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Decision trees have three main disadvantages: reduced 
performance when the training set is small, rigid decision 
criteria and the fact that a single “uncharacteristic” attribute 
might “derail” the classification process. In this paper we 
present ConfDTree - a post-processing method which enables 
decision trees to better classify outlier instances. This method, 
which can be applied on any decision trees algorithm, uses 
confidence intervals in order to identify these hard-to-classify 
instances and proposes alternative routes. The experimental 
study indicates that the proposed post-processing method 
consistently and significantly improves the predictive 
performance of decision trees, particularly for small, 
imbalanced or multi-class datasets in which an average 
improvement of 5%-9% in the AUC performance is reported. 

Keywords-decision trees, confidence intervals, imbalanced 
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I.  INTRODUCTION 

The area of decision trees is probably one of the most 
extensively researched domains in machine learning. Aside 
from advantages such as the ability to explain the decision 
process and low computational costs, decision trees also 
usually produce relatively good results in comparison to 
other machine learning algorithms. Although the most 
popular decision trees induction algorithms, such as C4.5 
and CART, were developed a long time ago, they are still 
frequently used for solving everyday classification tasks. In 
this paper we aim to improve the predictive performance of 
these algorithms by mitigating three of their main 
drawbacks: 
(a) Reduced performance when the training set is small – 

Small sample sizes pose a great challenge to decision 
trees [1], in particular because the number of available 
training instances drops exponentially as the tree 
branches out (and the number of leaves is bounded by 
the training set size). For this reason, if the training set is 
too small, the induction algorithm may grow an overly 
simplistic classification tree.  

(b) “Rigid” decision criteria – the decision at each level 
(node) of the tree is rigid in the sense that only one 
branch (node) can be chosen (unless the classified 
instance has no value in the attribute, which is a 
different problem). This approach usually works well, 
but consider the following scenario: the performed test 
on attribute X is X≤10, and the value of attribute X of a 
given instance is 9.99. In such cases, should we not at 
least consider the possibility that the classification might 
be incorrect, or consider an alternative path? 

This problem is not new and has been discussed almost 
20 years ago in [2] ("soft thresholds"). In other 
classification algorithms the problem has been addressed 
by using the notion of margin. One particular case is 
Support Vector Machines, where instead of using a 
fixed hyperplane for separating classes, the algorithm 
uses varying margins in order to better classify the 
dataset. 

(c) Outlier attribute values – deep decision trees consisting 
of many levels might also include many attributes. Such 
bushy trees are often seen in particular when the training 
set is large in terms of number of instances and number 
of attributes. The need to rely on so many attributes to 
reach a classification leads to the following potential 
problem: it only takes one attribute with an outlier value 
(one that is uncharacteristic of its class) to "derail" the 
classification process. 
This claim can be easily supported using the following 
scenario. We are given a tree with a depth of h levels. 
Let α����  be the probability of selecting the wrong 
branch for a given instance x on node l. For the sake of 
simplicity, let assume that α���� ≥ ε where ε > 0, and 
that the errors are independent. Thus, the probability for 
reaching the wrong leaf is Pr� ��� = 1 − �1 − ε�� 
which of course increases with h. Moreover, in many 
cases α���� increases as node l is located in a deeper 
level, mainly because the number of available training 
instances drops exponentially as the tree branches out. 

These problems are considerably aggravated in 
imbalanced datasets [3], where there are many more 
instances of a certain class than of another. In such cases, 
standard machine learning techniques may be 
"overwhelmed" by the majority class and ignore the minority 
class. Combined with the lack of sufficient number of 
instances, outlier values make it even more difficult to 
correctly classify under-represented classes. In order to 
enable decision trees to address imbalanced datasets two 
practices are frequently used: 
1. Instead of using the leaf classification just as in balanced 

classification tasks, in imbalanced tasks it is better to use 
the classification distribution associated with the 
designated leaf. This can be used to rank the test 
instances according to their probabilities and help the 
decision maker to select the best trade-off between the 
true-positive and false-positive performance. As a result, 
reaching to the incorrect leaf might have a greater 
impact. In balanced classification tasks designating the 
wrong leaf might still result in the same classification 



output (when the derailing is targeted to the incorrect 
leaf but with the same classification). However in 
imbalanced tasks, derailing to the incorrect leaf will 
usually result in a different classification distribution and 
therefore affect the test instances ranking. 

