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Negation Recognition in Medical Narrative Reports
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ABSTRACT

Substantial medical data, such as discharge sun@sand operative reports are
stored in electronic textual form. Databases camtgj free-text clinical narratives
reports often need to be retrieved to find releviafirmation for clinical and re-
search purposes. The context of negation, a negdtiing, is of special impor-
tance, since many of the most frequently descfiibeiihgs are such. When search-
ing free-text narratives for patients with a certanedical condition, if negation is
not taken into account, many of the documentsenetd will be irrelevant. Hence,
negation is a major source of poor precision in roabinformation retrieval sys-
tems. Previous research has shown that negatethfiadnay be difficult to identify
if the words implying negations (negation signalsg) more than a few words away
from them. We present a new pattern learning mefhodutomatic identification
of negative context in clinical narratives report§e compare the new algorithm to
previous methods proposed for the same task, and &8 advantages: accuracy
improvement compared to other machine learning odthand much faster than
manual knowledge engineering techniques with magchccuracy. The new algo-
rithm can be applied also to further context idéagtion and information extrac-
tion tasks.
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1 INTRODUCTION AND MOTIVATION

Information retrieval of free text is now an estsied and well known application with vast
popularity. The limitations of naive keyword basefdrmation retrieval are also well understood and
many research works are focused around this issue.

The primary application of this work is in improgithe information retrieval from medical
narratives. Medical narratives present some ungablems that are not normally encountered in
other kinds of texts. When a physician writes acoenter note, a highly telegraphic form of language
may be used. There are often very few (if any) gnatically proper sentences and acronyms and
abbreviations are frequently used. Many of thedeeliations and acronyms are highly idiosyncratic
and may not be found in a general dictionary.

Information retrieval from medical narratives haany applications: enrollment of patients
into clinical trials; detecting adverse events; edevidence based practice; and medical research i
general. A typical application scenario may invadvhospital-based medical investigator receiving
from a pharmaceutical company a patient profileaf@lanned clinical trial. The profile includes
attributes that can not be used as is in a stredtguery of the hospital information systems. EXamp
of such a patient profile iSMale and female, 18 years and older; Female mugthe pregnant;
Location of pain must be low back area; Pain mespkesent for three months or greater; No surgi-
cal intervention in the past 12 months nor planssiargical intervention for the low back pain dur-
ing the duration of the studyMost of the data needed for locating patients mgatie above profile
is stored as electronic medical narratives in thepktal information systems.

The medical investigator retrieves such recorda kgyword-based search. The keywords pri-
marily include: diagnostic names, symptoms, procesiumedicine, etc. A useful knowledge source
designed for resolving medical terms is the Unifiéedical Language System (UMLS) (Lindbergh
and Humphreys, 1993).

The common use-case when searching in dischargearies is looking for patients with spe-
cific symptom, for examplenausea The issue of context is very important. Consither sentence:

“He complained at admission of headache, nausemiting, and neck sorenesgérsus The patient

denies any headache, nauseamiting, blurring vision and feverBoth sentences will match a naive

keyword based query containing the temausea We assume that the person initiating the query is
looking for patients with a specific symptom (engusea) For example, the sentenc€he patient
states she had fever and chills two nights prioadonission with a nonproductive coudghken from
a discharge summary report is a positts@mple forfeverandchills diagnoses, while another sen-
tence from a discharge reportHe patient denied any cough, chest pain, uringrggoms or bowel
symptomsis a negativeexample for cough, chest pain, urinary symptontskaawel symptoms diag-
noses.

A search for patients with a specific symptom drafefindings might result in numerous re-

cords retrieved. The mere presence of a searchinettne text, however, does not imply that retrgkve



records are indeed relevant to the query. Depengiog the various contexts that a term might have,
only a portion of the retrieved records may acyubl relevant. Therefore, in addition to excluding
negated concepts, there are additional contextspiéo exclude. For exampléfhe patient as well

as her daughter were given very clear instructitmsall or return for any nauseaomiting, bleed-
ing, or any unusual symptoms.dnd the sentenc&The patient could not tolerate the nausea and

vomiting associated with Carboplatin”; “She is mad, lives with her husband and admits to drink-

ing alcoholexcessively in the remote pastdnd more.

This work introduces a new supervised method fduding a sequence-aware (or sequence sensi-
tive) classifier. First we automatically discoveset of sequence patterns that are described alareg
expressions. Then a classifier is induced to diagsstances based on their matching to the discov-
ered set of sequence patterns. We show the adesntdghe new method by applying it to a well
known and well defined problem in the medical domdi is estimated that ignoring negations in
medical narrative reports may reduce the retripealormance in about 40% (Averbuch et al., 2004).
Thus, the goal is to improve the information retaleaccuracy by correctly identifying the contekt o
the keyword being searched.

The issues encountered in dealing with this proldenstitute a special case of context identifica-
tion in free text, one of the key research problémte field of text mining. We compare the result
obtained using our proposed method to previous svatiich implement two primary methodologies:
knowledge engineering; and machine learning. Themedge engineering approach is based on
handcrafted patterns for identifying the negatedtext. Such methods yield high accuracy but are
labor-intensive, domain specific and tedious tontzn. The more modern methods are based on
machine learning techniques. The bag-of-words isiclered as one of the prominent machine learn-
ing techniques for classification problems. Theatig context detection can be formulated as a text
classification problem and solved using bag-of-worthe negation problem is closely related to the
part-of-speech tagging problem, which is propedlyad by frameworks for labeling sequential data,
such as hidden Markov model (HMM) and conditiorsaddom fields (CRF). In this work we compare
our new method to the abovementioned techniques.n®w method is much faster than manual
knowledge engineering techniques with matching mmgu We show that our new method achieves

higher accuracy compared to existing methods.

2.  RELATED WORKS

The negation problem in medical reports can beesbiu various ways. First, in addition to exist-
ing general purpose text classification methods ¢ha be used, there are several information extrac
tion methods that can also be implemented. Aftecudising these methods, we survey specific works
regarding the negation problem in general andeémtledical domain in particular. Finally, we discuss

evaluation measures that can be used for estimdinguality of the solutions.



2.1. Text classification

A comprehensive survey of the methods used fordategorization (Sebastiani, 2002) de-
scribes the recent research trends. The machimariggparadigm of automatic classifier construction
has emerged and definitely superseded the knowledgiaeering approach. Within the machine
learning paradigm, a classifier is built by leaghfrom a set of previously classified documentbe T
advantages of the machine learning approach aSqimstiani are a very good effectiveness, a con-

siderable savings in terms of expert manpower,damdain independence.
2.1.1. Bag-of-Words

Since texts cannot be directly interpreted by asifeer or by a classifier-building algorithm, it
is necessary to uniformly apply a transformatioocgdure to the text corpora in order to mapxa te
d; into a compact representation of its content (Skdnai, 2002). In text categorization (TC) a text
is usually represented as a vector of term weigF{svy;,...,Wy;) where V is the set of terms (some-
times called features) that occur at least onet least one document ©f, and where0 <w; <1
represents, loosely speaking, how many tgroontributes to the semantics of docungntDiffer-
ences among approaches are accounted for by {&jedif ways to understand what a term is; (2)
different ways to compute term weights. A typichabice for the first alternative is to identify tesm
with words. Depending on whether weights are bimargot, this approach is often called either the
“set of words”or the ‘bag-of- words”approach to document representation.

The following example demonstrates the bag-of-woegisesentation applied to our domain.
Consider the two sentences: e patient was therefore admitted to the hospital started on
<MEDICINE> as treatments for <DIAGNOSIS=3nd (2)The patient was ruled in for
<DIAGNOSIS> and started <MEDICINE> for <DIAGNOSIS¥aking case insensitive single words

as features and binary weights yields the repratientshown in Figure 1:
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Figure 1: Bag-of-words representation

One of the main drawbacks of the bag-of-words regtation is in its destruction of semantic
relations between words; the meaning of word coatinns is lost (Bekkerman, 2003). As presented
in Figure 1, this representation loses the meaofrigiportant terms such asuled in'. This bag-of-
words limitation is especially important for thega¢gion detection, Averbuch et al (2004) show that a

negation profile contains only ten words and/oraghks, half of these are bi-grams.



2.1.2. n-gram

Another popular choice for text representatiomigientify terms with word sequences of
lengthn. This n-gram vector text representation methatsed to classify text documents (Damashek,
1995). Damashek selected the normalized frequeitbywhich the n-gram occurs in the document as
the choice of (2) term weight. Each vector ideesifa point in a multidimensional space, and similar
documents are expected to have points close toatheh Damashek (Damashek, 1995) used the dot
product between two histogram vectors as a measuheir similarity, but he pointed out that other
measures are possible.

Caropreso et al. (2001) experimented with n-gramseit categorization on the Reuters data-
set. They define an n-gram as an alphabeticallgredisequence of n stems of consecutive words in a
sentence (after stop words were removed). The eutlse both unigrams (bag-of-words) and bi-
grams as document features. They extract the topeddeatures using various feature selection
methods including mutual information (see, e.g.pais et al., 1998). Their results indicate that in

general bigrams can better predict categoriesuharams.
21.3. Regular expressions

A regular expression is defined as any string tlesscribes or matches a set of strings accord-
ing to certain syntax rules. Regular expressioasiaually used to give a concise description sdta
without having to list all elements. The regulapeession consists of a letter of the alphabet and
special characters. For example, the set contaithi@dour strings: hat, hit, hot and hut can be de-
scribed by the pattern " h.t" (or alternatively,istsaid that the pattern matches each of the four
strings). The wild-card (".") denotes a single gosithat can be occupied by any letter of the alph
bet. The curly brackets are used to indicate almagtween min and max of the preceding characters.
For instance the pattern "without .{0,10} <diagrssi can be matched against the following strings
"without < diagnosis >", "without any < diagnosi§ *without serious < diagnosis >", etc.

Regular expressions are used by many text editatsitllities to search and manipulate bodies
of text based on certain patterns. Many programri@nguages support regular expressions for string
manipulation. For example, Perl and Tcl have a pfuvesgular expression engine built directly into
their syntax. In our work we use the Java regulgpression implementation (package-
va.util.regey.

