
ConfDTree: Improving Decision Trees Using Confidence Intervals

Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek
Department of Information Systems Engineering and Telekom Innovation Labs,

Ben-Gurion University of the Negev
Beer-Sheva, Israel

{katzgila, shabtaia, liorrk, nirofek}bgu.ac.il

Decision trees have three main disadvantages: reduced
performance when the training set is small, rigid decision
criteria and the fact that a single “uncharacteristic” attribute
might “derail” the classification process. In this paper we
present ConfDTree - a post-processing method which enables
decision trees to better classify outlier instances. This method,
which can be applied on any decision trees algorithm, uses
confidence intervals in order to identify these hard-to-classify
instances and proposes alternative routes. The experimental
study indicates that the proposed post-processing method
consistently and significantly improves the predictive
performance of decision trees, particularly for small,
imbalanced or multi-class datasets in which an average
improvement of 5%-9% in the AUC performance is reported.

Keywords-decision trees, confidence intervals, imbalanced
datasets

I. INTRODUCTION

The area of decision trees is probably one of the most
extensively researched domains in machine learning. Aside
from advantages such as the ability to explain the decision
process and low computational costs, decision trees also
usually produce relatively good results in comparison to
other machine learning algorithms. Although the most
popular decision trees induction algorithms, such as C4.5
and CART, were developed a long time ago, they are still
frequently used for solving everyday classification tasks. In
this paper we aim to improve the predictive performance of
these algorithms by mitigating three of their main
drawbacks:
(a) Reduced performance when the training set is small –

Small sample sizes pose a great challenge to decision
trees [1], in particular because the number of available
training instances drops exponentially as the tree
branches out (and the number of leaves is bounded by
the training set size). For this reason, if the training set is
too small, the induction algorithm may grow an overly
simplistic classification tree.

(b) “Rigid” decision criteria – the decision at each level
(node) of the tree is rigid in the sense that only one
branch (node) can be chosen (unless the classified
instance has no value in the attribute, which is a
different problem). This approach usually works well,
but consider the following scenario: the performed test
on attribute X is X≤10, and the value of attribute X of a
given instance is 9.99. In such cases, should we not at
least consider the possibility that the classification might
be incorrect, or consider an alternative path?

This problem is not new and has been discussed almost
20 years ago in [2] ("soft thresholds"). In other
classification algorithms the problem has been addressed
by using the notion of margin. One particular case is
Support Vector Machines, where instead of using a
fixed hyperplane for separating classes, the algorithm
uses varying margins in order to better classify the
dataset.

(c) Outlier attribute values – deep decision trees consisting
of many levels might also include many attributes. Such
bushy trees are often seen in particular when the training
set is large in terms of number of instances and number
of attributes. The need to rely on so many attributes to
reach a classification leads to the following potential
problem: it only takes one attribute with an outlier value
(one that is uncharacteristic of its class) to "derail" the
classification process.
This claim can be easily supported using the following
scenario. We are given a tree with a depth of h levels.
Let α���� be the probability of selecting the wrong
branch for a given instance x on node l. For the sake of
simplicity, let assume that α���� ≥ ε where ε > 0, and
that the errors are independent. Thus, the probability for
reaching the wrong leaf is Pr� ��� = 1 − �1 − ε��
which of course increases with h. Moreover, in many
cases α���� increases as node l is located in a deeper
level, mainly because the number of available training
instances drops exponentially as the tree branches out.

These problems are considerably aggravated in
imbalanced datasets [3], where there are many more
instances of a certain class than of another. In such cases,
standard machine learning techniques may be
"overwhelmed" by the majority class and ignore the minority
class. Combined with the lack of sufficient number of
instances, outlier values make it even more difficult to
correctly classify under-represented classes. In order to
enable decision trees to address imbalanced datasets two
practices are frequently used:
1. Instead of using the leaf classification just as in balanced

classification tasks, in imbalanced tasks it is better to use
the classification distribution associated with the
designated leaf. This can be used to rank the test
instances according to their probabilities and help the
decision maker to select the best trade-off between the
true-positive and false-positive performance. As a result,
reaching to the incorrect leaf might have a greater
impact. In balanced classification tasks designating the
wrong leaf might still result in the same classification

output (when the derailing is targeted to the incorrect
leaf but with the same classification). However in
imbalanced tasks, derailing to the incorrect leaf will
usually result in a different classification distribution and
therefore affect the test instances ranking.

2. Due to the fact that the classification distribution is
frequently used in imbalanced tasks, it is recommended
to avoid pruning [4]. Hence, classification trees for
imbalanced tasks usually have more levels and are
therefore prone to over-fitting.

Similar to imbalanced datasets, multi-class problems also
pose a challenge for classification trees, particularly when
the number of classes goes beyond a 'modest' size [5]. This
can be explained by the fact that in multi-class tasks,
derailing a test instance from its correct leaf will results in a
wrong classification. This is not true for balanced binary
classification tasks, in which derailing to an incorrect and
random leaf may still result in a correct classification with a
probability equal to the percentage of the item's class of the
total "population".

These problems may be avoided by the use of ensemble
methods like RandomForest [6]. By creating a large number
of trees with varying attributes, outlier attributes and
borderline decisions become less of an obstacle. However,
these methods require both long training and execution times
and large amounts of memory. In addition, decision forests
are considered to be less comprehensible than a single
decision tree.

In this paper we propose a post processing method to
address these three problems; namely, decision trees with
confidence intervals. We use simple statistical measures in
order to determine whether the decision made at every level
of the tree has a minimum degree of plausibility with respect
to the final outcome (i.e., classification of an instance in a
leaf). If this is not the case, we employ one of two solutions;
alternative routes or certainty fines, in order to explore other
classification possibilities.

The core idea of this paper is as follows. Once a
classification has been made, we follow the decision path
from the leaf back to the root, examining every decision
made along the way. After the examined instance has been
assigned to a class, our goal is to determine whether the
attributes that were used to classify the instance can be said
to be “characteristic” of that class. If that is not the case, the
solutions mentioned above, alternative paths and certainty
fines are used in order to consider other possible
classifications.

