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In this paper we introduce a novel approach foregatmg an intention prediction model of user iattions with
systems. As part of this new approach, we inclueiesqnal aspects such as user characteristics dhaincrease prediction
accuracy. The model is automatically trained adogrdo the user’s fixed attributes (e.g., demograpgtata such as age and
gender) and the user’s sequences of actions igystem. The generated model has a tree structheebdilding blocks of each
node can be any probabilistic sequence model (asdtidden Markov models and conditional randonu$)gland each node is
split according to user attributes. Thus, we réfethis algorithm as an attribute-driven model trébe new model was first
tested on simulated data in which users with défierattributes (such as age, gender) behave diffgravhen trying to
accomplish various tasks. We then validated thétyluf the algorithm to discover the relevant dtites. We tested our
algorithm on two real datasets: from a Web appbicatind a mobile application dataset. The resuéisevencouraging and
indicate the capability of the proposed method dscovering the correct user intention model ancreasing intention
prediction accuracy compared to single HMM or CRédeis.
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1. INTRODUCTION

Predicting user intentions when using a systemimgmove the services provided to users by
adjusting the system services to their needs. Dla¢ ig to identify what the user wants to accontplis
when performing a certain sequence of activitidss Goal is achieved by training a specific leagnin
algorithm in order to generate models that will m@xe the accuracy of the prediction. The challenge
in predicting the intention of the user given awatse of interactions can be categorized as aqmobl
with a sequential problem space which is commoalyesl using sequence learning algorithms [Sun &
Giles, 2001].

The motivation of this paper is to achieve a higherel of compatibility between user
intentions and the system she is using. This midraderives from the fact that in recent years
applications have continuously been gaining fumetity and emerging features are complicating user
interactions with applications. Using intention gidion methods will enable a company to improve
the services provided to users by adjusting théesysservices to their needs (e.g., the interface).
Predicting user intentions can be also used fastass users to perform or complete tasks, to alert
them regarding the availability of features, and imgrease their general knowledge. Effective
assistance will allow users to acquire the newiskihd knowledge they need to easily operate an
unfamiliar device or function.

Different users tend to select different sequenéms accomplishing the same goal.

Specifically, our hypothesis is that the user'sitattes and context (such as age or the operating



system) indicate which sequence the user will exadhyt perform. This hypothesis is based on studies
that examined the interaction of users with systésush as Web browsers) and found that user
attributes affect the way of interaction. [For exden Hu et al., 2007, Weber and Castillo 2010;
Thakor et al., 2004]. If a young male uses a system possible to use the model to predict thalgo
that he intends to accomplish and provide him waitlser interface (Ul) more appropriate to his usage
and intentions.

Although methods exist for predicting user intengipthey do not take into account user
attributes that can increase the accuracy of piiedicln this work we present a new method that we
developed that examines how employing user atgibutan improve the accuracy of intention
prediction. The new method is termed an attributeeth hidden Markov model tree (ADHHMT) and
it builds a separate tree of hidden Markov modedMs) [Rabiner, 1989] for each goal in the system.
The tree is branched according to the user's atéiband each node in the tree consists of a single
HMM. When the user performs a new task, we firspkay her attributes to find the suitable node in
each of the goal trees. Then, based on the adfiensser has already performed in implementing this
task, we anticipate the goal she is trying to aquleh and the action she intends to perform next.

The reason for using hidden Markov models is thatsequence of actions that users perform
is not always observable but can only be obsertedugh another set of stochastic processes that
produce the sequence of observations [Rabiner,] 1888 example, in a mobile device the sequence of
buttons that the user pressed is unknown (hiddehjHe sequence of screens that was created from
using these buttons is known (observable). Thus,camr learn the sequence of buttons from the
sequence of screens using HMM.

The use of user attributes stems from personalizatlated studies. It was shown that
utilizing user demographic attributes for persarstion and recommendation of relevant items to
users increases the accuracy of recommendatioos #iase attributes influence users preferences, an
interaction with systems [ Zanker et al., 2007; \&feand Castillo, 2010; Vozalis et al., 2006 ]. One
study [Hu, et al., 2007] was able to predict usgtsbute based on their browsing behavior. Thus, w
utilize user attributes to predict user intenticassuming that since user attributes relate to user
behavior, they naturally relate to the intentionsceding that behavior.

The contributions of this paper are threefold:

a. Developing a new model for intention predictionttbacapsulates both the user's fixed attributes
(e.g. demographic data) and her sequence of act@th of the system's goals is represented bgea tr
model, whose branching is performed according éouber's fixed attributes. Moreover, each node in
the tree contains a HMM that can be used to prediet intentions. These comprehensive tree models
can be used for segmenting users according to tissige behavior. This segmentation can be also
used for other purposes, such as marketing.

b. It presents an algorithm for inducing the modetarfrgiven training data. Inspired by previous
works on decision trees, we developed our own mprdalgorithm for creating tree models using a
new splitting criterion and pruning procedure.

c. Evaluating the proposed method on real-world caseies.



The rest of this paper is organized as follows:séttion 2 we review related works on
intention prediction and HMM. Section 3 formulates problem. Section 4 presents the new algorithm
for improving the accuracy of intention predictid®ection 5 reports the experiments carried out to
examine the new algorithm and discusses theirteesfilcomparison between performance of a single
HMM and the proposed attribute-driven HMM is illceted by two real-world datasets. The first
involves 165 PC-users of a Web application ands#eand test involves 48 mobile users. Section 6 is
a discussion about the proposed algorithm andase@ticoncludes and presents suggestions for further

research.

2. RELATED WORK

2.1. Intention prediction

Intention prediction has become a very active mebearea lately. In this section, we
summarize real world applications that use intenpioediction. Some applications treat the data as a
sequence. One such example is the Lumiere prof¢mivitz et al., 1998] that leverages reasoning
methods using Bayesian models for capturing unicgytaabout the goals of software users. The
models can be employed to infer user needs by derisg the user's background, actions and queries.
Horvitz et al. [1998] used Markov representatiorthe temporal Bayesian user-modeling problem by
considering dependencies among variables at adjioenperiods. The Lumiere project was first used
in Microsoft's Office '97 product suite, containitige Office Assistant. Chen et al [2002] argue that
although Office Assistance is probably the only anethod, which has extensively studied user
intention, its predictions can be further improvesemantic contexts are also used in additiorcta
sequences for mining user intentions.

There are few works about predicting user intergtias they surf the Web. Chen et al. [2002]
used a modified naive Bayes classifier algorithmsapport incremental learning for modeling the
user’s intended action on a computer. They focusedpredicting actions based on the features
extracted from the user's interactions such asisk€s typed sentences and viewed content. Thair go
was to predict the series of basic actions thatife will be performing in a system to accomphgh
intention. Sun et al. [2002] presented a methodpfedicting the user’s browsing intention based on
the Web page sequences she had previously viditeglr method employs a multi-step dynamic n-
gram model and predicts the next action that liethe optimal path that leads to the ultimate goal.

TaskPredictor [Shen et al., 2006] is a machineniegr system that attempts to predict the
user's current activity. It operates in the Micifbdindows environment and collects a wide range of
events describing the user's computer-visible hiehafs a first step, feature selection, a thredHor
making classification decisions and naive Bayesagied to decide whether to make a prediction.
Then, a discriminative, model linear support vectachine (SVM) is applied to make the prediction
itself. In their work, they treated task predictias a traditional supervised learning problem,oigmgy
the sequential aspects.

Few works attempt to identify the goal of user iggemwhile searching the Web. Rose and
Levinson (2004) identified the goal of queries tigh manual, query-log investigation and concluded

that the goals can be divided into categories hiemarchical structure. Lee et al. (2005) suggested



automating the identification of user goals in ab\giery since in their study of human subjects, the
majority of queries had predictable goals. Baezte¥a&t al. (2006) try to infer the user's search
intention by using supervised and unsupervisechiegr Jansen et al. (2007) presented an algorithm
that aims to automatically understand a user'sniida by classifying queries as navigational,
transactional or informational.

Several research projects have focused on intatliglaeelchairs. Taha et al. [2008] present a
technique for predicting the wheelchair user’s idasion to locations much further away than the
immediate surroundings. The system relies on mihimar input obtained from a standard wheelchair
joystick and a learned, partially observable Markecision process (POMDP).