The bag-of-words and n-gram representations atmyct special case of the regular expres-
sion representation proposed in this work. A regelaression feature such af0,;500} started
.{0,500}" is actually equivalent to the word featstartedin the bag-of-words representation. The
regular expression featurg0,500} ruled in .{0,500}"matches the bigram representation of the two
words phraseuled in. An additional benefit of our proposed regular @gsions compared to bag-of-
words is in handling compound sentences that irchath positive and negative findings, a limitation
noted by Averbuch et al (2004). For example, theesee: tipon admission showed no <diagno-

sis_1> but did show extensive <diagnosis_2> andagaiosis_3> but there were no masses nated”



The bag-of-words representation of such sentesgeblematic since the same features apply to
both negative and positive contexts and the alyorcannot learn to distinguish between them. The
regular expressions representation can represenisswctural features using the distance and pres-

ence of additional diagnosis.

214. Part-of-speech tagging

Part-of-speech tagging (POS tagging) refers tdliladpgvords in a text as corresponding to a
particular part of speech based on both its dédimjtas well as its context—i.e., relationship with
adjacent and related words in the text. POS taggihgrd mainly because some words may have
multiple part of speech tags and the correct tagpdds on the context. POS tags indicate the basic
syntactic function of that token, such as nounarbyas well as other grammatical information, such
as number and tense. POS tagging is a fundameef@geessing step for many other NLP (Natural
Language Processing) applications (e.g., syntpetising). Typically, POS tags provide general shal-
low syntactic information to these downstream agggions (Cohn, 2007).

Machine learning methods have been shown to be eféective in solving POS tagging than
classic NLP methods (Halteren et al., 2001). P@§itay is closely related to our problem. In fact,
the negation detection problem can be regardedsps@al case of POS tagging — we define a polar-
ity tag (possible values are Negative and Positiva) is applicable to thediagnosis>terms only.

The following sections present sequences labelangdworks that have been successfully used for

POS tagging.
2.2.  Frameworksfor information extraction

The research field of information extraction (IEyélated to this work since some of the algo-
rithms developed for information extraction caroade applied to detection of negative context. A
common information extraction task is to automdijoaxtract entities and relationships from semi-
structured or free text. For example, in the mddioanain, an IE task is to automatically populate a
structured database from a discharge summary report

Many works in IE propose learning approaches thedraatically process free text and over-
come the knowledge engineering bottleneck. Catitf Moony (1997) proposed the RAPIER system
that induces pattern-match rules from rigidly stinued text. Freitag (1998) described the SRV
framework that exploits linguistic syntax and letimformation for corpus based learning while
Soderland (1999) proposed the WHISK system fomiegrtext extraction rules automatically. The
(LP)? algorithm described in Ciravegna (2001) learngitagyrules from an annotated corpus. Kush-
merick et al. (1997) and Muslea et al. (2000) psggbwrapper induction procedure for extracting
structured information from database-like Web pagibésse works have shown that wrappers can be

automatically learned for many kinds of highly rieguidocuments, such as Web pages. Another algo-



rithm that uses wrapper induction for informatiodraction is the boosted wrapper induction (BWI)
proposed by Freitag and Kushmerick (2000).

All the above works focus on extracting entitied aglationships. There is no emphasis on
special contexts, such as negation that mightiyadalert the meaning of the text. Apparently such
cases are rare in the corpora used for evaludiangltove works (which is not true when dealing with
discharge reports where more than 50% of the fgslmight actually be negated). More recent IE
works are focused on Hidden Markov Model (HMM) kdhsechniques.

2.3.  Frameworksfor labeling sequential data

The Hidden Markov model (HMM) is a common machiearhing technique with published
applications in sequential pattern recognition $askViMs were successfully applied to related prob-
lems such as: IE (Seymore et al., 1999); POS tgg@iupiec 1992, Smith et al., 2004) and many
more. Specifically, HMM was successfully applied®®S tagging of bio-medical texts, For exam-
ple, Smith et al. (2004) trained the MedPost HMM3?@gger and achieved a 97.43% accuracy on
the MEDLINE corpus. In their HMM implementation,aaPOS tag corresponds to a state in the
model, and transition probabilities are estimatedftag frequencies in the training set. Another
HMM implementation of POS tagging applied to thed?est data repository is the LingPipe imple-
mentation (LingPipe, 2007).

We have not found any work that implements HMM #&tedt negation in free text. Neverthe-
less, we can utilize HMM POS taggers for solving tiegation problem. Applying a HMM POS
tagger to the negation detection problem is notalt task since there are many possible appraache
for structuring the HMM. Figure 2 below illustratesimple three-state HMM-based POS tagger. The
hidden states are the POS tags (e.g. noun, vgdztiad, etc.) and the arrows represent the passibl
transitions between states. Freitag et al. (20@@)ahstrate that when applying HMM for information

extraction, extraction accuracy strongly dependtherselection of the HMM structure.

Figure 2: Sample three-states HMM based POS tagger

Conditional random fields (CRFs) is a newer framgwfor labeling sequential data (Lafferty
et al. 2001). CRFs define a conditional probabiwer label sequences given a certain observation

sequence. This relaxes the unwarranted indepen@ssaenptions about the sequences which HMMs



make. Like HMMs, CRFs have been successfully fisedart-of-speech tagging. A comparative

study showed that CRFs outperform HMMs in this aapion (Lafferty et al. 2001).
24. Sentiment analysis

The problem of sentiment analysis is similar toatem recognition. Most work in sentiment
analysis classifies documents by their overallis@mit, e.g. determining whether a review is positiv
or negative (Turney 2002) while some perform phiasel sentiment analysis, e.g. Wilson et al.
(2005). The works on phrase-level sentiment araly® closer to our work than the works that clas-
sify whole documents.

Many of these recent works apply NLP techniquesettiment analysis. Most are based on
machine learning approaches similar to ours. Kiohldovey (2004) achieved 81% percent accuracy
in identifying positive, negative, or neutral semnts given free-texts. Their approach is based on
“sentiment-bearing words” such as: agree, disagrtee The lists of seed words are prepared by hand
and expanded with words obtained from WordNet. izsud Sebastiani (2005) achieved up to 85.4%
accuracy when suggesting a novel method that egpoline glossaries in addition to WordNet.

These approaches are different from our work siheg rely on seeded words and glossaries
for expanding these words. Our approach does rpErdkof such supervised guidance, the negation

terms our automatically detected.
25. ldentifying negative context in non-domain specific text (general NLP)

Negation is an active linguistic research topidrdpP,500 years back with the legacy of Aris-
totle with ongoing publications, conferences andksbops (Horn, 2001). Negation is considered
difficult in natural language processing due todkerwhelming complexity of the form and the func-
tion of sentences with negation. Negation is onthefconstants of classical logic and has complex
and systematic interaction with the other logigai@tors, especially quantifiers and modals.

In English grammar, negation is the process thasta positive stateme(ithe patient has
<diagnosis>") into its opposite denigfthe patient does not have <diagnosisk"Nouns as well as
verbs can be negated with a negative adje¢tiMeere is no <diagnosis>); a negative pronoum¢é
one, nobody, neither, none, nothingr a negative adverbhi& never was <diagnosis}k It is easy to
identify specific negation words such ast, neither, andnever as well as foNotnegation, e.gnot,
n't, andNo-negation. However, in many cases, these specdidsvare not presented, edgny, fail
andlack. Words in this second category are called inhemegatives (Tottie, 1991), i.e., they have a
negative meaning but a positive form. An additiomakphological form of negation is the affixal
negation. Prefix negations- andin- , may create negation wordehappy, unwiseandunfit. Ne-
gations can also be created with suffixes sucleas e.qg. lifeless Another complexity arise from
double negation, e.g. the sentefité not unlikely”. The neg-raising phenomenon adds additional

complexity, e.g. sentences such bdon’t believe he is illor “I don’t think he is ifl.



We could not locate any NLP research on identifyirgated concepts in specific non-domain
areas. However, some NLP techniques such as signésct semantic processing can be applied to a
negation identification framework, especially pafrspeech tagging and shallow parsing. These fea-
tures can be combined into a machine learningiiztion scheme for negation identification. The
effectiveness of such NLP techniques very much igggpen the quality of the text, particularly its
compliance with grammatical rules. The language uisenedical narratives, however, is often gram-
matically ill-formed. For example, the positiveding cough in the sentencthé patient reported she
was not feeling well due to mild cougfhus NLP techniques that rely on grammaticalesssds
may not be sufficient for identification of negatism medical narratives. Similar observation was
noted by other researchers, for example, Java j206fés that the complex linguistic structures

found in Web blogs require to rely on semantickeathan shallow NLP.
2.6. ldentifying negative context in medical narratives

Researchers in medical informatics have suggestthaus for automatically extracting in-
formation contained in narrative reports for demissupport (Fiszman et al., 2000), guideline imple-
mentation (Fiszman and Haug, 2000), and detectidm@anagement of epidemics (Hripcsak et al.,
1999). Some of the researches concentrate on ntetboinproving information retrieval from nar-
rative reports (see, for instance, Hersh and Hick85; Nadkarni, 2000; Rokach et al., 2004). A
number of investigators have tried to cope withgheblem of a negative context, see definition in
Section 1.0 — Introduction and Motivation. Thesekgacan be classified into two research domain

categories, which are presented in the following $ections.
2.6.1. Worksbased on Knowledge engineering

The knowledge engineering approach is based onmemxzert writing rules or patterns.
These rules and patterns are designed to captotactig and semantic features of the free text. The
methods used are mostly from the NLP research igiding also deep parsing technologies and
sometimes rule engines. These methods are compéexery expensive to develop and maintain,
useful mostly when the target text is written adaog to proper language rules. Examples of knowl-
edge engineering based works are: Friedman et394(; Aronow et al. (1999); Leroy et al. (2000);
Mutalik et al. (2001); and Chapman et al. (2001)ege works are described in the following para-
graphs.

Friedman et al. (1994) developed MedLEE that perfosophisticated concept extraction in
the radiology domain. The MedLEE system combinggngactic parser with a semantic model of the
domain. It recognizes negatives which are followgdvords or phrases representing specific seman-
tic classes such as degree of certainty, tempbeaige or a clinical finding. It also identifies fgahs
where only the following verb is negated and nsémantic class (i.e. “X is not increased”). This
method yields is highly accurate. The shortcomengsthat it is rigid, not easily adaptable to addi-

tional domains and expensive to develop and maintai



Aronow et al. (1999) developed the NegExpander whiges syntactic methods to identify ne-
gation in order to classify radiology (mammograptgports. While NegExpander is simple in that it
recognizes a limited set of negating phrases,asa@rry out expansion of concept-lists negatea by
single negating phrase.

