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Abstract

The main idea of ensemble methodology is to wegytesal individual pattern classifiers,
and combine them to reach a better classificateofopmance. Nevertheless, some
ensembles superfluously contain too many membéngshwesults in large storage
requirements and in some cases it may even redagsfication performance. The goal
of ensemble pruning is to identify a subset of ertde members that performs at least as
good as the original ensemble and discard any otieenbers as redundant members.

In this paper we present the Collective Agreemersed Pruning (CAP) method.
Rather than ranking individual member, CAP rankswiorth of ensemble subsets by
considering the individual predictive ability ofdramember along with the degree of
redundancy among them. Subsets whose members laigidg with the class while

having low inter-agreement are preferred.

1. Introduction

The main idea of an ensemble methodology is to aoend set of models, each of which
solves the same original task, in order to obtdietter composite global model, with
more accurate and reliable estimates or deciskars ¢an be obtained from using a
single model. In fact, ensemble methodology im#ater second nature to seek several
opinions before making any crucial decision. Weghehe individual opinions, and
combine them to reach a final decision (PolikaQ&0

The ensemble idea has been seeded long time by TU8é7). However the
main progress in the field has been made when Nmdiansen and Salamon (1990)
suggested an ensemble of similarly configured newatavorks to improve the predictive
performance of a single ANN. About the same timeapare (1990) laid the foundations



for the award winning AdaBoost (Freund and Schafi#®6) algorithm by showing that
a strong classifier in probably approximately coti@AC) sense can be generated by
combining "weak" classifiers (that is, simple clésss whose classification power is
only slightly better than random classification).

In the past few years, experimental studies comdlicy the machine-learning
community show that combining the outputs of midtiglassifiers reduces the
generalization error (Bauer and Kohavi, 1999). lEride methods are very effective,
mainly due to the phenomenon that various typedassifiers have different ““inductive
biases". Indeed, ensemble methods can effectimake use of such diversity to reduce
the variance-error (Ali and Pazzani, 1996) withiooteasing the bias-error. In certain
situations, an ensemble can also reduce bias-as@hown by the theory of large margin
classifiers (Bartlett and Shawe-Taylor, 1998).

The ensemble methodology is applicable in mangsisluch as: finance (Leigh et
al., 2002), bioinformatics (Tan et al., 2003), nogtk (Mangiameli et al., 2004),
cheminformatics (Merkwirth et al., 2004), manufaitg (Rokach, 2008), geography
(Bruzzone et al. 2004), and Image Retrieval (Lialgt2006).

Creating an ensemble in which each classifier giffsrent as possible while still
being consistent with the training set is theoedtycknown to be an important feature for
obtaining improved ensemble performance (Kunch20@5). Diversified classifiers lead
to uncorrelated errors, which in turn improve difisation accuracy.

For regression problems, the bias-variance-covegigecomposition has been
suggested to explain why and how diversity betwedividual models contributes
toward overall ensemble accuracy. In such casesibe easily shown that the ensemble
error can be reduced by increasing ensemble diyevkile maintaining the average
error of a single model. Nevertheless, in the diaasion context, there is no complete
and agreed upon theory (Brown et al., 2005).

As in decision tree induction, it is sometimes uk#f let the ensemble grow
freely and then prune the ensemble in order tomgee effective and compact ensembles.
In an empirical study that was conducted in ordarrtderstand the affect of ensemble
sizes on ensemble accuracy and diversity, it has beown that it is feasible to keep a

small ensemble while maintaining accuracy and gitaesimilar to those of a full



ensemble (Liu et al., 2004). Ensemble pruning isdrtant for two reasons: efficiency
and predictive performance (Tsoumakas et al., 20@8)ing a large ensemble results in
computational overhead. Empirical examinationsaat# that pruned ensembles may
improve the accuracy performance in comparing ¢ootfiginal ensemble (Margineantu
and Dietterich, 1997).

Roughly speaking the two most popular approachesdiecting an ensemble
subset are Ranking-based and Search Based Mede®l$ foumakas et al., 2008 for
additional approaches).

Ranking-based

The idea of this approach isdace rank the individual members according to a certain
criterion and choosing the top ranked classifieroeding to a threshold. For example
Prodromidis et al. (1999) suggest ranking clagsifeecording to their classification
performance on a separate validation set and dbdity to correctly classify specific
classes. Similarly Caruana et al. (2004) preseatetward stepwise selection procedure
in order to select the most relevant classifidrat(maximize the ensemble's
performance) among thousands of classifiers. Tiarithm FS-PP-EROS generates a
selective ensemble of rough subspaces (Hu etQfl7)2The algorithm performs an
accuracy-guided forward search to select the nabstant members. The experimental
results show that FS-PP-EROS outperforms baggidgamdom subspace methods in
terms of accuracy and size of ensemble systems.

In attribute bagging (Bryll et al., 2003), class#iion accuracy of randomly
selectedn-attribute subsets is evaluated by using the wrapgperoach and only the
classifiers constructed on the highest ranking etshsarticipate in the ensemble voting.
Margineantu and Dietterich (1997) present an agee¢fimased ensemble pruning which
measures the Kappa statistics between any palasgiiers. Then pairs of classifiers are
selected in ascending order of their agreement tévihe desired ensemble size is
reached.



