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Abstract

This paper proposes several novel methods, based on machine learning, to detect malware
in executable files without any need for preprocessing, such as unpacking or disassembling.
The basic method (Mal-ID) is a new static (form-based) analysis methodology that utilizes
common segment analysis in order to detect malware files. By using common segment
analysis, Mal-ID is able to discard malware parts that originate from benign code. In
addition, Mal-ID utilizes a new kind of feature, termed meta-feature, to better capture the
properties of the analyzed segments. Rather than using the entire file, as is usually the
case with machine learning based techniques, the new approach detects malware on the
segment level. This study also introduces two Mal-ID extensions that improve the Mal-ID
basic method in various aspects. We rigorously evaluated Mal-ID and its two extensions
with more than ten performance measures, and compared them to the highly rated boosted
decision tree method under identical settings. The evaluation demonstrated that Mal-ID
and the two Mal-ID extensions outperformed the boosted decision tree method in almost
all respects. In addition, the results indicated that by extracting meaningful features, it is
sufficient to employ one simple detection rule for classifying executable files.

Keywords: Computer Security, Malware Detection, Common Segment Analysis, Super-
vised Learning

1. Introduction

Nowadays the use of the Internet has become an integral part of modern life and Inter-
net browsers are downloading to users a wide variety of content, including new computer
software. One consequence of this widespread use is that many computer systems are vul-
nerable to and infected with malware – malicious software. Malware can be categorized
into several groups:

1. Viruses – computer programs that are able to replicate themselves and infect files
including the operating systems (OS);

2. Worms – self-replicating computer software that is able to send itself to other com-
puters on a network or the Internet;
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3. Trojans – a software that appears to perform the desired functionally but is actually
implementing other hidden operations such as facilitating unauthorized access to a
computer system;

4. Spyware – a software installed on a computer system without the user’s knowledge to
collect information about the user.

The rate of malware attacks and infections is not yet leveling. In fact, according to
O’Farrell (2011) and Symantec Global Internet Security Threat Report Trends for 2010
(Symantec, 2010), attacks against Web browsers and malicious code variants installed by
means of these attacks have increased.

There are many ways to mitigate malware infection and spread. Tools such as anti-virus
and anti-spyware are able to identify and block or identify malware based on its behavior
(Franc and Sonnenburg, 2009) or static features (see Table 1 below). A static feature may
be a rule or a signature that uniquely identifies a malware or malware group. While the
tools mitigating malware may vary, at their core there must be some classification method
to distinguish malware files from benign files.

Warrender et al. (1999) laid the groundwork for using machine learning for intrusions
detection. In particular, machine learning methods have been used to analyze binary exe-
cutables. For example, Wartell el al. (2011) introduce a machine learning-based disassembly
algorithm that segments binaries into subsequences of bytes and then classifies each sub-
sequence as code or data. In this paper, the term segment refers to a sequence of bytes
of certain size that was extracted from an executable file. While it sequentially scans an
executable, it sets a breaking point at each potential code-to-code and code-to-data/data-
to-code transition. In addition, in recent years many researchers have been using machine
learning (ML) techniques to produce a binary classifier that is able to distinguish malware
from benign files.

The techniques use three distinct stages:

1. Feature Extraction for file representation – The result of the feature extraction phase
is a vector containing the features extracted. An executable content is reduced or
transformed into a more manageable form such as:

(a) Strings – a file is scanned sequentially and all plain-text data is selected.

(b) Portable Executable File Format Fields – information embedded in Win32 and
Win64-bit executables. The information is necessary for the Windows OS loader
and application itself. Features extracted from PE executables may include all
or part of the following pieces of information: attribute certificate – similar to
checksum but more difficult to forge; date/time stamp; file pointer - a posi-
tion within the file as stored on disk; linker information; CPU type; Portable
Executable (PE) logical structure (including section alignment, code size, debug
flags); characteristics - flags that indicate attributes of the image file; DLL import
section – list of DLLs and functions the executable uses; export section - which
functions can be imported by other applications; resource directory –indexed by
a multiple-level binary-sorted tree structure (resources may include all kinds of
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information. e.g., strings for dialogs, images, dialog structures; version informa-
tion, build information, original filename, etc.); relocation table; and many other
features.

(c) n-gram – segments of consecutive bytes from different locations within the ex-
ecutables of length n. Each n-gram extracted is considered a feature (Rokach
et al., 2008).

(d) Opcode n-gram – Opcode is a CPU specific operational code that performs spe-
cific machine instruction. Opcode n-gram refers to the concatenation of Opcodes
into segments.

2. Feature Selection (or feature reduction) – During this phase the vector created in
phase 1 is evaluated and redundant and irrelevant features are discarded. Feature se-
lection has many benefits including: improving the performance of learning modules
by reducing the number of computations and as a result the learning speed; enhanc-
ing generalization capability; improving the interpretability of a model, etc. Feature
selection can be done using a wrapper approach or a correlation-based filter approach
(Mitchell, 1997). Typically, the filter approach is faster than the wrapper approach
and is used when many features exist. The filter approach uses a measure to quantify
the correlation of each feature, or a combination of features, to a class. The overall
expected contribution to the classification is calculated and selection is done accord-
ing to the highest value. The feature selection measure can be calculated using many
techniques, such as gain ratio (GR); information-gain (IG); Fisher score ranking tech-
nique (Golub et al., 1999) and hierarchical feature selection (Henchiri and Japkowicz,
2006).

3. The last phase is creating a classifier using the reduced features vector created in phase
2 and a classification technique. Among the many classification techniques, most of
which have been implemented in the Weka platform (Witten and Frank, 2005), the
following have been used in the context of benign/malware files classification: artifi-
cial neural networks (ANNs) (Bishop, 1995) , decision tree (DT) learners (Quinlan,
1993), nave-Bayes (NB) classifiers (John and Langley, 1995), Bayesian networks (BN)
(Pearl, 1987), support vector machines (SVMs) (Joachims, 1999), k-nearest neighbor
(KNN) (Aha et al., 1991), voting feature intervals (VFI) (Demiröz and Güvenir, 1997),
OneR classifier (Holte, 1993), Adaboost (Freund and Schapire, 1999), random forest
(Breiman, 2001), and other ensemble methods (Menahem et al., 2009; Rokach, 2010).

To test the effectiveness of ML techniques, in malware detection, the researchers listed
in Table 1 conducted experiments combining various feature extraction methods along with
several feature selection and classification algorithms.

Ye et al. (2009) suggested using a mixture of features in the malware-detection process.
The features are called Interpretable Strings as they include both programs’ strings and
strings representing the API execution calls used. The assumption is that the strings capture
important semantics and can reflect an attacker’s intent and goal. The detection process
starts with a feature parser that extract the API function calls and looks for a sequence of
consecutive bytes that forms the strings used. Strings must be of the same encoding and
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character set. The feature-parser uses a corpus of natural language to filter and remove
non-interpretable strings. Next, the strings are ranked using the Max-Relevance algorithm.
Finally, a classification model is constructed from SVM ensemble with bagging.

Ye et al. (2010) presented a variation of the method, presented above, that utilizes
Hierarchical Associative Classifier (HAC) to detect malware from a large imbalanced list
of applications. The malware in the imbalanced list were the minority class. The HAC
methodology also uses API calls as features. Again, the associative classifiers were chosen
due to their interpretability and their capability to discover interesting relationships among
API calls. The HAC uses two stages: to achieve high recall, in the first stage, high precision
rules for benign programs (majority class) and low precision rules for minority class are
used, then, in the second stage, the malware files are ranked and precision optimization is
performed.

