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Efficient Multi-Dimensional Suppression for 
K-Anonymity  

Slava Kisilevich, Lior Rokach, Yuval Elovici, Bracha Shapira  

Abstract— Many applications that employ data mining techniques involve mining data that include private and sensitive 
information about the subjects. One way to enable effective data mining while preserving privacy is to anonymize the dataset 
that include private information about subjects before being released for data mining. One way to anonymize dataet is to 
manipulate its content so that the records adhere to k-anonymity. Two common manipulation techniques used to achieve k-
anonymity of a dataset are generalization and suppression. Generalization refers to replacing a value with a less specific but 
semantically consistent value, while suppression refers to not releasing a value at all. Generalization is more commonly applied 
in this domain since suppression may dramatically reduce the quality of the data mining results if not properly used. However, 
generalization presents a major drawback as it requires a manually generated domain hierarchy taxonomy for every quasi-
identifier in the dataset on which k-anonymity has to be performed. In this paper we propose a new method for achieving k-
anonymity named K-anonymity of Classification Trees Using Suppression (kACTUS). In kACTUS efficient multi-dimensional 
suppression is performed, i.e., values are suppressed only on certain records depending on other attribute values, without the 
need for manually-produced domain hierarchy trees. Thus, in kACTUS we identify attributes that have less influence on the 
classification of the data records and we suppress them if needed in order to comly with k-anonymity. The kACTUS method was 
evaluated on ten separate datasets to evaluate its accuracy as compared to other k-anonymity generalization and suppression-
based methods. Encouraging results suggest that kACTUS' predictive performance is better than that of existing k-anonymity 
algorithms. Specifically, on average the accuracies of TDS, TDR and kADET are lower than kACTUS in 3.5%, 3.3% and 1.9% 
respectively despite their usage of manually defined domain trees. The accuracy gap is increased to 5.3%, 4.3% and 3.1% 
respectively when no domain trees are used. 

Index Terms— Privacy Preserving Data Mining, k-Anonymity, De-Indentified Data, Decision Trees, , ,.  
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1 INTRODUCTION

nowledge Discovery in Databases (KDD) is the proc-
ess of identifying valid, novel, useful, and under-
standable patterns from large datasets. Data Mining 

(DM) is the core of the KDD process, involving algo-
rithms that explore the data, develop models, and dis-
cover significant patterns. Data mining has emerged as a 
key tool for a wide variety of applications, ranging from 
national security to market analysis. Many of these appli-
cations involve mining data that include private and sen-
sitive information about users [1]. For instance, medical 
research might be conducted by applying data-mining 
algorithms on patient medical records to identify disease 
patterns. A common practice is to de-identify data before 
releasing it and applying a data-mining process in order 
to preserve the privacy of users. However, private infor-
mation about users might be exposed when linking de-
identified data with external public sources. For example, 
the identity of a 95 old patient may be inferred from de-

identified data that include the patients’ addresses, if she 
is known as the only patient at this age in her neighbor-
hood. This is true even if sensitive details such as her so-
cial security number, her name, and the name of the street 
where she lives, were omitted.   

To avoid such situations privacy regulations were 
promulgated in many countries (e.g., privacy regulation 
as part of HIPAA1 in the USA). The data owner is re-
quired to omit identifying data so that to assure, with 
high probability, that private information about individu-
als cannot be inferred from the dataset that are released 
for analisis or sent to another data owner. At the same 
time, omitting important fields from datasets, such as age 
in a medical domain, might reduce the accuracy of the 
model derived from the data by the DM process. Re-
searchers have shown that the HIPAA privacy rules have 
affected significantly their ability to perform retrospec-
tive, chart-based research [2], [3].  

Privacy-preserving data mining (PPDM) deals with the 
trade-off between the effectiveness of the mining process 
and privacy of the subjects, aiming at minimizing the pri-
vacy exposure with minimal effect on mining results.  

K-anonymity is an anonymizing approach proposed 
by Samarati and Sweeney [4]. A dataset complies with k-
anonymity protection if each individual’s record stored in 
the released dataset cannot be distinguished from at least 
k-1 individuals whose data also appears in the dataset. 
This protection guarantees that the probability of identi- 
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fying an individual based on the released data in the 
dataset does not exceed 1/k. Generalization and suppres-
sion are the most common methods used for de-
identification of the data in k-anonymity based algo-
rithms [5][6][7][8].  

Generalization consists of substituting attribute values 
with semantically consistent but less precise values. For 
example, the month of birth can be replaced by the year 
of birth which occurs in more records, so that the identifi-
cation of a specific individual is more difficult. Generali-
zation maintains the correctness of the data at the record 
level but results in less specific information that may af-
fect the accuracy of machine learning algorithms applied 
on the k-anonymous dataset. Different systems use vari-
ous methods for selecting the attributes and records for 
generalization as well as the generalization technique [9].   

Suppression refers to removing a certain attribute val-
ue and replacing occurrences of the value with a special 
value “?”, indicating that any value can be placed instead. 
Suppression can drastically reduce the quality of the data 
if not properly used [6]. This is the reason why most k-
anonymity-related studies have focused on generaliza-
tion. 

Quasi-identifier is a set of features whose associated 
values may be useful for linking with another datasdet to 
re-identify the entity that is the subject of the data [6]. 
One major drawback of existing generalization tech-
niques is that manually generated domain hierarchy trees 
are required for every quasi-identifier attribute of data-
sets before k-anonymity can be applied [8][7][10] 
[11][12][13].  

In this paper we present kACTUS - Supervised Deci-
sion Tree-based K-Anonymity, a new algorithm that de-
identifies (anonymizes) datasets so that to assure high 
degree of users’ privacy when data-mining is applied, 
while having minimal impact on accuracy of data-mining 
results. The privacy of the users is measured by the com-
pliant of the dataset to k-anonymity.  kACTUS was spe-
cifically designed to support classification, but can be ex-
tended to support other data-mining methods. 

The new algorithm we developed, kACTUS, wraps a 
decision tree inducer which is used to induce a classifica-
tion tree from the original dataset. The wrapping ap-
proach [14] refers to using a known algorithm as a black 
box, so that only knowledge of the interface is needed. 
While the wrapping approach was used in other domains 
(such as feature selection), it was not used for anonymiz-
ing datasets, and presents important advantages for this 
application. The wrapping approach enables utilization of 
existing state-of-the-art practice in generating accurate 
classifiers to generate anonymized datasets with minimal 
effect on the accuracy. Another advantage of the Wrap-
ping approach is that it does not require any revision of 
existing algorithms for adjusting it to k-anonimity.  

The automatically induced tree is used by kACTUS to 
apply k-anonymity on the dataset (instead of using a ma-
nual generated domain generalization tree). kACTUS 
generates a k-anonymous dataset that can be used by ex-
ternal users that may utilize any mining algorithm for 
training a classifier over the anonymous dataset. The out-

put of our algorithm is an anonymous dataset which can 
be transmitted to the data consumers for further mining.   

The kACTUS algorithm takes the suppression ap-
proach to anonymize the dataset. We developed an effi-
cient multi-dimensional suppression method, where val-
ues are suppressed only on certain tuples, depending on 
other attribute values. We show that our new multi-
dimensional suppression scheme significantly outper-
forms existing single-dimensional methods and existing 
multi-dimensional generalization methods that requires 
manual defined generalization trees. In this paper we 
describe our new method in detail and explain its advan-
tages.We present the comparisons to other known meth-
ods and explicate the comparion results. The paper con-
cludes with limitations and future research issues. 