Sear ch Based M ethods

Instead of separately ranking the members, on@edarm a heuristic search in the
space of the possible different ensemble subsets edaluating the collective merit of a
candidate subset. The GASEN algorithm was develégreselecting the most
appropriate classifiers in a given ensemble (Zhal.e2002). In the initialization phase,
GASEN assigns a random weight to each of the ¢iessiConsequently, it uses genetic
algorithms to evolve those weights so that theyateracterize to some extent the fithess
of the classifiers in joining the ensemble. Finallyemoves from the ensemble those
classifiers whose weight is less than a predefihezshold value. A revised version of
the GASEN algorithm called GASEN-b has been sugge&hou and Tang, 2003). In
this algorithm, instead of assigning a weight toheglassifier, a bit is assigned to each
classifier indicating whether it will be used iretfinal ensemble. In an experimental
study the researchers showed that ensembles gethérat selective ensemble
algorithm, which selects some of the trained C4&4gion trees to make up an ensemble,
may be not only smaller in size but also strongehe generalization than ensembles
generated by non-selective algorithms. A similgrapch can also be found in (Kim et
al., 2002).

Rokach et al. (2006) suggest first to rank thesiless according to their ROC
performance. Then, they suggest evaluating th@peence of the ensemble subset by
using the top ranked members. The subset sizernsased gradually until there are
several sequential points with no performance im@noent.

Prodromidis and Stolfo (2001) introduce a backwaatselation based pruning.
The main idea is to remove the members that ast tearelated to a meta-classifier
which is trained based on the classifiers’ output®ach iteration they remove one
member and recompute the new reduced meta-clagsvith the remaining members).
The meta-classifier in this case is used to evaltia collective merit of the ensemble.

Windeatt and Ardeshir (2001) compared several suhsduation methods that
were applied to Boosting and Bagging. Specifictily following pruning methods have
been compared: Minimum Error Pruning (MEP), Erraséd Pruning (EBP), Reduced-
Error Pruning(REP), Critical Value Pruning (CVP dabost-Complexity Pruning (CCP).



The results indicate that if a single pruning mdtheeds to be selected then overall the
popular EBP makes a good choice.

Zhang el al. (2006) formulate the ensemble prupnudplem as a quadratic
integer programming problem to look for a subsetla$sifiers that has the optimal
accuracy-diversity trade-off. Using a semi-defiptegramming (SDP) technique, they
efficiently approximate the optimal solution, desphe fact that the quadratic problem is
NP-hard.

Which approach to use?

Search Based Methods provide a better classificggaformance than the ranking based
methods (Prodromidis et al., 1999). However SeBased methods are usually
computational expensive due to their need for $@agca large space. Thus one should
select a feasible search strategy. Moreover intig@ly to the chosen search strategy,
the computational complexity for a evaluating ag@rcandidate subset usually is at least
linear in the number of instances in the trainiag(see Tsoumakas et al., 2008 for

complexity analysis of existing evolution measures.

The aim of this work is developing a low computatibcomplexity evaluation measure
to direct the space search. Specifically the coatpmrtal complexity of the evaluation
measure depends only on the ensemble size andhdbdspend on the training set size.
Like in the ranking method of Margineantu and Qgtth (1997) we first calculate the
agreement level among all pairs of members. Intaxhdive calculate the agreement level
between each member’s output and the real labdstn While exploring the space, we
use the measure to evaluate the merit of a cardsidiset. The measure prefers
ensemble subset whose members’ classification sigritle the real class, yet the

members disagree with each other.

2. Problem For mulation

In a typical classification problem, a training s#tlabelled examples is given. The

training set can be described in a variety of laggs, most frequently, as a collection of



patterns denoted aS=(< x,, Y, >,...< X, ,Y,, >) where x, [0Xis a vector of feature

values charactering the pattern apd{c,...,c.} indicates the pattern’s class. Usually, it

is assumed that the training set records are gewemrandomly and independently

according to some fixed and unknown joint probapdiistributionD.

Let Q={M,,...,M,} represent an ensemblemtlassifiersM; is a classifier that can
predict the class M;(x,) of an observatiorxq. The problem of ensemble pruning is to

find the best subset such that the combinatiorhefgelected classifiers will have the
highest possible degree of accuracy. Consequédmlyptoblem can be formally phrased

as follows:

Given an ensemble Q ={M,,...,M,}, a combination method C, and a training set S

from a distribution D over the labeled instance space, the goal is to find an optimal

subset Z,, 0Q . which minimizes the generalization error over the distribution D of

the classification of classifiersin Z_. combined using method C.

opt

Note that we assume that the ensemble is gives, wrudo not attempt to improve
the creation of the original ensemble.

It has been shown that the pruning effect is marticeable on ensemble whose the
diversity among its members is high (Margineantd dietterich, 1997). Boosting
algorithms create diverse classifiers by using Widkfferent parts of the training set at
each iteration (Zhang et al., 2006). Specifically @mploy the most popular methods for
creating the ensemble: Bagging and AdaBoost. BagdBreiman, 1996) employs
bootstrap sampling to generate several training @ed then trains a classifier from each
generated training set. Note that, since sampliith veplacement is used, some of the
original instances may appear more than once ins#ime generated training set and
some may not be included at all. The classifierdjgteons are often combined via
majority voting. AdaBoost (Freund and Schapire, 8)9%equentially constructs a series
of classifiers, where the training instances theg warongly classified by a certain
classifier will get a higher weight in the trainimgf its subsequent classifier. The

classifiers’ predictions are combined via weightedting where the weights are



determined by the algorithm itself based on thenimg error of each classifier.

