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Abstract—Online social networking sites have become increas-
ingly popular over the last few years. As a result, new interdisci-
plinary research directions have emerged in which social network
analysis methods are applied to networks containing hundreds
millions of users. Unfortunately, links between individuals may
be missing either due to imperfect acquirement processes or
because they are not yet reflected in the online network (i.e.,
friends in real-world did not form a virtual connection.) Existing
link prediction techniques lack the scalability required for full
application on a continuously growing social network.

The primary bottleneck in link prediction techniques is ex-
tracting structural features required for classifying links. In this
paper we propose a set of simple, easy-to-compute structural
features, that can be analyzed to identify missing links. We show
that by using simple structural features, a machine learning
classifier can successfully identify missing links, even when
applied to a hard problem of classifying links between individuals
with at least one common friend. A new friends measure that
we developed is shown to be a good predictor for missing
links. An evaluation experiment was performed on five large
Social Networks datasets: Facebook, Flickr, YouTube, Academia
and TheMarker. Our methods can provide social network site
operators with the capability of helping users to find known,
offline contacts and to discover new friends online. They may also
be used for exposing hidden links in an online social network.

Index Terms—Link Prediction, HiddenLinks, Social Networks,
Supervised Learning

I. INTRODUCTION AND BACKGROUND

In recent years, online social networks have been growing
exponentially. Offering individuals with similar personal and
business interests the possibility of meeting and networking.
Social Networks are creating new opportunities to develop
friendships, share ideas and conduct business. Online social
networking services such as Facebook, Twitter and Flickr,
just to name a few, have become part of the daily life of
millions of people around the world. The enormous growth
of these networks has resulted in several research directions
that examine the structural and behavioral properties of large-
scale social networks. Typically researchers in this area collect
information by using WEB crawler software. Such crawlers,
however, may sometimes collect only partial information. This
is due to various causes such as the attempt to access broken
Web links, efforts by the social network operator to block
various subscribers for one reason or another, communication
failures etc. Consequently, those depending upon the Web
crawler might find themselves with only partial information
about the set of links within a social network. In such cases,

heuristic techniques for uncovering hidden links missed, by the
WEB crawler, are useful for completing the network structure.

Detection of hidden links is also very practical in friend-
suggestion mechanisms used by online social networks. In
such cases, the hidden links may consist of existing social
ties that have not yet been established in the particular social
network. Chen et al. [1] depict several algorithms used by IBM
on their internal social network, which enable its employees
to connect with each other. The problem of predicting the
existence of hidden links or of creating new ones in social
networks is commonly referred to as the Link Prediction prob-
lem. Link prediction has also many applications outside the
domain of social networks. For example, in bioinformatics link
prediction can be used to find interactions between proteins
[2]; in e-commerce it can help build recommendation systems
[3]; and in the security domain link prediction can assist in
identifying hidden groups of terrorists or criminals [4]. Since
the Link Prediction problem is relevant to different scenarios,
several algorithms have been proposed in recent years to solve
it. Most of the solutions are generally based on supervised
machine learning and selecting relevant features, Bayesian
probabilistic models, relational Bayesian networks, or linear
algebraic methods. Further details on these approaches can be
found in a thorough survey written by Mohammed J. Zaki and
Mohammad Al Hasan [5].

One common approach for solving the Link Prediction prob-
lem is using supervised learning algorithms. This approach
was introduced by Liben-Nowell and Kleinberg in 2003 [6],
who studied the usefulness of graph topological features by
testing them on bibliographic data sets. In 2006 Hasan et. al [4]
extended their work, and since then several other researchers
have implemented this approach. Most of the solutions that
these researchers proposed were tested on bibliographic or on
co-authorship data sets [4], [6], [7], [8]. In 2009, Song et al.
used matrix factorization to estimate the similarity between
nodes in real life social networks such as Facebook and
MySpace [9]. Recently, in 2011, W J. Cukierski et. al. [10]
extracted 94 distinct graph features. Using a Random Forests
classifier, they achieved impressive results in predicting links
on Flickr datasets.