2 RELATED WORK 
Privacy Preserving Data Mining (PPDM) is a relatively 
new research area that aims to prevent the violation of 
privacy that might result from data-mining operations on 
datasets [1][15][16][17]. PPDM algorithms modify original 
datasets so that privacy is preserved even after the min-
ing process is activated, while minimally affecting the 
mining results quality. Verykios et al. [15] classified exist-
ing PPDM approaches based on five dimensions: 1) data 
distribution, referring to whether the data is centralized 
or distributed; 2) data modification, referring to the modi-
fications performed on the data values to ensure privacy. 
There are different possible operations such as aggrega-
tion (also called generalization) or swapping; 3) data min-
ing algorithms referring to the target DM algorithm for 
which the PPDM method is defined (e.g., classification 
[13][18]); 4) data or rule hiding referring to whether the 
PPDM method hides the raw or the aggregated data; and, 
finally, 5) privacy preservation, referring to the type of 
technique that is used for privacy preservation: heuristic 
[19], cryptography [17][18]; or reconstruction-based (i.e., 
perturbing the data and reconstructing the distributions 
to perform mining [20][21]). The study presented in this 
paper can be classified according to the above dimen-
sions: it deals with centralized databases (dimension 1), 
on which suppression of the data (dimension 2) is per-
formed. The DM algorithm that this study is targeting is 
classification (dimension 3), and part of the raw data is 
hidden (dimension 4). We use the k-anonymity method 
which is a heuristic-based technique (dimension 5).  

One of the PPDM techniques is k-anonymity. The k-
anonymity concept [4] requires that the probability to 
identify an individual by linking databases does not ex-
ceed 1/k. Generalization is the most common method 
used for de-identification of the data in k-anonymity-
based algorithms [5][7][13][19][22][23][24]. Generalization 
consists of replacing specific data with a more general 
value to prevent individual identification; for example the 
address that include (Street, City, State) can be replaced 
by (City, State) which applies to more records so that 
identification of a specific individual is more difficult. 
Some known generalization-based k-anonymity algo-
rithms that guarantee optimal anonymity (in respect of 
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accurby enumerating all candidate generalizations are 
impractical [25][26]. Some other systems employ heuris-
tic-based practical algorithms, most often using greedy 
algorithms in order to select attributes/value-tuples to 
generalize [19] [27][28]. For example, the Datafly system 
generates frequency lists of attributes and values [29] and 
generalizes the attribute having the highest number of 
distinct values. Generalization continues until there re-
main k or fewer tuples having distinct values. The µ-
Argus system is another example of a greedy approach 
that generalizes attributes whose combinations with other 
attributes do not appear at least k times. 

The above-mentioned systems do not consider any 
specific DM algorithm to be operated on the datasets. The 
study presented in this paper considers the anonymity 
problems in terms of classification, i.e., the operations on 
the data are performed while taking into account their 
effect on classification results. A few other studies ad-
dress the same problem, namely, k-anonymity for classi-
fication [11][22]. In one work [10] a random genetic algo-
rithm is used to search for the optimal generalization of 
data. This algorithm seems to be impractical due to its 
computational extensiveness. The author reported an 18 
hours run for 30k records. Wang et al. [8] presented a 
practical effective bottom-up generalization that aimed at 
preserving the information needed for inducing the clas-
sifier while preserving privacy. They defined the "infor-
mation gain" metric to measure the privacy/information 
tradeoff. The bottom-up generalization technique can 
generalize only for categorical attributes. Fung et al. [7] 
presented another practical generalization method for 
classification using k-anonymity: the "the top-down spe-
cialization (TDS)" algorithm. This algorithm handles both 
categorical and continuous attributes. TDS starts from the 
most general state of the table and specializes it by assign-
ing specific values to attributes until violation of the ano-
nymity may occur.  More recently Fung et al. [11] pre-
sented an improved version of TDS which is called "TDR" 
(Top-Down Refinement). In addition to the capabilities of 
TDS, TDR is capable of suppressing a categorical attribute 
with no taxonomy tree. They use a single-dimension re-
coding [13], i.e., an aggressive suppression operator that 
suppresses a certain value in all records without consider-
ing values of other attributes so that data that might ad-
here to k-anonymity might be also suppressed. This 
"over-suppression" reduces the quality of the anonymous 
datasets.   

Friedman et al. [13] present kADET, a decision tree in-
duction algorithm that is guaranteed to maintain k-
anonymity. The main idea is to embed the k-anonymity 
constraint into the groining phase of a decision tree. 
While kADET has shown accuracy superior to that of 
other methods, it is limited to decision trees inducers. It 
differs from other methods such as TDS and TDR by let-
ting the data owners share with each other the classifica-
tion models extracted from their own private datasets, 
rather than to let the data owners publish any of their 
own private datasets. Thus, the output of kADET is an 
anonymous decision tree rather than an anonymous data-
set.  

Sharkey et al. [30] presents the APT algorithm, which 
like kADET, it also outputs anonymous decision tree ra-
ther than an anonymous dataset. In addition the authors 
show how the classification model can be then used to 
generate some pseudo-data set. However, the pseudo-
data set is tightly coupled to the classification model. Be-
cause the classifier is not an authentic anonymous copy of 
the original private dataset, so does the pseudo dataset. 
For example the values of the non-quasi identifiers attrib-
utes (which can be shared with no risk) are lost if they are 
not included in the classification model. Similarly, the 
actual distribution of non-binary target attributes can be 
distorted (the number of tuples in each class is only 
roughly estimated).     

One main common disadvantage of existing anonymi-
zation algorithms (except TDR with some reservations) is 
the need to perform manual pre-processing, i.e., genera-
tion of a domain generalization taxonomy to define the 
hierarchy of the categorical attribute values involving 
prior knowledge about the domain. The domain tree 
should be prepared separately for every domain. More-
over, there might be disagreements between domain ex-
perts about the correct structure of the taxonomy tree, 
which may lead to differences in the results. The TDR 
algorithm is the only study, to the best of our knowledge, 
that relaxes the need for a taxonomy tree only for cate-
gorical attributes, by using a single-dimension suppres-
sion operator for attributes for which domain taxonomy 
does not exist. As explained above, the performance of a 
single-dimension suppression operator is quite limited. 
Because it suppresses a certain value in all tuples without 
considering values of other attributes. This “over-
suppression” may lead to unnecessary loss of data. Our 
algorithm uses multi-dimensional recoding, i.e., suppres-
sion of values is applied only on certain tuples, depend-
ing on other attribute values.  

We suggest a practical and effective approach that  
provides an improved predictive performance in compar-
ing to exisitng approaches and does not require the gen-
eration of manual domain generalization taxonomy. In-
stead, our approach uses a classification tree that is auto-
matically induced from the original dataset in order to 
perform a multi-dimensional suppression having a per-
formance comparable to that of generalization-based al-
gorithms. 

3 PROBLEM FORMULATION 
In this section several basic definitions to be used later in 
the paper are introduced, and the problem formulation is 
presented. 
 
3.1 Formulation of Classification Problem 

In a typical classification problem, a training set of la-
beled examples is given. The training set can be described 
in a variety of languages, most frequently, as a collection 
of records that may contain duplicates (also know as bag). 
A vector of attribute values describes each record. The 
notation A denotes the set of input attributes containing n 
attributes: 1{ ,..., ,..., }i nA a a a= , and y  represents the 
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class variable or the target attribute. Attributes (some-
times referred to as features) are typically one of two 
types: categorical (values are members of a given set), or 
numeric (values are real numbers). When the attribute ia  
is categorical, it is useful to denote its domain values by 

( )idom a . Numeric attributes have infinite cardinalities.  
The instance space X (the set of all possible examples) 

is defined as a Cartesian product of all the input attribute 
domains: 1 2( ) ( ) ... ( )nX dom a dom a dom a= × × × . The 
universal instance space (or the labeled instance space) U 
is defined as a Cartesian product of all input attribute 
domains and the target attribute domain, i.e., 

( )U X dom y= × . The training set consists of a set of m 
records and is denoted as S=(<x1,y1>,…,<xm,ym>)  where 
xq∈X. Usually, the training set records are distributed 
randomly and independently according to some fixed 
and unknown joint probability distribution D over U. 

It is assumed that a given inducer I is used to build a 
classifier (also known as a classification model) by learn-
ing from S. The classifier can then be used for classifying 
unlabelled instances. The notation I(S) represents a classi-
fier which was induced by training I with dataset S. 
 
3.2 Bag-Algebra Operation Notation 
Next we will adopt the common operation notation of 
bag algebra (i.e., duplicates are allowed) to present pro-
jection and selection of tuples [31], where S denotes a bag.  
1. Selection: The selection operator σ  with the form 

( )p Sσ  is used to select tuples in S that satisfy a given 
predicate p.  