Leroy et al. (2000) developed and evaluated a®hglarser that captures the relations be-
tween noun phrases automatically from free texiséts heuristics and a noun phraser to capture enti
ties of interest in the text. Cascaded finite stattomata are capable of structuring the relati@s
tween individual entities. The automata are basedased-class English words and model generic
relations not limited to specific words. The paraisio recognizes coordinating conjunctions and
captures negation in text, a feature usually igthdmgothers.

Mutalik et al. (2001) used a lexical scanner wigular expressions and a parser that uses a
restricted context-free grammar to identify pentineegatives in discharge summaries and surgical
notes. Their Negfinder system first identifies pysiions or concepts and then determines whether
the concepts are negated. The set of regular esipnssis predefined by IT professionals based on
input obtained from medically trained observerseif ktrategy yields over 95% accuracy in classify-
ing negative medical concepts. Mutalik’s algorittnguite complex and requires other utilities such
asLexandYacc The tools required by Mutalik’s algorithm are igaattainable. However, imple-
menting their system in a preexisting indexing twolild be less straightforward.

One of the most extensive studies on negationtmidan the work of Chapman et al. (2001).
They developed a simple regular expression alguoritalled NegEXx that implements several phrases
indicating negation, filters out sentences contgjmphrases that falsely appear to be negation @hras
and limits the scope of the negation phrases. Tdigarithm uses a predefined set of pseudo negation
phrases, a set of negation phrases, and two shegldar expressions. They use a lexical scannér wit
regular expressions and a parser that uses actedtdontext-free grammar to identify pertinentareg
tives in discharge summaries and surgical notesir Blystem first identifies propositions or coneept
and then determines whether the concepts are meddteir system performed with a sensitivity of
95.7% and a Recall of 91.8% and is fine tuned witas that apply to particular negation phrases and

syntactic structures.
2.6.2. Works based on machine lear ning

Many of the recent works in the field of text cifisation are based on the machine learning
approach. The work of Averbuch et al. (2003) iaample of detecting negated concepts in medical
narratives using machine learning techniques. émtlethodology that Averbuch developed for auto-
mated learning of a negative context profile in roabnarratives, the profile contains only ten wsord
and/or phrases such dsegative for”; “had no”; “was no”; etc. It has been shown that this algo-
rithm is superior to traditional classification afghms that are based on "bag-of-words" representa

tion. Machine learning has proven effective fortielassification. The advantages are that such-meth
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ods are much faster to develop than Knowledge erging. In addition they are more effective when
the text is not written according to proper grammngdes.

Goldin and Chapman (2003) describe an extensiddegEx using machine learning algo-
rithms and demonstrate that machine learning teclesi (including decision trees) enhances the per-
formance of their NegEXx classifier. They summatizefindings of their study into a simple rule:
“When negation of a UMLS term is triggered with tiegation phrase ‘not,’ if the term is preceded
by ‘the’, then do not negateHowever this conclusion is based on manual in&gion of the ex-
perimental results. There is no research that toidsarn syntactically rich negation patterns auto
matically and then uses the discovered patternkgsify medical concepts that appears in unseen
text.

Based on the above assumptions the purpose ofwvthis is to develop a methodology for
learning negative context patterns in medical nvea and measure the effect of context identifica-
tion on the performance of medical informationiestal. While the knowledge engineering approach
showed that regular expressions are very effeativéentifying negative context, there is no resbar
that tries to automatically learn these expressimm medical narrative reports. Thus the aim i th
work is to examine the ability to automatically neaegular expressions from medical narrative re-
port. Moreover usually all automatic discovery haets used in fields other than medical informatics
provides an ordered list of regular expressionsistTthen a new sentence is needed to be examined,
this sentence is matched against the list of regdpressions. The outcome of the first positively
matched regular expression is then used. In tisisareh we suggest to learn a hierarchical structure

As we will see later this hierarchical structure imaportant features.

3. THE PROPOSED METHODOLOGY

The methodology we develop enables an effectivega®of learning useful regular expres-
sions from the training corpus. Secti®d below explains the complete process of traiaimggular
expression based classifier from an input of trajrand test corpora. Sectiohi®-3.5 specifies in
detail each of the steps. Finally, Sect®f suggests the concept of cascading severalfidesgor

improving the performance.
3.1. Theprocessoverview

We suggest the following process of training asifas to predict negation concept using
regular expressions patterns. The process inclodesteps (see Figure 3)
1. Corpus preparation: A domain specific task designed to normalize,egalize and
tag the free text so that it can be further proegss
2. Regular expression patterns learning: The automatic creation of a regular expres-

sion patterns from the training set.
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3. Patterns selection: Applying heuristics and features selection teghas to select the
best patterns for correct classification of thecap.

4. Classifier training: Training a decision tree classifier.

1 2 3 4
Corpus Patterns Patterns Classifier
Preparation Creation Selection Training

Figure 3: The process overview

The following sections describe each of the abospss
3.2.  Step 1: Corpuspreparation

The objective of the corpus preparation phase isatesform the input discharge summaries
data into a usable corpus for the training and péstses. Figure 4 presents the corpus preparation

sub-steps. The following sections describe eackssejn

Training

set

Discharge

Manual
labeling '<

Sentence E
. Sentence With

Summanes Preprocessing

-

Tagging boundaries / Multiple

Seeds

Figure 4: Corpus preparation

3.2.1. Step 1.1: Tagging

In the first step we parse all the discharge suri@saAll known medical terms are tagged us-
ing a tagging procedure presented in our previooik\RRokach et al. (2004). Consider for example

the following text:

This is a 66 year old woman status coronary artgygass graft in 1989-06-23

with coronary artery disease, hypertension, diabetelitus, kidney stone

We use the UMLS metathesaurus, for tagging theegest i.e. replacing medical terms with

their concept type. For example, when the parsahes the terrooronaryit queries the UMLS for

12



terms starting witlicoronary*”. The result set includes several terms starting eationary. The
parser then uses a sliding window in order to m#ieHongest possible UMLS term to the given

sentence. The UMLS terms relevant for the aboveesen are listed in Table 1.

Table 1: Tagging using the UMLS

ID Term Type CUI (concept unique identifier)
1 | coronary artery bypass graft Procedure 10010055

2 | coronary artery disease Diagnosis 10010054

3 | hypertension Diagnosis 10020538

4 | diabetes mellitus Diagnosis 10011849

5 | kidney stones Diagnosis 10022650

Since we are only interested in the generalizexh foirthe sentence (the specific diagnosis or

procedure does not matter), the output text folhgythe tagging process takes the following form:

This is a 66 year old woman status <Procedure_12989-06-23 with <Diag-

nosis_1>, <Diagnosis_2>, <Diagnosis_3>, <Diagnos#>, <Diagnosis_5>.

We are using a simple algorithm for tagging medptakses in the text based on the UMLS
meta-thesaurus. The main idea of this tagger éfftciently find the longest string in the UMLS tha
match the given text. This tagger has no capghdiresolve ambiguities. Thus if the same string
represents two different tags then one of thembgrarily selected. These potential errors wél b
manually corrected during the labeling step.

Figure 5 describes the pseudo-code of the taggethémeta-thesaurus is stored in a database
table, and this table contains many entries, itlvéldesirable that the number of queries will bei-m
mized as much as possible. In order to achievegthasthe following measures have been added:

e Stopword - Any word which appears in the Stopwdadde (such as "the", "in") will
not be searched for. The Stopwords is based oted fize hash table. This table is
updatable (see below) based on LRU strategy. Nasleds several basic words can
be permanent members of this table and can narheved.

* Inorder to improve database querying performamcat@ibute that contains the first
word and an attribute the represents the phragghéim characters) have been added
to the concept table.

» A caching mechanism is used in order to avoid dogrthe database with the same
query in adjacent times. Each entry in this caemeasents a list of phrases beginning

with the same token sorted by phrase length. Tdibe is managed as LRU hash ta-
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ble, where the first token is used as the key hadi$t of phrases is used as the stored

item.

INPUT: O — Original Text
OUTPUT: T — Tagged text

Do
T < O /* Create a copy of the original text to be mani pulated */
t<- Next Tokenin T
Ift |:| STOPWORD then
List<- D
Ift D CACHE
List<-CACHE(t)

Else

List <- Select all phrases in UMLS

with first token=t order by length (de scending)
If List= |:| then
Add t to STOPWORD using LRU str ategy.
Else
Add List to CACHE using LRU strategy.
End
End
For each phrase p i in List
If current position in T contains p i then
Replace the p i in T with a tag.
Promote the position in T accordanly.
Exit For
End If
End For
End If

Until no more tokens
Retrun RESULT

Figure 5. Pseudo-code for simple tagger.

3.2.2. Step 1.2: Sentence Boundaries

Physicians are trained to convey the salient feataf a case concisely and unambiguously as
the cost of miscommunication can be very high. Tihissassumed that negations in dictated medical
narrative are unlikely to cross sentence boundaaied are also likely to be simple in structure {Mu
talik et al., 2001).

An additional processing step includes breakingtdisge summaries documents into sen-
tences using a sentence boundary identifier asestre by Averbuch et al. (2003). The sentence
boundary is identified by searching for terminateigns such as {".", "?", "1"}. This approach istno
sufficient since periods and other signs are fratiy@ppear inside sentences (for instariPatient

was discharged on Lopressor 25 milligrams p.odB'i. We detect such exceptions using regular

1 From Latin: oral administration two times daily
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expressions (an expression that describes a s#irgs) to exclude expressions that might mistak-

enly be considered end of sentence (Table 2).
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Table 2: Regular expressions to exclude sentence end

(bltjg\.i\.d\.?]  p\l.o\.?  \([0-9]+) cc\.
p\.r\.n gu.d\.?| \. of \., and
g\.h\.s mg\. (Dr\)(\s?) (\w+ \sq\.

3.2.3. Step 1.3: Manual Labeling

This step refers to the creation of the trainingpos. Two physicians reviewed each document and
labeled each medical term indicating whether itespp in positive or negative context. If the physi-
cians have noticed that the medical term has beengly tagged during step 1.1, they have first
selected the correct tag and then indicated ffjiiears in positive or negative context.

Since most sentences include more than one diagribisi necessary to label each of them
during the manual labeling process. Consider fstaimce the compound senterit&he denied short-
ness of breath, but did have fevelr this caséshortness of breathis negative whiléfever" is
positive. Thus, this sentence will be representetié dataset as two different instances — one for
each diagnosis term. Each instance has one lpbsiie or negative). Since each instance has one
label (positive or negative), each has exactlyamzhor diagnosis term to which the label referés Th
anchor term is tagged as "<DIAGNOSIS>" while anyestdiagnosis terms in the sentence will be
denoted as "<DIAG>". The above procedure is dematest in Figure 6 below. By doing so, we will
be able to obtain different patterns from the saer@ence. For instance in this example, the pattern
".* denied <DIAGNOSIS> *can be learned for identifying negative contexid the pattern*
denied <DIAG> but .* <DIAGNOSIS*>can be learned for identifying positive context.