Jung et al. [2003] designed a user intention reitiognmodule for an intelligent bed robot
system. Since feature values are in sequence by, used HMM. Feng et al. [2004] developed a
plan recognition-based method to predict the aious events and intentions of potential intruders
using system call sequences as observation datalgénithm based on a dynamic Bayesian network
with parameter compensation progressively accommgdisthe prediction while a recursive process
identifies the intruder's hostile intentions. Yusthia et al., [2006] presented an intelligent tedimn set
which can adaptively propose certain shows to tiesver based on previous shows that the user
watched. A hidden Markov model (HMM) models thestss preferences. All of the above studies

focus on usage behavior and neglected user atsbntpredicting intentions.

2.2. HMM (Hidden Markov Models)

There are various methods of sequence learningdimg neural networks, dynamic Bayesian
networks, different Markov models and others. Teguence learning algorithm we selected for our
problem is a hidden Markov model (HMM) [Rabiner,899 due to its ability to very efficiently
calculate the probability of sequences in the mgjiveodel and the existence of an efficient training
algorithm (the Baum-Welch algorithm) [Baum & Egd@67]. As far as we know, no research until
now has tried to increase prediction accuracy Bizing user attributes.

HMM is a type of dynamic Bayesian network (DBN) igetman et al., 1998, Chen et al.,
2009]. It is a stochastic process with an undegyumobservable (hidden) stochastic process that can
only be observed through another set of stochg@sticesses that produce the sequence of observed

symbols [Rabiner, 1989]. HMM can be viewed as ai§jgeinstance of a state-space model in which
the latent variables are discrete. In HMM, the piwility distribution of Z, depends on the state of the
previous latent variabl&, , through a conditional distributiof(z, | Z, ,) [Bishop, 2006].

The following characterize a HMM:

N, the number of states in the model. The individtiates are denoted &={2,,2,...Z,}
and the state at time t & .

M, the number of distinct observation symbols ates The observation symbols correspond

to the physical output of the system being modeléd. symbols are represented)é;{)(l, XZ.X,\,J



The state transition probability distributioA = {a, ;} where
a,;=Plg.,=2z1q =z] 1<i,j<N
The observation symbol probability distributionsitate j, B ={b(k)} where

1<j<N

b()=Plxat t la=2) _ =

The initial state distributionr ={7,} wherez = P[q, =z], 1<i<N
2.3. How the attribute-driven HMM tree differs from HHMM and profile HMM.

Since the method we propose may be confused wéhwibll-known, hierarchical hidden Markov
model (HHMM) [Fine et al., 1998], we discuss instlsiection in what sense the proposed HMM tree is
different. HHMM utilizes the hierarchical structuoé natural sequences and generalizes the standard
HMMs by making each of the hidden states a modebther words, each hidden state in the HHMM
can also be an HHMM. Although the attribute-drivdiMM tree presented in this paper might be
inferred as similar to HHMM, the hierarchical coptehat we use is different from HHMM. The
hierarchical concept that we propose is the tigsdfitEach node in the tree is a flat HMM whichsise
the same states from the higher level or only sofrtaem but with different transition probabilities
Because the number of available training instamteps as we move down the tree, the number of
hidden states should generally drop accordinglypdrticular, if the number of observations is very
large, then we can choose a large number of hiddigtes to capture more features (Samaria and
Harter, 1994). In this paper the hierarchical st that forms a tree is used to differentiateveen
different user behaviors (according to user atteabu Although HMM and HHMM have been used in
previous studies for modeling process behavior gmasers [Galassi et al., 2005, Lane, 1999], the

hierarchical concept, as noted above, is verydiffeas Fig. 1 illustrates.
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A profile HMM is a method for searching a databdme other sequences from the same
family [Krogh, 1998]. Profile HMMs are applied taich common tasks as simultaneously aligning
multiple, related sequences to each other; aligaingew sequence to an already-aligned family of
sequences; and evaluating a new sequence for meimpen a family of sequences [Bhargava &
Kondrak, 2009]. Profile HMM is mainly used for baglical sequence analysis. The division of training

sequences to goals (profile) that the profile HMeals is already known in our proposed method.

3. PROBLEM FORMULATION

In this section several basic definitions are idtreed followed by the problem formulation.
In a typical sequence learning problem, a trairsegof sequenceS :{Sl, SZ,...,Sm} is given. Each
sequences; € S is an ordered set of elements (actionsﬁe1 ’eZ""e“.} . G denotes the set of all
possible goals (for example, in an email applicat={'Add recipient’, 'Send an email’, 'Read efjail'
Each training sequence is associated with oneag@hkeveral characterizing attributes. The notdtion

denotes the set of input attributes containimgattributes: U :{Vl,..,V,]}. The domain (possible

values for each attribute) of an attribute is deddby dom(vi). User space (the set of all possible
users) is defined as a Cartesian product of alliripat attribute domains. The input in the problem

consists of a set of m records and is denotedf@n=(<s,9,,4; >,....<S,,d,,,U, >) where
Sq € S,gcI eG,ucI eU .

The notationL represents a probabilistic sequence learning iéhgorsuch as HMM. In the
rest of the paper we mainly focus on HMM. But wewtin Section 5.6 that the same algorithm can be
used with other base models, for example, CRFditional random field) as a base model. These

algorithms generate models that can estimate thditonal probability of a goaj given a sequence
and the input user attributes. Létrepresent a probabilistic model which was inducgadtivating L
onto dataset Train. In this case we would like to estimate the cdadil probability
p,(G=g,Is,,U,) of a sequences, that was generated by uskf, . Thus, the aim of intention
prediction is to find the most accurate probabiisgimations.

As indicated in Figure 1a, we are using a treectiire to improve the accuracy of training
models. For each goal in the system, a differez# {8 generated. This structure is built using user

attributes in an attempt to differentiate betwearious usage behaviors in the system. For exarmple,

Figure 1a we are employing the age, gender anadedor differentiating between usage behaviors. In
this structure, each node contains a model andtdabuge V, that splits the node. Assuming this tree
structure, the problem can be formally phrasedbavs:

Given a sequence learning algorithmand a training sefrain with input sessions seb,

usersU and goalsG, the aim is to find an optimal set of trees (@ tfer each goal). Optimality is

defined in terms of minimizing prediction errors.



In this paper we assume thht is an algorithm for training HMMs. Particularithe model

Ain each of the tree’s nodes is trained using thenB&elch algorithm [Baum & Egon, 1967] and the
probability p, (G =g, |s,,U,) is estimated using the forward-backward algorifBaum & Egon,

1967, Baum & Sell, 1968] as we show below.

4. ATTRIBUTE-DRIVEN HMM TREE - OVERVIEW OF METHODS

In order to solve the problem defined in sectiom8, suggest an attribute-driven HMM tree
method. Fig. 2 presents the proposed process stibaltya The left side in Fig. 2 specifies the
generation of the models used for intention préaticbased on an attribute-driven HMM tree for each
possible goal. The input for this process is ao$atser action sequences divided into goals and use
attributes. The output of the process is a toe@ach goal based on different usage behaviosefs in
attaining this goal, and user attributes. The rgjte of the figure presents the prediction proc€hs
inputs for the process are: the goal trees gertediteng the model generation phase, a specific use
session (i.e., a sequence of actions), and thibwts of a user. The output is the predicted tjwet
the specific user was trying to accomplish in ggguence (i.e., the goal with the highest proligbili

estimation).
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Figure 2. Overall diagram of the proposed attrifiirigen HMM tree based method for intention predict

In the following subsections we present in dethié tproposed method followed by a

discussion and an example of the intuitions for safithe approaches that were applied.
4.1. Attribute-driven HMM tree

In this section we describe our new intention preoin method for predicting with a high

degree of accuracy the user’s goal based on heitiest Recall that for predicting the user's imttens

we assume that a sequence learning algorithm é&ngispecifically, in this paper our tree model verap

the HMM [Rabiner, 1989]. Our algorithm is trainedcarding to the user’s fixed attributes (e.g.,



demographic data) and the user’s sequences ohadtidhe system in order to increase the predictio
accuracy of HMM. The intuition behind using fixettréoutes is that user behavior patterns can be
differentiated by their attributes, as shown inspealization related studies [Weber and Castillo,
2010], and thus training different models for diéfet attributes may increase prediction accuracy.
Our algorithm is based on the following assumptions
a. For each application, the administrator pre-defineset of goals. Each goal can be
achieved by one or more sequences of actions.Xamg@e, in an email application; the
goals might include ‘Send e-mail’ or ‘Add contact’.

b. For each user, the administrator provides a sattibutes and their domain values.