2. Projection: The projection operator π  with the form 
π B(S) is used to project bag S onto a subset of features 
B.  

3. Duplicate Elimination in Bags2: The duplicate elimina-
tion operator ε  with the form ( )Sε  creates bag con-
taining exactly one occurrence of each object of S.  

4. Update operator: The update operator δ  with the form 
( )a w Sδ →  where S is a bag with an attribute a, which 

is assigned the value of expression w.  
 
3.3 The k-anonymity protocol 
Given a population of entities E, an entity-specific table 

US ∈ with input feature set 1 2{ , ,..., }nA a a a= , 
1 :f E S→ and 2 :f S E′→ where EE ′⊆ . Q is quasi-

identifier of S, if Q A⊆  and ;Ee ∈∃ such 
that ( )( )2 1Qf f e eπ = . 

The formulation defines a quasi-identifier as a set of fea-
tures whose associated values may be useful for linking 
to re-identify the entity that is the subject of the data [6].  

A dataset S and the quasi-identifier Q associated with 
it is said to satisfy k-anonymity if and only if each tuple in 

( )( )Q Sε π appears with at least k occurrences in ( )Q Sπ .  
The following bag S represents the Adult dataset 

from the UC Irvine Machine Learning Repository. This 
dataset contains census data and has become a commonly 
used benchmark for k-anonymity.  The Adult dataset has 

 
2In SQL this operation is known as the DISTINCT clause which is 

used together with the SQL SELECT keyword, to return a dataset 

with unique entries for certain database table column. 

6 continuous attributes and 8 categorical attributes. The 
class attribute is income level, with two possible values, 
<=50K or >50K. In this dataset Q=(age, workclass, fnlwgt, 
edu, edu-nun, marital-status, occupation, relationship, race, 
sex, native-country) is a quasi-identifier since the values of 
these attributes can be linked to identify an individual. As 
in previous PPDM studies, we assume that the set of qua-
si-identifiers is provided by the user, and that there is 
only one set of quasi-identifiers. Examples of several re-
cords in the Adult dataset are presented bellow: 

For example, assume k=2. The dataset described bel-
low does not satisfy k-anonymity requirements for 

Q=(age, workclass, fnlwgt, edu, edu-nun, marital-status, 
occupation, relationship, race, sex, native-country), 
since ( )Q Rπ  results in 15 records (see bellow). The re-
cords 12 to 14 comply with the k-anonymity restriction 
because they are three records with the same values for 
the quasi-identifiers (k=2<3). However, the remaining 
records are unique, and thus do not comply with the k-
anonymity restriction (k=2>1). 
 

 
3.4 Optimal k-anonymity transformation for a 

Classification Problem 
The main goal of this study is to introduce a new k-
anonymity algorithm which is capable of transforming a 
non anonymous dataset into a k-anonymity dataset. The 
transformation is aimed to achieve a predictive perform-
ance of a classifier trained on the transformed dataset as 
similar as possible to the performance of a classifier 
trained on the original dataset. Consequently the problem 
can be formally phrased as follows:  Given k∈ [1,m] , an 
inducer I, a dataset S with input attribute set 

1 2{ , ,..., }nA a a a=  and target feature y  from a distribu-
tion D over the labeled instance space, the goal is to find 
an optimal transformation SST ′→: such that S' sat-
isfy k-anonymity. Optimality is defined in terms of mini-
mizing the deterioration in the generalized accuracy over 

age workclass fnlwgt edu
edu-
num

marital-
status occupation relationship race sex

native-
country

39 Private 77516 BA 13 Married Excecutive Not-in-family White M US
39 Private 83311 BA 13 Married Excecutive Husband White M US
38 Private 215646 BA 9 Divorced Excecutive Not-in-family White M US
53 Private 234721 BA 7 Married Excecutive Husband Black M US
28 Private 338409 BA 13 Married Excecutive Wife Black M Cuba
37 Private 284582 BA 14 Married Excecutive Wife White M Cuba
49 Private 160187 BA 5 Married Excecutive Not-in-family Black M Cuba
52 State-gov 209642 BA 9 Married Excecutive Husband White M Cuba
31 State-gov 45781 BA 14 Married Excecutive Not-in-family White M Cuba
42 State-gov 159449 MA 13 Married Excecutive Husband White M Cuba
37 State-gov 280464 MA 10 Married Excecutive Husband Black F Cuba
30 State-gov 141297 MA 13 Married Sales Husband Asian F Cuba
30 State-gov 141297 MA 13 Married Sales Husband Asian F Cuba
30 State-gov 141297 MA 13 Married Sales Husband Asian F Cuba
34 State-gov 245487 7th-8th 4 Married Sales Husband Indian F Mexico

age workclass fnlwgt edu
edu-
num

marital-
status occupation relationship race sex

capital-
gain

capital-
loss

hours
-per-
week

native-
country

salary 
>50K

39 Private 77516 BA 13 Married Excecutive Not-in-family White M 2174 0 40 US <=50K
39 Private 83311 BA 13 Married Excecutive Husband White M 0 0 13 US <=50K
38 Private 215646 BA 9 Divorced Excecutive Not-in-family White M 0 0 40 US <=50K
53 Private 234721 BA 7 Married Excecutive Husband Black M 0 0 40 US <=50K
28 Private 338409 BA 13 Married Excecutive Wife Black M 0 0 40 Cuba <=50K
37 Private 284582 BA 14 Married Excecutive Wife White M 0 0 40 Cuba <=50K
49 Private 160187 BA 5 Married Excecutive Not-in-family Black M 0 0 16 Cuba <=50K
52 State-gov 209642 BA 9 Married Excecutive Husband White M 0 0 45 Cuba >50K
31 State-gov 45781 BA 14 Married Excecutive Not-in-family White M 14084 0 50 Cuba >50K
42 State-gov 159449 MA 13 Married Excecutive Husband White M 5178 0 40 Cuba >50K
37 State-gov 280464 MA 10 Married Excecutive Husband Black F 0 0 80 Cuba >50K
30 State-gov 141297 MA 13 Married Sales Husband Asian F 0 0 40 Cuba >50K
30 State-gov 141297 MA 13 Married Sales Husband Asian F 0 2 60 Cuba >50K
30 State-gov 141297 MA 13 Married Sales Husband Asian F 0 1 80 Cuba <=50K
34 State-gov 245487 7th-8th 4 Married Sales Husband Indian F 0 0 45 Mexico <=50K
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the distribution D as a result of replacing classifier I(S) 
with classifier  I(S').   

Finding the optimal solution for Multidimensional k-
Anonymity is known to be NP-Hard [32]. This study aims 
at defining a new k-anonymity heuristics that is not based 
on a predefined generalization in order to overcome the 
need to generate malualy domain hierarchy trees for 
every quasi-identifier attribute. This manual process en-
tails prior specific knowledge for each domain. 

4 METHODS  
4.1 Overview 
In this section we describe our new method for k-
anonymity. Recall that the goal of this study is to create 
an anonymous dataset where the predictive performance 
of a classifier trained on the anonymous dataset is as simi-
lar as possible to the performance of a classifier trained on 
the original dataset. In order to achieve this, one need to 
consider how the input attributes affect the target attrib-
utes (class).  

It is possible to tackle the latter issue as part of the 
anonymization algorithm or by utilizing existing classifier 
inducers. In this study, we take the second approach, as-
suming that it will be more efficient to use existing ma-
ture inducers than to try to 'invent the wheel,' especially 
when the target is to create an anonymous dataset and 
not a classifier 

Specifically our approach wraps an existing classifica-
tion tree induction algorithm (such as C4.5) and is re-
ferred to as kACTUS (K-Anonymity of Classification 
Trees Using Suppression). The classification tree inducer 
is used to induce a classification tree from the original 
dataset which indicates how the attribute values affect the 
target class. The classification tree can be easily inter-
preted by a machine in order to perform the k-anonymity 
process.  