In order to build an efficient classifier for link prediction,
it is crucial to define and calculate a set of graph structural
features. When dealing with large scale graphs that may
include millions of nodes and edges, one of the challenges



is the computationally intensive extraction of such features.
For example, Facebook has nearly 700 million registered users
and each month an average 20 million new users are added to
the network[11]. In addition the topologies of social networks
have several well-known characteristics such as power law
degree distribution [12] and the small world phenomenon
[13]. The power law degree distribution in social networks
suggests that there are individuals with a large number of
connections (hubs). Computing local topological features on a
subgraph consisting only of friends of these individuals may
be computationally intensive.

In this paper, we present a solution to the Link Prediction
problem based on a machine learning classifier trained on a
small set of easy-to-compute topological features. These clas-
sifiers are evaluated using several social network datasets such
as Facebook[14], Flickr[15], Youtube[16], Academia[17] and
TheMarker[18]. Further information on these social networks
is presented in Section II. In addition, in Section III-A, we
introduce a topological feature, friends-measure. This simple
feature, a variation of the well-known Katz measure, estimates
how well the friends of two users know each other. In Section
IV we show that this measure is more valuable for link
prediction than the well-known common-friends feature and
Jaccard’s-coefficient [19].

The rest of the paper is organized as follows: In Section II
we give a brief overview of the online social networks whose
structures were used in this study. Section III describes the
experimental framework and methods used to develop and
evaluate a link predictor. The topological features used in
this study are formally defined in Section III-A. Section IV
presents our numeric results including the area under the ROC
curve (AUC) and classification accuracy, the contribution of
each feature set, and the information gain value for the differ-
ent features. Finally, in Section V we present our conclusions.

II. ONLINE SOCIAL NETWORKS DATASETS

In this paper we evaluate link prediction classifiers in
relation to five social network datasets: Facebook, Flickr,
YouTube, Academia.edu, and TheMarker. Facebook is a social
networking service and website launched in February 2004.
As of June 2011, Facebook had nearly 700 million active
users. Facebook users may create a personal profile, add other
users as friends, and interact with other members. Since the
friendship link between two members must be reciprocal, the
existence of a link between member A and member B induces
a mutual connection. We therefore refer to Facebook’s under-
lying friendship graph as an undirected one. The Facebook
data used in this research was obtained from [20].

Flickr is an image and video hosting website that enable its
members to socially interact via comments and follow each
other by means of posted videos and images. Links between
members do not require mutual approval since one may choose
to follow any other visible member. Therefor the underlying
graph that represents the Flickr social network is regarded as
directed. We obtained a subgraph of Flickr users from [21].

YouTube is a popular video-sharing site that includes a
social network. YouTube switched from directed links to a
two-phase symmetric link-creation process in 2007. In this
paper we use the dataset published by [22], which was
collected while YouTube was still a directed graph.

The following two datasets where obtained for this research
using a web-crawler. Academia.edu is a platform for aca-
demics to share and follow research underway in a particular
field or discipline. Academics upload their papers to share
them with other academics in over 100,000 research areas.
An Academia social network member may choose to follow
any of the other members in this network, hence the directed
nature of the links within this network.

TheMarker Cafe is an Israelis online social network site
that allows its member to connect and interact. Since most of
its members are Israeli, most interaction and communication
among members is done in Hebrew. Due to the geographic
and demographic nature of this network, it is smaller in
scale compared to the other networks. TheMarker friendship
connection is reciprocal, hence its underlying social structure
may be represented as an undirected graph.

In summary, Facebook and TheMarker are undirected net-
works while Flickr, YouTube and Academia are directed
networks.

Details of the datasets are summarized in Table I.

