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Abstract 

 

The main idea of ensemble methodology is to weigh several individual pattern classifiers, 

and combine them to reach a better classification performance. Nevertheless, some 

ensembles superfluously contain too many members, which results in large storage 

requirements and in some cases it may even reduce classification performance. The goal 

of ensemble pruning is to identify a subset of ensemble members that performs at least as 

good as the original ensemble and discard any other members as redundant members. 

In this paper we present the Collective Agreement-based Pruning (CAP) method. 

Rather than ranking individual member, CAP ranks the worth of ensemble subsets by 

considering the individual predictive ability of each member along with the degree of 

redundancy among them. Subsets whose members highly agree with the class while 

having low inter-agreement are preferred. 

 

1. Introduction 

The main idea of an ensemble methodology is to combine a set of models, each of which 

solves the same original task, in order to obtain a better composite global model, with 

more accurate and reliable estimates or decisions than can be obtained from using a 

single model. In fact, ensemble methodology imitates our second nature to seek several 

opinions before making any crucial decision. We weigh the individual opinions, and 

combine them to reach a final decision (Polikar, 2006). 

The ensemble idea has been seeded long time by Tukey (1977). However the 

main progress in the field has been made when Nineties. Hansen and Salamon (1990) 

suggested an ensemble of similarly configured neural networks to improve the predictive 

performance of a single ANN. About the same time Schapire (1990) laid the foundations 



for the award winning AdaBoost (Freund and Schapire, 1996) algorithm by showing that 

a strong classifier in probably approximately correct (PAC) sense can be generated by 

combining "weak" classifiers (that is, simple classifiers whose classification power is 

only slightly better than random classification).  

In the past few years, experimental studies conducted by the machine-learning 

community show that combining the outputs of multiple classifiers reduces the 

generalization error (Bauer and Kohavi, 1999). Ensemble methods are very effective, 

mainly due to the phenomenon that various types of classifiers have different ``inductive 

biases''. Indeed, ensemble methods can effectively make use of such diversity to reduce 

the variance-error (Ali and Pazzani, 1996) without increasing the bias-error. In certain 

situations, an ensemble can also reduce bias-error, as shown by the theory of large margin 

classifiers (Bartlett and Shawe-Taylor, 1998). 

The ensemble methodology is applicable in many fields such as: finance (Leigh et 

al., 2002), bioinformatics (Tan et al., 2003), medicine (Mangiameli et al., 2004), 

cheminformatics (Merkwirth et al., 2004), manufacturing (Rokach, 2008), geography 

(Bruzzone et al. 2004), and Image Retrieval (Lin et al., 2006). 

Creating an ensemble in which each classifier is as different as possible while still 

being consistent with the training set is theoretically known to be an important feature for 

obtaining improved ensemble performance (Kuncheva, 2005). Diversified classifiers lead 

to uncorrelated errors, which in turn improve classification accuracy. 

For regression problems, the bias-variance-covariance decomposition has been 

suggested to explain why and how diversity between individual models contributes 

toward overall ensemble accuracy. In such cases it can be easily shown that the ensemble 

error can be reduced by increasing ensemble diversity while maintaining the average 

error of a single model. Nevertheless, in the classification context, there is no complete 

and agreed upon theory (Brown et al., 2005). 

As in decision tree induction, it is sometimes useful to let the ensemble grow 

freely and then prune the ensemble in order to get more effective and compact ensembles. 

In an empirical study that was conducted in order to understand the affect of ensemble 

sizes on ensemble accuracy and diversity, it has been shown that it is feasible to keep a 

small ensemble while maintaining accuracy and diversity similar to those of a full 



ensemble (Liu et al., 2004). Ensemble pruning is important for two reasons: efficiency 

and predictive performance (Tsoumakas et al., 2008). Having a large ensemble results in 

computational overhead. Empirical examinations indicate that pruned ensembles may 

improve the accuracy performance in comparing to the original ensemble (Margineantu 

and Dietterich, 1997).  

Roughly speaking the two most popular approaches for selecting an ensemble 

subset are Ranking-based and Search Based Methods (see Tsoumakas et al., 2008 for 

additional approaches). 

 

Ranking-based 

The idea of this approach is to once rank the individual members according to a certain 

criterion and choosing the top ranked classifiers according to a threshold. For example 

Prodromidis et al. (1999) suggest ranking classifiers according to their classification 

performance on a separate validation set and their ability to correctly classify specific 

classes. Similarly Caruana et al. (2004) presented a forward stepwise selection procedure 

in order to select the most relevant classifiers (that maximize the ensemble's 

performance) among thousands of classifiers. The algorithm FS-PP-EROS generates a 

selective ensemble of rough subspaces (Hu et al., 2007). The algorithm performs an 

accuracy-guided forward search to select the most relevant members. The experimental 

results show that FS-PP-EROS outperforms bagging and random subspace methods in 

terms of accuracy and size of ensemble systems.  

In attribute bagging (Bryll et al., 2003), classification accuracy of randomly 

selected m-attribute subsets is evaluated by using the wrapper approach and only the 

classifiers constructed on the highest ranking subsets participate in the ensemble voting.  

Margineantu and Dietterich (1997) present an agreement based ensemble pruning which 

measures the Kappa statistics between any pair of classifiers.  Then pairs of classifiers are 

selected in ascending order of their agreement level till the desired ensemble size is 

reached.  