Each path from the root to a leaf can be treated as a 
classification rule. A subset of the dataset is ascribed with 
each leaf. If this subset size is greater than k then this sub-
set of instances can be easily anonymized by suppressing 
all the quasi identifier attributes that are not referenced in 
one of the nodes along the path from the root. Assuming 
that all attributes are categorical, then all quasi identifiers 
attributes that are referenced have the same value for all 
the instances of the subset and thus there is no need to 
suppress or generalize their values). In our terminology, a 
leaf node complies with the k-anonymity if the number of 
instances that ascribed to this leaf is higher or equal to k.  
If all the leaves in the tree comply with the k-anonymity 
the dataset can be k-anonymized by suppression as de-
scribed above. For leaves that do not comply with the k-
anonymity, by adequately pruning them one can obtain a 
new leaf which may comply with the k-anonymity. We 
utilize the fact that the order in which the attributes are 
selected for the decision tree usually implies their impor-
tance for predicting the class. Thus by pruning the rules 
in a bottom-up manner, we suppress the least significant 
quasi-attributes. The remaining attributes are the quasi-
attributes which will be left as-is. In subsection 4.2 we 

demonstrate the new method with an example. In subsec-
tion 4.2 we provide a detailed example of our algorithm. 
In subsection 4.4 we present the correctness proof and 
complexity analysis of the new method. 

 
4.2 Illustrative Example 
The proposed anonymize procedure is illustrated on the 
adult dataset assumuing assuming k anonymity=100 and 
the quasi-identifier which was used in Section 3.1. First 
we build a classification tree using an existing classifica-
tion tree algorithm. Fig. 1 describes the generated classifi-
cation tree after applying C4.5 algorithm on the quasi-
identifier attributes in the Adult dataset. A number in a 
bracket is associated with each leaf. This number repre-
sents the number of instances in the training set that 
complies with the tests along the path. 
 
Given the classification tree, we begin in the anonumiza-
tion process by reviewing the nodes with height=1 . 
Nodes 9 and 19 have height = 1, thus we arbitrarily select 
node 9. Its children (nodes 10-14) are examined indicating 
that only node 11 complies with k (because 190>100). The 
remaining siblings (nodes 10,12,13,14) have 6+3+1+2=12 
instances in total, i.e. there are 88 instances missing. Node 
11 has 90 extra instances (190-100=90). Thus 88 instances 
of node 11 can be randomly selected and used to com-
plement the uncomplaying nodes. The remaining 102 
instances of node 11 can be mounted as-is to the anony-
mous dataset with the following quasi identifiers re-
vealed (all non quasi identifier attributes, such as hours-
per-week, can be revealed as well): marital-
status=Married-civ-spouse, education = Some-college, 
occupation = Exec-managerial, workclass = Private, race = 
White. 
 

01: marital-status = Married-civ-spouse 
02: |   education = 11th: <=50K. (271) 
03: |   education = Masters: >50K. (713) 
04: |   education = 9th: <=50K. (158) 
05: |   education = HS-grad: <=50K. (3436) 
06: |   education = Some-college 
07: |   |   occupation = Handlers-cleaners: <=50K. (69) 
08: |   |   occupation = Exec-managerial 
09: |   |   |   workclass = Private 

10: |   |   |   |   race = Black: <=50K. (6) 

11: |   |   |   |   race = White: >50K. (190) 
12: |   |   |   |   race = Asian-Pac-Islander: <=50 K. (3) 
13: |   |   |   |   race = Other: <=50K. (1) 
14: |   |   |   |   race = Amer-Indian-Eskimo: <=50 K. (2) 
15: |   |   |   workclass = Self-emp-not-inc: <=50K . (39) 
16: |   |   |   workclass = State-gov: >50K. (8) 
17: |   |   |   workclass = Federal-gov: >50K. (16)  
18: |   |   |   workclass = Local-gov: <=50K. (23) 
19: |   |   |   workclass = Self-emp-inc 
20: |   |   |   |   sex = Male: >50K. (42) 
21: |   |   |   |   sex = Female: <=50K. (4) 
22: |   |   |   workclass = Without-pay: >50K. (0) 
23: marital-status = Married-AF-spouse: <=50K. (16)  

Fig. 1. Classification tree for Adult dataset 

Finally the node 9 is pruned resulted with the following 
revised tree presented in Fig 2. Given the new tree the 
next node to be examined is node 19. None of its sliblings 
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of complies with k. Thus, no instances are mounted to the 
anonymized dataset, and node 19 is simply pruned. Re-
sulting with tree in Fig 3. Next node to be exmined is 
node 8. Only the first sibling (node 9) complies with k, 
thus its instances are mounted to the anonymized dataset. 
Node 8 is pruned and auccumlates the instances of the 
uncomplaying nodes 15-19 and 22 (total of 132 instances) 
as presented in Fig 4.   
 

01: marital-status = Married-civ-spouse 
02: |   education = 11th: <=50K. (271) 
03: |   education = Masters: >50K. (713) 
04: |   education = 9th: <=50K. (158) 
05: |   education = HS-grad: <=50K. (3436) 
06: |   education = Some-college 
07: |   |   occupation = Handlers-cleaners: <=50K. (69) 
08: |   |   occupation = Exec-managerial 
09: |   |   |   workclass = Private (100) 
15: |   |   |   workclass = Self-emp-not-inc: <=50K . (39) 
16: |   |   |   workclass = State-gov: >50K. (8) 
17: |   |   |   workclass = Federal-gov: >50K. (16)  
18: |   |   |   workclass = Local-gov: <=50K. (23) 
19: |   |   |   workclass = Self-emp-inc 
20: |   |   |   |   sex = Male: >50K. (42) 
21: |   |   |   |   sex = Female: <=50K. (4) 
22: |   |   |   workclass = Without-pay: >50K. (0) 
23: marital-status = Married-AF-spouse: <=50K. (16)  

Fig. 2. Revised classification tree after iteration 1. 

01: marital-status = Married-civ-spouse 
02: |   education = 11th: <=50K. (271) 
03: |   education = Masters: >50K. (713) 
04: |   education = 9th: <=50K. (158) 
05: |   education = HS-grad: <=50K. (3436) 
06: |   education = Some-college 
07: |   |   occupation = Handlers-cleaners: <=50K. (69) 
08: |   |   occupation = Exec-managerial 
09: |   |   |   workclass = Private (100) 
15: |   |   |   workclass = Self-emp-not-inc: <=50K . (39) 
16: |   |   |   workclass = State-gov: >50K. (8) 
17: |   |   |   workclass = Federal-gov: >50K. (16)  
18: |   |   |   workclass = Local-gov: <=50K. (23) 
19: |   |   |   workclass = Self-emp-inc (46) 
22: |   |   |   workclass = Without-pay: >50K. (0) 
23: marital-status = Married-AF-spouse: <=50K. (16)  

Fig. 3. Revised classification tree after iteration 2. 

01: marital-status = Married-civ-spouse 
02: |   education = 11th: <=50K. (271) 
03: |   education = Masters: >50K. (713) 
04: |   education = 9th: <=50K. (158) 
05: |   education = HS-grad: <=50K. (3436) 
06: |   education = Some-college 
07: |   |   occupation = Handlers-cleaners: <=50K. (69) 
08: |   |   occupation = Exec-managerial (132) 
23: marital-status = Married-AF-spouse: <=50K. (16)  

Fig. 4. Revised classification tree after iteration 3. 

4.2 Supervised Decision Tree-based K-Anonymity  
The kACTUS algorithm is presented in Fig. 5. kACTUS 

consists of two main phases: In the first phase, a classifi-
cation tree is induced from the original dataset; in the 
second the classification tree is used by a new algorithm 
developed in this study to k-anonymize the dataset. 
 
4.2.1 Phase 1: Deriving the Classification Tree 

In this phase we are employing a decision tree inducer 

(denoted by CTI) to generate a decision tree denoted by 
CT. The tree can be derived using various inducers. We 
concentrate on top-down univariate inducers which are 
considered the most popular decision tree inducers [33] 
and include the well-known algorithms C4.5 [34]. Top-
down inducers are greedy by nature and construct the 
decision tree in a top-down recursive manner (also 
known as divide and conquer). Univariate means that the 
internal nodes are split according to the value of a single 
attribute. 