TABLE I
SOCIAL NETWORKS DATASETS

Network Is Directed Node Number Edge Number Date
Academia Yes 200,169 1,398,063 2011
Facebook No 63,731 1,545,686 2009

Flickr Yes 1,133,54 7,237,983 2010
TheMarker No 65,953 1,572,684 2011
YouTube Yes 1,138,499 4,945,382 2007

III. METHODS AND EXPERIMENTS

Since our goal was to identify and predict a set of hidden
links within a social network structure, we chose to use
machine learning methods and develop a link classifier which
can predict the likelihood of a link existence in the social
graph. We collected several social network datasets for this
purpose. Some of the datasets (Academia and TheMarker)
were collected using a dedicated Web crawling code that had
been previously developed. The other datasets (from Flickr,
YouTube and Facebook) were gathered from several online
resources. Since we focused on predicting links based only on
graph topology, we extracted a set of features from the corre-
sponding graphs of the social networks. These attributes were
then fed into WEKA [23], a popular suite of machine learning
software written in Java and developed at the University of
Waikato, New Zealand. In addition to these features sets, the
WEKA software received the social network graphs as input
and for each such network a set of links that are included in
the graph (also referred to as positive links) as well as a set
of links that are not part of the social graph’s original links
set (referred to as negative links). With the goal of developing



a preferred classifier, we then performed supervised learning,
using various machine learning algorithms. The rest of this
section describes the set of features that has been extracted
from the social network graphs; the methods used to compose
the training and test sets; and the machine learning algorithms
that were examined.

A. Feature Extraction

This section describes all features that were extracted and
used during our experiment. Let G = ⟨V,E⟩ be the graph
that represents the topological structure of a general social
network. Edges in the graph are denoted by e = (u, v) ∈ E
where u, v ∈ V . Our aim was to build a simple classifier,
using machine learning techniques, so that for each two nodes
(also referred to as vertices) v, u ∈ V can predict whether or
not the connection between u and v has a high probability of
existing. Such classifier could then be used to decide whether
(u, v) ∈ E or (u, v) /∈ E.

The features for this classifier were extracted from the
topological structure of the graph. For each edge candidate
for classification, we extracted a set of topological features.
These features assist in estimating the chance that a given edge
indeed exists in the graph. The edge features depend on the
type of the graph. If the graph is directed, then we can extract
more features based on the direction of the edges. Below we
describe the topological features that were used to build the
classifier.

1) Vertex Features: Let be v ∈ V , a neighborhood (Γ(v))
of v is defined as the set of v‘s friends, namely, vertices that
are adjacent to v. In directed graphs (e.g., Academia, Flickr)
the set of users that v follows (i.e., there is a directed link
from v to these users) is different from the set of users that
follow v (i.e., there is a directed link from them to v). We
can therefore define outgoing (Γout(v)) and incoming (Γin(v))
neighborhoods respectively. A neighborhood of v can also
include v or exclude it from the set of vertices. Inclusion and
exclusion of v in the neighborhood generate sub-graphs that
are very different with respect to their topological properties
as shown below. Following are the formal definitions of
neighborhoods that were used to extract topological features:

Γ(v) := {u|(u, v) ∈ E or (v, u) ∈ E}
Γin(v) := {u|(u, v) ∈ E}
Γout(v) := {u|(v, u) ∈ E}
Γ+(v) := Γ(v) ∪ {v} (1)

Based on the definition of neighborhoods, we can also
define subgraphs induced by these neighborhoods. We defined
the neighborhood-subgraphs of v as:

nh-subgraph(v) = {(x, y) ∈ E|x, y ∈ Γ(v)}
nh-subgraph+(v) = {(x, y) ∈ E|x, y ∈ Γ+(v)} (2)

Using the above neighborhood definitions, we can create
the following features for vertex v:

Vertex degree features: using the neighborhoods definition
we defined the degree of v as:

d(v) = |Γ(v)| (3)

For a directed graph G, we defined the in-degree, out-
degree, and bi-degree features as follows: din(v) = |Γin(v)|,
dout(v) = |Γout(v)| and dbi(v) = |Γin(v)∩ Γout(v)|. Using
the degree features, we defined degree-density features as:

in-degree-density(v) =
din(v)

d(v)

out-degree-density(v) =
dout(v)

d(v)

bi-degree-density(v) =
dbi(v)

d(v)
(4)

In social networks, the degree feature represents the number
of friends or followers that user v has.