2. Due to the fact that the classification distribution is 
frequently used in imbalanced tasks, it is recommended 
to avoid pruning [4]. Hence, classification trees for 
imbalanced tasks usually have more levels and are 
therefore prone to over-fitting. 

Similar to imbalanced datasets, multi-class problems also 
pose a challenge for classification trees, particularly when 
the number of classes goes beyond a 'modest' size [5]. This 
can be explained by the fact that in multi-class tasks, 
derailing a test instance from its correct leaf will results in a 
wrong classification. This is not true for balanced binary 
classification tasks, in which derailing to an incorrect and 
random leaf may still result in a correct classification with a 
probability equal to the percentage of the item's class of the 
total "population". 

These problems may be avoided by the use of ensemble 
methods like RandomForest [6]. By creating a large number 
of trees with varying attributes, outlier attributes and 
borderline decisions become less of an obstacle. However, 
these methods require both long training and execution times 
and large amounts of memory. In addition, decision forests 
are considered to be less comprehensible than a single 
decision tree. 

In this paper we propose a post processing method to 
address these three problems; namely, decision trees with 
confidence intervals. We use simple statistical measures in 
order to determine whether the decision made at every level 
of the tree has a minimum degree of plausibility with respect 
to the final outcome (i.e., classification of an instance in a 
leaf). If this is not the case, we employ one of two solutions; 
alternative routes or certainty fines, in order to explore other 
classification possibilities.  

The core idea of this paper is as follows. Once a 
classification has been made, we follow the decision path 
from the leaf back to the root, examining every decision 
made along the way. After the examined instance has been 
assigned to a class, our goal is to determine whether the 
attributes that were used to classify the instance can be said 
to be “characteristic” of that class. If that is not the case, the 
solutions mentioned above, alternative paths and certainty 
fines are used in order to consider other possible 
classifications. 

In order to determine whether an attribute with a certain 
value “belongs” to a certain class we use confidence 
intervals. Confidence intervals enable us to determine with a 
predefined level of certainty whether or not the value of the 
examined attribute is within a range that can be considered as 
belonging to the class in question. The confidence intervals 
are easy to compute and do not add additional complexity to 
the overall computational effort of the classification process. 

One of the advantages of the proposed method is the fact 
that it does not interfere with the generation of the decision 
tree. This means that although our experiments were 

conducted using trees generated by the C4.5 algorithm, the 
proposed method can be applied on decision trees produced 
by other algorithms.  

The rest of this paper is organized as follows. Section 2 
introduces related work of variations of decision trees and 
decision trees that are combined with statistical methods. In 
Section 3 we present the proposed ConfDTree and in Section 
4 we evaluate it. Lastly, Section 5 concludes the paper. 

II. RELATED WORK 

A. Decision Trees 

Decision trees are directed graphs used to classify items. 
They consist of a root node (a node in the graph to which no 
other node points), internal nodes (nodes that are pointed at 
and point to other nodes) and leaves (nodes that do not point 
to other nodes). During the classification process, the 
classified item “travels” from the root to one of the leaves, 
where a classification is made. The classification may simply 
be one of the possible classes or a set of probabilities (one 
for each of the possible class values). 

At this point, we wish to provide definitions for several 
base terms: (a) immediate descendant node – if a node points 
to other nodes in the tree, these nodes are its “immediate 
descendants”; (b) split attribute – the attribute by which a 
decision is made at some node in the tree; (c) split value – 
the value of the split attribute which determines to which 
immediate descendant node the classified instance will be 
assigned (for example, if X≤10 is the condition for one 
immediate descendant node and X>10 is the condition for 
another, then 10 is the split value; (d) class – the class is the 
attribute whose values are what we attempt to predict during 
the classification phase. 

