voice 0 0 0 

 

 

The benefit function we have considered assigns the value 

of a Monthly-Rate for a staying customer and minus that value 

for a leaving customer. We have then produced a second 

decision tree, which uses the maximal-utility splitting criterion 

along with the cost and benefit functions, described above. The 

output decision tree is described in Fig. 3. Notice that since the 

customer's sex cannot be changed by the company, the 

customer's sex attribute was not selected at the root of the tree. 

 

 

 

 

 

 

 

 

 

 

TABLE 1. THE WIRELESS OPERATOR'S TOY DATASET 

  

Package Sex 

Month. 

Rate 

Did 

Churn? 

# of 

Observ. 

Data Female 70 Stay 18 

Data Female 70 Leave 2 

Data Male 70 Leave 20 

Data Female 75 Stay 18 

Data Female 75 Leave 2 

Data Male 75 Stay 8 

Data Male 75 Leave 12 

Voice Female 80 Leave 4 

Voice Male 80 Leave 6 

Voice Male 80 Stay 14 

Voice Female 85 Stay 2 

Voice Female 85 Leave 4 

Voice Male 85 Stay 6 

Voice Male 85 Leave 4 

Data & Voice Female 90 Stay 10 

Data & Voice Female 95 Stay 6 

Data & Voice Female 95 Leave 4 

Data & Voice Male 90 Stay 6 

Data & Voice Male 90 Leave 4 

Data & Voice Male 95 Stay 4 

Data & Voice Male 95 Leave 6 

 

In a post processing procedure we searched for the single-

branch moves that contribute a positive utility gain. We first 

scanned the tree in Fig. 2 (which was built by J48). Notice that 

although the cost and benefit matrices were not considered 

during the J48 induction of the decision tree (in Fig. 3), during 

the post processing procedure these cost and benefit were 

considered. The respective beneficial single-branch moves are 

described in Table 1. Notice for instance that the most valuable 

move strive to shift customers from a node with churn rate of 

80% of a node with churn rate of merely 10%. The initial 

overall benefit of the tree in Fig. 2 is: 2020. After 

implementing all the valuable moves of Table 1, we result with 

a tree with overall pessimistic benefit of: 3000. We then 

scanned the maximal-utility generated tree in Fig. 3. The 

respective beneficial single-branch moves are described in 

Table 2. Although the tree in  

 

 

 

 

 

 

 

Fig. 2. The J48 decision tree that was produced to predict the churning 

probability in our illustrative example. 

 



 

 

TABLE 2. POTENTIAL ACTION WITH RESPECT TO THE TREE IN FIG. 2. 

 

From Branch     To Branch      Utility 

Sex = 'Female' and 

Package = 'Voice' 

Sex = 'Female' and 

Package = Data 
835.23 

Sex = 'Male' and 

Monthly-Rate > 90 and 

Package = 'Data & 

Voice' 

Sex = 'Male' and 

Monthly-Rate > 70 and 

Package = 'Voice' 

90.35 

Sex = 'Female' and 

Package = 'Data & 

Voice' 

Sex = 'Female' and 

Package = 'Data' 
54.64 

 

Fig. 3 has an initial overall benefit of 2020 as well, after 

implementing all the beneficial single-branch moves, the 

overall pessimistic benefit raises to 5435.  

V. CONCLUSION 

This paper proposed a novel, proactive approach to data-

mining. This approach involves intervention in the distribution 

of the input data, with the aim of maximizing an economic 

utility measure. This intervention requires the consideration of 

domain-knowledge, which is exogenous to the typical 

classification task. The paper is focused on decision trees, and 

based on the idea of moving observations from one branch of 

the tree to another. We propose a novel splitting criterion for 

decision trees, termed maximal-utility, which maximizes the 

potential for profitability enhancement in the output tree. 

Our work demonstrates that by taking the proactive 

approach, it becomes possible to solve business problems that 

cannot be approach through traditional, passive data-mining 

methods. We also show that our proposed splitting criterion 

may outperform passive splitting rules in terms of  the potential 

for utility enhancement. 

 

TABLE 3. POTENTIAL ACTION WITH RESPECT TO THE TREE IN FIG. 3. 

 

From Branch      To Branch      Utility 

Package = 'Data' and 

Sex = 'Male' 

Package = 'Data & Voice' 

and 'Monthly-Rate <= 90 
1873.70 

Package = 'Voice' and 

Sex = 'Female' and 

Monthly-Rate > 70 

Package = 'Data' and Sex 

= 'Female' 
835.23 

Package = 'Data & 

Voice' and 'Monthly-

Rate > 90 and Sex = 

'Male' 

Package = 'Data & Voice' 

and 'Monthly-Rate <= 90 
380.01 

Package = 'Data & 

Voice' and 'Monthly-

Rate > 90 and Sex = 

'Female' 

Package = 'Data' and Sex 

= 'Female' 
304.43 

Package = 'Voice' and 

Sex = 'Male' and 

Monthly-Rate > 80 

Package = 'Voice' and 

Sex = 'Male' and 

Monthly-Rate <= 80 

21.65 
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Fig. 3. Proactive classification (with reasonable benefit and cost 

matrices) generated decision tree over dataset presented in Table 1. 