The decision tree is trained over the projection of the 
quasi-identifiers i.e., CT�CTI( ( )Q y Sπ ∪ ). The wrapped 
inducer CTI should be differentiated from the target in-
ducer I. Inducer I is applied on the anonymous dataset, 
(i.e., after applying k-anonymization process). The aim of 
the CTI is to reveal which quasi-identifier is more relevant 
for predicting the class value.  

Any internal node (non-leaf) with less than k instances 
can not be used by itself for generating the anonymous 
dataset.  Thus, even if such a node is provided in the clas-
sification tree it can be pruned in advance. In many deci-
sion trees inducers, such as C4.5, the user can control the 
tree growing process by setting the algorithm’s parame-
ters. Specifically the parameter MinObj (“minimum num-
ber of instances”) indicates the number of instances that 
should be associated with a node in order it to be consid-
ered for splitting. By setting MinObj to k, one ensures that 
there are no non-complying internal-nodes that are 
needed to be pruned. Thus with this parameter setting we 
can reduce the tree size without sacrificing the accuracy 
performance of the k-anonymous procedure. Still in 
Phase 2 described next no assumption regarding the in-
ternal nodes is made. 
 
4.2.2 Phase 2:  K-Anonymity Process  

In this phase we use the classification tree that was 
created in the first phase to generate the anonymous data-
set. We assume that the classification tree complies with 
the following properties: 
1. The classification tree is univariate, i.e. each internal 

node in the tree refers to exactly one attribute.  
2. All internal nodes refer to a quasi-identifier attrib-

utes. This is true because the decision tree was 
trained over the projection of the quasi-identifier set 
( ( )Q y Sπ ∪ ). 

3. Assuming a top-down inducer, the attributes are 
sorted (from left to right) according to their signifi-
cance for predicting the class (where the right-most 
relates to the least significant attribute).  

4. Complete Coverage: Each instance is associated with 
exactly one path from root to leaf.  

In the next phase we utilize these properties for the k-
anonymity process. Given a tree CT and node v, we de-
fine the following functions and procedures. Because 
these functions are straightforward they are used here 
without providing pseudo-code.  
1. root(CT) – returns the root node of CT 
2. parent(v) - returns the parent of v 
3. height(v) – returns the height (length of longest path 

from that node to a leaf.) of v. 
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4. children(v) – returns the set of immediate descen-
dants of v. 

5. ant(v) – returns the antecedent associated with node 
v. Conjoining (logically ANDed together) the tests 
along the path from the root to the node form the an-
tecedent part. For example the seventh leaf in Fig. 1 is 
associated with the antecedent “Marital-
status=Married AND Education= Some-college AND 
Occupation=Handlers-cleaners” 

6. prune(CT,v) – prunes all descendants of v from the 
tree CT 

7. randomSelect (k,S) – return k randomly selected in-
stances from relation S. 

Our supervised k-anonymity process is described in 
procedure Anonymize of Fig. 5. The input to the Ano-
nymize procedure includes the original dataset S, quasi-
identifier set Q, classification tree CT, and the anonymity 
threshold k. The output of the algorithm is a k-
anonymous dataset denoted by S'. For the sake of sim-
plicity we first assume that all quasi-identifiers are cate-
gorical. We later relax this assumption. 

While the tree is not fully pruned (i.e. the height of the 
root is greater than 0), we continue to iterate. In each it-
eration we choose one internal node (denoted by p) of 
height=1. Note that such a node can always be found.  

In lines 9-18 we go over the children of p (which are 
leaves as height(p)=1) and check if they comply with k, 
i.e., we verify that the number of records in the dataset 
satisfying the leaf antecedents is higher than or equal to k. 
The instances associated with the complying leaves form 
the candidate set of instances to be suppressed in this 
iteration (denoted by SP). The number of instances asso-
ciated with the non-complying leaves are counted by the 
counter nui (line 16).   

In lines 19-25 we check if the total number of instances 
associated with the non-complying leaves are not jointly 
comply with k (i.e. nui<k ). If not we attempt to reach k by 
taking instances from the complying siblings. Siblings can 
waive instances only if their have extra instances. For ex-
ample if k=100 and a certain sibling has 102 instances as-
sociated with then 2 instances can be waived. The extra 
instances are randomly accumulated in Sextra in lines 9-17.  

Finally if the extra instances can actually help us to 
reach the threshold k (line 20), we randomly select the 
non required instances from Sextra and add it to SP. This 
ensures that the post-pruning p, is associated with k in-
stances (i.e. comply with k) and will be mounted to the 
anonymous dataset as-is in the subsequent iterations. On 
the other hand if the extra instances are not sufficient to 
make the non-complying leaves reaching the threshold k, 
then no instances are moved from the complying leaves 
to the non-complying leaves. We decided not to move 
any instances, because even if we move all the extra in-
stances, the post-pruning p will not comply with k and it 
is needed to be furthered pruned.   

In line 28-30 we eventually suppress the complying 
children, removing suppressed instances from the dataset 
S and prune p. It should be noted that our algorithm is 
different from bottom-up pruning procedures which are 
usually included in advanced decision trees inducers. 

Contrary to pruning procedures, the proposed algorithm 
may prune every path differently. Thus, instead of prun-
ing all branches from a certain point to the leaves, some 
paths remain as-is (if they comply with k-anonymity) 
while other are pruned.  Moreover instances that are as-
sociated with the same leaf can be pruned differently, 
because some may be randomly chosen to help their non-
complying siblings.  

Finally in line 32, we are left with the root of the tree 
and examine whether the number of instances left with 
the root node comply with k. If such a situation occurs, 
then we suppress them and then move them to the ano-
nymous dataset. Note that if all attributes are quasi-
identifiers (i.e., Q = A), we copy these instances to the 
anonymous dataset, but not before suppressing all input 
attributes. Thus these instances are left only with the tar-
get attribute. Still some induction algorithms can benefit 
from these empty instances, as it provides additional in-
formation regarding the class distribution.   

However, if the remaining instances do not comply 
with k, we do not copy these instances to the anonymous 
dataset. Thus it is obvious that the new anonymous data-
set may contain fewer instances than the original one, but 
our experiments show that the number of removed in-
stances is very small compared to the total number of 
instances.  
 
4.4 kACTUS Properties 
Corollary 1: The kACTUS algorithm is correct 
Proof:  In order to prove the correctness of the algorithm, 
we need to show that the dataset S’ complies with k-
anonymity.  However this can be easily verified because 
just before calling the suppress procedure; we verify the k 
threshold (line 32 and line 41).  
 
Corollary 2: The computational complexity of kACTUS algo-
rithm overhead is linearly related to the number of instances.  
Proof: We need to find the computational overhead in-
curred by the kACTUS, in addition to the complexity of 
the decision tree inducer CTI (i.e. the complexity of the 
Anonymize procedure).   

We assume that we are given a tree structure such that 
each leaf holds the pointers to the instances complying 
with this leaf (i.e., complying with all the tests in the cor-
responding path from the root to the leaf).  Note that all 
selection operations in kACTUS are performed only on 
the leaves. The number of iterations is bounded by the 
number of internal nodes, which can not exceed the num-
ber of instances (i.e. m). On each iteration of the outer 
loop we handle a single node. The number of children 
associated with the internal node is maximum dmax, which 
represent the largest attribute domain. Regarding the op-
erations on the instances: 
1. Summing up all instances suppression, we maxi-

mally manipulate m instances, each with |Q| sup-
pressions and |A|-|Q|values duplications. Thus 
the suppression operations end up with O(m|A|).  