Instead of relying on unpacking methods that may fail, Dai et al. (2009) proposed a
malware-detection system, based on a virtual machine, to reveal and capture the needed fea-
tures. The system constructs classification models using common data mining approaches.
First, both malware and benign programs are executed inside the virtual machine and the
instruction sequences are collected during runtime. Second, the instruction sequence pat-
terns are abstracted. Each sequence is treated as a feature. Next, a feature selection process
in performed. In the last stage a classification model is built. In the evaluation the SVM
model performed slightly better then the C4.5 model.

Yu et al. (2011) presented a simple method to detect malware variants. First, a his-
togram is created by iterating over the suspected file binary code. An additional histogram
is created for the base sample (the known malware). Then, measures are calculated to
estimate the similarity between the two histograms. Yu et al. (2011) showed that when the
similarity is high, there is a high probability that the suspected file is a malware variant.

The experiments definitely proved that is possible to use ML techniques for malware
detection. Short n-gram were most commonly used as features and yielded the best results.
However, the researchers listed did not use the same file sets and test formats and therefore
it is very difficult or impossible to compare the results and to determine what the best
method under various conditions is. Table 2 presents predictive performance results from
various researches.

When we examined the techniques, several insights emerged:

1. All applications (i.e. software files tested in the studies) that were developed using
a higher level development platforms (such as Microsoft Visual Studio, Delphi, Mi-
crosoft.Net) contain common code and resources that originate from common code
and resource libraries. Since most malware are also made of the same common build-
ing blocks, we believe it would be reasonable to discard the parts of a malware that
are common to all kinds of software, leaving only the parts that are unique to the
malware. Doing so should increase the difference between malware files and benign
files and therefore should result in a lower misclassification rate.

2. Long n-gram create huge computational loads due to the number of features. This
is known as the curse of dimensionality (Bellman et al., 1966). All surveyed n-gram
experiments were conducted with n-gram length of up to 8 bytes (in most cases 3-byte
n-gram) despite the fact that short n-gram cannot be unique by themselves. In many
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Study Feature
Representa-
tion

Feature
Selection

Classifiers

Schultz et al.
(2001)

PE, Strings,
n-gram

NA RIPPER, Nave Bayes,
and Multi-Nave Bayes

Kolter and
Maloof (2004)

n-gram NA TFIDF, Nave Bayes,
SVM, Decision Trees,
Boosted Decision Trees,
Boosted Nave Bayes, and
Boosted SVM

Abou-Assaleh
et al. (2004)

n-gram NA K-Nearest Neighbors

Kolter and
Maloof (2006)

n-gram Information-
Gain

K-Nearest Neighbors,
Nave Bayes, SVM, De-
cision Trees, Boosted
Decision Trees, Boosted
Nave Bayes, and Boosted
SVM.

Henchiri and
Japkowicz
(2006)

n-gram Hierarchical
feature se-
lection

Decision Trees, Nave
Bayes, and SVM

Zhang et al.
(2007)

n-gram Information-
Gain

Probabilistic Neural Net-
work

Elovici et al.
(2007)

PE and n-
gram

Fisher
Score

Bayesian Networks, Ar-
tificial Neural Networks,
and Decision Trees

Ye et al. (2008) PE Max-
Relevance

Classification Based on
Association (CBA)

Dai et al.
(2009)

instruction
sequence

Contrast
measure

SVM

Ye et al. (2009) PE (API) Max-
Relevance

SVM ensemble with bag-
ging

Ye et al. (2010) PE (API) Max-
Relevance

Hierarchical Associative
Classifier (HAC)

Yu et al. (2011) histogram NA Nearest Neighbors

Table 1: Recent research in static analysis malware detection in chronological order.
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Method Study Features Feature
selection

FPR TPR Acc AUC

Artificial Neural
Network

Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.038 0.89 0.94 0.96

Bayesian Network Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.206 0.88 0.81 0.84

Bayesian Network Elovici
et al.
(2007)

PE n/a 0.058 0.93 0.94 0.96

Decision Tree Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.039 0.87 0.93 0.93

Decision Tree Elovici
et al.
(2007)

PE n/a 0.035 0.92 0.95 0.96

Classification
Based on Associa-
tion

Ye
et al.
(2008)

PE Max-
Relevance

0.125 0.97 0.93 —–

Boosted Decision
Tree

Kolter
and
Maloof
(2006)

4grams Gain Ra-
tio

—– —– —– 0.99

Table 2: Comparison of several kinds of machine learning methods. FPR, TPR, ACC and
AUC refers to False Positive Rate, True Positive Rate, Accuracy and the Area
Under Receiver Operating Characteristic (ROC) Curve as defined in Section 3.2.

6



Automatic Malware Detection

cases 3- to 8-byte n-gram cannot represent even one line of code composed with a high
level language. In fact, we showed in a previous paper (Tahan et al., 2010) that an
n-gram should be at least 64 bytes long to uniquely identify a malware. As a result,
current techniques using short n-gram rely on complex conditions and involve many
features for detecting malware files.

The goal of this paper is to develop and evaluate a novel methodology and supporting
algorithms for detecting malware files by using common segment analysis. In the proposed
methodology we initially detect and nullify, by zero patching, benign segments and therefore
resolve the deficiency of analyzing files with segments that may not contribute or even hinder
classification. Note that, when a segment represents at least one line of code developed using
a high level language; it can address the second deficiency of using short features that may
be meaningless when considered alone. Additionally, we suggest utilizing meta-features
instead of using plain features such as n-gram. A meta-feature is a feature that captures
the essence of plain feature in a more compact form. Using those meta-features, we are able
to refer to relatively long sequences (64 bytes), thus avoiding the curse of dimensionality.

2. Methods

As explained in Section 1, our basic insight is that almost all modern computer applications
are developed using higher level development platforms such as: Microsoft Visual Studio,
Embarcadero Delphi, etc. There are a number of implications associated with utilizing
these development platforms:

1. Since application development is fast with these platforms, both legitimate developers
and hackers tend to use them. This is certainly true for second-stage malware.

2. Applications share the same libraries and resources that originated from the develop-
ment platform or from third-party software companies. As a result, malware that has
been developed with these tools generally resembles benign applications. Malware also
tends, to a certain degree, to use the same specialized libraries to achieve a malicious
goal (such as attachment to a different process, hide from sight with root kits, etc).
Therefore it may be reasonable to assume that there will be resemblances in various
types of malware due to sharing common malware library code or even similar specific
method to perform malicious action. Of course such malware commonalities cannot
be always guaranteed.

3. The size of most application files that are being produced is relatively large. Since
many modern malware files are in fact much larger than 1 MB, analysis of the newer
applications is much more complex than previously when the applications themselves
were smaller as well as the malware attacking them.

The main idea presented in this paper is to use a new static analysis methodology that
utilizes common segment analysis in order to detect files containing malware. As noted
above, many applications and malware are developed using the development platforms that
include large program language libraries. The result is that large portions of executable
code originate from the program language libraries. For example, a worm malware that
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distributes itself via email may contain a benign code for sending emails. Consequently, since
the email handling code is not malicious and can be found in many legitimate applications,
it might be a good idea to identify code portions that originate from a benign source
and disregard them when classifying an executable file. In other words, when given an
unclassified file, the first step would be to detect the file segments that originated from
the development platform or from a benign third party library (termed here the Common
Function) and then disregard those segments. Finally, the remaining segments would be
compared to determine their degree of resemblance to a collection of known malwares. If
the resemblance measure satisfies a predetermined threshold or rule then the file can be
classified as malware.