  



 

Search Based Methods 

Instead of separately ranking the members, one can perform a heuristic search in the 

space of the possible different ensemble subsets while evaluating the collective merit of a 

candidate subset. The GASEN algorithm was developed for selecting the most 

appropriate classifiers in a given ensemble (Zhou et al., 2002). In the initialization phase, 

GASEN assigns a random weight to each of the classifiers. Consequently, it uses genetic 

algorithms to evolve those weights so that they can characterize to some extent the fitness 

of the classifiers in joining the ensemble. Finally, it removes from the ensemble those 

classifiers whose weight is less than a predefined threshold value. A revised version of 

the GASEN algorithm called GASEN-b has been suggested (Zhou and Tang, 2003). In 

this algorithm, instead of assigning a weight to each classifier, a bit is assigned to each 

classifier indicating whether it will be used in the final ensemble. In an experimental 

study the researchers showed that ensembles generated by a selective ensemble 

algorithm, which selects some of the trained C4.5 decision trees to make up an ensemble, 

may be not only smaller in size but also stronger in the generalization than ensembles 

generated by non-selective algorithms. A similar approach can also be found in (Kim et 

al., 2002). 

Rokach et al. (2006) suggest first to rank the classifiers according to their ROC 

performance. Then, they suggest evaluating the performance of the ensemble subset by 

using the top ranked members. The subset size is increased gradually until there are 

several sequential points with no performance improvement. 

Prodromidis and Stolfo (2001) introduce a backwards correlation based pruning. 

The main idea is to remove the members that are least correlated to a meta-classifier 

which is trained based on the classifiers’ outputs. In each iteration they remove one 

member and recompute the new reduced meta-classifier (with the remaining members). 

The meta-classifier in this case is used to evaluate the collective merit of the ensemble. 

Windeatt and Ardeshir (2001) compared several subset evaluation methods that 

were applied to Boosting and Bagging. Specifically the following pruning methods have 

been compared: Minimum Error Pruning (MEP), Error-based Pruning (EBP), Reduced-

Error Pruning(REP), Critical Value Pruning (CVP) and Cost-Complexity Pruning (CCP). 



The results indicate that if a single pruning method needs to be selected then overall the 

popular EBP makes a good choice. 

Zhang el al. (2006) formulate the ensemble pruning problem as a quadratic 

integer programming problem to look for a subset of classifiers that has the optimal 

accuracy-diversity trade-off. Using a semi-definite programming (SDP) technique, they 

efficiently approximate the optimal solution, despite the fact that the quadratic problem is 

NP-hard. 

 

Which approach to use? 

Search Based Methods provide a better classification performance than the ranking based 

methods (Prodromidis et al., 1999). However Search Based methods are usually 

computational expensive due to their need for searching a large space. Thus one should 

select a feasible search strategy.  Moreover independently to the chosen search strategy, 

the computational complexity for a evaluating a single candidate subset usually is at least 

linear in the number of instances in the training set (see Tsoumakas et al., 2008 for 

complexity analysis of existing evolution measures.)   

 

The aim of this work is developing a low computational complexity evaluation measure 

to direct the space search. Specifically the computational complexity of the evaluation 

measure depends only on the ensemble size and does not depend on the training set size. 

Like in the ranking method of Margineantu and Dietterich (1997) we first calculate the 

agreement level among all pairs of members. In addition we calculate the agreement level 

between each member’s output and the real label.  Then while exploring the space, we 

use the measure to evaluate the merit of a candidate subset. The measure prefers 

ensemble subset whose members’ classification agrees with the real class, yet the 

members disagree with each other. 

 

2. Problem Formulation 

In a typical classification problem, a training set of labelled examples is given. The 

training set can be described in a variety of languages, most frequently, as a collection of 



patterns denoted as 1( , ,..., , )mS y y= < > < >1 mx x  where  X∈qx is a vector of feature 

values charactering the pattern and 1{ ,..., }ky c c∈  indicates the pattern’s class. Usually, it 

is assumed that the training set records are generated randomly and independently 

according to some fixed and unknown joint probability distribution D.  

Let { }1,..., nM MΩ = represent an ensemble of n classifiers. Mi is a classifier that can 

predict the class  ( )iM qx of an observation xq. The problem of ensemble pruning is to 

find the best subset such that the combination of the selected classifiers will have the 

highest possible degree of accuracy. Consequently the problem can be formally phrased 

as follows:  

Given an ensemble { }1,..., nM MΩ = , a combination method C, and a training set S 

from a distribution D over the labeled instance space, the goal is to find an optimal 

subset  optZ ⊆ Ω  . which minimizes the generalization error over the distribution D  of 

the classification of classifiers in optZ  combined using method C.   

Note that we assume that the ensemble is given, thus we do not attempt to improve 

the creation of the original ensemble.  

It has been shown that the pruning effect is more noticeable on ensemble whose the 

diversity among its members is high (Margineantu and Dietterich, 1997). Boosting 

algorithms create diverse classifiers by using widely different parts of the training set at 

each iteration (Zhang et al., 2006). Specifically we employ the most popular methods for 

creating the ensemble: Bagging and AdaBoost.  Bagging (Breiman, 1996) employs 

bootstrap sampling to generate several training sets and then trains a classifier from each 

generated training set. Note that, since sampling with replacement is used, some of the 

original instances may appear more than once in the same generated training set and 

some may not be included at all. The classifier predictions are often combined via 

majority voting. AdaBoost (Freund and Schapire, 1996) sequentially constructs a series 

of classifiers, where the training instances that are wrongly classified by a certain 

classifier will get a higher weight in the training of its subsequent classifier. The 

classifiers’ predictions are combined via weighted voting where the weights are 



determined by the algorithm itself based on the training error of each classifier. 