She denied =DIAGNOSIS_1= but did have = DIAGNOSIS_2= ‘

P

; S - N | MNegative
She denied <DIAGNOSIS=> but did have =DIAG | Corpus

“-..._‘_‘_______,_../
T

ey
She denied <DIAG= but did have = DIAGNOSIS = | Positive

Corpus
‘\-._,_‘_‘_______,_,_,-’

Figure 6 Handling sentences with multiple seeds

3.3. Step 2: PatternsCreation

Instead of using a single regular expression remtasion for the entire sentence, we use two
regular expressions: one for the string that presdhle targeted medical term (the seed) and one for

the string that follows it. This split may help tesolve some of the problems that arise in compound
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sentences that include both positive and negatimeegts in the same sentence. Recall the example
"The patient states she had fever, but denies hagt@ain or shortness of breathh this case the
appearance of the veftenies"after the termifever” indicates that the terfifiever" is left in positive
context. The appropriate regular expression wdl ib this case as follows:{0,200}denies
any.{0,200}<DIAGNOSIS>} where the distance 200 is arbitrary determinedtipe expected sen-
tence length in the domain.

To learn regular expressions, we have adapted iffeyeht algorithms to our task and com-
pared them against each other. The first algorithB§, is commonly used to compare characters in
two text files. The second algorithm, Teiresiass wasigned for discovering motifs in biological
sequences. We describe how we adapted these higsttib the task of learning regular expressions

for negation patterns below.

3.3.1. Learning regular expression patterns using longest common subsequence

algorithm

The basis for discovering a regular expression igethod that compares two texts with the
same context and incorporates the same conce fiypediagnosis, medication, procedure, etc.). By
employing the LCS algorithm (Myers, 1986) on eadlnt pf the sentence (before the targeted term
and after the targeted term) a regular expresgianfits these two sentences is created. The LCS
employs a brute force policy: given a sequence efemnine all possible subsequences of X, and
check to see if each subsequence was a subseqfeYic&eeping track of the longest subsequence

found. For instance assume we are given the faligwivo sentences:

The patient was therefore admitted to the hospital and started on
<MEDICINE> as treatments for <DIAGNOSIS>.

The patient was ruled in for <DIAG> and started <ME DICINE> for
<DIAGNOSIS>.

We execute LCS algorithm on the two normalizedesgrds as presented in Table 3.
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Table 3: Longest Common Subsequence Generation

Sentence 1 Sentence 2 Pattern
The patient was The patient was The patient was
therefore admitted to the
hospital {24,35}
ruled in for <DIAG>
and started and started and started
on .{0,4}
<MEDICINE> <MEDICINE> <MEDICINE>
as treatments .{0,15}
for <DIAGNOSIS> for <DIAGNOSIS> for <DIAGNOSIS>

Note that the LCS algorithm was revised to compakens as opposed to comparing charac-
ters in its classical implementation. It shoulcbad& noted that whenever there was only insertion (
only deletion) we added a wild card string with @mimum length of 0 and a maximum length of the
inserted string (including the leading and trailsgaces). On the other hand, whenever there was
simultaneously insertion and deletion, we addeddeard string with the minimum length of the
shortest string and maximum length of the largestgs (without leading and trailing spaces because
they are part of the common substring).

As a result of running the LCS algorithm we obtia following pattern. This pattern can now

be used to classify concept of type medication appe in positive contexts.

The patient was .{24,35} and started .{0,4}<MEDICIN E>.{0,15} for
<DIAGNOSIS>
3.3.2. Learning regular expression patternsusing Teiresias algorithm

The Teiresias algorithm was designed to discovdifsria biological sequences, an important
research problem (Rigoutsos and Floratos, 1998).réthod is combinatorial in nature and able to
produce all patterns that appear in at least a{esfned) minimum number of sequences, yet it man-
ages to be very efficient by avoiding the enumeratf the entire pattern space. Furthermore, the
reported pat-terns are maximal: any reported patannot be made more specific and still keep on
appearing at the exact same positions within thatisequences.

Teiresias searches for patterns which satisfy icediensity constraints, limiting the number of
wild-cards occurring in any stretch of pattern. Blepecifically, Teiresias looks for maximal <L,W>
patterns with the support of at least K (i.e. ia torpus there are at least K distinct sequenegs th
match this pattern). A pattern P is called <L,Witgra if every sub pattern of P with length of at

least W words (combination of specific words aridaild-cards) contains at least L specific words.

For example, given the following corpus of six nagasentences:

no further <diagnosis> was noted

18



no history of <diagnosis>

no intraoperative or immediate <diagnosis> were not ed
no other <diagnosis>

past medical history no other <diagnosis>

patient had no further episodes of <diagnosis>

The Teiresias program (L=K=2, W=5) discovers soureing patterns shown in the following

file:

no other <diagnosis>
no further

of <diagnosis>

no . <diagnosis>
<diagnosis> . noted

NN®8RNRNR

no . . . <diagnosis>

The first two columns represent the support ofghtéern. The dot represents a missing word.
Note that the program yields also patterns thaiataonclude the <diagnosis> seed. These patteens ar
not useful for our purpose and are filtered outxtNee transform the Teiresias patterns to regular
expression patterns by replacing each dot (missorgl) with a regular expression such@&sL},
where L is calculated by counting the number o&dotd multiplying by the average word length (8
characters as per our corpus).

The resulting regular expression patterns are pteden the following example:

no other <diagnosis>

of <diagnosis>

no .{0,8} <diagnosis>
<diagnosis> .{0,8} noted
no . {0,24} <diagnosis>

For discovering the regular expressions, we contptire LCS algorithm to the Teiresias algo-
rithm. The usage of Teiresias for creating regelqressions patterns requires the setting of the fo
lowing parameters: (1) The minimum number of wdrda pattern (set to 2); (2) the maximum extent

of a pattern (set to 100 words); and (3) The mimmailowed support for a pattern (set to 10).
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34. Step 3: Patternsselection

Obviously there are many patterns that can beedeah the LCS (each pair of sentences with
the same concept type and context). In fact, Ihittao many patterns are created and it is essiati
keep a manageable number of patterns. For exampiaining set of 140 negative sentences and 140
positive sentences yielded 2*(140*139/2)=19,46Qqvas.

3.4.1. Heuristicsfor pattern selection

Many of the generated patterns differ only in tistathce of important keywords from the seed
concept. We start by rounding the distances irr¢lgellar expression patterns. For example, the pat-
tern  ‘*had no.{12,27}<diagnosis>" is replaced with the pattern patternshad
no.{10,40}<diagnosis>" As a result, patterns such ashatl no.{12,27}<diagnosis>"and ‘had
no.{17,32}<diagnosis>"are replaced with the patterhdd no.{10,40}<diagnosis>" Trivial patterns
such as 4.{70,100} <diagnosis®are omitted. For example from the original 19,4&terns, 17,235
were identified as redundant and trivial patteifter eliminating these patterns, only 2,225 patser

are remained.
3.4.2. Correlation based featur e selection

Feature selection is the process of identifyingwaht features in the dataset and discarding
everything else as irrelevant and redundant. Aempilrpose each "regular expression” pattern repre-
sents a different feature.

In this work we use a non-ranker filter featureestbn algorithm. Filtering means that the se-
lection is performed independently of any learrafgprithm. Non-ranker means that the algorithm
does not score each pattern but only indicateshwbettern is relevant and which is not. Figure 7
below describes the training set matrix beforeuiest selection. The rows are training sentences
(negative and positive), the first K columns are tbgular expression patterns; and the last colamn
the target class (nhegative / positive). The cdlleas 1 if the regular expression matches theesest,
otherwise it is 0. The matrix described above ésitiput to the features selection algorithm.

In this work we use the Correlation-based Featutes&t Selection (CFS) as a subset evaluator
(Hall 1999). Rather than ranking individual reguapression, CFS ranks the worth of subsets of
regular expressions by considering the individwabctive ability of each expression along with the
degree of redundancy among them. Subsets of expnedhat are highly correlated with the context

while having low inter-correlation are preferred.

CFS first calculates a matrix of expression-conéd expression-expression correlations
from the training data. Expression-context corietaindicates how much an expression is correlated
to a specific context while expression-expressimmetation is the correlation between two expres-

sions. CFS then calculates the merit of an expesgibset consisting of K expressions:
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Merit, = Ko _
JK+K(K =1)r

where MeritS is the merits of the expression subset, is the average of the correlations between

the expression and the context angl is the average expression-expression correlation.

As the search space is hug€)(ZFS starts from the empty set of regular exjpoassand uses
the best-first-search heuristic with a stoppingecion of 5 consecutive fully expanded non-imprayin
subsets.

The CFS algorithm is suitable to this case, becthexe are many correlated patterns (for in-
stance, when one pattern generalizes another patk@ar example the 2,225 remaining patterns cre-
ate a dataset of 280 instances with 2225 inputpiadributes (O if the pattern does not match the
sentence; 1 if pattern matches sentence) and t@itgbute that represent the concept classificatio
("Positive” or "Negative). By applying the CFS alilom on the training set presented in Figure 7 the

number of patterns is reduced from 2,225 to 35.

Pattem | |Pattem 2 [Pattem 3 | . [Pattem K [Compus
Zentence 1 1 1 o 1 Positive
Bentence 2 1 o 1 L] Positive
Positive
Bentence M 1 o 1 1 Positive
Sentznce 1 1 1 0 Magative
M+
Sentznce 0 1 1 0 Mzgative
M+2
0 Wagative
Sentence N 0 1 0 Wagative

Figure7 Training set matrix before features selection

3.5. Step 4: Classifier training

The filtered matrix, together with the manual cifisation of each concept, is fed into a decision

tree induction algorithm which creates a clasdiiicadecision tree. The J48 algorithm is used as th
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base induction algorithm for growing a decisioretrd48 is a java version of the well-known C4.5
algorithm (Quinlan, 1993).