2. Each instance with |A| attributes is added to an 
existing bag (line 13, line 14 and line 26) not more 
than |Q| times. Note that the longest path is 
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bounded by |Q| because the tree is using only the 
quasi identifiers. Moreover some instances may left 
the next tree level. This totally ends up with 
O(m|A||Q|). 

kACTUS (S,Q,CT,k) 
Input:  S (Original dataset), Q (The quasi-identifier set) , 
k (Anonymity threshold) 
Output:  S' (Anonymous dataset)  
 

1: CT � CTI( Q ySπ ∪ ) /* phase 1 */ 

2: Return Anonymize (SO,Q,CT,k) /* phase 2 */ 
 
Anonymize (SO,Q,CT,k) 
Input : SO (Original dataset to be anonyimized), Q (The 
quasi-identifier set), CT (Classification tree),  
k (Anonymity threshold) 
Output : S' Anonymous dataset 
 
3: S �SO /* work on a copy of the original dataset */ 

4: S' �∅  
5: WHILE height(root(CT))>0 
6:   p �node in CT whose height=1  
7:   nui � 0 /* number of uncomplying instances */ 

8:   SP � ∅ /* candidate instances to be suppressed */ 

9:   S extra  � ∅ /* extra complying instances */ 

10:   FOR each v∈children(p) DO 

11: IF ( )( )ant v S kσ ≥ THEN  

12:    SV �randomSelect( ( )( )ant v Sσ -k, ( )( )ant v Sσ ) 

13:    S extra  � S extra  ∪  SV 

14:    SP �SP∪ ( ( )ant vσ (S)-SV) 

15: ELSE 

16:    nui �nui+ ( )( )ant v Sσ  

17: END IF 
18:  END FOR 
19:  IF nui<k THEN 
20:  requried �k-nui 

21: IF extraS ≥ required THEN 

22:    S not_required �randomSelect( extraS -required, S extra ) 

23: ELSE 
24:         S not_required  � S extra    
25: END IF 

26:      SP �SP∪  S not_required  
27:  END IF 
28: suppressComplyingChildren(S’,SP,Q, p) 
29: S �S-SP  
30: prune(CT,p) 
31: END WHILE 

32: IF S k≥ THEN S' � S' ∪ suppress (S,Q, ∅ ) 

 
Suppress (R,Q,pred) 
Input : R (Dataset), Q (The quasi-identifier set), v 
(Predicates) 
Output : R' (Suppressed dataset) 
 
33: R’ �R 

34: For each a ∈Q Do 
35:   If a does not appear in an antecedent in v  

36:  ( )'?' 'a Rδ →  

37:      End If 
38: End For  
39: Return R’  
 
suppressComplyingChildren(S’,S,Q, p) 
Input : S’ (anonotmous dataset), S (original dataset), Q ( 
quasi-identifier), p (parent node) 
 

40: FOR each  v∈children(p)  DO 

41: IF ( )( )ant v S kσ ≥ THEN 
42:  Sv � ( )( )ant v Sσ  

43:  S' � S' ∪ suppress (Sv,Q,ant(v))  
44: END IF 
45: END FOR 

Fig. 5.  kACTUS Algorithm 

3. As for the expensive minus operations – actually 
there is no need to explicitly perform them. Lines 11-
13 can be joined by shuffling the bag’s instances and 
add the top ( )( )ant v Sσ -k instances to Sextra and the 
remaining to SP. Line 28 can be relaxed by adding 
the instances of the non-complying leaves and the 
remaining extra required instances of the complying 
leaves and associate them to the new leaf (note that 
the pruned parent become a leaf). Thus the minus 
operations also end up with O(m|A||Q|) 

In summary the complexity of kACTUS overhead is:  
 

O ( )maxm d⋅ +O(m|A|)+ O(m|A||Q|)+ O(m|A||Q|)= 

O ( )( )maxmax ,m d A Q⋅  

 
Practically, the computational complexity is affected by 
the size of k. For a large number of k more inner iterations 
are needed till the rule complies with k. However, k could 
not be compactly referred to in the complexity analysis 
without making major assumptions about the tree struc-
ture (for example assuming that the tree is balanced). 
 
Corollary 3: The number of instances that might be lost due to 
kACTUS is bounded by k. 
Proof: The proof of this corollary is straightforward. The 
only cause of instances loss is Line 32 in the algorithm. 
Instances are lost if and only if the left over subset (in-
stances that we pruned up to the root) has less than k in-
stances.    
 
4.5 Handling Numeric Attributes  

In this section we relax the assumption that the quasi-
identifier includes only categorical attributes. For this, we 
need to revise only the suppressed function in the algo-
rithm.  Fig. 6 presents the new suppression function. In 
this function if the attribute a is included in v but it ap-
pears with an inequality predicate (i.e., it is a numeric 
attribute) then we fill all the instances of the attribute a in 
R with a value that is equal to the mean of all a values in 
R. We illustrate the above with the following node path: 

marital-status = Married-civ-spouse AND age >= 30 A ND 
occupation = Exec-managerial AND age < 50 AND race = Other 
AND age < 40: <=50K. (5) 

Note that the numeric attribute age appears in the rule 
three times. We also assume that k=10.  
The path does not comply with k so we prune it and ob-
tain: 
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marital-status = Married-civ-spouse AND age >= 30 A ND 
occupation = Exec-managerial AND  age < 50 AND race  = 
Other: <=50K. (15)  

The new node complies with k (because it has 15 in-
stances). These instances will be added to the dataset with 
the mean value which should be in the range [30,50).  

 

Suppress (R,Q,v) 
Input : R (Dataset), Q (The quasi-identifier set), v 
(Antecedents) 
 
Output : R' (Suppressed dataset) 
 
1:R’ �R 

2:For each a ∈Q Do 
3:   IF a does not appear in a antecedent of v  

4: ( )' ' 'a All Rδ →  

5:   Else 
6: If a doesn’t appear in v with equality predicate  
7:      val �mean value of a in R 

8:     
( ')a val Rδ →  

9:       End If  
10:   End If 
11:End For  
12:Return R’   

Fig. 6.  Suppress for numeric attributes 

Note that if there are numeric quasi-identifiers then the  
computational complexity of the kACTUS is not bounded 
by Corollary 2 because the same attribute can appear sev-
eral times in the same rule (as was demonstrated in the 
above example).  However, the experimental study shows 
that practically the inclusion of numeric attributes has no 
significant effect on the computational cost. 

5. EXPERIMENTAL EVALUATION 
5.1 Overview 
In order to evaluate the performance of the proposed 
method for applying k-anonymity to a dataset used for 
classification tasks, a comparative experiment was con-
ducted on benchmark datasets. Specifically, the experi-
mental study has the following goals: 
1. To compare the obtained classification accuracy to 

the original accuracy without applying k-anonymity,  
2. To compare the proposed method to existing k-

anonymity methods in terms of classification accu-
racy. 

3. To investigate the sensitivity of the proposed method 
to different classification methods. 

 
5.2 Experimental Process 
Fig. 7 is a graphic representation of the experimental 
process that was conducted. Unshaded boxes represent 
datasets. The main aim of this process is to estimate the 
generalized accuracy (i.e., the probability that an instance 
was classified correctly). First, the dataset (box 1) was 
divided into training (box 3) and test sets (box 4) using 5 
iterations of 2-fold cross validation (box 2 - known as the 
5x2CV procedure) as proposed by Alpaydin [35]. On each 

iteration the dataset is randomly partitioned into two 
equal-sized sets S1 and S2 such that the algorithm is eva-
luated twice: on the first evaluation S1 is the training set 
and S2 the test set, and vice versa the second time. We 
apply (box 5) the k-anonymity method on the training set 
and obtain a new anonymous training set (box 6). An in-
ducer is trained (box 7 over the anonymous training set to 
generate a classifier (box 8). Finally, the classifier is used 
to estimate the performance of the algorithm over the 
test-set (box 9).  