In order to determine whether an attribute with a certain
value “belongs” to a certain class we use confidence
intervals. Confidence intervals enable us to determine with a
predefined level of certainty whether or not the value of the
examined attribute is within a range that can be considered as
belonging to the class in question. The confidence intervals
are easy to compute and do not add additional complexity to
the overall computational effort of the classification process.

One of the advantages of the proposed method is the fact
that it does not interfere with the generation of the decision
tree. This means that although our experiments were

conducted using trees generated by the C4.5 algorithm, the
proposed method can be applied on decision trees produced
by other algorithms.

The rest of this paper is organized as follows. Section 2
introduces related work of variations of decision trees and
decision trees that are combined with statistical methods. In
Section 3 we present the proposed ConfDTree and in Section
4 we evaluate it. Lastly, Section 5 concludes the paper.

II. RELATED WORK

A. Decision Trees

Decision trees are directed graphs used to classify items.
They consist of a root node (a node in the graph to which no
other node points), internal nodes (nodes that are pointed at
and point to other nodes) and leaves (nodes that do not point
to other nodes). During the classification process, the
classified item “travels” from the root to one of the leaves,
where a classification is made. The classification may simply
be one of the possible classes or a set of probabilities (one
for each of the possible class values).

At this point, we wish to provide definitions for several
base terms: (a) immediate descendant node – if a node points
to other nodes in the tree, these nodes are its “immediate
descendants”; (b) split attribute – the attribute by which a
decision is made at some node in the tree; (c) split value –
the value of the split attribute which determines to which
immediate descendant node the classified instance will be
assigned (for example, if X≤10 is the condition for one
immediate descendant node and X>10 is the condition for
another, then 10 is the split value; (d) class – the class is the
attribute whose values are what we attempt to predict during
the classification phase.

The algorithms for the generation of decision trees are
numerous and many methods are used for this purpose. All
algorithms use recursive partitioning, but they usually differ
in the manner of how they choose the attribute by which to
split each node in the tree, as well as by the stopping criteria
(the decision not to perform additional splits on a node). The
ID3 [7] and C4.5 [8] algorithms, for example, use the
Information Gain and Gain Ratio measures respectively and
also differ on the tests performed on their attributes. The
CART algorithm [9] uses the Gini Impurity measure [10]
and regression in the leaves in order to produce its
prediction.

Contrary to the methods described above which build a
single decision tree other methods use many. Algorithms
such as RandomForest [6] and RotationForest [11] create
many subsets of training instances and attributes and use
them to train multiple trees. During the classification phase,
each tree provides its prediction and they are all combined
into one. These methods usually produce superior results
when compared to those that use single trees (partly because
they provide a solution, at least to some degree, to the
drawbacks mentioned in Section 1), but they require large
amounts of computing resources and are not comprehensible
to users. In addition, the dataset requires a sufficiently large
number of attributes.

B. Combinations of decision trees and statistics

The problem of outliers is not new in the field of decision
trees, especially in unbalanced datasets. However, previous
work was focused on the tree generation phase. Most works
were aimed at preventing the outliers from influencing the
creation of the model and on improving probabilities
estimation. For example, John [12] proposed iterative
removal of instances with outlier values, while Last et al.
[13] used statistical methods in order to create a more robust
classifier. Zadorny and Elkan [14], and Provost and
Domingos [4] and [15] focused on improving the
classification probabilities produced by the tree by the use of
regression in the leaves. The use of confidence measures is
also not uncommon; McCallum [16], for instance, used the
Kolmogorov-Smirnov test [17] in order to determine whether
additional nodes in tree should be created based on the
differences in the distribution of instances from different
class. These researches, however, propose methods for
ignoring outliers during the creation of the model, but offer
no solutions for correcting classifications during the test
phase.

Another well-known method for dealing with outliers is
fuzzy decision trees [18, 19]. By using fuzzy functions to
construct the tree and by varying the degrees of certainty
based on the attributes of the classified instance, these
methods offer a greater degree of flexibility in dealing with
outliers whose values are slightly irregular (achieved by
using multiple states and weights). This fuzziness offers a
possible solution to the “rigidness” problem mentioned
above; however, there are several substantial differences
between this method and the one proposed in this paper: (1)
the fuzzy function may be domain specific and require a
human expert in order to correctly define it. Our method, on
the other hand, uses simple statistical tools that require very
little (if any) tuning; (2) fuzzy decision trees will have
difficulty in correctly classifying instances whose outlier
attribute values differ greatly from the norm (as they will be
out of the scope of the fuzzy function); and (3) the proposed
method differs from fuzzy decision trees because it modifies
the original classification only when it is very likely that the
classification is incorrect; i.e., knowing that the attribute
value is borderline is not a sufficient cause to act and
therefore, we also verify that the value is out of the norm of
the assigned class.

The proposed method contains several similarities to the
work presented above. We use statistical measures, and
specifically confidence intervals, with the goal of the
proposed algorithm being to deal with outliers. However,
unlike any of the methods presented above, our method is a
post processing method applied after the decision tree has
already been derived, during the classification phase. This
difference means that the plausibility of the classification is
verified at various points along the classification path,
increasing the probability of correctly handling outliers. In
addition, although “smoothing” has been used and applied on
the leaves of a decision tree [20], it has not been used in the
inner nodes or in any other way than "tweaking the results".
Lastly, to the best of our knowledge confidence intervals

have not previously been used for improving classifiers and
decision trees in particular. Note that our goal is not to assign
a confidence score to the classifier’s predictions, a concept
that has been investigated before [21], but rather to improve
the classification itself.

III. THE PROPOSED METHOD

In this section we present the proposed method. We
explain the required calculations needed during the
generation of the tree and go over the proposed
modifications to the classification process.