An illustrative example of decision tree generagegresented in Figure 8. It describes a classifica
tion decision path where patterf0,200}have.{0,50}<diagnosis>"|learned from positive examples,
indicates a positive context with probability P5cise the sentence does not match the three (nega-
tive) patterns: ."{0,200}without.{0,10}<diagnosis>} ".{0,200}rule out.{0,10}<diagnosis>";
".{0,200}had no.{0,10}<diagnosis>{with probabilities P1, P2, and P3 for negative) matches the
negative patterri.{0,200}n0.{0,50}<diagnosis>" Here we denote “negative pattern” as a pattern
learned from negative context examples. This deirates the power of decision based on matching

a sentence with multiple regular expressions.

.{0,200}without.{0,50}<diagnosis> Matck
Negative w/p P
No Matct

) 4

A

.{0,200}rule out.{0,50}<diagnosis> Matck
Negative w/p P
No Matct

A

.{0,200}had no.{0,50}<diagnosis> Matck
Negative w/p P
No Matct

Matck

) 4

) 4

.{0,200}n0.{0,50}<diagnosis>

A 4

.{0,200}have.{0,50}<diagnosis>

No Matct Matck

Positive w/p P§
Negative w/p P

Figure 8 Example decision tree

A 4

No Matct

Positive w/p P

3.6. Cascade of threeclassifiers

3.6.1. Overview

It is well known that the classification accuradyaosingle decision tree can be significantly im-
proved by growing an ensemble of trees and lettiegn vote for the most popular class. Analyzing

the problem domain, we brought up the hypothesis ithis possible to create a more powerful en-
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semble structure than the structure obtained fraich sgeneral purpose ensembles method as
Adaboost (Freund and Schapire, 1996). Specificaliynoticed that: (1) training set size is a lirmgti
issue due to the computational complexity of themree learning algorithms used; (2) in the corpus,
there are simple sentences versus compound sestengsstructions; (3) Some of the patterns yield
very high Precision. This is obvious since for samfighe negation terms attached (anchored) to the
seed, mean that the seed is negated. For exampesentence such ds,. deniednausea ...” the
nausea is negated with near 100% probability. Tihumakes sense to train a simple classifier using
only such (anchored) patterns, using it to iderttify simple instances with very high Precision.i,he
only instances not classified as negative by tts iascade are used to train a second classifier.

These observations triggered the idea of conshyeticascade of classifiers. The idea is to
build a cascade of classifiers as shown in Figufeh@ selection of tree cascades is due to the prob
lem characteristics: the first cascade consisesohored patterns; the second cascade consists of
negative patterns (learned from negative sentergmk}he third cascade classifier also includes pos
tive patterns.

Figure 9 demonstrates the cascaded classifieiirtgpgtrategy. The first cascade includes only
anchored patterns, ensuring high Precision (vemypfesitive sentences will be classified as negative
Anchored patterns are patterns where the word éhard (no separating words) to the seed. For

example, the following anchored patterns form thet €ascade classifier:

. no <diagnosis>

. denied <diagnosis>

. denies <diagnosis>

. not <diagnosis>

. negative for <diagnosis>
. without <diagnosis>

. ruled out <diagnosis>

The training set of negated instances for the skocascade comprises negation patterns that
failed to classify as negative by the first cascédained classifier 1. The training set of positive
instances for the first cascade is used as isaérséitond cascade. Figure 10 illustrates a schematic
description of the second cascade classifier.

In the third cascade we learn patterns from thetiegyand positive corpora, taking only nega-
tive instances which failed to classify as negaliyehe first and second cascades. As can be Been i
Figure 11, the third cascade classifier includes alositive patterns (patterns learned from thé- pos
tive corpus). In that sense, these patterns aferelift from the previous works that rely only omgae
tion patterns.

Figure 12 demonstrates how the cascaded clasgigefarm the classification of three unseen
sentences. The first senteritke patient denied <diagnosis>'is matched by an anchored pattern
“denied <diagnosis>"and is classified negative by “Trained classifitrThe second sententte

patient did not experience recent <diagnosis#es not match with any of the “Trained classifier
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anchored patterns, therefore it is fed into “Trdimtassifier 2" for further classification as negat
due to the patterns comprising “Trained classifierThe third sentence is classified as negative by

the “Trained classifier 3”. The last sentenceas classified as negative by all three cascadessaand
therefore classified as positive.

Cascaded classifier training
Negative .
ﬂ— Classify .
(<] Classifier [
§ ;'t Training
@ - |
@® Positive
Errors
Negative
& Corpus
)
B> N Classifier
3 Training
©
(@]
Errors
:
[}
) Error_s
o Negative
2 Corpus
Q -
3 Y ClaS.SI.erI’ Classifier
O Training 2

Figure 9 Cascaded classifier training
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with, {0.100}0£.{0.200} <diagnosis>

<diagnosis>.{0.10} or f j <diagnosis>,{0.100} or

=0

denied {0.50}<diagnosis> ! - - -
denies, {0.50} <diagnosis> ! -
negative for <diag> .{0.50} <diagnosis» Q -
<diagnosis>. {0,100} <diag> or Q -
i i
Figure 10 Second cascade

denied .{0,50}<diagnosis> 2
o =1

denies .{0,50} =diagnosis> /( -
=diagnosis=. {0.10} or%>£ i
review of .{0,50} <diag> .{0,50}<diagnosis> i i
<diag> <diag= <d1agn051s>’( i
sesi0, )\ <o (0.5t o

Figure 11 Third cascade
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1. The patient denied <diagnosis>

-

2. The patient did not experience
recent <diagnosis>

w

3. The patient was given
instructions to call in case of
<diagnosis>

4. She experienced <diagnosis>

Classifies Sentence 1 as
negative, all other

[
w I

I sentences are passed to

I

|

the next classifier

Trained
Classifier
1

Classifies Sentence 2 as
negative, Sentences 3 and
4 are passed on.

Trained
Classifier
2

Classifies Sentence 3 as
negative, Sentence 4 as
positive. Trained
Classifier

2

Negative ®

®

Figure 12 Cascade classifier classification examples

4, EXPERIMENTAL STUDY

4.1. Experimental Setup

We study the potential of the proposed method&ah word datasets. The main training cor-
pus is a set of 1,766 instances parsed from detigeindischarge summaries that were obtained from
Mount Sinai Hospital in New-York. A shorter versioh this corpus was used in our previous work
(Rokach et al., 2004). Recall from Figure 6 tha dame sentence can be the source for several in-

stances (if there are several diagnoses in the santence).
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Experimental evaluation is performed using ten fmidss-validation, the dataset is repeatedly
split into training and testing sets so that ttagistical significance of the difference betweeassifi-
ers can be analyzed. The cross validation spkt peaformed on the report level and not on the in-
stance level because different physicians mightdiféerent language; If instead the cross validatio
split was performed on the instance level the ptedi power could be higher than should be ex-
pected. The last argument is true, because instameksplitting can generate validation sets which
contain instances obtained from the same reporttinze been used to create the corresponded train-
ing set.

Two physicians were asked to label each diagntestio to either "positive” or "negative”.
Using Kappa statistics we measured the labelingeagent of the two physicians and concluded that
there is almost perfect agreement (Kappa coeffis@868). The few disagreements have been re-
solved by presenting the cases to a third physistemserved as an arbitrator.

The variety of document sources enables us to measul compare the sensitivity of the clas-
sification methods to the text origin. We perfornsesreral experiments in order to determine the
classifier sensitivity to the following parametefa) Different training set sizes; (b) the effettising
feature selection (c) the effect of using ensernbléecision trees. We examined here in what extent
can improve the results and whether the new casgadisemble is more powerful than existing gen-
eral purpose ensemble methods by investigatinthéilifference between using LCS and Teiresias;
(e) the sensitivity to diagnosis type; (e) the gty to different data sources and documentses/p
(such as operation reports, outpatient, etc.).

In order to examine the predictive power of theneixeed methods, we will use the following
four measures: Negative Predictive Value, Recaldasure and Accuracy. Note that all other meas-

ures presented in Section 2.5 can be restoredtfiese four measures
41.1. Compared Algorithms

Our algorithm has been implemented using the WEK#nEwork (Witten and Frank, 2005).
We compared our cascade classifiers to generabparpnsemble of decision trees. For creating the
general-purpose ensemble of decision trees wethseidaBoost algorithm (Freund and Schapire,
1996) with ten iterations (as explained in Sectgh5). AdaBoost was also used to create an ensem-
ble of seventy decision stumps.

The NegEx classifier (Chapman et al., 2001) wasualnbuilt using knowledge engineering
methods in order to specifically resolve negationsedical narrative reports. The NegEx is a fixed
classifier and has no learning capabilities. We garad our approach to NegEx in order to examine
if an automatic learning method can achieve anvedgmt performance.

Our algorithm was compared also to the HMM techeiqour HMM implementation ap-

proach is based on the observation that the negdétection problem can be regarded as a special

27



case of part of speech tagging. We define a pgltif (possible values are Negative and Positive)
that is applicable to thediagnosis>terms only. Our HMM implementation for the negatdetec-
tion problem is based on the LingPipe/MedPost imgletation. The LingPipe implementation ac-
cepts a file of tagged sentences as input. An ekatagged sentence i§The_DD N-terminal_JJ
region_NN had_VHD high_JJ homology NN with_Il RaN BP2 NN/ SYM Nup_NN 358 _MC, _,
a_DD nucleoporin_NN component_NN ,_, showing_V\&6 (BST BS-63_NN was_VBD a_DD
member_NN of Il the_DD NPC_NN family NN ._.”

These files are then used for training a HMM. Theameters the HMM determine how many
characters to use as the basis for the modelh@}ptal number of characters (256), and an intarpo
tion parameter for smoothing (8.0). According tadRipe, these are reasonable default settings for
English data.

In order to use LingPipe for our purpose, we cotegeour training corpus files to the format
recognized by the LingPipe/MedPost. We implemehtedHMM models. In the first HMM model
all frequent words are used as states. In the ged®M model, for fair comparison to the regular
expressions classifier, all the words that are id@ned in the regular expressions classifier aeel us
as tags in the HMM implementation. In addition vee three more tags: (1) ni — for words that are
not important; (2) neg — tag for negative diagnaesity; (3) pos — tag for positive diagnosis onlgr F
example, the sentencthé patient does not appear to be with an <diagsssiis transformed to the
tagged sentenceithe_ni patient_patient does_ni not_not appear_ntdde ni with_ni an_ni diag-
nosis_nedy

Our algorithm was also compared to the CRF algaritRor this purpose, we used the
MALLET package (McCallum, 2007) for implementingetRFs. We examined two options; in the
first option we used the entire sentence as art.itpthe second option we used only the substring

that appeared before the concept to be tagged.
4.1.2. Evaluation Metrics

The decision made by the classifier can be repteden a structure known as a confusion ma-
trix or contingency table. The goal of this expezithis examine the ability of classifier to corhgct
identify negations. Thus, the confusion matrix basn defined with respect to negations and has the
following four categories (see Table 4): True pusk (TP) are terms that are correctly recognized a
negated. False positives (FP) refer to non-negdateas incorrectly labeled as negated. True nega-
tives (TN) correspond to non-negated terms corrdatleled as non-negated. Finally, false negatives

(FN) refer to negated terms incorrectly labeled@s-negated.