Specifically the weight of classifier i is determined by Equation 1: 
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where iε is the training error of classifier i. 

The ensemble pruning problem resemble to the well known feature selection 

problem. However, instead of selecting features one should select the ensemble's 

members (Liu et al., 2004). This lead to the idea of adapting the Correlation-based 

Feature Selection method (Hall, 2000)  to the current problem.  The CFS algorithm is 

suitable to this case, because in many ensembles there are many correlated base-

classifiers. 

3. Collective Agreement -based Ensemble Pruning Method 

The Collective Agreement-based Ensemble Pruning (CAP) calculates the member-class 

and member-member agreements based on the training data. Member-class agreement 

indicates how much the member’s classifications agree with the real label while member-

member agreement is the agreement between the classifications of two members. Based 

on performance criterion adopted from test theory, the merit of an ensemble subset Z 

with nz members can be estimated from: 
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where cfκ  is the mean agreement between the Z’s members and the class and mmκ is the 

average member-member agreements in Z. Specifically, the Kappa statistics is used to 

measure the agreement: 
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where ,i jϑ  is the proportion of instances on which the classifiers i and j agree with each 

other on the training set, and ,i jθ  is the probability that the two classifiers agree by 

chance. 

Alternatively one can use the symmetrical uncertainty (a modified information gain 

measure) to measure the agreement between two members (Hall, 2000): 
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where ̂ iy  is the classification vector of classifier i and H is the entropy function. 

As the search space is huge (2n ), we are using best first search strategy as the 

preferred strategy. It explores the search space by making local changes to the current 

ensemble subset. Best first search strategy begins with an empty ensemble subset. If the 

path being explored does not achieve an improved merit, the best first strategy backtracks 

to a more promising previous subset and continues the search from there. The search 

stops if five consecutive iterations obtain non-improving subsets. 

 

The pseudocode of the proposed algorithm is presented in Figure 1. The algorithm gets as 

input the training set, the ensemble of classifiers, the method for calculating the 

agreement measure (for example Kappa statistics) and the search strategy. It first 

calculates the classifiers’ output (prediction) on each instance in the training set (Lines 1-

5). Then it calculates the mutual agreement matrix among the classifiers’ outputs and the 

agreement between each classifier’s output and the actual class (Lines 6-11). Finally it 

searches the space according to the given search strategy. The search procedure uses the 

merit calculation for evaluating a certain solution (Lines 14-24).  

 



 

CAP (S,Q,CT,k) 
Input:  S  Training set 

Ω  Ensemble of classifiers { }1,..., nM M  

Agr A method for calcuating the agreement measure 
Src A search startegy  

Output: Z Pruned ensemble set 
 

1: FOR each , qy S< >∈qx   /* Getting members’ classifications */ 

2: FOR each iM ∈Ω  

3:  ,ˆ ( )i q iy M← qx    

4: END FOR 
5: END FOR 

6: FOR each iM ∈Ω    /* Preparing the agreement matrix */ 

7: ( )ˆ,i iCM Agr= y y  

8: FOR each ;jM j i∈Ω >  

9:  ( ), ˆ ˆ,i j i jMM Agr= y y  

10: END FOR 
11: END FOR 

12: ( , , )Z Src MM CM← Ω  /* Searching the space using the merit function */ 

13: Return Z 
 
EvaluateMerit (Z,CM,MM) 
Input:  Z  The Ensemble Subset 

CM Class-Member agreement vecor 
MM Member-Member agreement matrix 

Output: zMerit  - The merit of Z. 

14: zn Z←  

15: 0cmκ ←  

16: 0mmκ ←  

17: FOR each iM Z∈     

18: cm cm iCMκ κ← +  

19: FOR each ;jM Z j i∈ >  

20:  mm mmκ κ← + ,i jMM  

21: END FOR 
22: END FOR 

23: 

( 1)

cmz
z

mmz z z

n
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n n n

κ
κ

←
+ −

 

24: Return zMerit  

Figure 1: A Pseudocode of Collective Agreement-based Pruning of Ensembles 

 



The computational complexity of the agreement matrix calculation (lines 6-11) is 2( )o n m  

assuming that the complexity of the agreement measure is ( )o m . This assumption is true 

for the two measures presented in equations 3 and 4. The computational complexity of 

the merit evaluation (lines 14-24) is: 2( )o n . If the search strategy imposes a partial 

ordering on the search space, then the merit can be calculated incrementally. For example 

if backward search is used then it is requires one addition to the numerator and up to n 

additions/subtractions in the denominator. 

Note that the actual computational complexity depends on the computational 

complexity of the classifier making a classification (line 3) and the computational 

complexity of the search strategy which is being used (line 12). Nevertheless neither the 

computational complexity of evaluating a solution’s merit nor the search space size 

depends on the training set size. Thus, the proposed method makes it possible to 

thoroughly search the space for problems with large training sets. For example the 

complexity for a forward selection or backward elimination is 2( )o n . Best first search is 

exhaustive, but the use of a stopping criterion makes the probability of exploring the 

entire search space small.  

4. Experimental Study 
In order to illustrate to evaluate the performance of the proposed Agreement-based 

Ensemble Pruning algorithm, a comparative experiment was conducted on benchmark 

datasets. The following subsections describe the experimental set-up and the results 

obtained. 