To implement the suggested approach, two kinds of repositories are defined:

1. CFL – Common Function Library. The CFL contains data structures constructed
from benign files.

2. TFL – Threat Function Library. The TFL contains data structures constructed
from malware without segments identified as benign (i.e., segments that appears in
benign files).

Figure 1 presents the different stages required to build the needed data structures and
to classify an application file. As can be seen in this figure, our Mal-ID methodology uses
two distinct stages to accomplish the malware detection task: setup and detection. The
setup stage builds the CFL. The detection phase classifies a previously unseen application
as either malware or benign. Each stage and each sub-stage is explained in detail in the
following subsections. The Mal-ID pseudo code is presented in Figure 2.

2.1 The setup phase

The setup phase involves collecting two kinds of files: benign and malware files. The benign
files can be gathered, for example, from installed programs, such as programs located under
Windows XP program files folders. The malware files can, for example, be downloaded from
trusted dedicated Internet sites, or by collaborating with an anti-virus company. In this
study the malware collection was obtained from trusted sources. In particular, Ben-Gurion
University Computational Center provided us malware that were detected by them over
time. Each and every file from the collection is first broken into 3-grams (three consecutive
bytes) and then an appropriate repository is constructed from the 3-grams. The CFL
repository is constructed from benign files and the TFL repository is constructed from
malware files. These repositories are later used to derive the meta-features – as described
in Section 2.2.

Note that in the proposed algorithm, we are calculating the distribution of 3-grams
within each file and across files, to make sure that a 3-gram belongs to the examined segment
and thus associate the segment to either benign (CFL) or malware (TFL). Moreover, 3-
grams that seem to appear approximately within the same offset in all malware can be used
to characterize the malware. Before calculating the 3-grams, the training files are randomly
divided into 64 groups.

The CFL and TFL repositories share the same data structure:
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Figure 1: The Mal-ID method for detecting new malware applications. 

Setup phase:

Build Common Function Library (CFL)

Build Threats Function Library (TFL)

Malware Detection Phase: 

�Break the file into segments. 

�Calculate segment entropy 

� Extract features (3-grams) for 

each segment. 

For each file segment:

�Aggregate the features using the 

CFL to creates indices 

For each file segment:

�Aggregate the features using the 

TFL to creates indices 

Filter segments using the 

computed indices 

Second level index aggregation  

Classify the file  

Figure 1: The Mal-ID method for detecting new malware applications.
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1. 3-gram-files-association: 224 entries, each of 64 bits. A bit value of 1 in a cell (i, j)
indicates the appearance of a specific 3-gram i in the jth group of files. The 64-bit entry
size was selected since a previous study showed that this size is the most cost effective
in terms of detection performance vs. storage complexity (Tahan et al., 2010). Other
implementations may use larger entries.

1. 3-gram-relative-position-within-file: 224 entries, each of 64 bits. A bit value of 1 in
a cell (i, j) indicates the appearance of 3-gram i in the jth internal segment of a file
(assuming the file is divided into 64 equal length segments).

The CFL is constructed first and then the TFL:

1. Each file from the malware collection is broken into segments. The Mal-ID implemen-
tation has used 64-byte segments.

2. Each segment is broken into 3grams and then tested against the CFL using the algo-
rithm and features described next. Segments that are not in the CFL are added to
the TFL.

It is important to note that the end result is the TFL, a repository made of segments
found only in malware and not in benign files.

2.2 The Detection phase

The Mal-ID basic is a feature extraction process followed by a simple static decision rule.

It operates by analyzing short segments extracted from the file examined. Each segment
comprises a number of 3-grams depending on the length of the segment (e.g. a segment of
length 4 bytes is comprised from two 3-grams that overlap by two bytes). Three features
can be derived for each segment: Spread, MFG, and Entropy. The Spread and the MFG
features are derived using the data structures prepared in the setup stage described in
Section 2.1 above.

The definition and motivation behind the new features are hereby provided:

1. Spread: Recall that in the Mal-ID setup phase each file in the training set has been
divided into 64 relative-position-areas. The Spread feature represents the spread of
the signature’s 3-grams along the various areas for all the files in a given repository.
The Spread feature can be calculated as follows: for each 3-gram, first retrieve the
3-gram-relative-position-within-file bit-field, and then perform ‘And’ operations over
all the bit-fields and count the resulting number of bits that are equal to 1. In other
words, spread approximates the maximum number of occurrences of a segment within
different relative locations in train sets. For example, a Spread equal to 1 means that
the segment appears (at most) in one relative location in all the files.

2. MFG: the maximum total number of file-groups that contain the segment. The
MFG is calculated using the 3-gram-files-association bit-field, in the same manner
that spread is calculated.
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3. Entropy: the entropy measure of the bytes within a specific segment candidate. In
addition to the new estimators presented above, the entropy feature is also used to
enable to identification of compressed areas (such as embedded JPEG images) and
long repeating sequences that contain relatively little information.

Note that the features, as described above, are in fact meta-features as they are used
to represent features of features (features of the basic 3-grams). As explained next, using
these meta-features, Mal-ID can refer to relatively long sequences (64 bytes), thus avoiding
the data mining problem known as “the curse of dimensionality”, and other problems caused
when using short n-gram as features. The advantages of using Mal-ID meta-features will
be demonstrated in the evaluation results section and in the discussion section.

2.3 The Mal-ID basic detection algorithm

The input for the Mal-ID method is an unclassified executable file of any size. Once the
setup phase has constructed the CFL and the TFL, it is possible to classify a file F as
benign or as malware using the algorithm presented in Figure 2.

1. Line 1. Divide file F into S segments of length L. All segments are inserted into a
collection and any duplicated segments are removed. The end result is a collection of
unique segments. The Mal-ID implementation uses 2000 segments that are 64-bytes
in length.

2. Line 3. For each segment in the collection:

(a) Line 5. Calculate the entropy for the bytes within the segment.

(b) Line 6. The algorithm gets two parameters EntropyLow and EntropyHigh. The
entropy thresholds are set to disregard compressed areas (such as embedded
JPEG images) and long repeating sequences that contain relatively little infor-
mation. In this line we check if the entropy is smaller than EntropyLow threshold
or entropy is larger than EntropyHigh. Is so then discard the segment and con-
tinue segment iteration. Preliminary evaluation has found the values of Entropy-
Low=0.5 and EntropyHigh=0.675 maximize the number of irrelevant segments
that can be removed.

(c) Line 9. Extract all 3-grams using 1 byte shifts.

(d) Line 11. Using the CFL, calculate the CFL-MFG index.

(e) Line 12. If the CFL-MFG index is larger than zero, then discard the segment
and continue segment iteration. The segment is disregarded since it may appear
in benign files.

(f) Line 14. Using the TFL, calculate the TFL-MFG index

(g) Line 15. The algorithm gets the ThreatThreshold parameter which indicates
the minimum occurrences a segment should appear in the TFL in order to be
qualified as malware indicator. In this line we check if the TFL-MFG index is
smaller or equal to the ThreatThreshold. If so then discard the segment and
continue with segment iteration. In the Mal-ID implementation only segments
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that appear two times or more remain in the segment collection. Obviously a
segment that does not appear in any malware cannot be used to indicate that
the file is a malware.