2 The binary confusion matrix has four entries. THysproviding the values of these four measutds, possi-
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Table 4: A binary confusion matrix

Classified Negated Classified Non-Negated
Actually Negated TP FN

Actually Non-Negated FP TN

We use the well-known performance measpresision andrecall (Van Rijsbergen, 1979).
Because there is a trade-off between the precésidrthe recall we also report their harmonic mean
known as F-Measure. The main criterion for evahgatilassifiers is the accuracy which is the propor-
tion of correctly classified instances and the nendf instances in the test corpus. Given the confu
sion matrix presented in Table 4, the above evialnahetrics can be expressed mathematically as

following:

Recall = TP/(TP+FN)

Precision = TP/(TP+FP)

Accuracy = (TP+TN)/(TP+TN+FN+FP)
F-Measure=2TP/(2TP+FN+FP)

4.2. Resaults

4.2.1. Overall results

Table 5 presents the performance measures valagettby the regular expressions classifi-
ers compared to: (1) “Bag-of-words”; (2) NegEx sléier; (3) HMM classifier and (4) CRF classi-
fier. Moreover, we compare the proposed cascadgoritim with other regular expression-based
classifiers: AdaBoost with C4.5 as inner classifisdlaBoost with Decision Stump as inner classifier
and a single C4.5 decision tree. Experimental ewamo is performed using ten fold cross-validation.
The superscript "+" indicates that the performaat&CS Cascade is significantly higher than the
corresponding algorithm using paired t-test at iclamfce level of 95%.

The results indicate that “Bag-of-words" obtainsd@@te Precision scores (the precision re-
garding the negative label) and moderate Recallesc@recall regarding the negative label). On the
other hand NegEx obtains high Recall scores andenatel Precision scores. All regular expressions
based classifier obtain both high Precision andh fitgcall. Moreover, no method has significantly
outperformed the cascaded classifiers approacttifgadly, the new method outperforms HMM and

CRF. Thus, regular expressions outperform otheatimy algorithms in both F-Measure (F-Measure

ble to restore other measures presented in Settlo, such as precision and recall.
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precision regarding the negative label) and Acourabe LCS and Teiresias show similar perform-

ance.

Although previous works have shown that CRF sigaiftly outperforms HMM, in this ex-

perimental study CRF's improvement is moderate.dddycan be explained by the fact that the ma-
jor advantage of CRF POS tagger versus HMM POSetaggn the ability of CRF to model ortho-

graphic and morphological word features, whichagdnd the scope of this paper (all methods exam-

ined in this paper use words as features).

4.2.2.

The following Figure 13 describes the Precisionrdgular expressions famitpo

The suitability of the first cascaded decision tree

.{0,D}<diagnosis>" as a function of the distance D. It is clearlgwh that the Precision increases

with the decrease of D, maximum achieved when DHAis explains the cascade strategy that en-

ables high Precision in the first cascade withaardasing Recall. The Recall is not affected since

this cascade can only classify negative instarinegances that are not classified as negativeente s

to the next cascade.

Table 5: Benchmark results

Method Precision Recall F-Measure | Accuracy
Bag of words “86.1+ 4.1% | 87+ 5.3% | '85.2+ 3.9% | 86+ 3.3%
NegEx *87.7£0.4% | 99.00.6% | 93.0t0.3% | 92.6+ 0.3%
s Frequent words as states| 88.4+ 4.1% | "85.5+ 3.4% | *86.9+ 3.6% | "87.1+ 3.2%
% Cascade words as states| '87.1+ 3.4% | 93.8+ 3.5% | "90.3+ 2.9% | "90.0+ 3.1%
. All words in the sentence| '88+ 4.5% | '89.1% 2.4% | "88.5£ 2.7% | "88.6% 2.2%
S Only words [hat apDear | gz 7+4.99 | '00.3+ 4.5% | '91.4% 3.7% | 915% 3.5%
efore the concept
Single DT with LCS "92.3+3.7% | "85.7+ 3.2% | 89+ 3.5% | "89.4+3.1%
S Single DT Teiresias 90+ 3.3% 95.H2.5% | 92.5:2.7% | 792.3+2.7%
3 10 2daBoostDTSWIN | g4 011,905 | '89.241.4% | 926 15% | 92.2£1.2%
3
C_LE Zt% n?;’:mﬁsié’fsdedsmn 96.3+ 1.6% | '83.8+ 1.1% | *89.6% 1.4% | *90.3% 1%
68:) Cascade DTs with LCS | 94.4+2.4% | 97.4+2.5% | 95.9-1.9% | 95.8 1.8%
Cascade DTs with 94.6+26 | 967429 | 95421 | 95.&:1.9

Teiresias
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Figure 13: Regular expression Precision versus distance

4.2.3. Theeffect of training set size

Figure 14 presents the effect of the training & sn the predictive performance and the
number of regular expressions. It shows how theiracy based on 10 folds cross validation con-
verges as the training set size is increased. Awrstirom the graph, the number of regular expres-

sions (post feature selection) is not directly etated with the classifier accuracy.

Regular expressions classifier
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Figure 14 Regular expressions classifier training

4.2.4. The effect of the featur e selection

Table 6 compares the accuracy obtained by the aegupressions classifier before and after
CFS feature selection based on 10 folds crossatainl The CFS filter eliminates on average about
95% of the features while achieving substantialueacy gain. The filtering improves the classifier

accuracy by about 5% on average.
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Table 6: The effect of feature selection on accuracy

Classifier mode

Training set size

200 240 280
Cascaded LCS with | Number of regular
o _ 2069 2300 2225

only heuristic filter- | expressions
ing Accuracy 81.9% 82.8% 87.0¢
Cascaded LCS with | Number of regular

o . 138 49 35
heuristic filtering expressions
followed by CFS. | Accuracy 88.5% 87.7% 91.1¢

4.25. The effect of the ensemble size

While the number of classifiers in the cascadechoeeis set to three, the number of iterations
in the AdaBoost algorithm can not be predetermaugdi should be tuned to the particular problem.
Figure 15 presents how the ensemble size affeetadburacy when the base classifier is C4.5. The
figure presents only the first 11 examined sizesedeon 10 folds cross validation. We also checked
the ensemble size up to 20. However it has no teffeche accuracy (it remains as the accuracy of
ensemble size of 10). It can be seen that the acgwf the proposed method is improved from

89.39% to 92.20% (in ensemble size of 10).

Performance Measures as a Function of Ensemble Size
8% Using C4.5 as Base Classifier
96% —= ST

- N , Mo N —

94% 1~ v -

s --+--  Precision
92% -=-  Recall
90%x~ - F-Measure
88% Accuracy
86%0%
84% ‘ : : ,

1 3 5 7 9 11
Ensemble Size (Number of Iterations)

Figure 15: Performance measures as a function of ensembleisiizg C4.5 as base classifier

Figure 16 presents the results obtained for AdaBosieag Decision Stump as base classifier.
In contrary to the number of iterations requirethtv@4.5, Decision Stumps requires many more itera-

tions in order to converge to the optimal perforoean
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4.2.6.

The results presented in the previous subsectiglisated that the proposed method can ob-
tain higher accuracy than the simple "Bag-of-wordis'this section we are interested in checking if
the improved result implies that the regular exgigsapproach covers all predictive expressiveness
of the "Bag-of-words". For this purpose we join the datasets into a single dataset, thus each in-
stance is now characterized by a set of discoveatérns and by a set of words. Table 7 preseats th

performance of the cascaded classifier based dold® cross validation. It seems that adding the

Comparing Regular Expressionswith Bag of Words

"Bag-of-words" attributes to the regular expressitinbutes has reduced accuracy.

Table 7 presents also the classifier's compleXiythis work focuses on cascaded decision
trees, the classifier complexity was measured @s$atal number of nodes, including the leaveslin al

trees. It can be seen that employing regular exfmepatterns can reduce the classifier compleémity

about 20%.

95%
85%
75%
65%
55%
45%
35%

Performance Measures as a Function of Ensemble Size
Using Decision Stump as Base Classifier

-~y .= ”~ == >~ —-—- o~ - ¢~ —-—- >~ - *~-—-—- &~ -—-—- *

- ®-—-—-—®»-—-——®&-—-—— & ——— 3
W ——— -

Precision
Recall
F-Measure
Accuracy

20 40 60 80

Ensemble Size (Number of Iterations)

Figure 16: Performance as a function of ensemble size usioigida stump as base classifier
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Table 7 Comparing regular expression with “Bag-of-words”

M ethod Accuracy Complexity

Regular Expression| 95.8 + 1.8% 82

Bag-Of-Words 87.3%£2.4% 113

Combined 91.45+ 2.7% 126

Table 8 presents some of the patterns obtaineddogroposed algorithm. Previous works
showed few words/phrases that are strong indicatonegative context (Averbuett al, 2004). In
these works mostly two word phrases (e.g. “shovE)lwere therefore finally considered by the
classifier. Terms such as "no" and "not" wereinoluded in their profile because their sole appear
ance is not a sufficient indication for negatiamthis work the pattern learning algorithm learmes t
two phrase patterns as well as single term patgrcls as “no”. This is because the term “no” is a
strong negation indicator when it precedes the ca¢dioncept, or when combined with additional
patterns using a decision tree. These examplegiexple accuracy improvement in the proposed

approach compared to the “bag-of-words” based ifiliss

Table 8 Example of patterns learned

Negative Patterns

{0,200} no <DIAGNOSIS>

.{0,50}showed no.{0,50} < DIAGNOSIS >

Positive Patterns
.{0,100}patient.{0,5} has.{0,50} <DIAGNOSIS>
.{0,100}history of.{0,100} <DIAGNOSIS>

4.2.7. Sensitivity to diagnosistype

Table 9 presents the results of a sensitivity &y diagnosis type. The most frequent types
of diagnosis were evaluated: Weigh loss; Nauseait/@and Abdominal pain.