A. Deriving the Confidence Intervals

Confidence intervals are used to assess the reliability of
an estimate. They enable us to define a range of values
within which an instance, randomly sampled from a
distribution, is likely to be. In other words, a confidence
interval with a probability of (1-α) means that a random
instance from the distribution has a (1-α) chance of being
inside it, whereas α is the probability of the instance being
outside the interval. For example, in normal distributions the
confidence interval can be defined by [�-z·σ , �+ z·σ] where
� is the average of the distribution, z is the corresponding
value in the Z table for the requested significance level of the
interval and σ is the standard deviation.

According to the proposed method, once the decision tree
has been generated, the following values are calculated for
every internal node:

1. the average value of the split attribute
2. confidence intervals for values of the split attribute

This is done separately for every class whose training set
instances are included in the node.

There are two prerequisites for the generation of the
confidence intervals:

1. The split attribute of the node should be numeric;
2. A minimal number of instances m (a predefined

threshold) exists for every class present in the node.

We experimented with three different approaches for
calculating the confidence intervals: one based on the t
distribution, one based on the normal (Z) distribution and the
third with both distributions combined (their application is
explained later on).

The t distribution is suitable for our needs because it
enables us to make an inference regarding the mean when
the standard deviation is unknown. In addition, it assumes
that the distribution values are more dispersed than in a
normal distribution, a fact which enables it to be suitable for
a larger range of scenarios. The normal distribution,
however, is meant to be used on values that are normally
distributed. For data that is known to be normally distributed,
calculating the confidence interval using the normal (Z)
distribution will be more accurate.

However, for obvious reasons, we cannot assume that the
split attribute values are always normally distributed and
therefore we used the Kolmogorov-Smirnov (K-S) test [17]
on every node with a numeric split attribute. The following
calculations (and subsequently, the algorithm presented here)
were only applied on nodes for which all present class

attributes "passed the test" (the K-S test was applied
separately for each class attribute).

We hypothesized that the normal distribution (when
applicable) would be more accurate than the t distribution,
but we were concerned that there could be datasets whose
attributes would not be distributed in such a way. We
therefore decided to test an approach that uses the normal
distribution to generate the confidence intervals whenever
possible and uses the t distribution in all other cases. We call
this approach the combined approach.

A general example of calculating these measurements is
presented in Fig. 1. In this example the split attribute in the
highlighted node is Y and the possible classes are A, B and C,
where 100 instances from the training set are of class A, 100
are of class B, and 30 are of class C. The average of the
values of attribute Y of instances that belong to class A is
4.75 and the confidence interval is [3,6.5].

The pseudo code for deriving the confidence intervals is
presented in Alg. 1. For each node the algorithm first checks
if it is a leaf or not (line 1). If the node is a leaf, or if the
number of instances in the node is smaller than a predefined
threshold m (or if the values of the node are not normally
distributed when only the Z distribution is used), the
procedure terminates; otherwise, the average and standard
deviation of the split attribute are calculated separately for
each class (lines 2-5). Then, the procedure is recursively run
for each of the immediate descendant nodes (lines 6-7).

The additional computations during the training phase
include the calculation of the average and standard deviation
of the split attribute for each class in every inner node. The
computational complexity is therefore O(n·(d-1)), where n is
the number of instances in the tree, and d is the number of
levels in the tree (height of the tree).

B. The Classification Phase

During the classification phase, we first use the induced
tree to provide a classification distribution. That is, the
examined instance traverses the tree top-down to one of its
leaves, thus producing a classification. This classification
consists of the probabilities of the classified instance
belonging to each of the class values, whose sum is always 1.
For example, in Fig. 2 it can be seen that the probabilities
produced by the decision tree (leaf number 1) are {1,0,0} for
class A, B and C respectively, which indicates that the tree is
100% certain of its classification. Using the class frequency
in the tree leaves as-is will typically overestimate the
probability. In order to avoid this phenomenon, it is useful to
perform the Laplace correction [22]. Later, in Section 3.2.2
we suggest a variation of the Laplace correction which better
fits our goals.

At this point we would like to define an additional term –
assigned class. This term refers to the class which has the
highest probability. For example, if the probabilities of
classes A, B and C are 0, 0, and 1 respectively, then C will be
defined as the assigned class. We will use this term from this
point on.

After the classification probabilities have been obtained,
the classified instance “travels” up the tree, back to the root.

For each of the nodes in its path, not including the leaf, we
apply the following algorithm:

1) If the instance is within the confidence interval of the
assigned class - do nothing. The instance is said to be
within the confidence interval of the assigned class if
the instance’s value of the node’s split attribute is
within the confidence interval of the split attribute of
the assigned class. We consider this to be the “normal”
situation where the value of the split attribute of the
instance is within the area considered as “likely”.

2) If the instance is not within the confidence interval of
the class it is currently assigned to, there are two
options:

a) It is within the confidence interval of another class
(or classes) – in this case we generate alternative
routes.

b) It is not within the confidence interval of any other
class – in this case we impose certainty fines.

X

Y 3

1 2

X>10X<=10

C: 70

{0, 0, 1}

B: 100

C: 30

{0, 0.769, 0.231}

Y<=7 Y>7

A: 100

{1, 0, 0}

A: 100 [3,9]

B: 100 [2,8]

C: 100 [9.5,15]

A: 100 [3-6.5]

B: 100 [6.8-10]

C: 30 [6-9]

Figure 1. An example of the calculation of the confidence intervals for
each class in the internal nodes. Squared brackets in the internal nodes
indicate the confidence intervals. The values in the curly brackets indicate
the classification distribution vector.