Our method consists of three main phases: (Iitigithe tree models; (2) pruning the trees
and (3) using the trees for intention prediction.

4.1.1. Training the tree models. In this phase, the method generates a traineddresach goal in the
system. The following is a description of the psxdor generating a tree for one goal (the same
process is applied for each of the goals). Thetitpthis phase includes:

- Sequences of actions from all the users in tlséesy, divided into goals.

- User attributes and their values.

Figure 3 presents the pseudo code for buildinghglesigoal tree. In line 07, the root node
HMM is trained using all sequences that belongh® ¢urrent goal. The HMM is trained using the
Baum-Welch algorithm [Baum & Egon, 1967TThe output of this step is a model represented by a
matrix with transition probabilities between alétalements of this goal for all the users.

The aim of the second step is to branch out themode into its descendants. The following
processes are applied to generate the level ofriheediate descendant nodes. They are repeated for
each level until a stopping criterion is reached @xplain the stopping criteria in section 4.3)e Tiser
attributes are employed to find the most informatohild nodes, namely the nodes that provide the
most accurate intention prediction (in particutawge that are more accurate than the parent nbde).
branching out step contains two sub-steps:

1. Examine all user attributes -For each possible user attribute, a measure tegaiedratio
is calculated in line 12. This measure is usedagtiterion for splitting a node in the tree. Wscdss
the gain ratio below in section 4.2.

2. Choose attributes for the level and update treaccordingly - The attribute with maximal
gain ratio is chosen to split the parent noderia lL4. The chosen attribute name is stored in dnenp
node together with the parent's HMM that was gegdraarlier. In line 17, a loop is started overheac
value of the chosen attribute. For each such véhaemethod 'Build model’ (line 18) is called umiag
to generate HMM models for the child nodes to laéned on the sequences of users with that node's
attribute value. The subsequent levels of the areegenerated similarly, until a stopping criterien
reached. For each level, the user's attributebdisbmes shorter since attributes that were uséukein
upper levels cannot be used again. In line 19,atlts between the parent and the child nodes are
updated to contain the attribute value. The ougifthis step is an attribute-driven HMM tree focka

goal.



0l: Procedure buildiree

0Z2: INPUT:
03: § - Sessions
04: V - Set of input attributes

05: OUTPUT: Tree model with /34 on each node
06: Create an enpty tree T

07: Create root for T from all sessims of this goal using bawm-welch
08: If Stopping Criterion is fulfilled

09: Mark the root node in T as a leaf
10: Else

11: For each candidate attribute V

12: Calculate Gain ratio

13: End for
14: Choose the attribute with nmaximm Gain ratio

15: Split sessions according the wvalues of the selected attribute

16: Create tree nodes with the selected attribute wvalues

17: For each attribute value node j in dom(V ) do:

18: Subtree = buildTree(S , V)

19: Connect root node of T to subtree with an edge labeled as V

20: End for
21: Return T

Figure 3. Building one goal tree with user attrésut

Figure 4 presents the flow of the training phase:
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Figure 4. Flow of training an attribute-driven HMikée



4.1.2. Pruning the tree. As in classification trees, counting solely on apging criterion for
determining the tree size may cause either ovieditbr underfitting that may lead to low predictio
accuracy. For example if the stopping criteriortde loose, then the tree might overgrow and the
HMMs on the lower nodes would be induced using anfgw training sequences. This would make
the model unreliable.

In classification trees, pruning methods are conlynased to avoid these problems. The idea
is to let the tree over-grow and then prune it ¢orrect size. Inspired by this idea, we devealopg
own pruning procedure for attribute-driven HMM tseeSpecifically we adapted the reduced error
pruning method [Quinlan, 1987] to our needs. Thaition behind this method is to find the smallest
version of the most accurate subtree with resmetiié pruning set. A subtree is pruned if it does n
contain any subtree that results in a lower erabe than the tree itself. The process is a bottpm-u
pruning method that compares the prediction et on the pruning tree when a subtree is kept and
when the subtree is turned into a leaf and assatiaith the best leaf. Since pruning methods are
usually used in decision trees algorithms, the émp@ntation of a pruning method in an attribute-
driven HMM tree requires few adjustments. In moases, a pruning method is implemented on a
single tree. In our algorithm we have a tree fahegoal. The prediction accuracy of each goal isee
dependent on the others. Since the pruning prooesst be implemented for all goal trees
simultaneously, we defined an adjusted methodegduced error pruning.

The pseudo code in Fig. 5 presents the pruning odetiie used. The following is a
description of the pruning process for the gendrat&ibute-driven HMM trees.

The aim of the first step is to identify candidatedes for pruning. A candidate node is one
that is not a leaf and all its children are leav@andidate nodes are identified from all goal trde
candidate nodes are located in line 06. Then, waethe trees according to prediction errors.na li
10, a loop starts over all candidate nodes foripgurFor pruning each candidate node, errors before
(line 16) and after pruning (line 17) of this node counted for this goal tree only. Thus, the test
sequences for counting errors for a candidate farderuning are only sequences of the same gaal. |
line 19, the difference between the number of erfwefore and after pruning is calculated for each
candidate node. The number of errors is countedusipg subsequences of each sequence and
comparing the output (i.e., the most probable gtmathe real goal the user was aiming at. In lifig 2
the candidate node that causes maximal positivierdifce is pruned and this node becomes a leaf.
Then, if there are new candidate nodes for pruningy are added to the candidate list in line 22.
Pruning iterations continue until there are no mudes that can improve the current state of #str
After pruning all nodes that do not contribute teediction accuracy, the output of this step is an
attribute-driven tree for each goal.

Unlike the original implementation of reduced ergmuning, a subtree is pruned without
replacing the root of the subtree with its best.|&is is done to avoid contradictions with thead
behind our algorithm of creating a model that repres usage behavior of all the users and not only

the users with the best attribute value.



01: Procedure prunelreeas

02: INPUT:
03: S - Sessions
04: T - set of goal trees T

05: OUTPUT: Pruned tree model with ﬂ on each node for each goal

06: candidateslist € Locate candidate nodes for pruning for each goal tree T
07: If the candidate list is empty then all T are the most accurate with

08: respect to the pruning set

09: Else

10: For each candidate node i

11: errorBeforePruning < 0

12: errorAfterPruning €« 0

13: goalT € get goal name of node i

14: Sessions € Get all pruning sessions of goall

15: For each session j,

16: errorBeforePruning € errorBeforePruning + predictionError

a L7 errorAfterPruning € errorAfterPruning + predictionError

18: End for

19: errorsRate € {errorBeforePruning - errorAfterPruning )/elements nmum in Sessions
20: Choose the candidate node with maximum errors rate

21: Prune the tree that this node belongs to by making this node a leaf
22: If exist, add candidate nodes to candidatelist

23: End for

24: Return T

Figure 5. Pruning method for attributes driven HNfligles
At the end of the training and pruning processidbate-driven HMM trees are generated for

each goal in the system. As mentioned above, eadh in the tree contains a HMM with transition
probabilities between actions and an attributesfditting. Each arc contains an attribute valuét®f
parent's attribute. Each leaf in a tree holds afattribute-values. We term this set as user.tyjers,
the leaves in each tree represent user types &br g@al. These user types can be later used fer oth
purposes such as personalization or marketing.
4.1.3. Intention prediction. In this phase we aim to predict the user's goalsimg a system. To
realize the goal, the user implements a sequen@etains, in a user session, where she intends to
complete some goal. The input to this phase indude

- Sequence of user actions

- User attributes and their values

- Goal trees (generated in the previous phaseigsettl.?))