Note that in the kACTUS algorithm, the classifier can 
use the test set as-is. In kACTUS suppression is per-
formed on the training set, i.e. some values are converted 
to missing values and all others left on their original val-
ues. Many of the existing induction algorithms are capa-
ble to train from dataset with missing values. The test set 
attributes uses the same domain values as in the train set. 
Nevertheless, TDS and TDR require fitting the test set to 
the classifier in order to ensure fair comparison with 
kACTUS. If for example the values “USA” and “Mexico” 
are generalized to the value “America”, then all occur-
rences of “USA” and “Mexico” in the training dataset will 
be replaced with the value “USA”. A classifier trained on 
the anonymous training set will not be aware of the exis-
tence of the values “USA” and “Mexico” (note that the 
classifier is not aware of the generalization tree). Thus if 
this classifier is now used to classify a test instance with 
the original value of “USA”, then the classifier will not be 
able to utilize the fact that “USA” should be treated as 
“America”. Because kADET is embedded in the decision 
tree algorithm, it is capable, like kACTUS, of handling the 
test set as-is 

The same cross-validation folds are implemented for 
all algorithms compared. Since the average accuracy is a 
random variable, the confidence interval was estimated 
by using the normal approximation of the binomial dis-
tribution. Moreover, we used the combined 5x2 CV F-test 
to accept or reject the hypothesis that the two methods 
have the same error rate with a 0.95 confidence level. 

It should be noted that the above experimental process 
is slightly different from the process used in [11]. As 
Friedman et al. [13] already indicated, the experiment in 
[11] uses the entire dataset to perform generalization and 
“this may provide different generalization results”. In fact 
according to the experimental design in [11], the split into 
training and test sets is performed after the generalization 
is applied. Thus, the estimated variance of the cross vali-
dation solely measures the inducer’s variance and not the 
anonymity variance. In the experimental design that we 
use the split is performed before generalization is applied, 
thus we examine the anonymity on various samples.  
 
5.3 Datasets  
The privacy preserving classification algorithms are usu-
ally evaluated only on the Adult dataset which has be-
come a commonly used benchmark for k-anonymity [7] 
[13][22]. Fung et al. [11] also evaluated the TDR algorithm 
on the German credit dataset. In this experimental study 
we used an additional eight datasets (ten datasets in to-
tal), which were also selected from the UCI Machine 



10 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

Learning Repository [36] and are widely used by the ma-
chine learning community for evaluating learning algo-
rithms. The datasets vary across such dimensions as the 
number of target classes, of instances, of input features, 
and their type (nominal, numeric). Table 1 summarizes 
the properties of the datasets. 
 
5.4 Algorithms Used 
For the anonymity phase (box 5 in Fig. 7), we compared 
the proposed algorithm (denoted as kACTUS) to TDS [7], 
TDR [11] and kADET [13] in terms of classification accu-
racy. All experiments are based on the execution of the 
original software obtained from the corresponded algo-
rithms inventors.  

Because TDS, TDR, and kADET all require the user to 
provide a generalization taxonomy, we could use them 
only on the Adult dataset for which a generalization tax-
onomy was previously provided by the algorithms inven-
tors.  
For the induction phase (box 7 in Fig. 7), we examined the 
following base induction algorithms: PART decision list 
[37], Naïve Bayes and C4.5 [34] and Logistics Regression.  

The C4.5 algorithm was selected because it is consid-
ered a state-of-the-art decision tree algorithm and has 
been widely used in many other comparative studies. 
Moreover, in our method it is also wrapped in order to 
generate the anonymity rules. Thus, we expected that 
C4.5 would show the minimal deterioration in classifica-
tion accuracy. Naïve Bayes was selected due to its sim-
plicity and due to the fact that it uses a quite different 
learning bias from the one used by C4.5.  The PART algo-
rithm was used due to its resemblances to C4.5, thus al-
lowing us to examine the effectiveness of the proposed 
method on various induction biases: C4.5 (using exactly 
the same inducer as the one used internally (wrapped) by 
kACTUS), PART (using a similar inducer as wrapped by 
kACTUS), naïve Bayes and Logistics Regression (which 
has quite a different induction bias). All experiments 
were performed in the WEKA environment [38]. The ex-
periments with C4.5 took place using J48, the Java version 
of C4.5. 

 
5.4 The Effect of k on the Accuracy 
In this section we analyze the effect of the value of k 
(anonymity level) on the accuracy. Table 2 shows the ac-
curacy results obtained by the proposed algorithm on six 
different values of k for various datasets using different 
inducers. In this section, we assume that all the input 
attributes are quasi-identifiers. Note that the column with 
k=1 represents the original result (i.e., when no anonym-
ity has been performed) to make the examination of the 
effect of anonymity on the accuracy of results possible. 
The superscript "*" indicates that the degree of accuracy 
of the original dataset was significantly different from the 
corresponding result at a confidence level of 95%.  

As expected, the results indicate that there is a tradeoff 
between accuracy performance and the anonymity level. 
Namely, increasing the anonymity level decreases accu-
racy. Moreover, usually there is correlation between the 
accuracy deterioration and the resemblances of the in-
ducer used for the classifier learning to the inner inducer 
(our algorithm wraps the C4.5 algorithm). However, sur-
prisingly in the Japanese Credit this correlation does not 
hold. In this dataset the logistics regression classifier im-
proves its classification accuracy despite the anonymity 
constraint, while the C4.5 classifier does not manifest a 
similar behavior. This indicates, that for noisy datasets, 
the fact that kACTUS wraps a decision tree inducer; make 
it useful as a feature selection for simple classifiers such 
as logistics regression and naïve bayes.   
 
5.5 Single dimensional generalization schemes 
In this section we compare the proposed algorithm to 
other existing k-anonymity algorithms. First, we compare 
the performance on the Adult dataset for different sizes of 
quasi-identifier sets and k-values on various inducers. 
Following [11] the various quasi-identifier sets are based 
on the impact of the attributes on classification. Specifi-
cally the label “14/14” refers to a quasi-identifier set that 
contains all input attributes. The label “11/14” refers to a 
quasi-identifier set that contains the attributes 
{Age,Workclass, fnlwgt,Education, Education-num, Mari-
tal-status, occupation, sex, Capital-gain, Hours-per-week, 
Native-country}. The label “8/14” refers to a quasi-
identifier set that contains the attributes {Age, Workclass, 
fnlwgt, occupation, sex, Capital-gain, Hours-per-week, 
Native-country}. All remaining attributes are included in 
the training set but are treated as non quasi-identifiers. 
Table 3 specifies the results obtained on the Adult dataset 
for comparing kACTUS with TDS, TDR and kADET, re-
spectively. Note that due to the restriction of kADET we 
could only compare the performance on the C4.5 inducer 
(as kADET is embedded in this algorithm). The super-
script "+" indicates that the accuracy of kACTUS was sig-
nificantly higher than the corresponding algorithm (with 
the same k, the same base inducer, and the same dataset) 
at a confidence level of 95%. The "–" superscript indicates 
the accuracy was significantly lower. The results of the 
experimental study are encouraging.They indicate that 
there is only one significant case where TDS is more accu-
rate and two cases when TDR is more accurate than 

 

Fig. 7. The Experimental Process. 
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kACTUS. On the other cases, kACTUS is significantly 
more accurate than TDS and TDR in 51 and 52 cases out 
of 72 cases, respectively. As expected, smaller quasi-
identifier sets obtain a higher accuracy level. This can be 
explained by the fact that larger quasi-identifiers place a 
tighter restriction on the anonymity process. Table 3 indi-
cates that there is no significant case where kADET is 
more accurate than kACTUS. On the other hand, kAC-
TUS is significantly more accurate than kADET in 13 cas-
es out of 18 cases. The results indicate that, from the accu-
racy perspective, kACTUS should be preferred for small 
values of k. 

In order to conclude which algorithm performs best 
over multiple cases, we followed the procedure proposed 
in [39, 40]. In the case of multiple classifiers we first used 
the adjusted Friedman test in order to reject the null hy-
pothesis that all algorithms perform the same and then 
the Bonferroni-Dunn test to examine whether the new 
algorithm performs significantly better than existing algo-
rithms. The null-hypothesis, that all classifiers perform 
the same and the observed differences are merely ran-
dom, was rejected using the adjusted Friedman test. We 
proceeded with the Bonferroni-Dunn test and found that 
kACTUS statistically outperforms TDS, TDR and kADET 
with a 95% confidence level. 
 
5.6 Multi-dimensional generalization schemes 
In the previous section we have shown that kACTUS 
outperforms single dimensional generalization schemes. 
In this section we compare the predictive performance of 
kACTUS to the Mondrian algorithm which is a multidi-
mensional k-anonymity [28].  