Algorithm 1 Deriving the confidence intervals

Input : Node node: a node in the tree
 List<Instance> instances: all the training instances in the node
1: IF Is_Leaf(node)==true or node.size < m THEN RETURN
2: split_attribute � node.split_attribute;
3:node.num_of_instances � Get_Num_Of_Instances_Per_ClassID(node);
4. node.attribute_averages � Calculate_Attribute_Average_By_ClassID;
5. node.stdevs � Calculate_Stdev_Per_Class_ID(instances,
 num_of_instances, attribute_averages)
6. Node[] sons � Get_Son_Nodes(split_attribute)
7. FOR (int i=0; i<sons.Length; i++) DO
 Build_Tree_With_Confidence_Intervals(sons[i],
 Find_Instances_That_Match_Criteria(instances, split_criteria)
8: END FOR

These courses of action can best be explained by the
example shown in Fig. 3. After being classified to leaf 1, the
classified instance "travels" bottom-up the tree (note the
direction of the arrows). The number of instance from each
class and their confidence intervals are presented next to

their corresponding internal nodes (the relevant confidence
intervals in bold). In the internal node Y, the confidence
interval of class A (the current assigned class) is the only one
that contains the instance's attribute value. In the root node,
however, the instance's attribute value is outside the
confidence interval of A (it is, however, inside the
confidence interval of class C).

In the following sub-sections we will go over these two
scenarios in detail.

Figure 2. An example for the classification process of a C4.5 decision
tree. The attribute values of the classified instance, whose true class is C,
are presented above the root node and correspond with X, Y and the true
class. The probabilities of each class in the leaves is denoted by the curly
brackets.

Figure 3. After its classification to leaf 1, the classified instance
(presented at the top of the figure) “travels” bottom-up to the root node.
The confidence intervals that are presented in square brackets are used to
assess the plausibility of the classification in each inner node. The
confidence intervals to which the instance’s attributes is assigned, are
printed in bold.

1) Alternative Routes

In this case, the instance is within the confidence interval
of one or more classes. In this scenario we can assume that
there is at least a chance that the instance has been
incorrectly classified. Since we concluded that it may belong

to a different class, we attempt to determine whether it needs
to be “reassigned” to a different descendant node in the tree
from what it originally was. For this reason, we assign the
instance to all the immediate descendant nodes of the current
node (including the originally chosen path) and then produce
a weighted average of all the predictions they produce. The
weight assigned to each son node is calculated as follows:

(*)c
i c

c i

n
weight n

T
=∑

where i is the index of the immediate descendant node, c is a
class in whose confidence interval the classified instance is
found, nc is the number of items from class c assigned to this
immediate descendant node, and Ti is the total number of
training instances in son node i. All the weights are then
normalized to one, and each prediction is multiplied by this
weight and summed. The resulting prediction is returned.

The weight is designed such that the immediate
descendant nodes that have a larger proportion of class x will
have a higher weight and therefore a higher influence on the
final prediction. Note that the threshold m (minimum number
of instances) ensures that the weights are calculated based on
a sufficient set of instances. The reason we use the square
root of n in the equation instead of n itself (as is done in the
C4.5 algorithm when the classified instance does not have a
value in the split attribute) is our desire to alleviate the
problem of imbalanced datasets. We have discovered
through experimentation that this method improves
performance on imbalanced datasets without affecting
performance in balanced ones.

This scenario is shown in Fig. 4. It can be seen that in the
root node the use of confidence intervals has shown that the
classification may be incorrect; despite being classified as
belonging to class A by the decision tree, the confidence
intervals indicate that the classified instance is more likely to
belong to class C. Therefore, the following steps are taken:

a) Since the instances of class C are assigned to both
immediate descendant nodes of the root, both routes
will be considered.

b) The left (original) route will produce the following
classification: [1,0,0] (100% for class A), which was
generated in the leaf designated by "1". According to
the formula presented above, its weight will be:

30
30 * 0.714421

230
=

c) The right (alternative) route will produce the following

classification: [0,0,1] (100% for class C). According to
the formula presented above, its weight will be:

70
70* 70 8.3666

70
= =

d) We now normalize both weights to one, which gives us
{0.078672, 0.921328} for the original and alternative
paths, respectively.

e) Therefore, the final classification will be [0.078672, 0,
0.921328]. We’ve gone from providing a wrong
classification with absolute certainty to providing the
correct classification with a high degree of certainty.

This process is displayed in Fig. 4, with the alternative
route shown by the dashed line.

In our experiments we chose to use a higher degree of
confidence for the assigned class and another, lower,
confidence interval (that is, using a lower certainty level)
when attempting to assign the analyzed instance to other
classes. The reason for this decision is simple: by using a
"smaller" confidence interval for the alternative classes we
make it more difficult for instances to be assigned to other
classes than to only be "unassigned" from their current class.
This way, in cases of lesser certainty we apply the "certainty
fines" and in cases of high certainty we use the alternative
routes.

2) Certainty fines

In the second case the instance is not within the
confidence interval of any class. In this scenario the
classified instance cannot be assigned with sufficient
certainty to any of the classes. Since in this scenario we have
no way of knowing to which immediate descendant node(s)
to assign the instance, we will instead impose a “certainty
fine”. This is done by reducing the probability of the leading
class (the one with the highest probability) by some value,
and dividing it equally among all the classes whose instances
were assigned to the current node during the creation of the
tree.

Figure 4. With the confidence interval indicating that class C may be the
correct classification, the alternative route (in the dashed line) is also
considered.

The idea behind this action is simple. We have a reason
to doubt the classification derived by the decision tree, yet
we are currently unable to offer an alternative. Therefore, we
only somewhat reduce our certainty in the classification, and
thus increase the likelihood that the following nodes will be
able to change the classification, assuming more "suspicious"
attribute values are detected.

The "size" of the fine is calculated using a variation of
the Laplace Correction [22]. It is usually used in fields such
as text mining [23, 24] in order to prevent probabilities from
being zero. We, on the other hand, wish to use the correction
in order to reduce large probabilities. For this reason, we
define the “fine” as 10% of the largest probability (which is

the probability of the assigned class). This way, the larger the
current certainty of the classification, the larger the reduction
is and vice versa.