(h) Line 17. Using the TFL calculate the TFL-Spread index

(i) Line 18. The algorithm gets the SR parameter which indicates the Spread Range
required. If the TFL-Spread index equals zero or if it is larger than what we
term SR threshold, then discard the segment and continue segment iteration.
The purpose of these conditions is to make sure that all 3-grams are located in
at least 1 segment in at least 1 specific relative location. If a segment is present
in more than SR relative locations it is less likely to belong to a distinct library
function and thus should be discarded. In our Mal-ID implementation, SR was
set to 9.

(j) Lines 21-25 (optional stage, aimed to reduce false malware detection). A segment
that meets all of the above conditions is tested against the malware file groups
that contain all 3-gram segments. As a result, only segments that actually reside
in the malware are left in the segment collection. Preliminary evaluation showed
that there is no significant performance gain performing this stage more than log
(SegmentLen) * NumberOfMalwareInTraining iterations.

3. Lines 28-30. Second level index aggregation - Count all segments that are found in
malware and not in the CFL.

4. Line 32. Classify – If there are at least X segments found in the malware train set
(TFL) and not in the CFL then the file is malware; otherwise consider the file as
benign. We have implemented Mal-Id with X set to 1.

Please note that the features used by Mal-ID algorithm described above are in fact meta-
features that describe the 3-grams features. The advantages of using Mal-ID meta-features
will be described in the following sections.

2.3.1 Mal-ID complexity

Proposition 1 The computational complexity of the algorithm in Figure 2 is O(SN +
log(SL)·M ·MaxMalSize) where SN denotes the number of segments; SL denotes segment
length; M denotes the number of malware in the training set; and MaxMalSize denotes
the maximum length of a malware.

Proof The computational complexity of the algorithm in Figure 2 is computed as follows:
the GenerateSegmentCollection complexity is O(SN); the complexity of loop number 1
(lines 3-21) is O(SN + log(SL) ·M ·MaxMalSize); the complexity of loop number 2 (lines
26-29) is O(SN). Thus, the overall complexity is O(SN + log(SL) ·M ·MaxMalSize).
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SegmentColl=GenerateSegmentCollection(FileContent,SegmentsRequired,SegmentLen);

SegmentCheck=0; 

ForEach Segment in SegmentColl do 

{ 

Entropy  = Entropy(Segment.string); 

If (Entropy<=EntropyLow) or (Entropy>= EntropyHigh) then  

    {SegmentColl.delete(Segment); continue; } 

Segment3Grams:=SegmentTo3Grams(Segment); 

CFL_MFG = CFL.Count_Files_With_All_3gram (Segment3Grams) 

If (CFL_MFG>0) then { SegmentColl.delete(Segment); continue; } 

TFL_MFG = TFL.Count_Files_With_All_3gram (Segment3Grams) 

If (TFL_MFG< ThreatsThreshold) then { SegmentColl.delete(Segment); continue; } 

TFL_spread   = TFL.CalcSpread (Segment3Grams); 

If (TFL_spread =0) or  (TFL_spread >SR)  then   

    {SegmentColl.delete(Segment); continue; } 

// optional stage 

SegmentCheck++; 

If (SegmentCheck>log(SegmentLen)*NumberOfMalwareInTraining) then continue; 

InMalwareFile  = TFL.SearchInMalwareFiles(Segment);  //search by bit-fields 

If  not InMalwareFile  then { SegmentColl.delete(Segment); continue; } 

} 

SegmentsInMalwareOnly = 0; 

ForEach Segment in SegmentColl do 

{ SegmentsInMalwareOnly  = SegmentsInMalwareOnly +1; } 

Malware_Classfication_Result = SegmentsInMalwareOnly > ThreatSegmentThreshold; 

Figure 2: Mal-ID pseudo code. 

Mal-ID basic

Figure 2: Mal-ID pseudo code.

2.4 Combining Mal-ID with ML generated models

We attempted to improve the Mal-ID basic method by using Mal-ID features with various
classifiers, but instead of using the Mal-ID decision model described in Section 2, we let
various ML algorithms build the model using the following procedure:

1. We apply the common segment analysis method on the training set and obtain a
collection of segments for both the CFL and the TFL as explained in Section 2.

2. For each file’s segment, we calculated the CFL-MFG, TFL-MFG and the TFL-spread
based on the CFL and TFL. The entropy measure is calculated as well.
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3. We discretized the numeric domain of the above features using the supervised proce-
dure of Fayyad and Irani (1993). Thus for each feature we found the most represen-
tative sub-domains (bins).

4. For each file we count the number of segments associated with each bin. Each fre-
quency count is represented twice: once as absolute numbers (number of segments)
and then as a proportional distribution.

5. An induction algorithm is trained over the training set to generate a classifier.

We compare the following three machine learning induction algorithms:

1. C4.5 - Single Decision Tree

2. RF - Rotation Forest (Rodriguez et al., 2006) using J48 decision tree as base classifier.
The algorithm was executed with 100 iterations and the PCA method for projecting
the data in every iteration.

3. NN - A multilayer perception with one hidden layer trained over 500 epochs using
back-propagation.

Finally, using the model is used to detect the malware among the files in the test set.

2.5 Combining Mal-ID with ML models post processing

We have attempted to improve the Mal-ID basic method by using the following procedure:

1. First, the Mal-ID basic method is used to construct the CFL and TFL. This stage is
performed only once before the file classification starts.

2. Next, zero patch each malware in the training set as follows: Iterate over all of the file
segments and perform common segment analysis to detect the segments that appear
in the CFL. The benign segments (the segments that appear in the CFL) are zero
patched in an attempt to reduce the number of n-gram that are clearly not relevant
for detecting segments that appear only in malware. The end result is a new file with
the same length that has zeros in the benign segments.

3. Finally, construct a classification model using Rotation Forest using J48 decision tree
as base classifier. The patched malware collection and the unchanged benign file
collection are used for training.

To classify a file we first have to zero-patch the file as explained above then use the
classification model created earlier.

3. Experimental Evaluation

In order to evaluate the performance of the proposed methods for detecting malwares, a
comparative experiment was conducted on benchmark datasets. The proposed methods
were compared with the method presented in the research of Kolter and Maloof (2004).
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The research of Kolter and Maloof (2006) found that the combination of 500 4-grams with
gain ratio feature selection and boosted decision tree provides the best performance over
many other evaluated method variations. We will refer to our variation of Kolter and Maloof
method as GR500BDT as it uses Gain Ratio feature selection, 500 4-grams, and Boosted
Decision Tree classifier. The GR500BDT method was specifically selected because it was
the best method known to us.

The following terms will be used when referring to the various methods:

1. GR500BDT – Our baseline method, which is described above.

2. Mal-IDP+GR500BDT – As explained in Section 2.5, we use Mal-ID to zero patch
common segments in the test files, and then use GR500BDT as usual.

3. Mal-ID basic – Mal-ID basic method as explained in Section 2.

4. Mal-IDF+<induction algorithm> – as detailed in Section 2.4, Mal-ID features will
be used by induction algorithm.

(a) Mal-IDF+RF - Mal-ID features with Rotation Forest classification

(b) Mal-IDF+C4.5 - Mal-ID features with C4.5

(c) Mal-IDF+NN - Mal-ID features with a multilayer perception.