The result of the learning stage is a tree for emai. Each node in the tree contains an HMM

model A with transition probabilities between actions amdattribute for splitting. Each arc contains
an attribute value of its parent's attribute. Wheunser starts interacting with the system, she $oam
session. In the beginning, the session contains mm element (one user's action), then two elesnent
etc. The pseudo code in Fig. 6 presents the prdoegzedicting the user's intentions. This process
consists of two steps:

Locating relevant HMM for the user - In order to predict which goal the user intends to

achieve, we inspect each goal trég. The loop over the goal trees starts at line @7line 08, the

hidden Markov modeld (transition matrix) in the relevant leaf (relevarser type) that fits the user’s
attributes is located in each goal tree.

Calculating the likelihood of user's sessions usingll relevant HMMs - In line 09, given
the relevant model in each goal tree, the likelthad this session is calculated with the forward-
backward algorithm [Baum & Egon, 1967, Baum & S&868]:



P(Slu,gj):Pzgj‘u (s) 1)
where 2, represents the HMM model located in the tree @fl g, and in the node matched with the

user-fixed attribute vectad . Using Bayes' rule twice:

P(g;,u,s) P(s|u,g))P(u,g) Py, (9PU.g;)
PUs P(u,s) P9

P(g; |u,8) =

The goal with maximal probability is selected indill as the "intended" goal 'i.e., the goal

that the user is most probably trying to accomplish

P,,.. (9P(g; [u)P(u)
P(u,s)

P(u)

Note that the termT could be eliminated because it is fixed for all Igoa The
u,s

G = TGMAX, —argmax,, P, (9P(g,10) @

probability P(gj | u) can be estimated by using a probabilistic clagsifigis classifier can be trained

using various methods such as decision trees oedtay methods. The value t’(i?(gj |u) can be

approximated by the a-priori probability of eachabthat can be estimated by simply counting the

frequency that each goal occurs in the training set

O O0O0O00O0
I b N

; matched with vector u

Figure 6. Goal prediction given a sequence of ast{gession)

The next stage is to predict for this goal theaacthe user intends to do next. In the selected

leaf, the user's next intended action can be eetlafromA, the transition probability matrix of

ﬂgb&ﬁvu . The output of this phase is the predicted godltha next action.
4.2. Splitting criterion

An internal node in a tree is usually split accogdito the value of a single attribute.
Consequently, the algorithm searches for the H&#ihate upon which to perform the split [Rokach &
Maimon, 2008]. A common splitting criterion Isformation gain, proposed by Quinlan [1986] and
used in known decision trees algorithms (ID3,C4TH)is criterion estimates the attribute's qualiyy b

the difference between the prior and current entrgpven the attribute values. In this work instedd



entropy, we use the log-likelihood function. Spieeifly, given a nodé with a train seflrain,, we first

induce a HMM modeld . The log-likelihood of node k is defined as:

Loglikelihood(Train, | 4,) = z logP, () 4)

v (s,u,g)eTrainy
where Pak (S) is estimated using the forward-backward algorithm.

The gain in the log-likelihood due to splitting therrent node using attributgis defined as:
LoglikelihoodGain(V, |Train,, 4, ) =
S . o . (5)
ZW edom(v) Loglikelihood(Train,; ., | 4 ;.. ) — Loglikelihood(Train, | 4,)

where Train; o, ={V((s,u,g) e Train :u(v;) =val} and 4, is the HMM model
trained onTraink'iyvaJ. Specifically, according to Equation 5, we go oedlrpossible values in the
domain of attributeV, . For each value we first identify the relevantrtiag instancesTrain, ; ., and

then train the HMM model, ; ., . Finally we calculate the log likelihood as desed in Equation 2.

Information gain tends to favor attributes with maralues [Quinlan, 1986]. If an attribute
with many values is chosen as a root in a treeh eadd node is trained with a small number of
training examples. This attribute has a high infation gain because the training of each attribute
value is apparently very accurate. But choosing dfttribute leads to poor results since it does no
contain comprehensive information about the usag®Wior of users with each attribute value. Our
preliminary experiments show that the same phenomexists when we use log-likelihood. Quinlan
defined the term "gain ratio" to overcome this deficy in information gain [Quinlan, 1993].
Similarly we define the likelihood of gain ratio:as
Loglikelihood (V; | Train,, A, )

gainRatio(Vv,) = : _
splitinfo(V, |Train,)

(6)

where the nominator is tHeg likelihood gain from Equation 5 and the denominator is calculaed
follows:

|Traink,i,val | |Traink,i,val |
vvaledom() | Train, | | Train, |

splitinfo(V; | Train ) =-)_ (7)

Using gain ratio, the chosen attribute for splgtis the one that best improves the previous

level in the tree, i.e., increases the predicticcugacy of the training set.

4.3. Stopping criteria

To end the process of training the models, seweitak of thumb were defined as stopping
criteria: (1) the improvement rate of informatioaimg between parent and child is smaller than a pre-
defined threshold; (2) a parameter is set for amahnumber of sequences for building a node (i.e.,
when less than X users with the same attributeevaktcomplish a specific goal, the node becomes a

leaf); and (3) all sequences in a node belongdsame attribute value.



4.4. lllustrative example

The following section illustrates with a syntheticample our method of building an attribute-
driven HMM tree for intention prediction. A simuat data set contains 1000 users with one sequence
of actions per user. The users accomplished fifferdnt goals (tasks) - 'a','b','c’,'d','e' wh@@0 of the
1000 users accomplished goal 'a'. For the sakinglisity, we illustrate the generation of an ditrie-
driven HMM tree only for goal 'a'’. The demograptiata about the users contains seven attribdiges (
group, Gender, Device, Experience, Education, Customer type, Status). Each attribute has more than
one value. In order to accomplish goal 'a’, theeesaveral possible paths each containing a sequen
of action elements: [1,2,4], [1,3,4], [1,5,8], [BF The training set for this goal contains 70%ioé
sequences of this goal, meaning 140 sequencese Tal#scribes the generated transition matrix after
applying the HMM training method on the sequendegoal 'a’ in the simulated dataset. This transitio
matrix is saved in the root of the tree. The cellshe matrix describe the probability of the next
element occurring given the current element. Fang{e, the probability that the user pressed button
'2' just after button '1' is P(2|1)=0.185.

Table 1: Transition matrix of HMM for all trainingequences for goal ‘a’

2 3 S 6
0.185 | 011 048 |0.22

~
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After the model is generated, the algorithm cal@dathe likelihood of the root using the
forward-backward method of HMM. In this example tikelihood of the model in the root is --165.61.

The higher the likelihood (closer to zero), thetdethe model represents the sequences.

The next step is to build the children level, aglaxed in subsection 4.1.1. The algorithm
calculates for each attribute its gain ratio andodes the attribute that produces the highestrgiim
For example, attribute 'Gender' has two valuesleN&8 sequences) and Female (102 sequences). The
algorithm built one HMM using the 'Male' sequen€Eable 2) and another using the 'Female'
sequences (Table 3). The likelihood of '‘GenddHéssum of the likelihoods of ‘Male and 'Female’ (-
22.86+-60.89) values: -83.75. The attribute gailGainder' is 0.843. Therefore, the gain ratio of
'‘Gender' is (-165.61- (-83.75))/0.843=97.04. Thie gatio of all the other attributes is calculated
similarly. 'Gender' is the chosen attribute totdpk root because it has the highest gain ratie. T
generated attribute-driven HMM tree is illustratedrig. 7 where the matrix in Table 1 is the robt o
the tree and the matrixes in Tables 2 and 3 arértitdevels in the tree. The arcs from the flestel
represent the attribute values that would be chdsea were to continue splitting the tree. Theetre
presented in Fig. 7 represents goal 'a' beforeipgurDue to space limitations, in Fig. 7 we prégba

hidden states and the transition matrix among th&ges only (Table 2 and Table 3). However, as



indicated in Fig. 1, like in any HMM, we use twqgéas of nodes: one layer holds the hidden statés an

the second holds the observable states (which wetshow).

Table 2. Transition matrix for Gender=Male. Table 3. Transition mafior Gender=Female.
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Figure 7. An attribute-driven HMM tree for goal ‘a'

Trees for all the goals are generated in a sinwkay. Fig. 8 illustrates trees for goals 'a’,'h','c’
The next step is to prune the trees in order tadameerfitting. In this example of trees with orevél,

the root of each tree is a candidate for pruning.