An example of this scenario is presented in Fig 5. We
have altered the confidence interval of class C in the root so
that the value 9.9 is no longer inside it. In this case, the
following steps will be taken:

a) The certainty by which the classified item is assigned
to class A (the original classification made by the tree)
would be reduced by 0.1 from 1 to 0.9 (1-(1×0.1)=0.9).

b) The 0.1 that was reduced from A will be distributed
equally among all other classes whose items are in the
node (in this case, classes B and C).

c) The final classification returned by the decision tree
would be {0.9, 0.05, 0.05}, thus reducing the
classifier's "certainty" of its (mistaken) classification.

Figure 5. In this scenario no confidence interval in the root contains the
value of the classified instance's attribute X. Therefore, a certainty fine will
be imposed.

The pseudo code for the classification of an instance
using the modified decision tree is presented in Alg. 2. For
each node, the algorithm first checks if it is a leaf or not (line
1). If the node is a leaf, the procedure returns the probability
of each class, as calculated by the decision tree algorithm
used (C4.5, for example). If the node is not a leaf, assign the
classified instance to the appropriate immediate descendant
node(s) in order to obtain a classification (lines 2-3). Once a
classification has been obtained, we check whether the split
attribute value of the classified instance is within the
confidence interval of the assigned class. If that is the case,
then we return the current classification to the parent node
(line 4). If it is not the case, we check the confidence
intervals of the other classes in the node in order to
determine if the classified instance is within the confidence
interval of any of them (line 6). If any are found, we apply
the alternative routes presented in Section 3.2.1 (line 7). If
none are found, we use certainty fines (line 9).

During the classification phase, the only substantial
additional activity is the assignment to alternative routes.
Since assigning an instance to an alternative route is equal to
the classification of an additional instance, the complexity of
classifying an instance cannot exceed m – the number of

nodes in the tree; this number will be reached if all attributes
are numeric and alternative routes are used at every node
(i.e., worst case scenario). Therefore, the computational cost
in the worst case scenario will be O(n·m) with n being the
number of instances and m the number of nodes in the tree.
This is slightly worse than O(n·h) (with h being the height of
the tree), the complexity of classifying an instance is the
original C4.5 tree, but the complexity remains linear
nonetheless.

Algorithm 2 Classify instance

Input: Node current_node: a node in the tree
Instance instance: the instance being classified

Output: a set of probabilities, one for each class
1: IF Is_Leaf(node)==true THEN RETURN node.probs
2: Probs � Classify_Instance(node.Get_Relevant_descendant(),

instance)
3: Current_classification_id � Get_Current_Classification(probs)
4: IF (Instance_Is_Within_Confidence_Interval(node.attribute_averages,

node.stdevs, Current_classification, instance) THEN RETURN
Probs;

5: ELSE
6: alternative_class_ids �

Get_Class_ID_Whose_Stdevs_Contain_Instance(
node.attribute_averages, node.stdevs, instance)

7. IF (alternative_class_ids.Length > 0) THEN RETURN
Get_Weighted_descendant_Prediction(alternative_class_ids,
node.descendants, instance)

8. ELSE
9. RETURN Impose_Certainty_Fine(probs, node.num_of_instances)

3) Dealing with Missing Values

In our experiments, we have learned that missing values
pose a problem when using confidence intervals. Due to the
C4.5 algorithm’s method of assigning instances with missing
values to all possible paths, such instances were targets for
changes along their many paths in the tree. This “excess
diversity” actually harmed the classification outcome and
therefore we modified the algorithm so that the proposed
method would not be used in nodes following those for
which there were missing values.

For example, if a classification path in a decision tree
consists of six nodes and a classified instance is missing a
value in the attribute needed for the third node (from the tree
root), then the proposed method will not be applied in nodes
four and five (the method will not be used in node six
because it is a leaf). The proposed method will be used in
node one, the root, and two.

IV. EVALUATION

This section is divided into two parts. In the first, we
evaluate the model's performance on both binary and multi-
class datasets, use statistical tests in order to determine which
version performs best and analyze the percentage of items
affected by the proposed method. In the second half of this
section we evaluate the proposed method's performance on
varying training set sizes.

A. Analysis of the proposed method's performance on
binary and multi-class datasets

The proposed method was tested on 10 two-class datasets
(binary problems) and 7 multi-class datasets in order to
assess its contribution (see Table 1). All datasets are well
known and available online (from the UCI1 repository). On
each dataset we tested the following four decision trees:
original C4.5 algorithm (Org), the proposed ConfDTree
when using the normal distribution for deriving the
confidence intervals (ConfDTreeNORM), the proposed
ConfDTree when using the t-distribution for deriving the
confidence intervals (ConfDTreeTDIST), and the proposed
ConfDTree when using both the normal distribution and t-
distribution for deriving the confidence intervals
(ConfDTreeCOMB). We also tested and applied the
RandomForest classifier, which we used as an upper bound,
in order to compare it with the ConfDTree and understand
the potential improvement of the decision tree.

For the comparison of the performance of the four
decision trees and RandomForest we chose to use the AUC
(area under the ROC curve) measure [25]. For the two-class
(binary) datasets this is a straightforward and well accepted
comparison measure. For the multi-class datasets we
calculated the AUC for each class by defining that class as
"positive" and all other classes as "negative", and deriving
the following measures as suggested in [26]:
1. average AUC – a simple average of all calculated

AUCs
2. weighted average AUC – each AUC was assigned with

a weight that was equal to the percentage of its
"positive" class of the total number of instances (thus
giving more weight to the more common classes).

We used both balanced and unbalanced datasets in order
to obtain a better insight on for which circumstances the
proposed method contributes to the classic decision tree
algorithm. The degree of imbalance of each dataset is
presented in Table 1. The proposed method was
implemented on the open source machine learning platform
Weka [27] and all experiments were run on it. All results
were obtained using a 10-fold cross validation.
The experiments were run with following settings:
1. The confidence interval that was used in order to

determine whether an attribute is inside the confidence
interval of the assigned class was that of two standard
deviations for the normal distribution or a confidence
level of 0.995 (i.e., α=0.5%) for the t_value distribution
(line 4 in Alg. 2).