Specifically, the experimental study had the following goals:

1. To examine whether the proposed basic methods, could detect malware while keeping
the false alarm rate as small as possible.

2. Compare the performance of the various Mal-ID basic extensions.

3. To analyze the effect of the common library size (benign and malware) on performance.

The following subsections describe the experimental set-up and the results that were
obtained.

3.1 Experimental Process

The main aim of this process was to estimate the generalized detection performance (i.e.,
the probability that a malware was detected correctly). The files repository was randomly
partitioned into training and test sets. The process was repeated 10 times and we report
the average result. The same train-test partitioning was used for all algorithms.

For evaluating the proposed methodology 2627 benign files were gathered from programs
installed under Windows XP program files folders, with lengths ranging from 1Kb to 24MB.
An additional 849 malware files were gathered from the Internet with lengths ranging from
6Kb to 4.25MB (200 executables were above 300KB). The detailed list of examined executa-
bles can be obtained in the following URL: http://www.ise.bgu.ac.il/faculty/liorr/List.rar.
The malware and benign file sets were used without any decryption, decompression or any
other preprocessing. The malware types and frequencies are presented in Figure 3. The
evaluation computer used an Intel Q6850 CPU with 4GB of RAM. The processing time was
measured using only 1 CPU core, although the implemented algorithm natively supported
multiple cores.
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Figure 3: Distribution of malware types in dataset.
Figure 3: Distribution of malware types in dataset.

3.2 Evaluation Measures

We used the following performance measures:

• TP = true positive

• FP = false positive

• TN = true negative

• FN = false negative

• FPR = FP / N = FP / (FP + TN) = false positive rate

• TPR = TP / P = TP / (TP + FN) = true positive rate (also known as sensitivity)

• PPV = TP / (TP + FP) = positive predictive value

• NPV = TN / (TN + FN) = negative predictive value

• ACC = (TP + TN) / (P + N) = accuracy

• BER = 0.5(FN/P + FP/N) = balanced error rate

• BCR = 1- BER = balanced correctness rate
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• AUC = area under receiver operating characteristic (ROC) curve

Our measures, such as PPV versus NPV, as well as BER or BCR, try to address the
important case of an unbalanced positive/negative instance case mix, which is often ignored
in the literature. Given the low rate of malware versus benign code, accuracy might be
a misleading measure. For example, a “Maximal Class Probability” (MPC) classifier is a
classifier that always predicts the most frequent class. Thus, an MPC predicting “BENIGN”
for every instance in an environment where 99% of the files are benign would, indeed, be
99% accurate. That would also be its NPV, since there is a 99% probability that the MPC
is right when it predicts that the file is benign. However, its PPV would be 0, or rather,
undefined, since it never predicts a positive class; in other words, its sensitivity to positive
examples is 0.

Furthermore, unlike many studies in the information security literature, we use the
cross-entropy as one of our major performance measures. The cross-entropy described by
Caruana et al. (2004). It is also referred in the literature by the terms negative log-likelihood
or log-loss. Let p(xi) represents the posterior probability of the instance xi to be associated
with the malware class according to the classifier. The average cross-entropy is defined as
the average over all m test instances:

Entropy =
1

m

m∑
i=1

I(xi)

where the cross-entropy for a certain case is defined as:

I (xi) =

{
−logP (xi) if xi is malware

−log (1− P (xi)) otherwise

The use of cross-entropy as a measure of knowledge gain allows us to plot the improve-
ment in a learning process, given an increasing number of examples, by noting whether there
is a positive information gain (i.e., a reduction in the entropy after learning, compared to
the entropy of the previous learning phase). In particular, we would expect an algorithm
that really learns something about the classification of both the positive and negative cases
to demonstrate a positive monotonic improvement in the cross-entropy measure. It is im-
portant to show this positive monotonic improvement since we would prefer an algorithm
that generates classifiers in a stable fashion. Such an algorithm can be considered as more
trustworthy than an algorithm whose learning curve might be chaotic.

3.3 Results

The following sections describe various Mal-ID evaluation results starting with the Mal-
ID basic model followed by the results of two enhancements aimed to improve Mal-ID
performance.

3.3.1 Results of Mal-ID basic Model

Table 3 presents the detection performance of the proposed method for 70% of the benign
files and 90% of the malware files that are used for training.
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TPR FPR PPV NPV AccuracyAUC BCR BER

0.909 0.006 0.944 0.99 0.986 0.951 0.952 0.048

Table 3: Predictive Performance of Mal-ID basic.

Kolter and Maloof (2006) conducted rigorous research to find the best combination of
n-gram length, n-gram number, features selection and classification method. They reported
that the combination of five hundred 4-grams, gain ratio feature selection and boosted
decision tree (AdaBoost.M1 with J48 as a base classifier) produced excellent results where
the AUC was over 0.99. As you recall, we reproduced the work of Kolter and Maloof (gain
ratio, 500 4-grams with boosted decision tree; referred to as GR500BDT ) to objectively
compare the performance of our methods and theirs under the same conditions such as
dataset content, dataset training size, etc. A preliminary evaluation indicated that Rotation
Forest (RF) boosting method (Rodriguez et al., 2006) performed better than AdaBoost.M1
and many other non-boosting methods such as J48, therefore RF was selected for our
evaluation. The results of the evaluation are presented in Table 4 below.

Method Features Feature selection FPR TPR Acc AUC

GR500BDT 4grams Gain Ratio 0.094 0.959 0.948 0.929

Mal-ID Mal-ID - 0.006 0.909 0.986 0.951

Table 4: Comparison between Mal-ID and GR500BDT. The best results are colored with
blue and the worst results are colored in red.

3.3.2 Results of combining Mal-ID with ML generated models

As you recall we attempted to improve the Mal-ID basic method by using Mal-ID features
with various classifiers. The following figures show comparison of various detection per-
formance measures. Many detection performance measures were recorded and reported as
presented in the figures below. Please note that ”TrainPercentage” refers to the percentage
of benign datasets and ranges from 30 to 70 percent. Malware dataset percentages range
from 40 to 90 percent. The ratio between malware and benign was kept fixed for all cases.

Figure 4 reports the average cross-entropy for a classifier by averaging the entropy of
the posteriori probability that it outputs to all test instances. As expected, we see that
the cross-entropy decreases as the training set size increases. For the largest training set,
Mal-ID basic shows the best decrease in a posteriori cross-entropy.

Figure 5 presents the accuracy of the Mal-ID basic model as well that of the Mal-
IDF+NN and Mal-IDF+RF models. As expected, the accuracy increases almost linearly
as the training set size increases. For small training set sizes, Mal-IDF+RF outperforms
the other methods. However, for the largest training set, the Mal-ID basic model eventually
achieves the best results.

Figure 6 presents the TPR of all methods. Mal-IDF+C4.5 demonstrates the lowest
TPR. The Mal-IDF+NN and Mal-IDF+RF models perform the best. The Mal-ID ba-
sic model benefits the most from increasing the training set size. In small training sets,
the difference between the Mal-ID basic model and either Mal-IDF+NN or Mal-IDF+RF
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are statistically significant. However, for larger training sets the differences are no longer
significant.

28

Mal-ID basic

Figure 4: Comparing the a posteriori cross-entropy of various detection modules as a func-
tion of training set percentage increase.