Specifically the weight of classifieris determined by Equation 1:

2 &

where ¢, is the training error of classifier

The ensemble pruning problem resemble to the ek feature selection
problem. However, instead of selecting featuresstoeild select the ensemble'’s
members (Liu et al., 2004). This lead to the ideadapting the Correlation-based
Feature Selection method (Hall, 2000) to the curpeoblem. The CFS algorithm is
suitable to this case, because in many enseml#es éine many correlated base-

classifiers.

3. Collective Agreement -based Ensemble Pruning M ethod

The Collective Agreement-based Ensemble Pruning)Qxalculates the member-class
and member-member agreements based on the traiaiagMember-class agreement
indicates how much the member’s classificationgagyvith the real label while member-
member agreement is the agreement between théicktgmns of two members. Based
on performance criterion adopted from test thethry,merit of an ensemble subset Z

with n, members can be estimated from:

. N,k
Merit, = Ak
\/nz +n,(n, =1)Kmm

(@)

wherek« is the mean agreement between the Z's membertharutass andmmis the

average member-member agreements in Z. Specifita#lyKappa statistics is used to

measure the agreement:

K, | =i A3)



whered, ; is the proportion of instances on which the cfemsii andj agree with each

other on the training set, arf}; is the probability that the two classifiers agbge
chance.
Alternatively one can use the symmetrical uncetyafa modified information gain
measure) to measure the agreement between two me(kiad!, 2000):
_HE)+HE)-H,.9))
U HE)*HE,)

wherey, is the classification vector of classifieandH is the entropy function.

(4)

As the search space is hug@g ), we are using best first search strategy as the
preferred strategy. It explores the search spacedking local changes to the current
ensemble subset. Best first search strategy begihsan empty ensemble subset. If the
path being explored does not achieve an improvett,rittee best first strategy backtracks
to a more promising previous subset and continuesearch from there. The search

stops if five consecutive iterations obtain non-ioypng subsets.

The pseudocode of the proposed algorithm is predentFigure 1. The algorithm gets as
input the training set, the ensemble of classifigrs method for calculating the
agreement measure (for example Kappa statisticsjrensearch strategy. It first
calculates the classifiers’ output (prediction)aath instance in the training set (Lines 1-
5). Then it calculates the mutual agreement maitrong the classifiers’ outputs and the
agreement between each classifier's output anddhel class (Lines 6-11). Finally it
searches the space according to the given seaatbgst. The search procedure uses the
merit calculation for evaluating a certain solutitimes 14-24).



CAP (S0Q.CT k)

Input: S Training set
Q Ensemble of classifier%Ml, e, M n}
Agr A method for calcuating the agreement measure
Src A search startegy
Output: Z Pruned ensemble set
1: FOR each< X, Y, >[S [* Getting members’ classifications */
2: FOR eachM, 1 Q
3: Yiqg < Mi(%,)
4: END FOR
5: END FOR
6: FOR eachM, 1 Q I* Preparing the agreement matrix */
7: CM, = Agr (y,y,)
8: FOR eachM ; 1Q; j >i
o MM, ; = Agr (§,.9,)
10: END FOR
11: END FOR

12.Z « S¢(Q,MM,CM)  /*Searching the space using the merit function */
13: Return Z

EvaluateMerit (Z,.CM,MM)

Input: Z The Ensemble Subset
CM Class-Member agreement vecor
MM Member-Member agreement matrix

output:Merit, - The merit of Z.
14: 1, 2|
15: Kem « O

16: Kmm « O
17: FOR eachM, [1Z

18: Kem « Kcm +CMi
19: FOR eachM ; I Z; | >1i
20: Kmm«—Krrm"‘ MMi,j
21: END FOR
22: END FOR
. nK
23: Merit, « z

\/nz +n, (N, —1)Kmm

24: ReturnMerit,

Figure 1: A Pseudocode of Collective Agreement-based Pruning of Ensembles



The computational complexity of the agreement mataiculation (lines 6-11) is(n’m)
assuming that the complexity of the agreement mreasw(m) . This assumption is true
for the two measures presented in equations 3 afidedcomputational complexity of
the merit evaluation (lines 14-24) ig(n?). If the search strategy imposes a partial
ordering on the search space, then the merit caalbalated incrementally. For example
if backward search is used then it is requiresamitition to the numerator and uprto
additions/subtractions in the denominator.

Note that the actual computational complexity delseon the computational
complexity of the classifier making a classificati¢ine 3) and the computational
complexity of the search strategy which is beingdu@ine 12). Nevertheless neither the
computational complexity of evaluating a solutionigrit nor the search space size
depends on the training set size. Thus, the proposthod makes it possible to
thoroughly search the space for problems with lér@eaing sets. For example the

complexity for a forward selection or backward efiation iso(n?) . Best first search is

exhaustive, but the use of a stopping criterionesdke probability of exploring the

entire search space small.

4. Experimental Study
In order to illustrate to evaluate the performaotthe proposed Agreement-based

Ensemble Pruning algorithm, a comparative experimeas conducted on benchmark
datasets. The following subsections describe tperxental set-up and the results
obtained.

4.1 Datasets
The selected algorithms were examined on 30 datashich were selected manually

from the UCI Machine Learning Repository and aredely used by the pattern
recognition community for evaluating learning aifums. The datasets vary across such
dimensions as the number of target classes, adnnes, of input features and their type

(nominal, numeric).