2. The confidence interval that was used in order to
determine whether an attribute is inside that of other
classes (line 6 in Alg. 2) was generated using one
standard deviation for the normal distribution or a
confidence level of 0.9 (i.e., α=10%) for the t_value
distribution.

3. The value of m, the minimum number of instances for
which confidence interval is computed was set to 5.

1 http://archive.ics.uci.edu/ml/

TABLE I. DATASETS PROPERTIES AND THE IMPROVEMENT OF AUC OF THE PROPOSED METHOD.

Name
Num

of
Classes

Num of
Numeric

Atts

Num of
Instances Imbalance Ratio

ConfDTree
[NORM] ConfDTree [TDIST]

ConfDTree
[COMB] Random Forest

cancer 2 30/30 569 1 : 1.168 3.1% 3.1% 3.6% 6.9%
contraceptive 2 6/9 1473 1 : 3.423 1.3% 4.2% 3.5% 21.7%
credit 2 6/15 690 1 : 1.247 0.3% 0.7% 0.6% 8.5%
diabetes 2 8/8 768 1 : 1.865 4.5% 8.7% 8.2% 11.2%
ecoli 2 7/7 336 1 : 8.6 3.2% 2.5% 3.4% 17.5%
ionosphere 2 34/34 351 1 : 9.14 2.0% 8.7% 8.9% 16.7%
pima 2 8/8 768 1 : 1.865 3.3% 6.0% 6.0% 5.4%
spam 2 57/57 4601 1 : 1.5377 1.8% -6.9% 2.9% 6.1%
yeast 2 8/8 1004 1 : 9.14 0.0% 7.8% 0.0% 27.2%
MiniBooNE 2 50/50 130,000 1 : 2.5 6.0% -33.4% 8.1% 12.5%

Autos 6
7/17

205 1 : 7.3 : 9 : 10.6 : 18 : 22.3
0.09%

(0.10%)
2.67%

(3.04%)
2.67%

(3.04%)
4.89%

(5.25%)

Glass 6
9/9

214 1 : 1.44 : 1.88 : 9.66 : 7.77 : 8.44
0.74%

(1.42%)
4.57%

(3.83%)
4.44%

(3.85%)
13.19%

(11.15%)

Letter 26
16/16

20,000 max ratio of 1 : 1.1
0.04%

(0.04%)
6.09%

(6.07%)
6.11%

(6.08%)
8.35%

(8.33%)

Segment 7
19/19

2310 1 : 1 : 1 : 1 : 1 : 1 : 1
0.46%

(0.46%)
1.24%

(1.24%)
1.08%

(1.08%)
1.95%

(1.95%)

Vehicle 4
18/18

846 1 : 1.065 : 1.094 : 1.095
2.92%

(2.98%)
8.34%

(8.51%)
8.07%

(8.18%)
14.35%

(14.52%)

Vowel 7
10/13

989 1 : 2 : 2 : 2 : 2 : 2 : 2
1.47%

(1.18%)
4.83%
(4.5%)

4.61%
(4.22%)

11.56%
(10.77%)

Waveform 3
40/40

5000 1 : 1 : 1
11.17%

(11.18%)
12.69%
(12.7%)

12.69%
(12.80%)

21.31%
(21.33%)

Datasets properties include: the number of classes, number of instances and the ratio between the majority and minority classes.
The improvement in AUC, realtive to the original C4.5. algorithm, is presented for the three variations of the proposed method and for all datasets. Weighted average AUC is presented for multi-class datasets in

parentheses. RandomForest is also presented, as an upper-bound.

Results for the three versions of the proposed method
(ConfDTreeNORM, ConfDTreeTDIST, and ConfDTreeCOMB) are
presented in Table 1. As can be seen in Table 1, all variations
of the proposed method outperform the original C4.5
algorithm (J48 in Weka) except for the ConfDTreeTDIST on
the datasets spam and MiniBooNE. The ConfDTreeCOMB
clearly performs best – it achieved high scores on all of the
binary and multi-class datasets (Table 1).

Using both a paired t-test and the Wilcoxon test we were
able to determine that the proposed method outperforms the
original decision tree with p-value<0.05. From Table 2 we
can see that according to both tests the average AUC and
weighted average AUC of the ConfDTreeTDIST and
ConfDTreeCOMB were significantly better than the original
version of the decision tree for the multi-class datasets. For
the binary datasets both the ConfDTreeCOMB and
ConfDTreeNORM outperformed the original version of the
decision tree. To conclude, the combination of t-distribution
and normal distribution version of the ConfDTree is the
preferable choice according to our experiments.

Since the proposed method is designed to tackle a
specific problem, namely, of attributes whose values are
“uncharacteristic” of their class, it would be impossible to
understand the results without knowing what percentage of
instances has been affected by the method. We decided to
define "affected" as instances whose assignment probabilities
were modified by 10% or more. We chose this definition
because we believe that other definitions (for example,
instances whose assigned class was changed) were
inadequate since they would not represent the many

instances in which the proposed method had a serious effect
on the classification. One such example could be the
reduction of the certainty of a mistaken classification from
100% to 51%. The results of the analysis are presented in
Table 3.

It is clear that when using the t-value distribution for the
generation of the confidence intervals, the percentage of
affected instances is higher. This is due to the fact that this
method can be applied on all nodes whose split attributes is
numeric (without the need for checking whether the split
attribute is normally distributed for each class). However, to
our surprise, we were not able to find correlation between the
percentage of affected instances and the performance of the
proposed method.

B. Evaluation of the proposed method using varying
training set sizes

We hypothesized that the method proposed here would
be especially beneficial when applied on small training sets.
Our rationale was that while small training sets might make
it more difficult for the C4.5 to generate accurate split values
for many attributes, the proposed method will be able to (at
least partially) compensate for incorrect classifications by
using confidence intervals to identify them.