4.1 Datasets  
The selected algorithms were examined on 30 datasets, which were selected manually 

from the UCI Machine Learning Repository and are widely used by the pattern 

recognition community for evaluating learning algorithms. The datasets vary across such 

dimensions as the number of target classes, of instances, of input features and their type 

(nominal, numeric). 



4.2 Algorithms Used 
We use Adaboost to create the original ensemble for pruning. Following Zhang et al. 

(2006) the ensemble size was set to one hundred. If the training error converges to zero 

before the ensemble sizes reaches one hundred, then all the subsequent members will be 

replications of the last member because no instance weight is changed. Therefore in such 

cases, the AdaBoost.M1 procedure is repeated using a different random seed.  Note that 

the original AdaBoost weights are used to weight the predictions of the selected 

members. 

As for the induction algorithm that was used for training the base classifier, we have 

examined the C4.5 decision tree algorithm (Quinlan, 1993) and decision stump. The C4.5 

algorithm is frequently used for comparing ensembles. Decision stump is a weak learner 

consisting of a one-level tree which known to be benefit from boosting strategy 

(Kotsiantis et al., 2006).  

The new algorithm is compared to the following ensemble pruning methods: 
 
1. GASEN-b - genetic-algorithm (number of generation=200 and population 

size=50). The GASEN employs a wrapper evaluator, in which a candidate subset 

is evaluated by repeatedly sampling the training set and measuring the accuracy of 

the subset ensemble over a holdout validation dataset. 

2. Kappa members ranking (as used by Margineantu and Dietterich, 1997). Kappa 

members ranking can prune the ensemble to any pre-set size. Thus, in order to 

make a fair comparison, we set it to the same size obtained by our algorithm 

which makes.   

 

We also evaluated the following configurations of the proposed approach: 

3. CAP-F-K – Using Forward-Selection search strategy with kappa statistics as the 

agreement measure. 



4. CAP-BF-K – Using Best First search strategy with kappa statistics as the 

agreement measure. 

5. CAP-GA-K – Using genetic algorithm search strategy (number of generation=200 

and population size=50) with kappa statistics as the agreement measure. 

6. CAP-BF-SU – Using Best First search strategy with symmetrical uncertainty as 

the agreement measure. 

7. CAP-GA-SU – Using genetic algorithm search strategy (number of 

generations=200 and population size=50) with symmetrical uncertainty as the 

agreement measure. 

 

4.3 Metrics Measured 
In this experiment the following metrics were measured: 

1. Generalized Accuracy: This represents the probability that an instance was 

classified correctly. In order to estimate the generalized accuracy, a 10-fold cross-

validation procedure was repeated five times. For each 10-fold cross- validation, 

the training set was randomly partitioned into 10 disjoint instance subsets. Each 

subset was utilized once in a test set and nine times in a training set. The same 

cross-validation folds were implemented for all algorithms. Since the average 

accuracy is a random variable, the confidence interval was estimated by using the 

normal approximation of the binomial distribution. In order to conclude which 

algorithm performs best over multiple datasets, we followed the procedure 

proposed in Demsar (2006). We first used the adjusted Friedman test in order to 

reject the null hypothesis and then the Bonferroni-Dunn test to examine whether 

the new algorithm performs significantly better than existing algorithms.  

2. Computational Cost: Since this paper focuses on reducing the complexity cost, the 

running time required for pruning the ensemble was measured. 

3. Pruned Ensemble Size. 

 
 



4.4 Accuracy Performance  
Table 1 presents the mean accuracy and the standard deviation over five runs of 10 fold 

cross-validation using C4.5 algorithm as the base classifier. The shaded boxes represent 

cases where the difference between CAP-Best-First-Kappa and the corresponding method 

is statistically significant with 95% confidence using t-test. A win-loss-tie summarization 

based on mean value and t test is attached at the bottom of the table. Generally Kappa 

measure slightly outperforms symmetrical uncertainty and GA search outperforms Best 

First search.  

Using adjusted Friedman test the null hypothesis that all pruning methods perform 

the same over multiple data sets and the observed differences are merely random has been reject 

with (8,232) 10.05, 0.001FF p= < . We proceed with a post-hoc Bonferroni-Dunn test using 

CAP-Best-First-Kappa as the controlled method. We concluded that all variations of CAP 

method perform almost the same.  Still CAP-Best-First-Kappa significantly outperforms 

CAP-Best-First-Symmetrical-Uncertainty with z= 2.26, p<0.05. 

The accuracy of the proposed pruned ensemble is similar to the accuracy of the 

original ensemble (no pruning). CAP-Best-First-Kappa significantly outperforms Kappa 

Ranking with z=4.14, p<0.001. Moreover CAP-GA-Kappa significantly outperforms 

GASEN-b with z=2.32, p<0.01. This indicates that the using collective merit measure is 

more accurate than using the wrapper approach when GA search strategy is used. This 

conclusion is not expected, because wrapper approach is generally considered to be slow 

but accurate mean to direct the search process.   

Table 2 presents the mean accuracy and the standard deviation over five runs of 

10 fold cross-validation using Decision Stump algorithm as the base classifier. The 

shaded boxes represent cases where the difference between CAP-Best-First-Kappa and 

the corresponding method is statistically significant with 95% confidence using t-test. A 

win-loss-tie summarization based on mean value and t test is attached at the bottom of the 

table. All pruning methods slightly reduce the accuracy performance when compared to 

the No-Pruning results.  Nevertheless CAP-Best-First-Kappa significantly outperforms 

No-Pruning in the Wine dataset. Generally Kappa measure slightly outperforms 

symmetrical uncertainty.  