4.2 Algorithms Used
We use Adaboost to create the original ensemblerianing. Following Zhang et al.

(2006) the ensemble size was set to one hundrele lfraining error converges to zero
before the ensemble sizes reaches one hundredalthtbe subsequent members will be
replications of the last member because no insteeght is changed. Therefore in such
cases, the AdaBoost.M1 procedure is repeated asdifferent random seed. Note that
the original AdaBoost weights are used to weigh¢ fredictions of the selected
members.

As for the induction algorithm that was used fairimg the base classifier, we have
examined the C4.5 decision tree algorithm (Quinl&®83) and decision stump. The C4.5
algorithm is frequently used for comparing ensemblecision stump is a weak learner
consisting of a one-level tree which known to bendf from boosting strategy
(Kotsiantis et al., 2006)

The new algorithm is compared to the following enkke pruning methods:

1. GASEN-b - genetic-algorithm (number of generatiod&2and population
size=50). The GASEN employs a wrapper evaluatowhith a candidate subset
is evaluated by repeatedly sampling the trainingaed measuring the accuracy of
the subset ensemble over a holdout validation eatas

2. Kappa members ranking (as used by Margineantu aetlebch, 1997). Kappa
members ranking can prune the ensemble to anyepreize. Thus, in order to
make a fair comparison, we set it to the same si#ained by our algorithm
which makes.

We also evaluated the following configurationsha# proposed approach:
3. CAP-F-K — Using Forward-Selection search strate@ wappa statistics as the

agreement measure.



4. CAP-BF-K — Using Best First search strategy withppa statistics as the
agreement measure.

5. CAP-GA-K - Using genetic algorithm search stratégymber of generation=200
and population size=50) with kappa statistics asatireement measure.

6. CAP-BF-SU — Using Best First search strategy witmmetrical uncertainty as
the agreement measure.

7. CAP-GA-SU - Using genetic algorithm search strategyumber of
generations=200 and population size=50) with symip@tuncertainty as the

agreement measure.

4.3 Metrics Measured
In this experiment the following metrics were meast

1. Generalized Accuracy: This represents the proltghiiat an instance was
classified correctly. In order to estimate the gatieed accuracy, a 10-fold cross-
validation procedure was repeated five times. Bohe 0-fold cross- validation,
the training set was randomly partitioned into ijaint instance subsets. Each
subset was utilized once in a test set and ninestim a training set. The same
cross-validation folds were implemented for allalthms. Since the average
accuracy is a random variable, the confidencevatevas estimated by using the
normal approximation of the binomial distributidn.order to conclude which
algorithm performs best over multiple datasetsfallewed the procedure
proposed in Demsar (2006). We first used the agguBStiedman test in order to
reject the null hypothesis and then the Bonferidain test to examine whether
the new algorithm performs significantly betterrtfexisting algorithms.

2. Computational Cost: Since this paper focuses oadiad the complexity cost, the
running time required for pruning the ensemble massured.

3. Pruned Ensemble Size.



4.4 Accuracy Performance
Table 1 presents the mean accuracy and the stadeeaiation over five runs of 10 fold

cross-validation using C4.5 algorithm as the bdasesdier. The shaded boxes represent
cases where the difference between CAP-Best-FapipK and the corresponding method
is statistically significant with 95% confidenceangt-test. A win-loss-tie summarization
based on mean value and t test is attached abttabof the table. Generally Kappa
measure slightly outperforms symmetrical unceryaamd GA search outperforms Best
First search.

Using adjusted Friedman test the null hypoth#sisall pruning methods perform
the same over multiple data sets and the obseiffecedices are merely randdmas been reject

with F-(8,232)= 10.05p< 0.0C. We proceed with a post-hoc Bonferroni-Dunn testg

CAP-Best-First-Kappa as the controlled method.défeluded thatlavariations of CAP
method perform almost the same. Still CAP-BesstHrappa significantly outperforms
CAP-Best-First-Symmetrical-Uncertainty with z= 2,.260.05.

The accuracy of the proposed pruned ensemble ikastm the accuracy of the
original ensemble (no pruning). CAP-Best-First-Kagnificantly outperforms Kappa
Ranking with z=4.14, p<0.001. Moreover CAP-GA-Kaggnificantly outperforms
GASEN-b with z=2.32, p<0.01. This indicates that tising collective merit measure is
more accurate than using the wrapper approach @iesearch strategy is used. This
conclusion is not expected, because wrapper apptieaenerally considered to be slow
but accurate mean to direct the search process.

Table 2 presents the mean accuracy and the stadetaiation over five runs of
10 fold cross-validation using Decision Stump aildpon as the base classifier. The
shaded boxes represent cases where the differehgedn CAP-Best-First-Kappa and
the corresponding method is statistically significaith 95% confidence using t-test. A
win-loss-tie summarization based on mean valuet &est is attached at the bottom of the
table. All pruning methods slightly reduce the aecy performance when compared to
the No-Pruning results. Nevertheless CAP-BestRieppa significantly outperforms
No-Pruning in the Wine dataset. Generally Kappasuesaslightly outperforms

symmetrical uncertainty.



Using adjusted Friedman test the null hypothesisall pruning methods perform the same

over multiple data sets and the observed differeace merely randoimas been rejeetith

F-(8,232)= 7.168p < 0.00. We proceed with a post-hoc Bonferroni-Dunn tesstgiCAP-

Best-First-Kappa as the controlled method. CAP-Bast-Kappa significantly
outperforms Kappa Ranking with z=4.336, p<0.001lis T consistent with the
superiority of CAP-Best-First-Kappa over Kappa Ragkn the previous table (using
C4.5 as nase classifier). Thus, we conclude bmatisage of Kappa statistics is not
sufficient to obtain favorable results, but thelective merit measure (Eq. 2) is required.
Moreover, CAP-Best-First-Kappa significantly outipems CAP-Best-First-
Symmetrical-Uncertainty with z= 1.6, p<0.05. Agéiis result is consistent with the
superiority obtained in the previous table. Thadeto the conclusion that Kappa is a

better measure than symmetrical uncertainty fonipgiensembles.