Figure 8. Goal trees before pruning.

The pruning method is executed in iterations. Dyiéach iteration, each candidate node for
pruning is examined and the node that producemth@mum error rate is pruned. All candidate nodes
are examined and the difference between errorgédefiod after pruning each node is calculated and
then divided by the number of sub-sequences irtrining set. The node that produces maximum
error rate is pruned. In this example, it is thetnoode in goal 'a’. (In Figure 9 we can see tisagriror

rate is 0.1833, while the error rate for root nadgoal 'b’' was 0. Goal 'a' was the highest emt#)r At



the end of each iteration, the method searcheadar candidate nodes for pruning and adds them to
the existing ones. The iterations continue untinnde produces a positive error rate. Fig. 10tilkiss

the goal trees after the pruning methods.

Start Pruning Rttributes driven HNO{ trees
Testing node gender of goallde'a' Errors after pruning*0.0 Errors before
pruning=77.0 diff=77.0 totalElenents = 420 errRate~0.18333333333333332

Testing node device of goalld='b' Errors after pruning=49.0 BErrors before
pruning=49.0 totalEBlemerts = 420 diff=0.0 errRate=0.0

Figure 9. Example of Pruning process for candidaties for pruning.

Figure 7. Goal trees after pruning

After applying the pruning method, the training gees ends and we get the final tree for each
goal. The leaves in the trees represent segmemgatibusers, i.e., user types. For example in tpal
the user types are characterized by their diffedlentces and by age groups in goal 'c' .

Intentions are predicted using the generated geakt When a user is interacting with the
system, he generates a sequence of actions. Tduersee, together with the user's set of attribute
values, is the input to the intention predictiortimoel. For example, a user with the following atités
-- 'Gender=Male', 'AgeGroup=young’, 'Device=N95Status=Single', 'Education=Graduate' --
generated the sequence [1,2]. As Fig. 10 illusdtategoal 'a’' the model that fits this user isrb@; in
goal 'b' the model that fits this user exists ia léft child node (with device 'N95"); and in ga&alit is
the right child node that fits the user (Age groypuang’). We calculate the probability of the setpee
[1,2] for each fitting leaf in each goal tree, amdect the node with maximal probability as themated
goal.

5. EXPERIMENTAL STUDY

In order to evaluate its performance and examieepttential of the attribute-driven HMM
tree algorithm to improve the HMM algorithm, we docted an experiment on three datasets. The
following subsections describe the experimentalsend the results obtained.

5.1. Experimental process

The main aim of the experimental study is to corapte generalized accuracy (i.e., the
probability that the prediction of a goal givenemjsence and a user is correct) of the abovementione
methods. Figure 11 presents the various stepseirexperimental process that we conducted. The
shaded boxes represent algorithms. First, the séiqudataset (box 1) was divided 10 times randomly
into a training (box 2) and test sets (box 6). Went divide the training sequences into complete
sessions (i.e., a sequence that starts when tHdoggas and ends with completion of the goal). We
apply (box 4), the attribute-driven HMM on the tiaig set, and obtain a tree for each goal. A pminin



method is then applied to the generated trees $hokinally, the intention prediction model (box 7)
estimates the predicted goal of sequences frortesiteset (box 6). Then, performance of the algorith
over the test set is estimated (box 8).

Sequential data
set

N

1

2 Training set Test set 6
v
Division to
3 complete goals
A
Character driven Intention 7
4 |HMM tree per goal prediction of goals
v A
Pruning using Intention
5 i prediction 8
training set
evaluator

Figure 8. The Experimental Process

5.2. Algorithms used

This study examined the implementation of HMM irtree structure using the suggested
attribute-driven HMM algorithm. The attribute-drivéHMM tree aims at improving the accuracy that
HMM provides by utilizing user attributes. Theredprthe attribute-driven HMM tree algorithm is
compared to HMM. Recall that in HMM, there is aded layer and an observed layer. Each layer can
have a different number of states. In our studywéwer, these layers are identical in terms of the
number of states (by default). Namely, as in theeaaf Gunterand and Bunke (2004), we choose the
number of hidden states to be equal to the numbebgerved states in the processed node. It should
be noted that one can set the number of hiddemsstating cross-validation procedure and use the
number of hidden states which provide the highessszvalidated likelihood (please refer to Smyth
(2000) and Celeux and Durand, 2008 for additionfdrimation). We leave this potential improvement
for future work.

5.3. Datasets

The attribute-driven HMM algorithm and the HMM atgbm were evaluated on three
datasets: (1) a simulated data set; (2) a reabdabbtained from a Web application used by faatlt
Ben-Gurion University and (3) real data obtainezhfra mobile application. Prior to the process of
training the attribute-driven HMM trees, the datasw'cleaned" so all the sequences begin a goal and
end with completion of that goal. A summary of istits about the datasets is presented in Table 4.
For each dataset, the table contains how many useracted with the system; the total number of

sequences from all the goals; the number of usebates that are relevant for splitting the trbaye



more than one value but less than a pre-definecbadinand the number of goals (tasks) the users can

accomplish in the system.

Table 4. Statistics of datasets used for test

Dataset Num. Num. Num. User [ Num.

users sequences fixed Goals
attributes

Simulated 1000 1000 7 5

Web 165 635 S 3

application

Mobile 48 221 4 4

application

5.4. Measures

In this experiment, metric accuracy was used. THeigresents the probability that the
prediction of a goal, given a sequence and usecpiigect. In order to estimate the accuracy, each
dataset was randomly divided 10 times into a tngrset and test set. The training set and thesétst
comprises 70% and 30% of the dataset, respectilgdyng the training set, the models for the
attribute-driven HMM trees were built. Followingishstage, the trees were tested using the test set.
Each sequence on the test set was divided intequbsaces by action steps (only first action, then t
first actions in the sequence, etc.). The inputtfe test was these subsequences of the sequence
together with the user's attributes. The outpuheftest is a goal that the algorithm predictshasgoal
that the user will do with the highest probabiliffter the test, a pruning is carried out by usihg
same training set and then the 30% test set.

We ran the test once again to measure the perfaenafthe algorithm after pruning in order
to compare between the prediction accuracy of HM the attribute-driven HMM before and after
pruning the trees. Since in the test we knew whatuser actually did, we estimated the prediction
accuracy of each goal in the system. Wilcoxon's teish a confidence level of 95% verified whether
the differences in accuracy between the HMM andattribute-driven HMM with and without pruning
were statistically significant. Wilcoxon's test dsnon-parametric test for measuring a difference in
central location (median) between two paired samplighout assuming a normal distribution of the

population.

5.5. Experimental results

5.5.19mulated data set. To validate the proposed attribute-driven HMM tréasintention prediction,

we simulated training data for five goals for diffat user types, i.e., we simulated different bajrav

for some specific attributes. Then, the algorithenerated a tree for each goal from the data we
simulated. We wanted to examine (1) if the alganiiidentifies the same user attributes that we @dfin
when simulating the training data and (2) to prthett prediction accuracy increases when using user
attributes. The data consisted of 1000 users divideo five goals (we simulated one sequence of
actions per user, i.e., 200 sequences for each). gda number of actions for accomplishing a goal
was three to four steps. There were seven useébuatts (Age group, Gender, Device, Experience,

Education, Customer type, Status). Each attribatetivo to seven values. In order to generate a two-



level tree (root and another level) we decided Whattribute would differentiate usage behavior for
each goal, the percentage of users with same wtirimlue and the transition probabilities between
actions in the goal. Then, we built the sequeneeordingly. The division of users into goals is
detailed in Table 5

Table 5: Division of users into goals and difféfating attributes

Goal ID Num of | Attribute Value Precent User ID Sequence
users
20°% 1-40 124
Male e
10°% 41-60 1,34
1 200 Gender . S0% 61-160 158
20°% 161- 200 168
N5 30°6 201- 260 2,714
N73 10°% 261-280 25,15
. 1076 281- 300 34,15
2 200 Dev S —
evice amsung 15% 301-330 3515
. 15% 331-360 2,7,15
I 7,
'Phone o 361-400 | 25.14
12-15 15% 401-420 34,10
15-20 15% 431-460 3510
20-30 2006 461-500 3810
3 200 AgeGroup 30-40 5% 501-550 3,79
4050 15% 551-580 349
50-60 5% 581-590 3459
60-80 5% 591- 600 345,10
30°6 601- 660 1,716
. 200 Status Married -5 661-710 | 1,916
Single 35% 711-780 1,712
Unknow | 10% 781- 800 1912
Under 65% 801- 930 4911
> 20 Education =0 - duate | 5% 931-1000 | 5,913
Total 1000

It was expected that the algorithm would build tiees according to the same attributes. For
example, there are several different ways of imgleting goal 1. The significant attribute was dedine
as 'Gender, indicating that males accomplish gbial using the paths illustrated in Fig. 12(a) whil

females utilize the paths illustrated in Fig. 12(b)

@ (b)

Figure 9. (a) transition probabilities for goabflusers where 'Gender=Male'. (b) transition praliggs for goal 1 of

users where '‘Gender=Female’.