 



Using adjusted Friedman test the null hypothesis that all pruning methods perform the same 

over multiple data sets and the observed differences are merely random has been reject with 

(8,232) 7.168, 0.001FF p= < . We proceed with a post-hoc Bonferroni-Dunn test using CAP-

Best-First-Kappa as the controlled method. CAP-Best-First-Kappa significantly 

outperforms Kappa Ranking with z=4.336, p<0.001. This is consistent with the 

superiority of CAP-Best-First-Kappa over Kappa Ranking in the previous table (using 

C4.5 as nase classifier). Thus, we conclude  that the usage of Kappa statistics is not 

sufficient to obtain favorable results, but the collective merit measure (Eq. 2) is required. 

Moreover, CAP-Best-First-Kappa significantly outperforms CAP-Best-First-

Symmetrical-Uncertainty with z= 1.6, p<0.05. Again this result is consistent with the 

superiority obtained in the previous table. This leads to the conclusion that Kappa is a 

better measure than symmetrical uncertainty for pruning ensembles.  



Table 1: Mean accuracy using C4.5 as base classifier 

A single C4.5 No Pruning Kappa Ranking GASEN-b CAP-F-K CAP-GA-K CAP-BF-K CAP-GA-SU CAP-BF-SU Dataset # Instances # Features 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Anneal 898 39 98.51 0.24 99.670.16 98.9 2.1 98.17 3.2 95.69 4.88 99.55 0.17 95.69 4.88 99.44 0.19 95.64 4.88
Audiology 200 70 77.05 1.2 84.07 1.3 80.15 1.6 83.18 1.2 85 1.9 85 1.3 85.17 0.9 83.5 1.16 83 0.9
Aust Credit 690 15 86.49 0.69 85.480.69 83.17 0.98 82.9 0.74 85.1 0.74 85.28 0.74 85.28 0.75 85.33 0.72 85.39 0.74
Autos 205 26 82.94 2.17 87.391.75 85.52 1.17 84.94 1.4 87.1 1.85 85.79 1.67 86.9 1.81 85.55 1.73 87.1 1.83
Diabetes 768 9 74.85 1.35 74.111.14 70.13 1 75.9 1.7 73.85 1.09 74.09 1.11 73.83 1.08 74.74 1.12 74.48 1.23
Glass 214 10 69.05 2.02 78.031.84 76.02 1.67 81.02 1.17 77.58 1.77 78.47 1.5 77.58 1.78 77.77 1.74 77.58 1.89
Hepatitis 155 20 79.82 1.44 77.331.44 75.33 2.01 77.19 2.11 78.89 1.01 79.53 1.17 79.16 1.11 76.45 1.62 77.08 1.65
Ionosphere 351 51 89.63 1.21 93.851.08 92.93 0.7 92.91 1.1 92.94 2.28 91.6 3.38 92.94 2.28 91.46 3.34 92.88 2.27
Iris 150 5 94.93 0.91 94.670.93 88.72 1.8 96.67 0.79 94.4 0.91 94.4 0.91 94.4 0.91 94.53 0.92 94.27 0.95
Kr-vs-kp 3197 37 99.44 0.06 99.560.06 99.41 0.12 99.56 0.06 99.53 0.06 99.55 0.06 99.54 0.06 99.52 0.06 99.54 0.06
Labor 57 17 77.13 2.88 88.62.48 82.17 2.19 77 3.01 87.27 2.51 87.53 2.49 87.53 2.57 87.47 2.45 86.8 2.41
LED17 220 25 61.73 1.57 62.731.68 61.95 1.29 63.02 2.78 62.36 1.67 62.45 1.71 62.36 1.67 62.18 1.66 62 1.65
Letter 15000 17 75.26 1.1 87.722.17 82.12 1.34 87.26 3.6 86.94 2.3 88.06 2.9 87.71 1.95 85.82 2.6 85.61 1.78
Lung 31 56 46.83 4.16 54.174.98 53.5 3.9 55 5.86 55.67 4.83 57.5 4.92 57.5 4.98 56.17 4.46 52.5 4.7
Lymphogra 148 19 75.7 2.94 84.072.47 83.66 2.2 84.66 1.84 84.35 2.51 85.12 2.59 84.34 2.45 85.48 2.68 83.54 2.39
Monks1 124 6 79.87 1.65 98.72 0.5 96.09 0.45 96.86 0.91 95.46 0.96 96.6 0.82 96.29 0.87 96.77 0.86 96.95 0.8
Monks2 169 6 57.74 1.71 60.471.98 61 1.29 60.96 2.02 60.58 1.99 61.43 1.84 61.43 1.83 58.95 1.88 59.53 1.91
Monks3 122 6 90.1 1.08 89.151.37 88.95 1.45 86.73 1.5 89 1.09 89.81 1.15 89 1.13 89.79 1.23 88.96 1.33
MUSH 8124 22 100 0 100 0 100 0 100 0 100 0 100 0.01 100 0.01 100 0.01 100 0.01
Nurse 12960 8 97.54 0.06 98.220.06 97.34 0.1 98.15 0.56 98.13 0.06 98.19 0.06 98.13 0.06 98.18 0.06 98.12 0.06
Optic 5628 64 63.02 0.31 91.140.17 91.07 0.18 89.16 0.27 91.14 0.17 91.14 0.17 91.14 0.17 91.14 0.17 91.14 0.17
Sonar 208 60 70.46 1.72 79.941.49 72.14 1.33 72 1.74 79.98 1.41 80.27 1.38 79.98 1.4 79.31 1.43 79.59 1.52
Soybean 683 35 91.5 0.8 92.82 1.4 91.9 1.9 92.24 2.1 92.86 1.17 93.26 1.96 92.97 1.62 91.66 2.42 91.48 1.17
Splice 1000 60 91.1 0.52 94.640.39 92.88 0.57 93.1 0.5 94.66 0.39 94.68 0.39 94.68 0.39 94.58 0.4 94.56 0.4
TTT 958 9 84.78 0.56 99.120.19 99 0.25 96.45 0.27 99.12 0.19 99.14 0.18 99.14 0.18 99.1 0.19 99.14 0.18
Vehicle 846 19 71.87 1.21 77.850.98 73.12 1.2 75.63 0.95 77.92 0.98 78.42 1.13 77.92 0.98 78.42 1.15 77.9 0.98
Vote 290 16 95.93 0.62 95.450.61 95.52 0.44 95.52 0.47 95.38 0.61 95.45 0.61 95.45 0.61 95.17 0.64 95.52 0.59
Waveform 5000 41 75.04 0.48 84.950.47 80.62 0.3 83.74 0.2 84.95 0.47 84.66 0.52 84.95 0.47 84.66 0.52 84.95 0.47
Wine 178 13 84.15 1.42 94.41.06 93.141.845 95 0.92 94.06 0.95 94.95 1.04 94.06 1.07 94.95 1.04 94.5 0.99
Zoo 101 8 92.69 1.18 100 1.2 100 1.7 100 2.1 98.17 2.76 100 2.79 100 2.76 97.15 2.76 96.33 2.76