Table 1: Mean accuracy using C4.5 as base classifier

Dataset # Instanc@s Features|A single C4..  [No Pruninc _[Kappe Rankinc |GASEN-b CAP-F-K CAP-GA-K CAP-BF-K _|CAP-GA-SU |CAP-BF-SU
Mear [S.D Mear [S.D.|Mear S.D [Mear S.D. |Mear S.D [Mear S.D. [Mear |S.D |Mear S.D. |Mear S.D
Annea 89¢ 39 98.5] 0.24 99.670.16 98.9 2.1 98.17 3.2 95.69 4.89 99.59 0.17 95.69 4.84 99.44 0.19 95.64 4.89
Audiology 20( 70 77.05 1.4 84.07 1.3 80.19 1.4 83.1§ 1.7 85 1.9 89 1.3 85.11 0.9 83.9 1.14 83 0.9
Aust Credi 69(] 15 86.44 0.69 85.440.69 83.17 0.98 82.9 0.74 85.1 0.74 85.24 0.74 85.2§ 0.74 85.33 0.77 85.39 0.74
Autos 204 26 82.94 217 87.391.75 85.54 1.17% 84.94 14 87.1 1.85 85.74 1.67 86.9 1.81 85.54 1.73 87.1 1.89
Diabete 768 9 74.84 1.35 74.111.14 70.13 1 75.9 1.7 73.84 1.09 74.09 1.11f 73.83 1.0§ 74.74 1.17 74.44 1.23
Glas: 214 10 69.04 2.040 78.031.84 76.04 1.67 81.04 1.17 77.54 1.77 78.41 14 77.541.7§ 77.71 1.74 77.54 1.89
Hepatitis 155 20 79.87 1.44 77.331.44 75.39 2.01 77.19 2.11 78.89 1.01 79.531.117 79.141.11 76.44 1.67 7704 1.65
lonospher 35] 51 89.63 1.2] 93.891.0§ 9293 0.7 9291 1.1 92.94 2.29 91.64 3.3§ 92.94 2.2§ 91.44 3.34 92.84 2.2
Iris 15( 5 94.93 0.91 94.670.93 88.74 1.8 96.67 0.79 94.4 0.91 94.4 0.91 94.4 0.91 94.53 0.97 94.27 0.95
Kr-vs-kp 3197 37 99.44 0.06 99.540.06 99.41 0.17 99.54 0.04 99.53 0.04 99.59 0.0 99.54 0.04 99.57 0.04 99.54 0.04
Labol 57 17 77.13 2.8§ 88.62.44 82.11 2.19 77 3.01 87.21 2.51 87.52.49 87.532.57 87.47 2.44 86.94 2.41
LED17 22(] 25 61.73 157 62.791.6§ 61.99 1.29 63.04 2.79 62.34 1.67 62.491.7] 62.34 1.6 62.14 1.64 62 1.65
Lettel 1500( 17 75.26 1.0 87.742.171 82.14 1.34 87.264 3.4 86.94 2.3 88.0¢ 2.9 87.7] 1.95 85.8] 2.6 85.61 1.79
Lung 31 56 46.83 4,16 54.174.99 53.4 3.9 55 5.86 55.671 4.83 57.9 4.9 57.9 4.99 56.17| 4.44 529 4.7
Lymphogr: 14§ 19 75.7 2.94 84.0712.47 83.664 2.7 84.66 1.84 84.34 2.51 85.11 2.59 84.34 2.44 85.44 2.6§ 83.54 2.39
Monks] 124 6 79.81 1.65 98.71 0.5 96.09 0.45 96.8¢ 0.91 95.44 0.94 96.4 0.84 96.29 0.87 96.77 0.84 96.99 0.9
Monks:Z 169 6| 57.74 1.7] 60.471.99 61 1.29 60.94 2.02 60.54 1.99 61.431.84 61.43 1.89 58.94 1.8§ 59.53 1.9]
Monks: 122 6 90.1 1.0§ 89.141.3% 88.99 1.45 86.7 1.5 89 1.09 89.81 1.15 89 1.13 89.79 1.23 88.94 1.33
MUSH 8124 22 100 0 100 O 100 0 100 O 100 O 104 0.01 10( 0.01 104 0.01 104 0.01
Nurse 1296( 8 97.54 0.0 98.240.06 97.34 0.1 98.19 0.5€ 98.13 0.04 98.19 0.0 98.13 0.04 98.14 0.04 98.17 0.04
Optic 562§ 64 63.02 0.3] 91.140.171 91.071 0.1 89.16 0.27 91.14 0.17 91.140.17 91.140.17 91.14 0.17 91.14 0.17%
Sonal 20§ 60 70.44 1.74 79.941.49 72.14 1.33 72 1.74 79.94 1.41 80.211.34 79.94 14 79.31 1.49 79.59 1.57
Soybea 687 35 91.5 0. 9287 1.4 91.9 1.9 92.24 2.1 92.864 1.17 93.26 1.9 92.97% 1.67 91.66 2.47 91.44 1.17%
Splice 100( 60 91.1 0.54 94.640.39 928§ 0.57 93.1 0.5 94.64 0.39 94.64 0.39 94.6§4 0.39 9454 04 9454 0.4
TTT 95§ 9 84.74 0.5 99.140.19 99 0.2§ 96.45 0.27 99.17 0.19 99.14 0.1§ 99.14 0.1§ 99.1 0.19 99.14 0.19
\Vehicle 846 19 71.8} 1.2] 77.890.99 73.14 1.2 75.63 0.95 77.97 0.99 78.44 1.1 77.93 0.94 78.47 1.15 77.9 0.99
\Vote 29(] 16 95.93 0.64 95.450.61 95.54 0.44 95.57 0.47 95.34 0.61 95.49 0.6] 95.44 0.61 95.17% 0.64 95.57 0.59
\Waveformn 500( 41 75.04 0.44 84.950.471 80.64 0.3 83.74 0.2 84.94 0.47 84.64 0.54 84.95 0.47 84.66 0.57 84.94 0.47
\Wine 17§ 13 84.14 1.47 94.41.06 93.141.844 95 0.94 94.064 0.95 94,99 1.04 94.06 1.0 94,94 1.04 94.5 0.99
Zoo 101 8 92.64 1.1§ 100 1.2 100 1.7 104 2.1 98.17 2.74 104 2.79 10q 2.74 97.14 2.74 96.39 2.74
Mean 81.17| 1.24 86.94 [1.20 8488 |124| 85.83 |150| 86.60 |1.45| 87.06 |[1.36| 86.84 (142 8651 [1.37] 86.20 [1.42