Vertex subgraphs features: Using the neighbor-
subgraphs, we defined the following features that denote the
number of edges within the neighbor-subgraphs for each
vertex v:

Subgraph-Edge-Number(v) = |nh-subgraph(v)|
Subgraph-Edge-Number(v)+ = |nh-subgraph+(v)|

(5)

We can also define the density of each subgraph namely:

Density-nh-subgraph(v) =
d(v)

|nh-subgraph(v)|

Density-nh-subgraph+(v) =
d(v)

|nh-subgraph+(v)|
(6)

If the G is directed, we can also calculate both the number
of strongly connected components (SCC) and the number
of weakly connected components (WCC) [24] within the
vertex subgraphs. The average number of vertices in these
components can also be useful for classifying links as shown
in Section IV:

avg-scc(v) =
d(v)

scc(nh-subgraph(v))

avg-wcc(v) =
d(v)

wcc(nh-subgraph(v))

avg-scc+(v) =
d(v)

scc(nh-subgraph+(v))
(7)

The number of weakly / strongly connected components in v’s
subgraph may provide an indication of the number of different
social groups v belongs to.

2) Edge Features: Let be u, v ∈ V where e = (u, v) /∈ E.
Using the neighborhoods of u and v , one can extract several
feature sets. These features include the number of common-
friends u and v have (common-friends(u,v)); the number of
distinct friends u and v have (total-friends(u,v)); the number
of connections between u and v neighborhoods (friends-
measure(u,v)); and many other features that we define below.



These features help us determine the likelihood that a connec-
tion between u and v exists.

Common-Friends: The common-friends of u, v ∈ V refers
to the size of the common set of friends that both u and v pos-
sess. The formal common-friends definition for an undirected
graph G is:

common-friends(u, v) = |Γ(v) ∩ Γ(u)| (8)

For a directed graph G, we can also define common-friends
based on the edge direction: common-friendsin(u, v) =
|Γin(v) ∩ Γin(u)|, common-friendsout(u, v) = |Γout(v) ∩
Γout(u)|, and common-friendsbi(u, v) = |Γbi(v) ∩ Γbi(u)|.
The relevance of the common-friends feature is very intuitive.
It is expected that the larger the size of the common neigh-
borhood, the higher the chances that both vertices will be
connected. The common-friends feature was widely used in
the past link prediction on several datasets, and found to be
very helpful [3], [6], [8], [9], [10].

Total-Friends: For two vertices u, v, we can define the
number of distinct friends that u and v have together, namely:
Let be u, v ∈ V we define the total-friends of u, v to be the
number of distinct neighbors u, v has:

total-friends(u, v) = |Γ(u) ∪ Γ(v)| (9)

Jaccard’s coefficient: Jaccard’s-coefficient is a well-known
feature for link prediction [3], [6], [8], [9], [10]. The Jaccard
coefficient, which measures the similarity between sample
sets, is defined as the size of the intersection divided by
the size of the union of the sample sets. In our approach it
indicates whether two social network members (vertices in the
corresponding graph) have a significant amount of common-
friends regardless of their total-friends set size. A higher
value of Jaccard’s-coefficient denotes stronger tie between two
friends. The coefficient defines the ratio between the number
of common-friends and the number of total-friends, namely:

jaccard′s-coefficient(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(10)