In this experiment we used the "leave-one-out" epgh in which a certain diagnosis type was
used to generate the test set, while the remadtiamgnosis types have been used to create thengaini
set. As can be seen, the accuracy for Vomit seerhe tess than the average. Using the contingency
table approach, we checked whether the differeapestatistically significant with confidence level

of 95%, to conclude that the difference is notistiatlly significant.
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Table 9 Sensitivity to diagnosis type

Diagnosis type Accuracy No. of instances
Weight loss 96.27% 134
Nausea 96.58% 234
Vomit 91.43% 245
Abdominal pain 97.98% 247
42.8. Sensitivity to different Sources and Document Type

In this section, we add to the 1,766 instances lthat been used till now, several corpora
which totally include 1,492 instances. These instanwere obtained from other hospitals; 489 in-
stances obtained from the Epilepsy care centeriefddri ; 233 instances obtained from the Staten
island hospital; and 770 instances obtained frorareamymous north-American hospital.

Table 10 indicates also the document type distiobudf the new instances. While the original
training corpus was based only on discharge suresiatiie new sources also introduce new docu-
ment type, such as outpatient and consult rep®tis. aim of this experiment was to examine the
generalization ability of the cascaded design om data sources or document type. For this purpose
we used the "leave-one-out" approach, in whichfi@réint data source is used as a test set in each

iteration.

Table 10: Corpus sentences distribution

Document types Data Source Total
Mount Staten Epilepsy | anonymous
Sinai Island care center| north-
American

Consult 29 29
Discharge 1,766 584 2,350
Inpatient 162 162
Outpatient 489 24 513
Operations 204 204
Total 1,766 233 489 770 3,258

Table 11 summarizes the predictive power obtainetheé cascaded classifier, CRF and bag-
of-words. The results indicate that there is detation in the predictive power of both cascaded
classifier and CRF regarding the negative classvd¥er the accuracy is kept high. This can be ex-
plained by the fact that the proportion of negativaances in the new corpora is much smaller than
in the training corpus. The performance of the nesthod is usually slightly better than the othes tw

methods. As suggested by Dietterich, (1998) we tikedVicNemar's test with confidence level of
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95% for examining if the differences in the accyrand Recall are significahtThe test results indi-
cate that the cascaded classifier method is sigmfly better than the bag-of-words method in both
criteria. However we could not conclude that thiéedénces between the cascaded classifier method
and the CRF method are significant. Moreover wd Bt that there is no significant difference be-
tween the two methods when summing up the regults &ll data sourcés

Using the contingency table approach, we checkezthvehn the differences in the performance ob-
tained by a certain method on the various datacesuare statistically significant with confidence
level of 95%, to conclude that there are no sigaiift differences in any of the measures. This means
that all methods provide stable performance amadffigreint data sources.

Table 12 presents the accuracy obtained for eactngdent type, using the "leave-one-out" proce-
dure. The performance of the new method is usw&itijntly better than CRF method. We used the
McNemar's test with confidence level of 95%, todfiaut that there is no significant difference be-
tween the methods in any of the document types wlaeh type has been checked separately. How-
ever as proposed by DemSar (2006), we are usingMiteoxon Signed-Rank Test, to examine
whether the differences between the methods andfisant when taking into consideration all docu-
ment types. We conclude that the cascaded classfi@gnificantly better than the CRF method in
the Precision and the accuracy criteria. Moreowascaded classifier is significantly better than the
Bag-of-Words method in the Recall, F-Measure amdii@ey criteria.

Using the contingency table approach, we checkesthven the differences in the performance
obtained by a certain method on the various doctrypes are statistically significant with confi-

dence level of 95%, to conclude that there ardgrificant differences in any of the measures.

3McNemar's test can not be used for the Precisioasue or the F-Measure.
4 The Wilcoxon signed-rank test could not be use@ thecause for sample sizes smaller than 5 there
are no possible critical values that would be sigant at or beyond the baseline 95% level.
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Table 11: Accuracy performance of various corpora

Cascaded Regular Expressions CRF Bag-Of-Words
Data Source Precision Recall F-Measure Accuracy cistom Recall F-Measure Accuracy Precision Recal -Mdasure Accuracy
Epilepsy care 80% 69.84% 74.58% 93.87% 66.2% 77.78% 71.53% 92.02% 74.07% 64.72 69.08% 63.39
center % %
Staten Island 88.2% 80.36% 84.11% 92.70p% 85.79 076.0 80% 91% 86.21% 76.34  80.97% 79.83%
%
Anonymous 82.3% 63.64% 71.79% 97.14% 77.7% 63.649 70.00% 896.8 76.35% 60.08 67.25% 60.78%
north-American %
Mount Sinai 92.3% 91.73% 92.78% 92.39 87.4% 87.06%  88.06% 87.56% 86.96% 84.57% 85.74% 84.94
Weighted 87.80% 80.99% 84.47% 93.71% 81.80% 79.27% 80.73% 90.68% 82.46% 75.21% 78.53% 75.63%
Average
Table 12: Performance of various document types
Cascaded Regular Expressions CRF Bag-Of-Words
Document
Type Precision Recall F-Measure Accuracy| Precision Recall F-Measure Accuracy Precision Recall F-Measyr Accuracy
Consult 100% 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 96.55% 71.43% 52.63% 60.61% 55.179
Discharge 89.31% 91.79% 90.53% 92.649 86.2% 89.6% 7.998 90.5% 84.32% 74.40% 79.05%) 77.459
Inpatient 50.00% 50.00% 50.00% 97.53% 40.00% 50.00% 44.44% 96.91% 50.00% 26.79% 34.88% 30.869
Outpatient 77.19% 69.84% 73.33% 93.769 66.22% P8.78 71.53% 92.40% 75.00% 63.83% 68.979 63.16¢




Operation 88.00% 80.00% 83.81% 91.67% 87.23‘1/0 74.55% 80.39% 90.20% 86.96% 65.57% 74.77‘%1 73.53%
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4.2.9. Sensitivity to the Author ship

In this section we analyze whether the reportdhaubas an effect on the clas-
sifiers’ performance. Table 13 presents the digtion of different authors in the
datasets. Table 14 presents the mean performantameid by using a "leave-one-
out" procedure such that in each iteration oneautlas been left out and used as a
test set. A two-way analysis of variance (ANOVA)thviwas performed. The de-
pendent variable was the accuracy. The resuliseoANOVA showed that the main

effects of the authors F=3.106p<000. and the classification
F =25.63 p< 0 00: are both significant.

Table 13: Test corpus sentences distribution

Data Source Number of distinctMean reports pef Standard Deviation of reports
authors author per author

Mount Sinai 11 160.54 25.72

Staten 6 38.83 5.08

Island

Epilepsy care center 3 163 17.63

anonymous north: 8 96.25 6.2

American
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Table 14: Accuracy performance of various authors

Cascaded Regular Expressions CRF Bag-Of-Words

Data Author Precision Recall F-Measurg Accuracy Preaisi Recall F-Measure Accuracy Precision Recal F-Meas Accuracy
Source

Epilepsy 1 68.17 72.81 91.15 70.46 64.59 67.40 87.83 70.16 60.79 65.14 83.97

care center 78.12% % % % % % % % % % % %

2 68.75 72.45 90.92 75.69 62.22 68.30 88.68 69.20 60.89 64.78 80.14

76.58% % % % % % % % % % % %

3 65.85 69.75 88.35 76.70 59.68 67.13 84.09 69.20 54.62 61.05 79.39

74.14% % % % % % % % % % % %

Staten 1 74.58 78.08 91.15 75.41 81.77 78.46 83.20 75.19 81.60 78.26 81.18

Island 81.93% % % % % % % % % % % %

2 73.24 79.62 88.72 82.36 68.31 74.68 92.39 88.42 69.95 78.11 85.88

87.23% % % % % % % % % % % %

3 70.76 78.58 93.69 83.89 68.05 75.14 91.65 75.62 66.82 70.95 88.02

88.34% % % % % % % % % % % %

4 84.24 89.37 77.89 93.08 81.03 86.64 71.61 87.61 79.32 83.26 69.75

95.18% % % % % % % % % % % %

5 64.28 74.76 91.15 81.77 60.77 69.72 90.06 81.84 62.75 71.03 86.47

89.33% % % % % % % % % % % %

6 92.67 96.08 90.27 90.14 85.31 87.66 82.84 86.86 77.51 81.92 79.03

99.74% % % % % % % % % % % %

Anonymous 1 67.13 73.49 95.14 76.08 64.33 69.71 88.59 69.98 60.41 64.84 81.73

north- 81.17% % % % % % % % % % % %

American 2 65.66 77.04 97.00 84.06 71.42 77.23 87.33 82.36 66.72 73.72 81.89

93.17% % % % % % % % % % % %

3 60.11 68.77 91.42 73.73 54.66 62.78 86.17 72.46 50.37 59.43 79.67

80.36% % % % % % % % % % % %

4 62.94 73.49 90.73 88.50 62.06 72.96 92.29 94.60 65.55 77.44 95.78

88.30% % % % % % % % % % % %

5 61.62 69.64 94.65 75.10 57.49 65.12 87.90 71.21 52.30 60.31 79.55

80.06% % % % % % % % % % % %

6 68.00 72.26 95.19 72.97 64.22 68.31 91.82 79.17 66.14 72.07 91.09

77.09% % % % % % % % % % % %

7 65.02 72.83 97.98 74.60 60.19 66.62 96.05 72.54 56.11 63.28 95.52

82.77% % % % % % % % % % % %

8 79.73% 64.41 71.26 90.62 74.75 63.41 68.62 83.89 74.95 59.83 66.54 79.43




%

%

%

%

%

%

%

%

%

%

%

Mount
Sinai

1 95.27 94.21 97.00 83.19 93.11 87.87 94.73 81.27 87.96 84.48 90.23
93.17% % % % % % % % % % % %

2 91.43 89.97 91.42 86.67 88.15 87.40 50.48 73.38 79.14 76.15 77.97
88.55% % % % % % % % % % % %

3 97.14 94.06 90.73 87.97 85.05 86.49 73.06 83.98 79.16 81.50 69.45
91.16% % % % % % % % % % % %

4 89.12 92.95 94.65 80.57 86.54 83.45 77.12 76.75 74.20 75.46 75.00
97.13% % % % % % % % % % % %

5 86.28 88.11 90.54 84.22 76.84 80.36 84.53 82.95 73.12 77.73 81.51
90.02% % % % % % % % % % % %

6 90.35 88.75 92.82 86.37 87.73 87.04 89.50 81.01 81.11 81.06 85.77
87.21% % % % % % % % % % % %

7 93.18 95.06 97.16 92.12 44.54 60.05 91.42 86.39 70.60 77.70 75.42
97.02% % % % % % % % % % % %

8 94.60 94.86 98.14 92.14 48.26 63.34 90.70 78.48 37.45 50.71 68.65
95.12% % % % % % % % % % % %

9 100.00 89.41 94.41 85.60 85.17 89.38 87.23 61.42 67.32 86.76 75.81 59.43
% % % % % % % % % % % %

10 93.06 94.26 89.06 60.12 83.82 70.02 84.04 37.01 43.77 40.11 50.17
95.48% % % % % % % % % % % %

11 95.17 96.51 93.98 64.13 92.12 75.62 91.19 84.17 90.12 87.04 76.74
97.89% % % % % % % % % % % %
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4.2.10. Error Analysis

Analyzing the reasons for wrong classificationgygast the following six main categories of
error:

1. Compound Sentence—Compound sentences are compasexlar more clauses
that are joined by a coordinating conjunction eeaicolon. For example: “The pa-
tient denies any chest pain or shortness of btaathdmits fever.” This sentence is
built from two clauses separated by the word “butyich alters the context of the
second clause. The classifier might label all teafter the verb “deny” as negated in-
cluding the term “fever” based on the regular espi@n “denies{0,60} <diagno-
sis>".