Significant W-L-T 17-1-12 1-1-28 9-1-20 9-2-19 0-0-30 0-1-29 3-1-26 4-0-26




Table 2: Mean accuracy using Decision Stump as base classifier

Dataset # Instancds IA single C4.! No Prunin |Kappa Rankin |GASEN-b CAP-F-K CAP-GA-K CAP-BF-K |CAP-GA-SU |CAP-BF-SU
Feature |Mear [S.D Mear  [S.D.|Mear S.D [Mear S.D. |Mear S.D [Mear S.D. [Mear |S.D |Mear S.D. |Mear S.D
Annea 89¢ 39 77.14 0.97 83.630.14 82.44 1.0( 83.17 0.14 83.04 0.13 82.44 0.7 83.63 0.14 83.63 0.14 83.63 0.14
Audiology 20( 70 47.0( 0.0 47.000.19 47.0¢ 0.04 47.0( 0.07 47.00 0.0( 47.00 0.09 47.00 0.1( 47.00 0.10 47.0( 0.04
Aust Credi 69(] 1§ 85.5] 0.9] 85.840.94 85.7( 0.91 85.64 0.81 85.36 0.89 85.3( 0.91 85.3(0 0.9( 85.7( 0.9] 85.48 0.89
Autos 204 26 44.84 1.59 44.841.53 44.89 1.5€ 44.84 1.5] 44,84 1.59 44.84 1.54 44.84 1.54 44.8¢ 1.51 44.84 1.51
Diabete 768 9 72.04 1.3 75.571.02 72.664 1.36 74.14 1.01 74.54 1.01 73.51 0.9 75.13 1.3 72.66 1.34 73.34 1.15
Glas: 214 14 44.9( 0.7 45.320.74 44,959 0.74 45.29 0.74 45.61 0.74 45,14 0.19 45.79 0.19 44.96 0.19 44,94 0.19
Hepatitis 155 20 81.64 1.7 81.011.74 80.19 1.76 65.08 5.6( 80.14 1.91 80.94 2.0] 80.14 1.91 81.09 1.7] 80.79 1.89
lonospher 351 51 82.51 1.3] 92.431.1% 76.04 1.33 82.51 1.14 84.59 1.14 81.39 1.3 84.74 1.39 76.0§4 1.44 76.084 1.26
Iris 15( 5 66.67 0.0 94.131.49 60.4( 0.0( 77.39 3.39 93.2( 1.49 60.4( 1.5 93.07 1.5( 75.39 1.47 74.61 3.74
Kr-vs-kp 3197 37 66.04 0.44 95.190.31 74.21 0.45 82.74 0.31 74.21 1.15 75.071 0971 74.211.14 89.47 0.31 88.74 0.6
Labol 57 17 78.53 4.04 91.073.17 90.19 4.13 79.33 4.49 91.33 3.07 92.01 2.8 91.33 3.07 90.5( 3.1( 90.2( 3.07%
LED17 22(] 25 20.27 0.71 23.140.771 22.99 0.78 23.09 0.55 23.09 0.53 22.94 0.5 23.04 0.53 23.0§4 0.74 22.94 0.53
Lettel 1500( 17 7.00 0.43 6.990.43 7.00 0.45 6.97 0.43 6.94 0.43 6.9§ 0.4 6.964 0.43 6.95 0.44 6.95 0.43
Lung 31 5 42.5( 3.9 49.674.61 45,33 4.17 40.83 5.47 45.33 4.34 45.67 4.3§ 45.33 4.34 47.54 4.65 47.33 4.44
Lymphogr: 14§ 19 74.¢4 2.8 75.1(2.55 74.81 2.89 75.064 2.52 74.83 2.52 75.5712.74 74.9( 2.64 75.57 2.74 74.9( 2.69
Monks] 124 6 73.44 2.00 69.172.89 61.29 2.05 66.34 2.74 69.0]1 2.64 61.29 3.21] 69.33 2.64 69.24 2.8§ 68.59 2.69
Monksz 16¢ 6 59.4( 1.57 53.842.4Q 48.74 1.49 55.11 2.72 54.17 2.52 53.0]1 2.5 54.69 2.29 49.23 2.37 48.74 2.54
Monks: 122 6 71.45 3.14 89.5(1.94 72.19 3.26 78.0]1 4.25 89.5]1 2.54 82.89 3.4 89.5] 2.54 72.74 1.9] 72.19 2.7(
MUSH 8124 22 88.64 0.2 99.910.09 96.19 0.29 96.7( 0.8( 97.04 0.29 97.39 0.15 97.14 0.27 96.2( 0.09 96.19 0.64
Nurse 1296( g 66.25 0.0] 66.250.01 64.54 0.0] 65.67 0.01 64.54 0.01 66.29 0.0] 64.540.01 66.27 0.01 66.24 0.0]
Optic 562§ 64 19.37 0.1( 27.940.10 27.64 0.1( 27.74 0.10 27.64 0.02 27.64 0.04 27.71 0.07 27.79 0.1( 27.€20 0.07
Sona 20§ 60 66.34 2.040 72.5642.5( 69.64 2.11 70.8( 2.47 71.03 2.31 70.572.14 70.64 2.34 69.64 2.49 70.09 2.23
Soybea 687 35 27.96 0.64 27.840.69 27.91 0.69 27.94 0.7( 27.94 0.69 27.94 0.69 27.94 0.69 27.94 0.69 27.94 0.69
Splice 100( 60 63.9( 0.8 85.141.071 81.84 0.87 83.33 1.07 83.17 1.23 83.64 1.14 83.17 1.24 81.86 1.07 82.66 1.17%
TTT 95§ 9 69.94 1.0 89.210.79 68.6( 1.06 75.4( 0.79 68.61 1.21 83.441.14¢ 68.61 1.21 71.29 0.79 71.29 1.04
Vehicle 846 19 39.74 0.4( 40.070.40 40.07 0.42 4007 0.4( 40.1(7 0.4( 40.07 0.1 40.10 0.15 40.07 0.15 40.07 0.1
\Vote 29(] 14 95.84 0.97 95.171.06 94.97 0.97 95.4] 1.00 95.93 1.09 95.54 1.0 96.0( 1.0§ 94.97 1.07 95.77 0.99
\Waveforn 500( 41 56.71 0.340 67.830.94 65.74 0.37 66.74 0.94 65.79 0.93 66.9(0 0.50 66.24 0.84 66.8§ 0.5( 66.73 0.53
\Wine 17§ 13 57.33 1.21] 57.711.22 63.44 1.23 65.37 1.24 71.294 2.61 63.44 3.59 71.29 2.61 64.04 1.24 63.74 3.1
Zoo 101 g 60.4( 0.6] 60.400.61 60.4( 0.64 60.44 0.94 60.4( 0.61 60.4( 0.6] 60.4( 0.61 60.4( 0.61 60.4( 0.6]]
Mean 60.28 1.21 66.46 [1.25( 61.73 124 6294 |161| 64.68 |[1.33| 63.32 [1.38( 64.76 |1.32| 6343 |1.22| 63.35 [1.39