The results were encouraging. We expected that fivadl tree goals would be generated
according to the attribute we selected as the migsiificant for each goal. Although the data was
randomly divided ten times into training and testss the trees were built in all runs according to
expectations for all the goals. These results cowfil that using the HMM algorithm together with
user attributes for differentiating usage behaweas feasible.

Regarding the prediction accuracy of the algorithwa, see that in Table 6 the accuracy for

each goal is measured in relation to a single HM@brithm (the root in each tree) and our proposed



algorithm. This indicates that prediction is basedthe leaves in the tree with or without a pruning
process. The results represent an average of tem ofi the algorithm and show an increase in
prediction accuracy between a single HMM and thelfattribute-driven HMM tree. The Wilcoxon

test rejected the null hypothesis that a single HsiMi our proposed algorithm perform in the same
way with a confidence level of 95%. Thus we coneltigiat our attribute-driven hidden Markov model

tree algorithm significantly outperformed the smgiMM for this data set.

Table 6. Prediction accuracy for each goal in aifated data set

Attribute driven Hidden | Attribute driven
Markov Model Tree | Hidden Markov Model

Goal Id Single HMM without pruning Tree

1 0.9 0.82 0.86

2 0.83 0.5 0.89

3 0.98 0.93 0.98

4 0.73 0.83 0.80

S 0.93 1 1

GrandTotal | 0.87 0.90 0.90

Since the pruning algorithm is applied on all gaks together, each tree affects the other
tree's prediction accuracy. Therefore, in somes;gs®ining one tree can increase or decrease anothe
tree's accuracy. On average, the prediction acgwhour algorithm with and without pruning was
almost equal for this dataset. Fig. 13 presentstéisé results from a different perspective. The
prediction accuracy averaged over 10 runs is pteddor each step. Step 1 consists of predictieg th
most probable goal after only one step (action) the user performed while step 2 means predicting
the goal after two steps, etc. Prediction accufacyall algorithms increased as the number of steps
increased. We can see that for the second stelganithm is better than a single HMM by about 8%

and achieves almost 100% accuracy.

——— Attribute driven

Hidden Markov 0.95
Model Tree 0.9
without pruning Z 085
o
—— Attribute driven § 08
Hidden Markov « 075
Model Tree 07
0.65
Single HMM 0.6
1 2 3 4
Step

Figure 13. Increase in prediction accuracy witlpsteveraged over all goals in simulation data

5.5.2.  Web application dataset. Faculty members at BGU were required to use a Vyelication in
order to complete an annual survey of their ad¢igzituring the academic year. Goals in the Web form
included 'Add course’, 'Delete course', 'Edit stidketails', 'Add research’, etc. Since this apgbn
was new to the users, it made an ideal testingrgkdar recording user interactions and testing our
algorithm. Each user had to fill out the form, bot all the goals were mandatory. A total of 168ras
from the Faculty of Engineering at BGU used theliapfion. Table 7 summarizes some statistics

about the users.



Table 7. User statistics in the Web application

Attribute Value Percentage Number of Sessions

Gender Male 78% 397
Female 13% 55

Age group 36-45 31% 186
46-60 37% 168
60 and up 22% 97
Title Dr. 44% 241
Prof. 51% 220

A session was regarded as the user interacting tighsystem. The dataset consisted of
around 500 sessions from participants. Each segsiatained one to six goals. Some of the goals
could only be accomplished in one possible wayd@fmed by the structure of the application). For
such goals our algorithm is not superior to the HMildgorithm because there is no division of
sequences by usage behavior (since all the usessancomplish the goal in the same way, using the
same path). The number of sequences that relaeais with more than one possible path is 635. The
length of each sequence was between two to tes.di@ye attributes were candidates to differentiate
between users for building each goal ti@ank, Department, Title, Gender and Age group).
Comparing a single HMM and our proposed algorittiterahe pruning process, the average prediction
accuracy results for ten runs showed an increage58b on average for all goals (see Fig. 14). The
accuracy for goals "94" and "111" is significantligher than the accuracy of goal "105". This can be
explained by the fact that goal 105 had only 1Hhing sequences, while the other two goals had
about 300 training sequences. Goal 105 ("largeseuhad much less training examples than goal 94
("general course"), because most of the coursegptbéessors teach in BGU are not considered large

courses (more than 80 students in a single clasgroo

M Attribute driven 0.8
Hidden Markov 0.7
Model Tree 0.6
without pruning >05

M Attribute driven g 0.4
Hidden Markov g 0.3
Model Tree 0.2

0.1
Single HMM 0

94 105 111
Goal Id

Figure 10. Prediction accuracy for each goal fer\feb application dataset.

Another perspective from the results may be se¢harmprogression within subsequences. The
main difference in the prediction accuracy betweenapproach and a single HMM is observed for the
second step. Our algorithm outperforms a single HeWimore than 10% for the second user’s step
(i.e., prediction of goal after two steps is mooewate when our approach is applied). Resultsnof a

average of 10 runs (for goals number 94, 105, byKteps are presented in Fig. 15:
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Figure 11. Increase in prediction accuracy witlpste average of all goals in Web application data
Although the improvement is moderate, it is stitinsistent. Moreover the Wilcoxon test
rejected the null hypothesis that a single HMM and proposed algorithm perform the same with a
confidence level of 95%. Our algorithm significantiutperforms a single HMM for this dataset. The
Wilcoxon test also rejected the null hypothesig tha attribute-driven HMM tree performs the same
before and after pruning with a confidence level96f6. Our algorithm after pruning significantly
outperforms our algorithm before pruning for thigaket.

5.5.3. Mobile application data set. The third dataset was obtained from a test with 48
participants. The users were given tasks (goalpgtiorm using a mobile phone. They were aware that
data was being collected about them. Goals inclu@&mhfigure account settings”, "Read/Send an
email", "Send a picture to an email address", "Addontact to address book", etc. We received also
demographic data about the users and from thisfdataattributes were used to differentiate between
users in order to build each goal tree (Age, Molpitevider, Customer type, Payment type). The
actions users performed (usage data) with theiicdewere recorded and transformed as input for the
intention prediction algorithm.

The test was conducted on four goals with 17 te&fuences for each goal. Table 8 presents

the prediction results.



Table 8 Prediction accuracy for each goal of théifa@pplication dataset

Goal ID Single HMM Attribute Driven | Attribute  Driven
HMM Tree | HMM Tree with
without pruning pruning

1000 (Configure “connection 0.55 0.8 0.55

plan” and “message limit”

1004 (Add a contact to the 0.44 0.54 0.44

address book)

1005 (count the number qf 0.57 0.34 0.58

words of an attachment)

1007 (Store an attachment;0.36 0.27 0.36

write e-mal with cc-function)

Grand Total 0.48 0.36 0.48

For the mobile application dataset, our algorithwmesl not outperform a single HMM
algorithm on the average of over all the goaldhmapplication. From Table 8, we see that the piguni
process pruned all leaves from all the trees. Téwstafter pruning contained only roots, indicatimeat
the model for each goal is equal to a single HMNMhdugh it looks as if the pruning methods decided
to prune nodes that provided better predictionaguslis leaves, this is not correct. The method firs
pruned nodes that caused lower prediction accuigmh as in goals 1005, 1007). The next iterations
showed that the nodes that looked better than ¢lo¢ in the beginning did not provide better
predictions after pruning the other nodes. Fronsehesults we see that our adjusted pruning method
works properly.