Transitive Friends: If G is a directed graph, we can
calculate the number of transitive-friends of u, v and v, u:

transitive-friends(u, v) = |Γout(u) ∩ Γin(v)| (11)

Preferential-attachment-score: One well-known concept
in social networks is that users with many friends tend to create
more connections in the future. This is due to the fact that
in some social networks, like in finance, the rich get richer.
We estimate how ”rich” our two vertices are by calculating
the multiplication between the number of friends or followers
each vertex has, namely:

preferential-attachment-score(u, v) = |Γ(u)| · |Γ(v)|
(12)

In several previous works on link prediction this attribute was
found to be a very significant feature [4].

Katz-measure In 1953, L. Katz proposed a path-ensemble
based proximity measure [25]. The Katz-measure is a variant
of the shortest-path measure (see III-A4). The idea behind
the Katz-measure is that the more paths there are between
two vertices and the shorter these paths are, the stronger the
connection. The Katz-measure is defined as:

katz(u, v) =

lmax=∞∑
l=1

βl|pathl
u,v| (13)

where |pathl
u,v| is the number of paths between u and v with

length of l. The problem with the Katz-measure is that it
has cubic complexity. This complexity makes it unfeasible
for use in large social networks. Consequently, we did not
use the Katz-measure feature when building our classifier.
Instead we used the Friends-measure that can be regarded as
an approximation of the Katz-measure.

Friends-measure When looking at two vertices in a social
network, we can assume that the more connections their
neighborhoods have with each other, the higher the chances the
two vertices are connected. We take the logic of this statement
and define the Friends-measure as the number of connections
between u and v neighborhoods. The formal definitions of
Friends-measure is: Let be G = ⟨V,E⟩ and u, v ∈ V .

friends−measure(u, v) =
∑

x∈Γ(u)

∑
y∈Γ(v)

δ(x, y) (14)

where we define the function δ(x, y) as:

δ(x, y) =

{
1 if x = y or (x, y) ∈ E or (y, x) ∈ E
0 otherwise

One can notice that in undirected networks, the Friends-
measure is a private case of the Katz-measure where β = 1
and lmax = 2.

Opposite direction friends: For a directed graph G, we
can create a specific measure that indicates if reciprocal
connections exists between the nodes

opposite-direction-friends(u, v) =
{

1 if (v, u) ∈ E
0 otherwise

(15)
3) Edge Subgraph Features: Let be u, v ∈ V using the

neighborhoods definitions from III-A1, we can define the
following subgraphs:

nh-subgraph(u, v) = {(x, y) ∈ E|x, y ∈ Γ(u) ∪ Γ(v)}
nh-subgraph+(u, v) = {(x, y) ∈ |x, y ∈ Γ+(u) ∪ Γ+(v)}

(16)

These subgraphs contain data about the number of connec-
tions between the links of u, v including the inner connections
between each vertex neighborhood. These types of graphs
were also used to extract features for link prediction by W
J. Cukierski et. al.[10] Another subgraph from which we can



create features is the inner-connection subgraph:

inner-subgraph(u, v) = {(x, y) ∈ E|
(x ∈ Γ(u) and y ∈ Γ(v)) or
(x ∈ Γ(v) and y ∈ Γ(u))}

(17)

In social networks, the inner-subgraph represents the num-
ber of connections between the friends of each user.

Edge subgraphs edges number: Using the above defini-
tions we can create features by counting the number of edges
in each subgraph:

|nh-subgraph(u, v)|
|nh-subgraph+(u, v)|
|inner-subgraph(u, v)| (18)

Edge subgraphs components number:We can also count the
number of strong and weak components for each subgraph:

scc(nh-subgraph(u, v)), wcc(nh-subgraph(u, v))
scc(nh-subgraph+(u, v))

scc(inner-subgraph(u, v)), wcc(inner-subgraph(u, v))
(19)

4) Path Features: Let be u, v ∈ V . We defined the
following feature based on the length of the path between
u and v:

Shortest Path: We defined the Shortest-path(u,v) feature
to be the shortest path length between u and v in G. If G
is a directed graph, we can also define the feature shortest-
path(v,u). The shortest path feature has been explored in
several papers and found to be one of the most significant
features in link prediction [4].