Significant W-L-T 15-1-14 1-3-26 7-0-23 7-2-21 0-0-30 4-1-25 6-1-23 5-1-24




4.5 Pruned Ensemble Size

Table 3 presents the mean pruned ensemble sizeedtay each method on each dataset
when C4.5 is used as a base classifier. The lastrrthe table specifies the mean
ensemble size over all datasets. All CAP methodallysconverge to similar ensembles
sizes. GASEN-b usually converges to a smaller ehkegize. Combining the results of
Table 1 and Table 3 indicates that it is possibleeep almost the same accuracy of the

original ensemble but using only circa 45% of itsmiers.

4.6 Pruning time
Table 4 presents the mean pruning time (in milbses) required by each method for

various datasets when C4.5 is used as a basefielasine last row in the table specifies
the mean pruning time over all datasets. We coreduall experiments on the following
hardware configuration: a desktop computer impleémgra Windows XP operating
system with Intel Pentium 4-2.8GHz, and 2GB of ptglsmemory. Kappa Ranking is
the faster method. All CAP methods have similar plaxity costs. Still the Kappa
metric tends to be faster than the Symmetrical-ttacegy metric and Best First Search
run faster than GA search. The table reveals thidafge datasets (such as Letter and
Nurse) the computational cost of GASEN-b is sigaifitly higher than the CAP
methods.