Mean 81.17 1.24 86.94 1.20 84.88 1.24 85.83 1.50 86.60 1.45 87.06 1.36 86.84 1.42 86.51 1.37 86.20 1.42 
Significant W-L-T 17-1-12 1-1-28 9-1-20 9-2-19 0-0-30 0-1-29  3-1-26 4-0-26 



Table 2: Mean accuracy using Decision Stump as base classifier 
A single C4.5 No Pruning Kappa Ranking GASEN-b CAP-F-K CAP-GA-K CAP-BF-K CAP-GA-SU CAP-BF-SU Dataset # Instances # 

Features Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Anneal 898 39 77.19 0.97 83.630.14 82.46 1.00 83.17 0.14 83.05 0.13 82.46 0.70 83.63 0.14 83.63 0.14 83.63 0.14
Audiology 200 70 47.00 0.08 47.000.19 47.00 0.08 47.00 0.02 47.00 0.00 47.00 0.07 47.00 0.10 47.00 0.10 47.00 0.04
Aust Credit 690 15 85.51 0.91 85.880.92 85.70 0.91 85.65 0.81 85.36 0.89 85.30 0.91 85.30 0.90 85.70 0.91 85.48 0.89
Autos 205 26 44.88 1.53 44.881.53 44.88 1.56 44.88 1.51 44.88 1.53 44.88 1.52 44.88 1.54 44.88 1.51 44.88 1.51
Diabetes 768 9 72.06 1.33 75.571.02 72.66 1.36 74.16 1.01 74.56 1.01 73.51 0.95 75.13 1.32 72.66 1.34 73.38 1.15
Glass 214 10 44.90 0.76 45.32 0.76 44.95 0.78 45.29 0.76 45.61 0.76 45.12 0.19 45.79 0.19 44.96 0.19 44.96 0.19
Hepatitis 155 20 81.69 1.75 81.071.74 80.15 1.76 65.08 5.60 80.16 1.91 80.94 2.01 80.16 1.91 81.05 1.71 80.79 1.88
Ionosphere 351 51 82.51 1.31 92.431.15 76.08 1.33 82.51 1.14 84.59 1.14 81.35 1.38 84.78 1.39 76.08 1.44 76.08 1.26
Iris 150 5 66.67 0.00 94.131.49 60.40 0.00 77.33 3.35 93.20 1.49 60.40 1.56 93.07 1.50 75.35 1.47 74.67 3.75
Kr-vs-kp 3197 37 66.05 0.43 95.190.31 74.21 0.45 82.72 0.31 74.21 1.15 75.07 0.97 74.21 1.15 89.47 0.31 88.74 0.61
Labor 57 17 78.53 4.02 91.073.12 90.19 4.13 79.33 4.48 91.33 3.02 92.07 2.88 91.33 3.02 90.50 3.10 90.20 3.07
LED17 220 25 20.27 0.77 23.180.77 22.95 0.78 23.09 0.55 23.09 0.53 22.98 0.53 23.04 0.53 23.08 0.76 22.96 0.53
Letter 15000 17 7.00 0.43 6.990.43 7.00 0.45 6.97 0.43 6.94 0.43 6.98 0.43 6.96 0.43 6.95 0.42 6.95 0.43
Lung 31 56 42.50 3.98 49.674.67 45.33 4.17 40.83 5.42 45.33 4.34 45.67 4.36 45.33 4.34 47.54 4.65 47.33 4.48
Lymphogra 148 19 74.84 2.85 75.102.55 74.83 2.89 75.06 2.52 74.83 2.52 75.57 2.76 74.90 2.69 75.57 2.76 74.90 2.69
Monks1 124 6 73.44 2.00 69.172.89 61.23 2.05 66.35 2.74 69.01 2.65 61.23 3.21 69.33 2.64 69.25 2.88 68.59 2.69
Monks2 169 6 59.40 1.52 53.842.40 48.74 1.49 55.11 2.72 54.12 2.52 53.01 2.55 54.69 2.29 49.23 2.37 48.75 2.58
Monks3 122 6 71.45 3.14 89.501.94 72.19 3.26 78.01 4.25 89.51 2.55 82.85 3.48 89.51 2.55 72.76 1.91 72.19 2.70
MUSH 8124 22 88.68 0.28 99.910.03 96.15 0.29 96.70 0.80 97.06 0.29 97.35 0.15 97.16 0.27 96.20 0.03 96.15 0.64
Nurse 12960 8 66.25 0.01 66.250.01 64.54 0.01 65.67 0.01 64.54 0.01 66.25 0.01 64.54 0.01 66.22 0.01 66.25 0.01