We tested this hypothesis by generating different sizes of
training sets for all the algorithms presented in the previous
section. By generating training set sizes varying from 10% to
90% of the dataset, we hoped to identify clear trends in the
proposed method's performance. For each training set size,
we randomly created 10 divisions (while maintaining the

imbalance ratio) of the dataset and averaged the model's
performance. For the multi-class datasets we present the
comparison of their average-AUCs.

TABLE II. PAIR-T TEST AND WILCOXON TEST RESULTS

Measure Dataset Decision tree Wilcoxon Paired-t

AVG Multi-class Org vs. ConfDTreeNORM z= -2.023
p =0.043

t= -1.650
p =0.15

AVG Multi-class Org vs. ConfDTreeTDIST
z = -2.366
p =0.018

t = -4.429
p =0.004

AVG Multi-class Org vs. ConfDTreeCOMB
z = -2.366
p =0.018

t =-4.332
p =0.005

Weighted
AVG Multi-class Org vs. ConfDTreeNORM z = -2.366

p =0.018
t =-1.716
p =0.137

Weighted
AVG Multi-class Org vs. ConfDTreeTDIST

z = -2.366
p =0.018

t =-4.378
p =0.005

Weighted
AVG Multi-class Org vs. ConfDTreeCOMB

z = -2.366
p =0.018

t =-4.251
p =0.005

AVG Binary Org vs. ConfDTreeNORM z =-2.803
p =0.005

t =-4.182
p =0.002

AVG Binary Org vs. ConfDTreeTDIST
z =-0.968
p =0.333

t =0.106
p =0.075

AVG Binary Org vs. ConfDTreeCOMB
z =-2.803
p =0.005

t =-4.385
p =0.002

TABLE III. PERCENTAGE OF INSTANCES AFFECTED BY THE PROPOSED
METHODS IN THE BINARY-CLASS AND MULTI-CLASS DATASETS

Dataset ConfDTree
[NORM]

ConfDTree
[TDIST]

ConfDTree
[COMB]

Cancer 5.80% 70.10% 6.6%
Contraceptive 2.1% 44.20% 12.5%
Credit 1.10% 3.50% 2.2%
Diabetes 4% 78.40% 15%
Ecoli 3.90% 56% 7.2%
Ionosphere 49.40% 83% 81.7%
Pima 5.50% 84.30% 14.2%
Spam 10.10% 99% 16.6%
Yeast 1.20% 7.90% 0.7%
MiniBooNE 14.3% 99% 29.4%

Autos 11.3% 18.2% 17.1%
Glass 1.1% 12.7% 5%
Letter 11.8% 74.4% 73.89%
Segment 3.8% 87% 76.3%
Vehicle 10.4% 78.7% 47.8%
Vowel 21% 71.4% 40.7%
Waveform 16.8% 99% 36.9%

The results of the comparison are presented in Figure 6,
which shows the average relative improvement for the
binary and multi-class datasets. It is clear that there is a
downward trend in the relative improvement for both types
of datasets as the size of the training set increases.

We found that in the binary datasets, the downward trend
in relative improvement was best observed in three datasets –
Ecoli, Ionosphere and Yeast. These results are very
interesting, as they are the three most imbalanced datasets,
and Ecoli and Ionosphere are also the two smallest datasets.
Moreover, the three datasets in which there was virtually no
decline in relative improvement, Credit, Cancer and
MiniBooNe, are also the most balanced (see Table 1). This
leads us to conclude that the proposed method is especially
beneficial in cases where the available training set is small or
highly imbalanced.

In the multi-class datasets, the downward trend was clear
for 4 out of the 7 datasets (Letter, Vowel, Segment and
Vehicle) and a (relatively) fixed improvement existed for 2
additional datasets (Autos and Waveform). For the 7th dataset
(Glass) there was an upward trend which was later reversed
to a downward trend.

When attempting to understand these results, three
factors need to be considered – the size of the dataset, the
number of classes and the degree of imbalance. We found
that two of the three datasets in which there was no
downward trend (Autos and Glass) have a small number of
instances (around 200), a large number of classes (6) and the
highest degree of imbalance of all datasets. It seems logical
to assume that this combination makes it very difficult for
reliable confidence intervals to be created for these datasets
with very few samples. In the case of the third dataset
without a downward trend (Waveform) the case is exactly the
opposite; it has a relatively large number of instances (5000),
only 3 classes and no imbalance. We believe this indicates
that even a small percentage of the dataset was sufficient for
an accurate model to be created.

Figure 6. The relative improved (averged over all multi-class and binary-
class datasets) of the proposed method over the original C4.5 as a function

of the percentage of the training set of all instances.

V. DISCUSSION

In this paper we present and evaluate a method for
enhancing decision trees. The method can be used to deal
with three important problems of decision trees: reduced
performance when applied on small training sets, the
rigidness of the classification process and outlier attribute
values that interfere with correctly classifying an instance.

Evaluation results show that the proposed method
performs significantly better than the original C4.5
algorithm, both for binary and multi-class datasets. The
improvement was even larger when the size of the training
sets was reduced (from an average 5% improvement to 9%
on the smallest training sets), a testament to the proposed
method’s robustness. In addition, the results show that the
more imbalanced or diverse the dataset, the greater the
improvement the proposed method is likely to yield.

The fact that the proposed method performs better on
imbalanced and diverse datasets is not surprising. In
imbalanced datasets it is less likely that the underrepresented

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v

e
ra

g
e

 Im
p

ro
v

e
m

e
n

t
in

 A
U

C

Size of training set

Multi-class

Binary-class

class will be correctly classified, while in multi-class datasets
the decision process is prolonged because of the need to use
binary splits to classify multiple examples.

The proposed method’s ability to be integrated with
every decision tree algorithm is important. This enables the
most suitable algorithm to be selected for a specific dataset
and still have the benefit of using confidence intervals.