Figure 7 presents the FPR of all methods. The Mal-ID basic model demonstrates the
best performance. Mal-IDF+C4.5, on the other hand, demonstrates the lowest FPR. The
performance of Mal-IDF+NN does not improve as the training set increases. The Mal-
ID basic model significantly outperforms Mal-IDF+C4.5 and Mal-IDF+NN. Additionally,
a paired t-test indicates the Mal-ID basic’s FPR is significantly lower than the FPR of
Mal-IDF+RF with p < 0.0001.

Figure 8 presents the area under the ROC curve for the Mal-ID basic model, Mal-
IDF+NN and Mal-IDF+RF. All models improve as the training set increases. The Mal-ID
basic model shows the lowest AUC but also benefits the most from increasing the training
set size. The lower AUC of the Mal-ID basic model can be explained by the fact that
contrary to the other models, the Mal-ID basic model is a discrete classifier. Discrete
classifiers produce only a single point in ROC space (Fawcett, 2004) and therefore their
calculated AUC appears lower.

When we examined the balanced error rate (BER) for Mal-ID basic, Mal-IDF+NN and
Mal-IDF+RF Models, we noticed that the BER measure decreases for all models as the
training set increases. Mal-ID basic demonstrated a significant and sharp decline in the
BER as the training set increases. In almost all cases, the Mal-IDF+RF achieved the
lowest BER. With the largest training set there is no significant difference between the
Mal-ID basic model and the Mal-IDF+RF model.
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28

Mal-ID basic
Figure 5: Comparing the accuracy performance of theMal-ID basic model with the machine

learning methods on various training set size percentages.

When we compared the NPV of the Mal-ID basic model with the NPV of the Mal-
IDF+NN and Mal-IDF+RF, we noticed, as expected, that the NPV increases almost lin-
early as the training set size increases. For small training set sizes, Mal-IDF+RF and
Mal-IDF+NN outperform the other methods. Eventually, however, there is no statistically
significant difference for the largest training set.

When we compared the PPV of the Mal-ID basic model with the PPV of the Mal-
IDF+NN, Mal-IDF+C4.5 and Mal-IDF+RF, we found out that Mal-ID basic has the best
PPV for all training set sizes. The Mal-IDF+RF performed better than the Mal-IDF+NN
and the Mal-IDF+NN performed better than Mal-IDF+C4.5.

To sum up, in many cases Mal-ID basic outperforms the methods that use Mal-ID
features combined with a ML classifier and we conclude that a simple decision rule is
sufficient.

3.3.3 Combining Mal-ID with ML models post processing

As you recall, we have attempted to improve the Mal-ID basic method by using the method
to zero-patch the benign common library parts. To measure and compare the effect of
the Mal-ID patching prior to classifying, we preformed an evaluation using four methods:
GR500BDT, Mal-IDF+GR500BDT, Mal-ID basic, and Mal-IDF+RF.
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Figure 6: Comparing the true positive rate of the Mal-ID basic model with the machine
learning methods on various training set size percentages.

Figure 9 compares the accuracy performance using various training set sizes. The
results show that with Mal-IDP+GR500BDT we were able to improve performance but
only on relatively small training sets. However, compared to the known GR500BDT, Mal-
IDP+GR500BDT show significant and consistent improvements in accuracy by about 2%.
All Mal-ID variations were able to outperform GR500BDT regardless of training set size.
It should be noted that on the one hand we should have expected to an improvement in
the predictive performance when the training set size increases. On the other hand because
we also increase the imbalance ratio between benign and malware therefore we should have
expected to a decrease in the predictive performance. Eventually we observe that accuracy
of GR500BDT remains almost constant.

Figure 10 compares FPR performance under various training set sizes. The results
indicate that there is slight but constant improvement in terms of FPR when first performing
a patch with Mal-ID (Mal-IDP+GR500BDT ) instead of using n-gram without patching
(GR500BDT ). The performance of all n-gram-based methods decreases sharply when the
training set consists of more than 50% benign files. The graph shows that in terms of FPR,
the Mal-ID basic method always performs slightly better than the Mal-IDF+RF method
and both methods perform significantly better than n-gram based methods. In other words,
the graph shows that in terms of FPR, there is a significant difference between methods
that utilize n-gram features and those that utilize the Mal-ID meta-features.
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30
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Figure 7: Comparing the false positive rate of the Mal-ID basic model with the machine
learning methods on various training set size percentages.

Table 5 summarizes the detection performance results for the various Mal-ID methods
and the GR500BDT baseline and can help in choosing the best method when considering
detection performance only. Other important considerations will be discussed below. The
results demonstrate that Mal-IDP+GR500BDT always outperforms GR500BDT baseline
andMal-IDP+GR500BDT should be used when the highest TPR is desired and a high FPR
is acceptable. However Mal-ID basic and Mal-IDF+RF seems to be the best choice for more
balanced performance with extremely low FPR and for achieving the highest accuracy.

Method Feature selection FPR TPR Acc AUC

GR500BDT (un-patched +
RF)

Gain Ratio 0.094 0.959 0.948 0.929

Mal-IDP+GR500BDT
(patched + RF)

Gain Ratio 0.093 0.977 0.963 0.946

Mal-ID basic Mal-ID 0.006 0.909 0.986 0.951

Mal-IDF+RF (Mal-ID fea-
tures + RF)

None 0.006 0.916 0.985 0.995

Table 5: A comparison of various Mal-ID methods and RF when using maximum training
size. The best results are colored with blue.
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Figure 8: Comparing the AUC of the Mal-ID basic model with the machine learning meth-

ods on various training set size percentages.

Table 6 presents the training time (in seconds) and detection time (in ms) of all examined
methods. The evaluation computer used an Intel Q6850 CPU with 4GB of RAM. All times
were measured using only 1 CPU core. The training time of Mal-ID based methods does not
include building the CFL and TFL which took around 30 seconds. As expected the training
time increases with the training size. In addition, GR500BDT training time does not include
the n-gram feature extraction and selection (which took more than ten minutes). The Mal-
ID basic and Mal-IDF+C4.5 methods demonstrated the best training time performance
with less than one second. The detection time seems almost constant regardless of training
set size. The only exception is Mal-IDF+RF in which detection time increases almost
linearly as the training set increases. Note that the size of the trees (number of nodes)
which constitute the rotation forest usually increases with the training set. This can be
explained by the fact that the number of leaves in the tree is bounded by the training set
size. Larger trees require a longer traversal time and features calculation. Recall that in
rotation forest, the features used in the various nodes are linear combination of the original
features.

Table 7 reports the mean TPR of Mal-ID basic for small malwares (size<=350K) and
large malware (size>350K) using the largest training set. Note that the FPR is kept as
reported in Table 5 (i.e. FPR=0.006). The results show that the TPR for both small
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Figure 9: Comparing the accuracy of various Mal-ID-based methods and the n-gram
method on various training set size percentages.

Train Percentage

Method 30 40 50 60 70

Training MalID-Basic 0.05 0.08 0.11 0.15 0.21
Time Mal-IDF+RF 17.19 26.00 36.35 45.78 83.50
(in sec) Mal-IDF+C4.5 0.12 0.17 0.22 0.33 0.43

Mal-IDF+NN 24.33 32.16 40.33 48.37 56.93
GR500BDT 21.74 34.91 59.86 64.88 75.19
Mal-IDP+GR500BDT 20.93 31.42 42.96 55.65 63.43

Detection MalID-Basic 27.86 27.86 27.86 27.86 27.86
Time Mal-IDF+RF 49.17 54.69 63.66 73.95 95.82
per file Mal-IDF+C4.5 27.86 27.86 27.86 27.86 27.86
(in ms) Mal-IDF+NN 27.92 27.92 27.90 27.89 27.88

GR500BDT 29.63 29.83 29.83 29.85 29.83
Mal-IDP+GR500BDT 29.01 29.01 29.02 28.98 28.97

Table 6: Training and Detection Time.

and large group is very similar indicating that MAL ID is not affected by the size of the
examined malware.
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Figure 10: Comparing the FPR of various Mal-ID-based methods and the n-gram method
on various training set size percentages.