Optic 5628 64 19.32 0.10 27.920.10 27.64 0.10 27.76 0.10 27.64 0.02 27.64 0.02 27.71 0.02 27.79 0.10 27.92 0.02
Sonar 208 60 66.35 2.02 72.562.50 69.64 2.11 70.80 2.47 71.03 2.31 70.57 2.12 70.64 2.34 69.64 2.49 70.09 2.23
Soybean 683 35 27.96 0.69 27.820.69 27.97 0.69 27.94 0.70 27.96 0.69 27.96 0.69 27.96 0.69 27.96 0.69 27.96 0.69
Splice 1000 60 63.90 0.88 85.161.07 81.86 0.87 83.33 1.07 83.12 1.23 83.66 1.12 83.12 1.23 81.86 1.07 82.66 1.17
TTT 958 9 69.94 1.07 89.210.79 68.60 1.06 75.40 0.79 68.61 1.21 83.44 1.16 68.61 1.21 71.25 0.79 71.29 1.05
Vehicle 846 19 39.76 0.40 40.070.40 40.07 0.42 40.07 0.40 40.10 0.40 40.07 0.15 40.10 0.15 40.07 0.15 40.07 0.15
Vote 290 16 95.86 0.97 95.171.06 94.92 0.97 95.41 1.00 95.93 1.08 95.52 1.03 96.00 1.08 94.92 1.07 95.72 0.99
Waveform 5000 41 56.77 0.32 67.830.94 65.78 0.32 66.75 0.94 65.79 0.93 66.90 0.50 66.22 0.85 66.88 0.50 66.73 0.53
Wine 178 13 57.33 1.21 57.771.22 63.46 1.23 65.32 1.24 71.29 2.61 63.46 3.53 71.29 2.61 64.02 1.24 63.75 3.10
Zoo 101 8 60.40 0.61 60.400.61 60.40 0.64 60.45 0.94 60.40 0.61 60.40 0.61 60.40 0.61 60.40 0.61 60.40 0.61

Mean 60.28 1.21 66.46 1.25 61.73 1.24 62.94 1.61 64.68 1.33 63.32 1.38 64.76 1.32 63.43 1.22 63.35 1.39 
Significant W-L-T 15-1-14 1-3-26 7-0-23 7-2-21 0-0-30 4-1-25  6-1-23 5-1-24 



4.5 Pruned Ensemble Size 
 
Table 3 presents the mean pruned ensemble size obtained by each method on each dataset 

when C4.5 is used as a base classifier. The last row in the table specifies the mean 

ensemble size over all datasets. All CAP methods usually converge to similar ensembles 

sizes. GASEN-b usually converges to a smaller ensemble size. Combining the results of 

Table 1 and Table 3 indicates that it is possible to keep almost the same accuracy of the 

original ensemble but using only circa 45% of its members.  

4.6 Pruning time 
Table 4 presents the mean pruning time (in milliseconds) required by each method for 

various datasets when C4.5 is used as a base classifier. The last row in the table specifies 

the mean pruning time over all datasets. We conducted all experiments on the following 

hardware configuration: a desktop computer implementing a Windows XP operating 

system with Intel Pentium 4-2.8GHz, and 2GB of physical memory. Kappa Ranking is 

the faster method. All CAP methods have similar complexity costs. Still the Kappa 

metric tends to be faster than the Symmetrical-Uncertainty metric and Best First Search 

run faster than GA search. The table reveals that for large datasets (such as Letter and 

Nurse) the computational cost of GASEN-b is significantly higher than the CAP 

methods.  