We shall discuss in section 6 several possibleoreas@s to why our algorithm did not
outperform a single HMM for the dataset. Moreowee, see from the results that the accuracy of the
prediction is low, 48% on average. According to Keiecs and Dixon [2007] below a level of around
70% accuracy, providing automation, assistance uidagce is worse than not providing it at all.
Probably this number is too general and dependsamy issues, so it may be a little lower or higher,
but 48% will apparently be lower than the threshold

5.6. Experiments with conditional random fields (CRF)

Up to this point we have focused on HMM as our baselel. However, as indicated in section 3, the
same idea can be easily applied to any other pildiabsequence learning algorithm, specifically
conditional random fields (CRF). CRFs which haeeib developed by Lafferty et al. (2001), define a
conditional probability over label sequences giwegertain observation sequence. This relaxes the
unwarranted independence assumptions about themseggiwhich HMMs make.

For examining a CRF in our framework, we have ubedopen-source MALLET package (McCallum,
2007) to train a single CRF model by maximizing litg-likelihood of the training data. The same log-
likelihood function is then used for choosing thestattribute split in the tree as indicated in &pn

6.



Table 9 presents the obtained accuracy using CRReabase model and compares it to the
previously reported performance using the HMM as lthse model. Although previous works in the
text mining domain have shown that CRF significaotitperforms HMM, in this experimental study,
the CRF's improvement is relatively moderate. Stillmost of the cases the attribute-driven CRF is
better than a single CRF. Actually, the attribdtgren CRF obtained the highest score in 10 out2of
cases. Specifically, for the mobile application éndthe attribute- driven HMM did not succeed in
improving the performance of a single HMM), we nsee that the attribute-driven CRF succeeded in
improving the performance in 3 out of 4 goals. HgsCRF as base model, we found that the attributes
Age and Customer Type affect the way users afeeaing the various tasks. This encouraging result
emphasizes the contribution of the proposed datemethod. Thus the inability to improve HMM,
in the mobile dataset, probably stems from the ttaat HMM requires more training instances in order
to estimate the model parameters [Rabiner, 19883 Mobile application dataset illustrates thasit i
hard to assess in advance the contribution of $ke attributes. On the one hand, when going doen th
tree, we are focusing more and more on similarsugéth the same characteristics, thus increasiag th
probability that these users operate the devideeénsame manner. On the other hand, as we go down
the tree, we reduce the number of instances teadailable for training each of the base modhlss t
jeopardizing their ability to accurately classifysgen instances.

As indicated in the original paper of CRF (Laffeetyal., 2001), the authors mention two main
reasons for CRF to outperform HMM:

1. CRF has the ability to add overlapping features asdvas seen in various experiments, CRF
benefits significantly from the use of these feasiwith accuracy improvement.
2. "When the data is mostly second order the discatnely trained CRF typically outperforms

the HMM." (Lafferty et al., 2001)

In the current study we do not use overlappingufess, thus the improvement of CRF cannot
be attributed to the first reason. Thus, of the kmown reasons for the superiority of CRF, the sdco
mentioned reason may apply, i.e., its ability tdtdrefit second-order data using only first order

models. However, other unknown reasons may alslyapp

Table 9. Prediction accuracy for each goal using @Rdel — The reported results are based on tha ofdan repetitions

Attribute Driven Attribute Driven
Dataset Goal Single CRF CRF Single HMM HMM
1 0.88 0.9 0.9 0.86

1]

g 2 0.92 0.95 0.83 0.89

©

g 3 0.98 0.98 0.98 0.98

(0]

‘—é 7 083 085 073 08

@ 5 0.97 1 0.93 1

5 94 0.69 0.73 0.65 0.7

b

L2 105 0.52 0.51 0.4 0.4

s

[

Qo

g 111 0.65 0.71 0.67 0.69




< 1000 0.65 0.77 0.55 0.55
8 1004 0.49 0.55 0.44 0.44
Qo
[N
s 1005 0.57 0.56 0.57 0.58
E
2 1007 0.35 0.42 0.36 0.36
5.7 Comparison with other classification methods

The aim of this section is to compare the perforreanf our framework against the
performance of other classification methods commonked for intention prediction tasks.
Specifically, we have examined the following leamilgorithms: Bayesian network (see for instance
Horvitz et al., 1998; ), SVM (see for instance Slke¢ral., 2006; Park et al., 2009) and decisionstree
(see for example Qu, S. and Chai, 2008). Since ®/bksigned to handle binary classification tasks,
we applied the "one-against-all' method to convtbe multi-class classification tasks into multiple
binary classification tasks.

Each algorithm has been trained in two differentle® non-sequential and sequential. In the
non-sequential mode we ignored the sequential &spédche problem and used only the user's fixed
attributes. In the sequential mode, we also usedsdguential navigation actions as input attributes
Following Sun et al. (2002), we used a tri-gram eiddr representing the sequential patterns. Each
three consecutive actions that have been perfotmgeone of the users is considered as a candidate
input attribute, where the value of "1" indicatbéattthe user performed this sequence in the current
session and "0" otherwise. Then using chi-squatisst with respect to the class, we selecteddpe
100 tri-gram$ and use them as the input attributes (in addttomser fixed attributes).

Table 40 presents the performance of the aboveritdges in the two different modes. In
addition, it presents the performance of the aitgldriven CRF for comparison purposes. It isrtyea
observed that using the sequential 3-gram attribstébstantially improves the performance of all
methods. Nevertheless, in most of the cases, thibuae-driven CRF still outperforms all other
methods in terms of prediction accuracy with meegueacy of 0.74. The second to best is attribute-
driven HMM with a mean accuracy of 0.69, followegithe Bayesian network (sequential mode) with

a mean accuracy of 0.67.

Table 10. Prediction accuracy for each goal usampus classification algorithms

Bayesian Network SVM Decision Tree
Non Sequential Non Sequential Non Sequential Attribute Attribute
Dataset Goal | Sequential Sequential Sequential Driven CRF | Driven HMM
1 0.51 0.85 0.46 0.83 0.48 0.72 0.9 0.86
S
§ % 2 0.45 0.92 0.41 0.85 0.43 0.9 0.95 0.89
% S 3 0.59 0.92 0.56 0.84 0.5 0.9 0.98 0.98

! We have examined various settings (50,100,500 and 1000 attributes) and found that the top 100 provided the most accurate

results.




4 0.64 0.79 0.49 0.78 0.6 0.79 0.85 0.8
5 0.72 0.92 0.72 0.97 0.63 0.91 1 1
5 94 0.34 0.68 0.23 0.63 0.28 0.61 0.73 0.7
B
£ 105 0.21 0.35 0.15 0.36 0.21 0.29 0.51 0.4
g
S
a
§ 111 0.36 0.67 0.27 0.63 0.35 0.67 0.71 0.69
s 1000 0.39 0.53 0.34 0.54 0.33 0.48 0.77 0.55
§ 1004 0.42 0.55 0.39 0.52 0.36 0.51 0.55 0.44
<3
o
g 1005 0.43 0.54 0.37 0.53 0.39 0.5 0.56 0.58
E
§ 1007 0.26 0.35 0.19 0.32 0.23 0.34 0.42 0.36

6. DISCUSSION

We have presented accuracy results for our dat@malgorithm compared to a single HMM
and CRF. First we saw that similar to resultstimeo domains, CRF-based models usually outperform
their corresponded HMM models. Moreover, for thstftwo datasets, the proposed attribute-driven
algorithm improved the predictive performance ofthbaingle HMM and single CRF models.
However, for the last dataset there was no sigmitiémprovement in the case of HMM. We believe
that this may be due to the various reasons destiibthe following subsections.
6.1 Training data size

As we go deeper in the tree, we split the sequebedéseen the nodes according to the
attribute values of the users who created the semge Thus, the number of training instances
available to train an HMM in a certain tree nodduaes as we move away from the root node to
deeper levels. In particular, if the training seames are uniformly distributed among the tree's

branches and all demographic attributes are bitheyy the number sequences that are available for a

specific node isn%k, where n is the original number of sequences aisdtke depth of the node (i.e.

the length of the path to the root).