Malware Size TPR Number of
Malwares

Mean Size

Small 0.909 675 96K

Large 0.908 174 554K

Table 7: A comparison of TPR (True Positive Rate) Mal-ID basic for small and large mal-
wares when using maximum training size.

In order to estimate the effect of obfuscation on detection rate, we have divided the tested
malware into two groups –obfuscated and non-obfuscated. Because we were not informed
which executable was obfuscated, we have used the following method. We compressed
the executables using Zip and sorted them according to the compression ratio. We used
a threshold of 50% compression ratio to decide which executable is probably obfuscated.
The selection of this threshold was based on experiments of compressing non- obfuscated
executables. According to this threshold, about 37.5% of the malware are considered to
be obfuscated. Table 8 reports the mean TPR of Mal-ID basic for obfuscated and non-
obfuscated groups using the largest training set. Note that the FPR is kept as reported in
Table 5 (i.e. FPR=0.006). The results show that the TPR for both obfuscated and non-
obfuscated group is very similar with slight advantage to detecting obfuscated malwares.
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There might be several reasons that can explain why the TPR of obfuscated binaries
appears to be higher than the TPR of non-obfuscated binaries. One reason can be that many
obfuscated malwares are generated by automated tools that have distinctive properties.
For example, malware developers are sharing tools for facilitating the generation of new
malwares. For example, in the web site http://vx.netlux.org/, one can find many tools
(such as Falckon Encrypter that is used for obfuscation) that can be used by the malware
developers but are not used by benign software developers. All malware that utilize the
Falckon Encrypter, share the same decryption segment.

Malware type TPR Mean Compression
Ratio

Obfuscated 0.932 41%

Non-obfuscated 0.893 62%

Table 8: A comparison of TPR (True Positive Rate) Mal-ID basic for obfuscated and non-
obfuscated malware when using maximum training size.

4. Discussion

This paper proposes a new approach for automatically detecting executable malwares of all
kinds and sizes. The results show that using the Mal-ID basic and other Mal-ID variants
are useful in detecting malware. As can be seen from Table 3, the Mal-ID basic method
performs very well in respect to all measures. Not only is the accuracy very high (0.986),
but the FPR is remarkably low (0.006). In addition, the low Mal-ID BER indicates that
the errors are almost uniformly distributed among the malicious and benign files.

As explained in Section 3.3.1, we choose to implement GR500BDT as a baseline for
comparing the performance of the Mal-ID basic method. GR500BDT is very similar to
the method proposed by Kolter and Maloof (2006). The evaluation shows that GR500BDT
performed well, but was unable to achieve the AUC of 0.995 that Kolter and Maloof re-
ported. This was probably due to differences in dataset content, training size, the benign
and malware ratio and possibly other factors. As can be seen from Table 4, under identical
conditions the Mal-ID methodology was able to outperform GR500BDT in terms of FPR,
accuracy and AUC. The FPR of GR500BDT method came to almost 10%; Mal-ID FPR
was more than 15 times lower.

Once it was established that the Mal-ID basic method performs well (in fact better than
the best baseline method) we wanted to examine Mal-ID behavior with different train sizes
to test if Mal-ID basic performs in a stable and “trustworthy” manner. In addition, it was
interesting to determine if combining Mal-ID basic with ML-generated models, as explained
in Section 3.3.2, would yield a better performing malware detection method.

The results presented in Figure 4 to Figure 8 show that combining Mal-ID with ML-
based models enabled us to improve many aspects of theMal-ID basic method when training
sets are not maximal. However, as training set size increases, the benefit of combining Mal-
ID basic with ML-based models diminishes. At maximal training set size, the Mal-ID
basic method almost always demonstrates the best performance or a performance that is
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statistically equal to the combined methods. It is also important to note that, contrary
to the other methods, all measures that we implemented indicated that the Mal-ID basic
method benefited the most from training set increase and always performed in an expected
manner. Thus, it may be considered more stable and “trustworthy” than the other methods.

It is interesting to note that while the performance of non-n-gram methods (Mal-ID
basic and Mal-IDF+RF ) continues to improve as more training data become available,
the n-gram based methods show a sharp decrease in performance in terms of FPR (see
Figure 10). This can be explained by the fact that n-gram methods induce relatively simple
patterns that can be learned with comparatively small training sets (30%). The potential
benefit of additional training data is nullified by the undesirable increase in the probability
that relevant n-gram will be mistakenly considered as non-contributing features. In fact, it
is well known that decision trees increase their chances of overfitting when they have more
nodes. But in order to have more nodes, they need a larger training set. Thus a larger
dataset might increase the chance of overfitting especially in cases were there are many
irrelevant and noisy features.

The comparison of our two additional methods,Mal-IDF+RF andMal-IDP+GR500BDT,
with a GR500BDT baseline is very important in proving the validity of Mal-ID itself and
explaining its excellent performance:

1. (a) Under identical conditions, boosted decision tree, operating on Mal-ID basic
meta-features (Mal-IDF+RF ), outperformed boosted decision tree operating on
n-gram (GR500BDT ). The comparison suggests that Mal-ID meta-features are
useful in contributing to malware detection and probably more meaningful than
simple n-gram in capturing a file’s essence.

(b) Under identical conditions, boosted decision tree operating on Mal-ID basic
patched files (Mal-IDP+GR500BDT ) outperformed boosted decision tree op-
erating on non-patched files (GR500BDT ). The comparison suggests that the
novel Mal-ID common segment analysis approach is better than the common
approach that treats files as black boxes or which interprets files PE header only.

Since Mal-ID basic and Mal-IDF+RF methods benefit from both more meaningful fea-
tures and common segment analysis, they are able to achieve a better overall performance
than state-of-the-art GR500BDT.

Considering detection performance only when choosing a malware detection method
may not be enough; it is important to consider other aspects as well.

4.1 Model interpretability

Mal-ID basic uses only one static interpretable classification model and therefore experts in
the field can be more confident when accepting or rejecting a classification. For instance,
once Mal-ID basic has detected a yet unknown malware, it is possible to support or reject
the classification. The reason is that each detected segment, that passed the Mal-ID filter
stage as explained in Section 2, can be tracked back to a specific malware or malware
group. Moreover, the specific offset location were the segments appear can be examined to
determine the precise nature of the threat, if any exists. Disassembly or reverse engineering
of the whole malware is no longer required. Even without examining the segment code, one
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can make an educated guess about the nature of the threat by examining the list of known
malwares that the segment appears in. The other methods do not provide such benefits.

4.2 Incremental

As more malwares are discovered, it is important to update the models from time to time.
With Mal-ID basic it is particularly easy. Since the model is static, no reconstruction is
necessary; all that is required is to just to add or subtract files from the TFL. The CFL can
be updated in a similar manner.