Table 3: Pruned ensemble size using C4.5 as base classifier

No Pruning GASEN-Kappa |CAP- |CAP- |CAP- [CAP- |CAP-

b Ranking [F-K |GA-K |BF-K |GA-SUBF-SU

Anneal 10C 17.44 16.45 15.50 29.84] 16.45 25.96 15.92
Audiology 10C 23.22 26.40| 26.53] 2598 26.40 35.86 33.41
Aust credit 10C 34.88 32.26] 31.96| 32.22] 32.26| 31.07 31.88
Autos 10C 44.89 53.26| 52.67| 56.20| 53.26| 52.20 50.30
Diabetes 10C 19.91 60.35 60.24] 73.40| 60.35 71.76] 60.37
Glass 10C 18.27 60.22| 60.02] 61.72] 60.22| 64.48 63.92
Hepatitis 10C 15.80 33.44] 33.43] 33.85 33.44] 32.53 34.66
lonosphere 10C 60.45 62.98 60.14] 67.72] 62.98 60.24] 56.59
Iris 10C 12.11 9.42| 9.42 9.84] 942 9.08f 9.84
Kr-vs-kp 10C 21.48 17.18 16.86) 17.56| 17.18 18.02] 17.30
Labor 10C 12.53 22.85 23.57] 23.90] 22.85| 21.99 22.48
LED17 10C 12.82 75.39 74.76| 78.10 75.39] 74.22] 73.57
LETTER 10C 17.33 12.00[ 11.88 11.41] 12.000 11.98 12.38
Lung Cancer 10C 31.44 20.98 21.20| 21.95 20.98 20.51] 21.55
Lymphography 10C 53.60 47.25 45.200 53.52] 47.25 45.40, 41.39
[Monks1 10C 10.09 17.66] 17.57| 17.68] 17.66] 18.50 16.96
[Monks2 10C 9.66 40.11] 41.02[ 39.98 40.11] 39.86 41.14
[Monks3 10C 11.96 23.73] 24.42| 24.63] 23.73 24.23 24.18
[MUSH 10C 43.22 67.20] 76.93 78.50 67.20] 78.99 80.00
Nurse 10C 11.86 8.08] 8.09 840 8.08f 824 7.96
OPTIC 10C 45.55 73.81] 77.59] 80.00 73.81 77.81] 78.24
Sonar 10C 62.75 73.22| 72.28] 70.74] 73.22] 69.91] 71.89
Soybean 10C 23.32 17.60| 17.85 17.52| 17.60] 17.32] 17.26
Splice 10C 69.97 79.46| 78.74] 73.66] 79.46| 79.30 77.90
TTT 10C 65.33 79.71 74.900 79.11] 79.71 79.86] 74.85
Vehicle 10C 18.00 63.62| 63.62] 63.48 63.62] 63.76) 63.84
Vote 10C 31.18 22.21] 21.26| 21.66 22.21] 22.46] 21.14
Waveform 10C 27.52 62.40] 62.40 62.40| 62.40 62.40 80.00
Wine 10C 45.01 42.02| 42.57] 41.62] 42.02] 42.24] 41.54
Zoo 10C 17.18 12.42] 12.62] 12.34] 12.42] 12.700 12.01
[Mean 100 29.65 41.12] 41.17] 42.96] 41.12] 42.43 41.82




Table 4: Pruning timein milliseconds using C4.5 as base classifier

GASEN- [Kappa CAP-F- |CAP-GA-|ICAP-BF-|CAP-GA- [CAP-BF-

b Ranking K K K SU SU
Anneal 4,751 556 2,473 6,714 2,401 7,308 2,40]
Audiology 940 280 360 410 340 510 410
Aust Credit | 162,301 318 357 3,967 405 631 430
Autos 1,450 42 45 1,589 75 2,033 67
Diabetes 4,49 514 715 1,210 731 5,562 780
Glass 1,300 40 102 359 98 1,964 99
Hepatitis 47,633 10 16 3,414 70 240 78
lonosphere 1,450 84 159 381 122 4,469 17
Iris 11,689 15 137 3,020 148 373 153
Kr-vs-kp 1,467,428 101 145 2,785 861 836 259
Labor 131 8 10 3,496 42 191 8
LED17 116,716 29 108 3,673 64 96 26
LETTER 1,991,674 9,870 12,129| 22,269 13,560 32,721 14,78p
Lung Cancer | 29,344 1 9 3,185 38 173 12
Lymphography ~ “' 43 79 408 128 1,040 80
[Monks1 38,483 9 10 3,410 55 213 52
[Monks2 9,286 21 88 3,764 167 284 160
[Monks3 27,549 17 21 3,678 78 230 46
[MUsH 74,340 2,094 4,922 6,587 5,539 5,503 6,524
Nurse 159,086 14 184 1,639 759 931 2,146
OPTIC 1,393,426 13 206 3,944 935 18,266 2,222
Sonar 780,696 11 142 3,852 193 393 435
Soybean 1,470 510 390 560 420 690 620
Splice 27,723 89 106 3,430 138 343 555
TTT 217,138 30 251 4,004 300 613 667
\Vehicle 9,45 100 103 38 61 8,645 224
\Vote 45,546 11 72 3,226 96 359 144
Waveform 195,781 140 602 1,972 6,915 268,853 11,394
Wine 290 21 94 3,403 170 318 164
Z00 129 44 135 2,573 139 405 185
Average 227,403 501 806 3,732 1,168 12,423 1,505
5. Conclusions

In this paper we presented the Collective Agreerbased Pruning method for pruning

ensembles. The basic idea is that the merit oftaicesubset is estimated using the

pairwise agreement among members. The computatongblexity for obtaining this

evaluation does not depend on the training sef siaeh make it feasible for large

datasets. We have examined two metrics for megsthimagreement among members:

Symmetrical uncertainty and Kappa statistics whieedatter demonstrates a better

performance.



The experimental study reveals that CAP typicdilpmated well over half the

members. In most cases, classification accuraagube pruned ensemble equaled to the
accuracy using the original ensemble. The expetiahstudy also indicates that CAP
obtained comparable results to the wrapper approsiciy the same GA search strategy.
CAP executes faster than wrapper especially irefadgtasets.

Additional issues to be further studied includealeating CAP with other base classifier

such as neural networks and other techniques faergéng the ensemble (such as

bagging).
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