It is well known that for training a HMM, a suffent number of training events should be
provided in order to achieve a good estimate ofntloelel parameters (Rabiner, 1989). Small amounts
of training data in a node can lead to an inaceurIM model i.e., a model that does not represknt a
or most of user behavior with that attribute valddws, such a model will provide incorrect
predictions. This can be clearly observed fromrd=ilts in Table 8 where the performance of a singl
HMM is comparable to an attribute-driven HMM tree mobile applications (where the training set
was relatively limited,namely, containing only 4&rficipants).

Our method addresses this issue in two ways:

1. As indicated in Section 4.3 (stopping criterion)e wse a parameter for determining the
minimal number of training sequences needed fdding a HMM. The minimum should be
set to a value which ensures that states are diisitien enough to yield good estimates of
transition probabilities of the HMM. In this pap&re use a default value of 20 (our tests show

that this value is usually sufficient). It should hoted that the same challenge exists in any




decision tree that combines another model in thé IEor example, LeBlanc and Crowley
(1993) set the minimum allowed size to 10 trainimgances while inducing a survival tree (a
tree in which the leaves hold a survival model)ndwehr et al. (2005) require a minimum of
15 instances in order to train a logistics regessi the tree's node.

2. The pruning procedure used in the proposed methodisaus to decrease the value of the
abovementioned parameter (minimal number of trgirsaquences). This allows the tree to
grow deeper than necessary so that unreliable noelgsuned later (in particular nodes, that

were trained with insufficient training instancee aruned).

In fact, the results of Table 8 indicate that iseawith small training sets (48 participants),
pruning procedures almost always prune the ente ap to the root. Thus, the single HMM and the
attribute driven HMM tree with pruning obtained alsh the same results. We conclude that it is futile
to use the proposed attribute driven HMM tree dréhare only a few training sequences. In such
casesm one can benefit from using a single HMM bseaoth single HMM and attribute-driven
HMM tree provide an equal predictive performancelevthe computational cost of single HMM is
lower.

6.2. User attributes

One of the inputs to our algorithm is user attrdsufWe assume that the division of users into
different usage behaviors in a system can be basdle given user attributes. However it is possibl
that these attributes do not characterize uservimhdor example, from the structure of a system,
there are two paths for accomplishing this goakréhare 100 sequences of users who accomplished
this goal. The algorithm starts the training witsesarch for an attribute for splitting the treearfihg
with 'Gender', the algorithm finds that both malesl females use both paths almost equally to
accomplish the goal. This is the same for all otfigen attributes about the users. In such cakes, t
splitting of the tree according to user attribuegs not contribute to prediction accuracy. Indgest,
the opposite occurs. The splitting reduces the racgubecause instead of strengthening the training
with either more sequences or a clearer path tonaglish a goal, the training contains fewer
sequences (less training examples) for each path.

An attractive aspect of any decision tree andartiular the method presented in this paper,
is that feature selection is actually embeddedhénttee induction process. Thus, the automatedadeth
for determining the contribution of users' attrigmitis the splitting criteria. Hence, due to theiw|
splitting criteria, value features that are noevaint have a low chance of being selected. Morediver

non-relevant features were still selected, the ipgiprocedure should discover and dismiss them.

Although we examined the proposed attribute-driviglden Markov model tree for intention
prediction in software applications, the proposedhad can be applied to applications far beyorsl thi
scope. For example, the method can be used tozentdig trajectory of tourists in a new city theg ar
visiting (Kisilevich et al., 2010). In such cashs trajectory is represented as a sequence of-phint
interests which a tourist would explore. We camthse intention prediction to predict the next poin

of interest the tourist will visit and provide helevant information. These trajectories will béeafed



by tourist demographic attributes, such as: agemtionality. For example, elderly people may avoid
trajectories of long hikes.

Furthermore, the proposed method can be used &dyzAang any sequential patterns and not
solely for predicting the intention of humans. Fxample, HMM and CRF can be used to induce a
part-of-speech tagger (Lafferty et al., 2001). Gdeisa case where a corpus of textual documents is
available. Every document in the corpus can beciessal with various meta-attributes such as domain
(finance, sport, art, etc.) or target audiencetlier document (such as professional, news readér, an
children). To maximize accuracy, it is desired ¢best the POS tagger for a specific document based
on its meta-attributes. For example, a narrativdioa report can benefit from a specific adjust€sP
tagger (Gunter and Bunke, 2004). Our algorithmidentify the relevant attributes according to which

the documents should be clustered and to induc@StRgger accordingly.

6.3. Paths per goal

Our algorithm divides the training data accordiogifferent usage behaviors, i.e. different pdths
accomplish a goal. If there is only one path tooagglish a goal, our algorithm is unnecessary. khsu
cases it is preferable to use a single HMM that pibbably provide a better prediction than the
attribute-driven HMM tree.

In our experiments, we measured the accuracy oalgarithm for predicting user intentions.
Predicting a user's intentions during his or hésrizction with a system could serve as a usefulftwo
assisting users in accomplishing their tasks. Wusld be accomplished by providing guidance as to
how to perform the intended task. However, offerusgrs assistance may be intrusive when initiated
by the system and not by the user since assistangebe proffered at an inconvenient time [Jameson,
2003]. Providing inaccurate guidance or assistararealso annoy users. Wickens and Dixon [2007]
examined the implications of different levels ofeirability or imperfection in diagnostic automatio
The analysis suggested that performance is quitsitse to the level of imperfection and that belaw
level of around 70%, unreliable automation is wdhs: no automation at all.

Another issue is the added value gained by applitig algorithm - the creation of trees
leaves. All leaves in a tree can be used to segusams by their attributes and attribute valuesfarh
goal. We refer to this segmentation as user typssoted above, this segmentation can be used for
different purposes such as marketing or personalizaFor example, if a company wants to promote a
product related to SMS use in a cell phone, it ese the user type segmentation for goals like 'send
SMS'. The attributes that differentiate betweenrsisghile sending an SMS could be used for
segmenting promotions. If, for instance, 'age' idifferentiating attribute, then the company may
market the new product to different age groups wtingly. Very possibly the types of segmentation
can be used as well for personalization purpossimgithe same example, a cell phone company could
provide a different SMS user interface based onatipe of the user. Another tool for marketing and
personalization might derive from testing the aion on non-fixed user attribute values. For
example, proficiency may be different for differegaals and might change (to more proficient) over

time as the user gains experience. If a userrisidered as proficient in a goal, a company maydeec



not to provide him assistance or guidance whiléshimplementing this goal. Other goals, on the othe
hand, where proficiency is less, would be accongzhby assistance.

From the comparison with existing machine learnalgorithms we conclude that the
attribute-driven method should be a method of aheiben both sequential and fixed user attributes
are available.

7. CONCLUSIONS AND FUTURE WORK

When predicting user intentions, the accuracy ugiat thus increasing it is an important task.
In this paper we have presented a new method fention prediction that improves the accuracy of
the single HMM/CRF algorithm. The algorithm is ugimser attributes to build attribute-driven
HMM/CRF trees for intention prediction. The resufsa simulation study demonstrated the capability
of the algorithm for discovering a highly accurattention prediction model. During our research we
discovered the need for a pruning phase to avodafiting and developed a new pruning procedure.
We tested the intention prediction algorithm orethdatasets and then compared the accuracy of the
results obtained by the HMM algorithm introduced Rgbiner and our algorithm, both with and
without pruning the attribute-driven HMM trees.

One limitation of the current version of our algbm is that it cannot handle multitasking. In
recently developed applications and devices, nagking has become more widespread and therefore
our algorithm should be extended to these apptinati As discussed earlier, future research should
also include testing the algorithm on non-fixedrwstribute values.

To conclude, the algorithm is beneficial when dattaut users is available and is helpful for
differentiating usage behavior of different usgratticularly where there is a large number of fragn

sequences and the goals in the system can be alislo@dpusing more than one possible path.
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