4.3 Anytime Detection

Recall that both Mal-ID basic and Mal-IDF+RF operates on segments. Because Mal-ID
basic and Mal-IDF+RF use relatively large segments and the model is not comprised of
combined features from the whole file, it is possible to stop detection at anytime during
file scan and determine if the scanned part is malicious. n-gram-based methods are not
designed to diagnose part of file but rather whole files only.

4.4 Default signature for real-time malware detection hardware

The end result of applying Mal-ID basic method is a file segment or segments that appear
in malware files only and thus may be used as a signature for anti-virus tools. The detected
malware segments can be used, as described by Filiol (2006), to generate signatures resistant
against black-box analysis. Moreover, because Mal-ID basic produces a simple signature
and has anytime detection traits, the signature can be used with commercially available
real-time intrusion prevention systems (IPS). IPSs require the anytime detection trait to
act as real-time malware filtering devices and thus promote and provide users with default
protection. Having both malware detection and signature generation could help shorten
the window of vulnerability. Tahan et al. (2010) have presented a methodology with com-
plete implementation for automatic signature generation, utilizing similar and compatible
techniques, which archived excellent results in the evaluation. Thus, the method presented
by Tahan et al. (2010) can be easily adopted to produce signature upon detection for the
solution presented in this paper.

4.5 Large files scalability

Nowadays it’s quite common to embed large resources such as JPEG pictures and small
animations into executables. This inflation is also true for malware. It is estimated1 that
the mean malware size has increased from 150K (in 2005) to 350K (in 2010). As files be-
come larger, the effectiveness of classification with small n-gram should decrease due to the
increase in file entropy. In other words, the more n-gram with equal appearance probability,
the greater the misclassification probability becomes. Since Mal-ID basic and Mal-IDF+RF
use relatively large segments (64 bytes) and in addition filter-out high entropy parts, they
should be less susceptible to misclassification caused by large files or files with high entropy
traits. Figure 10 shows that the Mal-ID methods that operate on large segments (of 64

1. http : //nakedsecurity.sophos.com/2010/07/27/large− piece−malware/
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bytes) has less FPR misclassification then the method that operated on small n-gram (of 4
bytes). We further examined this hypothesis in Table 7.

4.6 Analysis of Mal-ID performance on Obfuscated Malware

Based on the results presented so far, we hypothesize that the proposed Mal-ID method
performs well in a mixed environment where both obfuscated (including compressed or
encrypted) and plain executable files exist. In this sense, we referred to malware as they
are found “in the Wild”.

The results of Table 8 agree with the previously-made observation that ML techniques
can classify malware that are obfuscated (compressed or encrypted or both). For example,
Kolter and Maloof (2006) have noted that ML can detect obfuscated malware. In this paper,
we have independently reconfirmed the validity of the above observation using our method.
In this experiment, we succeeded to keep FPR relatively low (FPR=0.006), however it
should be noted that this value was obtained when our corpus contained 2,627 benign files
and 849 malware files (i.e. a benign to malware ratio of 3:1). In reality this ratio can be
much higher and therefore one should expect to obtain elevated FPR values.

There seem to be previously suggested explanations to this phenomenon. According to
Kolter and Maloof (2006), the success in detecting obfuscated malware relies on learning
certain forms of obfuscation such as run-time decompression. Kolter and Maloof (2006)
conclude that “. . . this does not seem problematic as long as those forms are correlated with
malicious executables”.

Additional explanations can be suggested to the ability to identify obfuscated malware.
Studies such as that presented by Newsome and Song (2005), or by Newsome et al. (2005)
noticed that in many cases malware requires fixed sequences to be used in the body of the
malware (which must exist before self-decryption or self-decompression) in order to exploit
a specific vulnerability and self-propagate. Such fixed sequences can be used for detection.
This might explain the success in detecting obfuscated malware.

Because the performance of MAL ID is achieved with no disassembly, Op-Code analysis,
executable header analysis, unpacking nor any other preprocessing, we hypothesize that the
method should be scalable to other Operating Systems and hardware types. Still one
can think on cases where preprocessing will be required. Theoretically an attacker can
specifically design a malware that will make it hard for MAL ID to detect it. In particular,
if a malware is designed such that the entropy measure will be high for all segments, it
will be undiscovered by the Mal-ID basic method. In this case Mal-ID can be extended
by incorporating an unpacker operating before it, such as those that are incorporated into
anti-viruses tools (Kasparsky). However, similar to Kolter and Maloof (2006), we decided
to evaluate the raw power of our methods without any use of an unpacker.

5. Summary and Future Work

In this paper we have described novel methods based on machine learning to detect malware
in executable files without any need for preprocessing the executables. The basic method
that we presented works on the segment level for detecting new malware instead of using
the entire file as usually done in machine learning based techniques. The Mal-ID basic
method and its derived variants were rigorously tested to evaluate their effectiveness under
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many conditions using a wide variety of measures. The results demonstrate the effectiveness
of the methods. In all cases, most of the performance measures showed that the proposed
methods significantly outperformed the baseline method GR500BDT which is known for its
excellent performance (Kolter and Maloof, 2004, 2006). For each method we have pinpointed
its strong points and suggested cases where it should be preferred over the others.

We believe this study has made several contributions to malware detection research,
including the introduction of:

1. a new and effective method for malware detection based on common segment analysis
and supporting algorithms. The importance of common segment analysis to the pro-
cess of malware detection was identified and demonstrated. The results suggest the
method can boost performance for many methods that utilize n-gram.

2. new kinds of features - Mal-ID basic meta-features. The results suggest that the meta-
features are much more effective than the commonly used n-gram and probably more
meaningful in terms of file representation. We believe that Mal-ID basic meta-features
could inspire many kinds of additional meta-features that could prove useful.

3. BCR, BER, PPV, NPV and entropy decrease for measuring the performance of mal-
ware detection methods. Using these measures, in addition to the commonly utilized
performance measures (TPR, FPR, accuracy and AUC), is not generally practiced.
However, these features are helpful in describing the behavior of a new method, partic-
ularly when it is not possible to compare results under identical settings and dataset
imbalance.

The results also indicate that by extracting meaningful features, it is sufficient to employ
one simple detection rule for classifying unknown executables.

In the future, we aim to examine the effect of systematically collecting and choosing
the benign file set on the performance of the proposed methods. In the evaluations that
were conducted for this study, the benign file set was collected randomly and the files
used may have had a large degree of similarity. It is our assumption that systematically
collecting and choosing common segments will provide a better representation of benign
common segments and a more robust and lower FPR. A robust and low FPR will enable
the use of more sensitive malware detection methods (or parameters that affect malware
detection) without increasing the FPR too much. As a result, we hope to see further
increase in the AUC measure. Finally the Mal-ID basic method was developed as a crisp
classifier. Additional research is required for developing a method for ranking the examined
files according to their presumed threat level. One straightforward measure is the ratio
between the segments found in the TFL and the segments found in the CFL. In addition, it
will be interesting to test the proposed method on live network data and on an institutional
network and determine if it detects malware that is not detected by other means. Finally,
future work may repeat the evaluation Mal-ID on a larger scale with thousands of malware
samples and tens of thousands of non-malware samples. For this purpose, we might need
to upscale software components to accommodate large dataset and suitable hardware. In
addition, in order to use the proposed method in practice by the industry, fine tuning of
the various parameters might be required.
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Additional studies might be needed to fully evaluate the performance of Mal-ID under
various obfuscation scheme, including use of recursive unpacking. In this paper we focused
only on “pure” Mal-ID methods and therefore we did not investigate the proper means to
incorporate unpacker.
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