The proposed algorithm has also two drawbacks: (1) it
slightly increases the computational cost of classifying a new
instance; and (2) it reduces the comprehensibility of the
model. In particular some instances are affected by our
method and eventually assigned a different class distribution.
This also indicates that a simple transformation of the
decision tree to a set of if-then rules is not as simple.

We believe, however, that the loss of comprehensibility
of the model is minimal since most of classified instances
will not be affected by the proposed model, as we only target
"outliers". For the classification of outliers, "certainty fines"
(whose meaning is clear) can be easily annotated on the path
shown to the user. Only the alternative routes may actually
reduce comprehensibility; however they also can be marked
to indicate that additional paths were inspected.

Four future research directions are currently being
considered. The first direction regards the issue of missing
values. Currently, we do not apply the method beyond the
point in which such values are detected. We are considering
using the values of the instance’s other normally distributed
attributes in order to determine the paths to which it should
be classified and their relative weight. The second research
direction deals with the issue of imbalance. The proposed
method already performs better on imbalanced datasets, but
we would like to add additional improvements such as taking
the relative imbalance into account when choosing
alternative routes and certainty fines. The third direction is
an attempt to use the method in conjuncture with ensemble
algorithms which utilize decision trees (e.g., RotationForest
and RandomForest). We will try to determine in which
scenarios the use of the method improves results and what
modifications (if any) are required for the algorithm. The
final research direction currently being considered is the
expansion of the method to nominal values. We wish to try
and adapt the method so that it can infer whether an item’s
nominal attributes are unlikely when considering its assigned
class. Techniques similar to those used by SMOTE [28] and
similar algorithms will also be considered.

REFERENCES
[1] Rokach, L. and O. Maimon, Data mining with decision trees: theory

and applications. World Scientific Pub-lishing, Singapore, 2008.

[2] Quinlan, J.R., C4. 5: programs for machine learning. Vol. 1. 1993:
Morgan kaufmann.

[3] Chawla, N.V., N. Japkowicz, and A. Kotcz, Editorial: special issue on
learning from imbalanced data sets. SIGKDD Explor. Newsl., 2004.
6(1): p. 1-6.

[4] Provost, F. and P. Domingos, Well-Trained PETs: Improving
Probability Estimation Trees. Technical Report CDER #00-04-IS,
2001.

[5] Lin, H.-Y., Efficient classifiers for multi-class classification
problems. Decision Support Systems, 2012. 53(3): p. 473-481.

[6] Breiman, L., Random Forests. Machine Learning, 2001. 45(1): p. 5-
32.

[7] Quinlan, J.R., Induction of decision trees. Machine Learning, 1986.
1(1): p. 81-106.

[8] Quinlan, J.R., C4.5: Programs for Machine Learning. 1993.

[9] Breiman, L., et al., Classification and regression trees. Belmont:
Wadsworth, 1984.

[10] Breiman, L., Technical Note: Some Properties of Splitting Criteria.
Machine Learning, 1996. 24(1): p. 41-47.

[11] Rodrıguez, J.J., L.I. Kuncheva, and C.J. Alonso, Rotation forest: A
new classifier ensemble method. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2006. 28(10): p. 1619-1630.

[12] John, G.H., Robust Decision Trees: Removing Outliers from
Databases. Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, 1995: p. 174-179.

[13] Last, M., O. Maimon, and E. Minkov, Improving Stability of
Decision Trees. International Journal of Pattern Recognition and
Artificial Intelligence,, 2002: p. 145-159.

[14] Zadrozny, B. and C. Elkan, Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers. Proceedings of the
Eighteenth International Conference on Machine Learning, 2001.

[15] Chm-les X, L.C., O. CA, and R.J. Yan, Decision Tree with Better
Ranking.

[16] Mccallum, R.A., Instance-Based Utile Distinctions for Reinforcement
Learning with Hidden StateR. Andrew Mccallum Proceedings of the
Twelfth International Conference on Machine Learning, 1995: p. 387-
395.

[17] Massey, F.J., The Kolmogorov-Smirnov Test for Goodness of Fit.
Journal of the American Statistical Association, 1951. 46(253): p. 68-
78.

[18] Janikow, C.Z., Fuzzy decision trees: issues and methods Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
1998. 28(1): p. 1-14.

[19] Olaru, C. and L. Wehenkel, A complete fuzzy decision tree
technique. Fuzzy Sets and Systems, 2003. 138(2): p. 221-254.

[20] Zadorny, B. and C. Elkan, Obtaining calibrated probability estimates
from decision trees and naive Bayesian classiers. In: Proc. Eighteenth
Internat. Conf. on Machine Learning, 2001: p. 609-616.

[21] Esposito, F., D. Malerba, and G. Semeraro, A comparative analysis of
methods for pruning decision trees. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 1997. 19(5): p. 476-491.

[22] Kohavi, R., B. Becker, and S. D, Improving Simple Bayes. The 9th
European Conference on Machine Learning, 1997: p. 78-87.

[23] Ponte, J.M. and W.B. Croft, A language modeling approach to
information retrieval, in Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information
retrieval1998, ACM: Melbourne, Australia. p. 275-281.

[24] Lafferty, J. and C. Zhai, Document language models, query models,
and risk minimization for information retrieval, in Proceedings of the
24th annual international ACM SIGIR conference on Research and
development in information retrieval2001, ACM: New Orleans,
Louisiana, United States. p. 111-119.

[25] Demšar, J. and ar, Statistical Comparisons of Classifiers over
Multiple Data Sets. J. Mach. Learn. Res., 2006. 7: p. 1-30.

[26] Hand, D.J. and R.J. Till, A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 2001. 45(2): p. 171-186.

[27] Hall, M., et al., The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 2009. 11(1).

[28] Bowyer, K.W., et al., SMOTE: Synthetic Minority Over-sampling
Technique. Journal Of Artificial Intelligence Research, 2002. 16: p.
321-357.