2. Future Reference — In this type of sentence, thiemtas given instructions on how
to react to a symptom he may develop, but curréadis. For example: “The patient
was given clear instructions to call for any woisgrpain, fever, chills, bleeding.” In
this case the patient does not suffer from fevatiscor bleeding and a query for one
of these symptoms will mistakenly retrieve the duent.

3. Negation indicating existence—although the meaoirng word might be negative,
the context in which it is written might indicattherwise. For example: “The patient
could not tolerate the nausea and vomiting asstiatth Carboplatin.”

4. Positive adjective—A sentence is written in a negafiorm, but an adjective prior to
one of the medical term actually indicates its texise. For example: “There were no
fevers, headache or dizziness at home and no éiffadominal pain, fair appetite
with significant weight loss.” The adjectives “faand “significant” in the sentence
indicates that the following symptoms actually dse

5. Wrong sentence boundaries—Sometimes the boundarg@ftence is not identified
correctly. In this case, one sentence is brokentimb, or two sentences are consid-
ered as one. For example: “She denies any shomwhéssath, dyspnea, chest pain,
G.l. bleed, fever or chills.” In this case, thentsrbleed, fever and chills were not as-
sociated with the negation, as the negation plwasepart of the first sentence.

6. Other reasons — which are not covered by theffirstcategories.

Figure 17 presents the distribution of errors intf@ proposed cascaded classifiers. It can be
seen that the “compound sentence” category isriysndor most of the errors. Thus, it suggestd tha

breaking the sentences into smaller clauses, masoie the performance.
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Figure 17: Distribution of Errors for the Cascaded Classifidlgorithm

5. DISCUSSION

The experimental study provides a strong evidehatih the negation problem, regular ex-
pressions are better than bag-of-words, in bothracy and compactness (i.e. obtaining smaller mod-
els). In fact, regular expressions can be consitierde a generalization of the bag-of-words repre-
sentation or any n-gram representation. While theeeseveral IE methods that use regular expres-
sions-like representation, such as WHISK, Soder(a889), we suggest arranging several expres-
sions into a hierarchical structure which constisuet decision tree.

Using a decision tree as a base classifier incse has several advantages: (1) the sentence is
not classified according to a single regular exgites but is classified based on a set of regular e
pressions, i.e. this classifier can be used taatdithat a sentence is classified to the labeditipe”
only if it matched two regular expressions and dagsmatch a third regular expression. This is more
expressive than the classical approach in whicleldesification is based on a single regular expres
sion. In this way, instead of searching for congtkd regular expressions, we can search for simple
regular expressions and "rely" on the decision tmegombine them. In some cases, it is possible to
express a tree path comprised of several simpldaegxpressions as a single complicated regular
expression; (2) The hierarchical structure of aglex tree enforces an order (priority) in the wsaf
regular expressions, i.e. given a new sentencalhgular expressions should be matched in ad-
vance but one regular expression at a time baséigeospecific branch traversing. Moreover in this
way the desired property of lexical analysis kn@srun-ambiguity (also known as conflict resolution

in Expert Systems) which is usually resolved byltimgest match and rule priority is inherently re-
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solved here; (3) As opposed to other classifiarsi{s®s neural networks) the decision tree is agwhit
box model whose meaning can be easily explained;

The experimental study strengthens the well-knaaeh that it is possible to boost the predic-
tive performance by combining several decisiondreldevertheless, an important drawback of gen-
eral-purpose ensemble method, such as AdaBoosir{éF@nd Schapire, 1996), is that they are diffi-
cult to understand. The resulting ensemble is demed to be less comprehensible since the user is
required to capture several decision trees instéadsingle decision tree. In addition, the ensembl
members might even contradict one another. Onttier dand, in the proposed cascaded design, the
classifiers do not compete with each other andal@ontradict one another, but they are comple-
menting each other. Specifically, we either makieasion in the current cascade or postpone the

decision to the next cascade. In any case thsidads made by a single classifier, and not byesom
voting mechanismMoreover, the cascade increases precision by addidiional layers of decision

tree classifiers and easily regulates the classifienplexity / precision tradeoff. In addition, tbas-
caded design needs only three classifiers, as epggosnuch larger ensemble size in the case of
AdaBoost.

Beside the fact that the proposed method has pedwachigher accuracy than the HMM and
the CRF classifiers, it can be easily transfornmtd & maintainable source code. Modern program-
ming languages, such as Java or C#, or script &yggusuch as Perl and Python include inherent
support for regular expressions. Any programmermanipulate these models quite easily as op-
posed to HMM or CRF models which requires that paogners be familiar with the notion of prob-
ability.

As indicated in SectioA.2.4 feature selection can be used to improveigireel power. The
number of regular expressions (pre-feature selecisousually greater than linear in the number of
instances in the training set. For instance, ifghiged LCS approach is used, then for every pair i
the training set we obtain a regular expressiorfirétt glance, it seems redundant to use featueese
tion as a preprocess phase for the training plizesgsion trees inducers, as opposed to other induc-
tion methods, incorporate in their training phadwriit-in feature selection mechanism. Still, itsl|
known that correlated and irrelevant features meyrade the performance of decision trees inducers.
Moreover, in the way we create regular expresdioeie are many features that are correlative. This
phenomenon can be explained by the fact that featlection in decision trees is performed on one
attribute at a time and only at the root node a@lerentire decision space. In subsequent nodes, the
training set is divided into several sub-sets dmadf¢atures are selected according to their loeal p
dictive power (Perner, 2001). Geometrically, it methat the selection of features is done in or-
thogonal decision subspaces, which do not necgssapresent the distribution of the entire ins&nc
space. It has been shown that the predictive pagoce of decision trees could be improved with an
appropriate feature pre-selection phase. Moreosiegueature selection can reduce the number of

nodes in the tree, making it more compact.
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Another way to avoid the "curse of dimensionality"this case, is to merge several expres-
sions into one expression by generalizing thédowever, this increases the risk of over genesali
tion. This is the typical sensitivity-Recall probiie For example if we merge the first and second ex-
pressions in Table 8, we obtain the following remdde expression:.{0,200} no.{0,50}
<DIAGNOSIS> On the other hand merging the third and fourtbressions results with the meaning-
less and over-generalized expressi§®220} <DIAGNOSIS>

A criterion for merging regular expressions canblased on existing computational learning
theoretical bounds (such as the VC-Dimension) tiste training accuracy with model complexity.
Merging regular expressions reduces a model's @dtplbut at the same time it might also reduce
training accuracy (due to generalization). Thegimgr can be performed in any stage: pre-training
like feature selection, during the actual trainiglecision trees (as an extension to the splittirig-
rion), or post growing as an extension to the prgmhase.

Regular expressions seem quite useful for the exedhtiask. But they do have limitations. For
instance, because they do not use syntax but selywords and character length gaps, they can make
mistakes due to, for example, a training set tidy showed one adjective modifying a negated noun
(e.g., no persistent cough) but a test set thathatiple adjectives intervening between the negmati
phrase and the negated concept. Moreover in ohdérat negative modifier will be included in the
model, it should be repeated at least twice indifferent instances in the training set. This isdiese
the regular expressions are created by compariagtrings and identifying the common substring. If

the modifier appears only once then it will neverificluded in any of the regular expressions.

6. CONCLUSIONSAND FURTHER RESEARCH

A new pattern based algorithm for identifying coaten free-text medical narratives is pre-
sented. It is shown that the new algorithm is sigpdo previous methods. The new algorithm man-
ages to automatically learn patterns similar to uadly written patterns for negation detection, for
example in the work of Mutalik et al. (2001), withthe same level of accuracy. The advantages of the
new method are: accuracy improvement comparedhter ehachine learning methods, comprehensi-
bility of the results and much faster than manuadwedge engineering techniques with matching
accuracy.

We suggest an obvious expansion in the medical ohprirain the classifier to detect context
in general (e.g. in the family), not just the neghtontext. This requires a sufficiently large rinag

corpus with additional context categories. Anotlgpansion in the medical domain is to implement

5 Merging regular expressions that have been crdayeldCS or Teiresias is straightforward. The merging
performed based on the specific words used in eatfern while ignoring the wild-cards. For instartbe
"wordy" representation af0,50}showed no.{0,50} < DIAGNOSISis showed no < DIAGNOSIS.hus,
we first remove the special characters from the patterns. Then the LCS algorithm is used to craatew
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the method for finding relationships between coteép medical narratives. This can be useful for
applications such as: Process control to identifyease events in medical treatment; Modern evi-
dence based practices; and also in extending theSJMth new relations or concepts.

We suggest several research directions to imprhoweriethod itself. Cascading several classi-
fiers has shown to raise the classifier accuraaythEr study is needed to obtain sufficient resfalts
suggesting a methodology for cascading classifielassifier complexity versus accuracy is yet an-
other issue for further research, to analyze theenffs between the number of patterns and theiclas
fier performance. Additional studies are requirecexamine if the proposed method can be efficient
in identifying negation in other domains (such agintenance reports of technicians) and in other

closely related problems such as POS.
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