Table 5 presents the obtained accuracy results. On av-
erage the accury of kACTUS is 7.84% higher than the ac-
curacy of Mondrian. There is no case in which Mondrian 
significantly outperforms kACTUS. On the other hand, 
kACTUS significantly outperform Mondrian in 58 out of 
72 cases. Using Bonferroni-Dunn test we conclouded that 
kACTUS performs significantly better than existing algo-
rithms. 
 
5.7 Comparing to Suppression methods 
It is expected that generalization methods outperform 
suppression methods because in the former case addi-
tional knowledge (the generalization tree) is provided to 
the k-anonymity algorithm and the algorithm has the 
choice for not entirely suppressing the datum but gently 
generalizes its value. In fact, one of the features of TDR is 
to automatically decide if it is better to perform suppres-
sion or generalization. 

In this section we examine if the improved perforam-
nce of kACTUS is not derived from the fact that our algo-
rithm uses suppression approach while other use gener-
alization. Specifically, in this section all generalization 
algorithms are provided with one level of generalization 
trees, i.e. each value is generalized to the ‘?’ value. Practi-
cally, this means that these algorithms become suppres-
sion algorithms. Table 5 presents the results. As it can be 
seen, there is only one significant case where TDR is more 
accurate than kACTUS. On the other hand, there is no 

case in which TDS or kADET is significantly better than 
kACTUS. Moreover kACTUS is significantly more accu-
rate than TDS and TDR in 62 and 59 cases out of 72 cases, 
respectively. Comparing this result to the previous one 
(when a full generalization tree is used) indicates that 
generalization tree does improve the performance of TDS, 
TDR and kADET. More important when the contributing 
impact of the detailed generalization tree is deactivated, 
the superiority of kACTUS become clearer. 
 
5.8 Scalability 
The aim of this section is to examine the actual computa-
tional cost of the proposed algorithm by measuring the 
running time, and to examine its ability to handle a grow-
ing size of dataset in a graceful manner. We performed a 
scalability test proposed in [11] to measure runtime cost 
of the algorithm on large datasets. The original Adult da-
taset with 45222 records and 7 quasi-identifiers was ex-
panded as follows: for every original record t, we added 
σ-1 variations where σ is a scale factor. Together with all 
original records the enlarged dataset had σ x 45,222 re-
cords. Each variation of t was generated by combining ρ 
attributes from the original record, while the values of the 
remaining attributes were randomly drawn from the do-
main of the attributes. 

We conducted all experiments on the following hard-
ware configuration: a desktop computer implementing a 
Windows XP operating system with Intel Pentium 4-
2.8GHz, and 2GB of physical memory. The dataset was 
loaded from MySql RDBMS Ver. 6 with indices defined 
on all quasi identifiers. 

Table 6 presents the time measured (in seconds) for 
various values of  σ with ρ=3 and k-threshold=150. We 
measured separately the time needed to generate the de-
cision tree (referred to as C4.5 training time) and the time 
needed to perform our k-anonymity procedure. Model 
generation time reflects the runtime cost of J4.8 inducer in 
Weka package and it is beyond our control. The results 
indicate that the execution time is almost linear in the 
number of records. This agrees with Corollary 2 which 
indicates that the computational complexity overhead of 
the kACTUS algorithm is linear in the training set size. 
The largest execution time of 483 seconds was achieved 
for Scalability Factor of 30 with 1,356,660 records, which 
is comparable to the execution time reported by TDS. 
 
5.9 Discussions 
The advantages of the new kACTUS algorithm, as ob-
served from the experimental study, can be summarized 
as following:  
• kACTUS is capable of applying k-anonymity on a given 

table with no significant effect on classification accu-
racy. 

• kACTUS scales well with large datasets and anonymity 
levels. 

• When compared to the state-of-the-art k-anonymity 
methods, kACTUS anonymized data can be used to in-
duce classifiers which are of an equivalent or slightly 
higher degree of accuracy.  

• kACTUS, unlike other methods, does not use any prior 
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knowledge. In TDS, TDR, kADET, GA-based ano-
nymizer [10] and Incognito [12], the user is required to 
provide a taxonomy tree for categorical attributes. This 
makes it difficult to use. Additionally it can become a 
source for disagreements among experts as described in 
[7] [13]. 

• When compared to the kADET algorithm, kACTUS is 
not restricted to a decision tree classifier, and its output 
can be used by any induction algorithms.  

• Moreover, kADET embeds k-anonymity into the induc-
tion algorithm as part of the tree growing phase (via the 
split criterion). kACTUS, on the contrary, takes the 
pruning approach. Thus, kACTUS can wrap any top-
down univariate decision tree inducer as a black box. It 
does not require revision of existing algorithms, where 
kADET, which embeds new k-anonymity splitting cri-
teria into an existing decision trees inducer, requires in-
creased effort from the practitioner when moving from 
one decision tree inducer to another. Moreover some 
decision tree inducers are very complicated to manipu-
late. It is not surprising that to use kADET with the 
C4.5 algorithm, the authors were forced to disable a cer-

tain feature of the original C4.5. Taking the pruning 
approach, we could wrap C4.5 without disabling any 
feature and without revising its source.  

 
The kACTUS algorithm has also several drawbacks: 
• Over-anonymity: when a certain node does not comply 

with the k anonymity restriction, kACTUS prune it. 
This might be too aggressive and might result in over-
anonymity of the data. Instead, one can generalize the 
attribute and not suppressing it. For example consider 
an internal node with the following leaves “A1=Yellow 
(6)”, “A1=Blue (7)” and “A1=Red (10)”. Assuming that 
k=10 then the “A1” of the first two leaves will be totally 
suppressed. However, it is sufficient to replace this at-
tributes with the value: “Yellow OR Blue” which im-
plies a smaller data loss. A different origin for over-

generalization happens if the original classification tree 
is already over-anonymous.  The proposed algorithm is 
capable of pruning a node and making its scope wider, 
but it cannot expand the node to narrow its scope. 

• Instances loss: while there are some cases when in-
stances loss cannot be avoided, the greedy nature of 
kACTUS can lead to unnecessary instances loss. In 
some decision trees, splitting criteria (such as the in-
formation gain in ID3 algorithm) attributes, which take 
on a large number of distinct values, tend to be selected 
near the root of the tree. This well-known observation 
can cause many nodes to be totally pruned in kACTUS 
(i.e., instances loss).  Using information gain ratio in-
stead (as in the C4.5 algorithm that has been used in the 
experimental study) biases the decision tree against 
considering attributes with a large number of distinct 
values, and thus it reduces the need to remove in-
stances. Nevertheless as stated in Corollary 3 the in-
stances loss is bounded by k. 

• In two points, kACTUS performs random selection of 
instances. Results might be improved if a greedy selec-
tion rule is used. Moreover this randomness injection 
may cause the performance to be instable. Nevertheless 
it should be noted that the last weakness has not mani-
fested in the experimental studies presented above. As 
a matter of fact the standard deviation of kACTUS is 
quite similar to that of other anonymization methods. 
 

TABLE 2 
ACCURACY VS. K FOR KACTUS ALGORITHM. 

 

TABLE 1 
THE PROPERTIES OF THE DATASETS 
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TABLE 3 
COMPARING ACCURACY WITH GENERALIZATION METHODS  

 
 

TABLE 4 
COMPARING ACCURACY WITH SUPPRESSION METHODS 

 

4 CONCLUSION 
In this paper we presented a new method for preserv-

ing the privacy in classification tasks using k-

anonymity. The proposed method requires no prior 

knowledge regading the domain hierarchy taxonomy 

and can be used by any inducer. The new method also 

shows a higher predictive performance when com-

pared to existing state-of-the-art methods.  

Additional issues to be studied further include: Ex-

amining kACTUS with other decision trees inducers; 

revising kACTUS to overcome its existing drawbacks; 

extending the proposed method to other data mining 

tasks (such as clustering and association rules) and  to 

other anonymity measures (such as  l-diversity) which 

respond to different known attacks against k-

anonymity, such as homogeneous attack and back-

ground attack. 
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