B. Experimental Setup
As part of our experiment we built a classifier for each

social network graph G by randomly choosing 25,000 positive
edges that exist in the graph and 25,000 negative edges that
do not exist in the graph. We also randomly chose 25,000
negative edges, where the shortest path between each edge
vertices was two. By using these randomly selected edges,
we created two training sets: The first training set (i.e., the
”easy” train set) was built by taking 25,000 positive edges
and 25,000 negative edges. The second training set (i.e., the
”hard” train set) was built by taking 25,000 positive edges
and 25,000 negative edges in distance of two hops. These
sets where formed in order to create datasets for training our
classifiers.

Afterwards, in order to extract features, we developed a
Python code using the Networkx graph package [26]. This
code extracted the vector of features for each edge (u, v) in
the training sets. For each vertices u, v, we extracted all the
vertex features (see III-A1), and all the edge features for the
edge (u, v) (see III-A2). In total, we extracted 53 features for
directed graphs and 33 features for undirected graphs.

For each social network in our datasets, we created several
feature subsets according to the different characteristics of the
features. Specifically, we created the following feature subsets:

• All-features subset: contains all the extracted features:
53 features for directed networks and 33 for undirected
networks.

• Friends-features subset: contains the following features:
vertices degree features; Common-friends; Total-friends;
Preferential-attachment-score; and Friends-measure. A
total of 8 features for undirected networks, and 15 fea-
tures for directed networks were created.

• Common-friends subset: contains only the Common-
friends feature.

• Friends-measure subset: contains only the Friends mea-
sure feature.

• Jaccard’s coefficient: contains only the Jaccard’s coef-
ficient feature.

In our experiment we evaluated a number of popular
machine learning methods such as C4.5 decision trees, k-
nearest-neighbors (kNN), naive-Bayes, support vector ma-
chines (SVM), and artificial neural networks (ANN).

Instead of only using a single technique, we also applied
”committee machines”, a well-known technique in machine
learning (sometime associated with a more specific term such
as ensemble learning or a mixture of experts) in which the
outputs of several classifiers (experts) are combined. Each of
the classifiers solves the same original task. Combining these
classifiers usually results in a better composite global model,
with more accurate and reliable estimates or decisions than
can be obtained from using a single model. This idea imitates
a common human characteristic – the desire to obtain several
opinions before making any crucial decision.

It is known that combining different types of classifiers
can improve predictive performance, mainly due to the phe-
nomenon that various types of classifiers have different ”induc-
tive biases”. In particular, it has been shown that combining
diverse classifiers can be used to reduce the variance-error
(i.e., error due to sampling variation) without increasing the
bias-error (i.e., error due to an inadequate model). Addition-
ally, many participants in prediction contests combine various
models in order to achieve the best results (see, for example,
Koren 2009[27]).

We used WEKA’s [23] C4.5 (J48), IBk, NaiveBayes, SMO,
MultilayerPerceptron, Bagging, AdaBoostM1, RotationForest
and RandomForest implementations of the corresponding algo-
rithms. For each of these algorithms most of the configurable
parameters were set to their default values except for the
following. For C4.5, the minimum number of instances per
leaf parameter was set to 10; for IBk, its k parameter was
set to 10; for SMO the NormalizedPolyKernel with its default
parameters was used. The ensemble methods were configured
as follows. The number of iterations for all ensemble methods
was set to 100. The Bagging, AdaBoostM1 and RotationForest
algorithms were evaluated using J48 as the base classifier
with the number of instances per leaf set to 10 and 250. The
Bagging and RotationForest algorithms performed best with a



minimal number of instances set to 10. The minimal number
of instances for AdaBoostM1 was set to 250.