 

Table 3: Pruned ensemble size using C4.5 as base classifier 
 
 No Pruning GASEN-

b 
Kappa 
Ranking 

CAP-
F-K 

CAP-
GA-K 

CAP-
BF-K 

CAP-
GA-SU 

CAP-
BF-SU 

Anneal 100 17.44 16.45 15.50 29.84 16.45 25.96 15.92
Audiology 100 23.22 26.40 26.53 25.98 26.40 35.86 33.41
Aust credit 100 34.88 32.26 31.96 32.22 32.26 31.07 31.88
Autos 100 44.89 53.26 52.67 56.20 53.26 52.20 50.30
Diabetes 100 19.91 60.35 60.24 73.40 60.35 71.76 60.37
Glass 100 18.27 60.22 60.02 61.72 60.22 64.48 63.92
Hepatitis 100 15.80 33.44 33.43 33.85 33.44 32.53 34.66
Ionosphere 100 60.45 62.98 60.14 67.72 62.98 60.24 56.59
Iris 100 12.11 9.42 9.42 9.84 9.42 9.08 9.84
Kr-vs-kp 100 21.48 17.18 16.86 17.56 17.18 18.02 17.30
Labor 100 12.53 22.85 23.57 23.90 22.85 21.99 22.48
LED17 100 12.82 75.39 74.76 78.10 75.39 74.22 73.57
LETTER 100 17.33 12.00 11.88 11.41 12.00 11.98 12.38
Lung Cancer 100 31.44 20.98 21.20 21.95 20.98 20.51 21.55
Lymphography 100 53.60 47.25 45.20 53.52 47.25 45.40 41.39
Monks1 100 10.09 17.66 17.57 17.68 17.66 18.50 16.96
Monks2 100 9.66 40.11 41.02 39.98 40.11 39.86 41.14
Monks3 100 11.96 23.73 24.42 24.63 23.73 24.23 24.18
MUSH 100 43.22 67.20 76.93 78.50 67.20 78.99 80.00
Nurse 100 11.86 8.08 8.09 8.40 8.08 8.24 7.96
OPTIC 100 45.55 73.81 77.59 80.00 73.81 77.81 78.24
Sonar 100 62.75 73.22 72.28 70.74 73.22 69.91 71.89
Soybean 100 23.32 17.60 17.85 17.52 17.60 17.32 17.26
Splice 100 69.97 79.46 78.74 73.66 79.46 79.30 77.90
TTT 100 65.33 79.71 74.90 79.11 79.71 79.86 74.85
Vehicle 100 18.00 63.62 63.62 63.48 63.62 63.76 63.84
Vote 100 31.18 22.21 21.26 21.66 22.21 22.46 21.14
Waveform 
 

100 27.52 62.40 62.40 62.40 62.40 62.40 80.00
Wine 100 45.01 42.02 42.57 41.62 42.02 42.24 41.54
Zoo 100 17.18 12.42 12.62 12.34 12.42 12.70 12.01
Mean 100 29.65 41.12 41.17 42.96 41.12 42.43 41.82
 
 



 
Table 4: Pruning time in milliseconds using C4.5 as base classifier 
 GASEN-

b 
Kappa 
Ranking 

CAP-F-
K 

CAP-GA-
K 

CAP-BF-
K 

CAP-GA-
SU 

CAP-BF-
SU 

Anneal 4,751 556 2,473 6,714 2,401 7,308 2,401 
Audiology 940 280 360 410 340 510 410 
Aust Credit 162,301 318 357 3,967 405 631 430 
Autos 1,450 42 45 1,589 75 2,033 67 
Diabetes 4,490 514 715 1,210 731 5,562 780 
Glass 1,300 40 102 359 98 1,964 99 
Hepatitis 47,633 10 16 3,414 70 240 78 
Ionosphere 1,450 84 159 381 122 4,469 17 
Iris 11,689 15 137 3,020 148 373 153 
Kr-vs-kp 1,467,428 101 145 2,785 861 836 259 
Labor 131 8 10 3,496 42 191 8 
LED17 116,716 29 108 3,673 64 96 26 
LETTER 1,991,674 9,870 12,129 22,269 13,560 32,721 14,789 
Lung Cancer 29,344 1 9 3,185 38 173 12 
Lymphography 410 43 79 408 128 1,040 80 
Monks1 38,483 9 10 3,410 55 213 52 
Monks2 9,286 21 88 3,764 167 284 160 
Monks3 27,549 17 21 3,678 78 230 46 
MUSH 74,340 2,094 4,922 6,587 5,539 5,503 6,524 
Nurse 159,086 14 184 1,639 759 931 2,146 
OPTIC 1,393,426 13 206 3,944 935 18,266 2,222 
Sonar 780,696 11 142 3,852 193 393 435 
Soybean 1,470 510 390 560 420 690 620 
Splice 27,723 89 106 3,430 138 343 555 
TTT 217,138 30 251 4,004 300 613 667 
Vehicle 9,450 100 103 38 61 8,645 224 
Vote 45,546 11 72 3,226 96 359 144 
Waveform 
 

195,780 140 602 1,972 6,915 268,853 11,399 
Wine 290 21 94 3,403 170 318 164 
Zoo 129 44 135 2,573 139 405 185 
Average 227,403 501 806 3,732 1,168 12,423 1,505

 
 

5. Conclusions 

In this paper we presented the Collective Agreement-based Pruning method for pruning 

ensembles. The basic idea is that the merit of a certain subset is estimated using the 

pairwise agreement among members. The computational complexity for obtaining this 

evaluation does not depend on the training set size, which make it feasible for large 

datasets. We have examined two metrics for measuring the agreement among members: 

Symmetrical uncertainty and Kappa statistics where the latter demonstrates a better 

performance.  



 

The experimental study reveals that CAP typically eliminated well over half the 

members. In most cases, classification accuracy using the pruned ensemble equaled to the 

accuracy using the original ensemble. The experimental study also indicates that CAP 

obtained comparable results to the wrapper approach using the same GA search strategy. 

CAP executes faster than wrapper especially in larger datasets.  

Additional issues to be further studied include: evaluating CAP with other base classifier 

such as neural networks and other techniques for generating the ensemble (such as 

bagging). 
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