IV. RESULTS

For each social network and subset of features we evaluated
the list of machine-learning algorithms (see III-B) using a 10-
fold cross-validation approach.

For example, AUC results on the Facebook network using a
set of all features and a subset of friends-features are presented
in Figures 1 and 2.

Fig. 1. AUC Results - Facebook using all features

Fig. 2. AUC Results - Facebook using friends-features

It can be seen that the ensemble schemas achieved the
highest predictive performance. However, their running times
were very long. Among the single models, the C4.5 decision
tree and artificial neural networks (ANNs) also achieved
a relatively high performance. However, ANN models are
difficult to interpret and have longer construction times than
C4.5. Consequently, we found that C4.5 provides the best
trade-off between computational costs and accuracy since its
AUC results are, in most cases, slightly lower than those of
the ensemble methods. On the other hand, its computational
times are much faster. Another advantage of the C4.5 is that its
models are easy to understand and analyze. Obviously, when
the predictive performance is of the highest importance, more
time- consuming and sophisticated methods can be applied.
Tables II and III present the AUC and accuracy (i.e., percent.

of correct predictions at threshold 0.5) results of the C4.5
method for each social network and feature subset.

TABLE II
EASY TRAINSET - C4.5 AUC RESULTS

Features Academia Facebook Flickr TheMarker YouTube
All-
features

0.992 0.987 0.999 0.971 0.999

Friends-
features

0.985 0.977 0.988 0.967 0.997

Friends-
Measure

0.931 0.922 0.952 0.915 0.915

Common-
Friends

0.859 0.939 0.828 0.893 0.759

Jaccard’s-
coefficient

0.859 0.925 0.829 0.896 0.759

TABLE III
EASY TRAINSET - C4.5 ACCURACY RESULTS

Features Academia Facebook Flickr TheMarker YouTube
All-
features

0.965 0.966 0.994 0.93 0.993

Friends-
features

0.952 0.953 0.948 0.925 0.988

Friends-
Measure

0.933 0.922 0.937 0.917 0.917

Common-
Friends

0.861 0.94 0.831 0.896 0.76

Jaccard’s-
coefficient

0.861 0.928 0.832 0.886 0.76

We also created datasets in which the negative edge vertices
were chosen randomly, but at a distance of two hops from each
other. The AUC and accuracy results for these datasets using
the C4.5 method are presented in Tables IV and V.

TABLE IV
HARD TRAINSET - C4.5 AUC RESULTS

Features Academia Facebook Flickr TheMarker YouTube
All-
features

0.976 0.898 0.967 0.928 0.998

Friends-
features

0.946 0.893 0.955 0.92 0.991

Friends-
Measure

0.788 0.762 0.902 0.838 0.884

Common-
Friends

0.8 0.817 0.889 0.797 0.884

Jaccard’s-
coefficient

0.8 0.79 0.924 0.738 0.896

TABLE V
HARD TRAINSET - C4.5 ACCURACY RESULTS

Features Academia Facebook Flickr TheMarker YouTube
All-
features

0.925 0.828 0.921 0.86 0.989

Friends-
features

0.881 0.825 0.885 0.86 0.963

Friends-
Measure

0.785 0.757 0.781 0.806 0.87

Common-
Friends

0.783 0.807 0.855 0.792 0.842

Jaccard’s-
coefficient

0.738 0.765 0.766 0.688 0.805



We used the Friedman test proposed by J. Demsar[28] for
validating the statistical significance of differences between
the evaluated sets of features. For this test we focused on the
results of the C4.5 method. With a confidence level above 0.99,
the results reveal that there are significant differences between
the evaluated sets of features. Then, we proceeded with the
Nemenyi post-hoc test [28] to compare the feature sets to each
other. Interestingly, the following pairs of sets were found to be
not significantly different: all-features (avg. rank 1) vs. friends-
features (avg. rank 2), common-friends (avg. rank 4.25) vs.
friends-measure (avg. rank 3.8), common-friends (avg. rank
4.25) vs. Jaccard’s-coefficient (avg. rank 3.95), and Jaccard’s-
coefficient (avg. rank 3.95) vs. friends-measure (avg. rank 3.8).

We also tested our classifiers against the IJCNN Social
Network challenge test set. The IJCNN test set was created
using different random edge chooser algorithm. The IJCNN
random algorithm was written in order to make link prediction
more difficult and can be somewhat biased. Using the IJCNN
random algorithm, we generated a training set of 25,000
positive edges and 25,000 negative edges and built a classifier
using the features presented in section III-A. The AUC results
of our classifier using the C4.5 algorithm when running on all
features are presented on Figure 3. The AUC results achieved
by C4.5 using only friends-features are presented in Figure 4.

Fig. 3. AUC Results - Flickr-kaggle competition using all features data

Fig. 4. AUC Results - Flickr-kaggle competition using friends-features data

It can be seen that on this test data, the AdaBoost and Ran-
dom Forest algorithms achieved the highest AUC results, 0.922

and 0.925 respectively. A variant of our classifier participated
in the IJCNN Social Network challenge and achieved an AUC
result of 0.9244 on the challenge test set. The average time
for extracting features for each edge in the IJCNN test set was
0.64 seconds1 instead 10 seconds per edge that was obtained
by Cukierski et. al. [10].

To obtain an indication of the usefulness of various features,
we analyzed their importance using Weka’s information gain
attribute selection algorithm. The top five attributes with the
highest rank for each one of training sets for all social
networks are presented in Tables VI and VII.

It can be seen that different attributes are the most influenc-
ing for various social networks, however the Friends-measure
is among the most influencing features on almost all of the
networks.

TABLE VI
EASY TRAIN SET - INFOGAIN VALUE OF DIFFERENT FEATURES

TABLE VII
HARD TRAIN SET - INFOGAIN VALUE OF DIFFERENT FEATURES

V. CONCLUSION

This paper presents methods for constructing efficient and
effective classifiers based on a set of features that are easy

1We ran our algorithm using Python 2.7, on a regular Dell Latitude E6420
laptop with i7 core, and 8GB RAM



and fast to calculate. We achieved this by defining a set of
computationally efficient features and extracting them from
five real social network datasets. We created several feature
subsets according to their characteristics and evaluated clas-
sifier performance for each one of these subsets with several
machine learning algorithms. The evaluation demonstrated that
our models performed well in terms of accuracy and AUC
measures (also referred to as ROC Area) for all the tested
datasets, see IV. The best results were obtained using all the
features, but we also demonstrated that it would be sufficient to
obtain good results even with a smaller subset of the features,
such as friends-subset.

Another contribution of this paper is that we introduced a
topological feature friends-measure which is very simple to
calculate . The experimental results demonstrated that using
the friends-measure for link prediction gives better results
when compared to the use of the well-known common-friends
and Jacquard’s-coefficient features. It was also found that
using attribute information gain analysis, the friends-measure
is among the most influential features in all of the evaluated
networks.

We demonstrated as well that our models provide good
results even when tested on links with end vertices that are
two hops away from each other. Such results demonstrate
the ability to predict link creation within tightly coupled
social communities and show that the obtained classifiers can
distinguish between friends and non-friends even if the two
vertices have at least one common friend (i.e., they are two
hops from each other).

Our research currently considers link prediction using only
graph topology features. A possible future research direction
is to analyze other types of social network features and to
examine their impact on link prediction. Examples of other
type of features are: content-based features such as posted
messages, demographic features (e.g., gender, age etc.) and
affiliation-related features. Another future direction would be
to examine our algorithms in relation to different domains such
as bioinformatics networks.
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