The algorithms for the generation of decision trees are 
numerous and many methods are used for this purpose. All 
algorithms use recursive partitioning, but they usually differ 
in the manner of how they choose the attribute by which to 
split each node in the tree, as well as by the stopping criteria 
(the decision not to perform additional splits on a node). The 
ID3 [7] and C4.5 [8] algorithms, for example, use the 
Information Gain and Gain Ratio measures respectively and 
also differ on the tests performed on their attributes. The 
CART algorithm [9] uses the Gini Impurity measure [10] 
and regression in the leaves in order to produce its 
prediction. 

Contrary to the methods described above which build a 
single decision tree other methods use many. Algorithms 
such as RandomForest [6] and RotationForest [11] create 
many subsets of training instances and attributes and use 
them to train multiple trees. During the classification phase, 
each tree provides its prediction and they are all combined 
into one. These methods usually produce superior results 
when compared to those that use single trees (partly because 
they provide a solution, at least to some degree, to the 
drawbacks mentioned in Section 1), but they require large 
amounts of computing resources and are not comprehensible 
to users. In addition, the dataset requires a sufficiently large 
number of attributes. 



B. Combinations of decision trees and statistics 

The problem of outliers is not new in the field of decision 
trees, especially in unbalanced datasets. However, previous 
work was focused on the tree generation phase. Most works 
were aimed at preventing the outliers from influencing the 
creation of the model and on improving probabilities 
estimation. For example, John [12] proposed iterative 
removal of instances with outlier values, while Last et al. 
[13] used statistical methods in order to create a more robust 
classifier. Zadorny and Elkan [14], and Provost and 
Domingos [4] and [15] focused on improving the 
classification probabilities produced by the tree by the use of 
regression in the leaves. The use of confidence measures is 
also not uncommon; McCallum [16], for instance, used the 
Kolmogorov-Smirnov test [17] in order to determine whether 
additional nodes in tree should be created based on the 
differences in the distribution of instances from different 
class. These researches, however, propose methods for 
ignoring outliers during the creation of the model, but offer 
no solutions for correcting classifications during the test 
phase. 

Another well-known method for dealing with outliers is 
fuzzy decision trees [18, 19]. By using fuzzy functions to 
construct the tree and by varying the degrees of certainty 
based on the attributes of the classified instance, these 
methods offer a greater degree of flexibility in dealing with 
outliers whose values are slightly irregular (achieved by 
using multiple states and weights). This fuzziness offers a 
possible solution to the “rigidness” problem mentioned 
above; however, there are several substantial differences 
between this method and the one proposed in this paper: (1) 
the fuzzy function may be domain specific and require a 
human expert in order to correctly define it. Our method, on 
the other hand, uses simple statistical tools that require very 
little (if any) tuning; (2) fuzzy decision trees will have 
difficulty in correctly classifying instances whose outlier 
attribute values differ greatly from the norm (as they will be 
out of the scope of the fuzzy function); and (3) the proposed 
method differs from fuzzy decision trees because it modifies 
the original classification only when it is very likely that the 
classification is incorrect; i.e., knowing that the attribute 
value is borderline is not a sufficient cause to act and 
therefore, we also verify that the value is out of the norm of 
the assigned class. 

The proposed method contains several similarities to the 
work presented above. We use statistical measures, and 
specifically confidence intervals, with the goal of the 
proposed algorithm being to deal with outliers. However, 
unlike any of the methods presented above, our method is a 
post processing method applied after the decision tree has 
already been derived, during the classification phase. This 
difference means that the plausibility of the classification is 
verified at various points along the classification path, 
increasing the probability of correctly handling outliers. In 
addition, although “smoothing” has been used and applied on 
the leaves of a decision tree [20], it has not been used in the 
inner nodes or in any other way than "tweaking the results". 
Lastly, to the best of our knowledge confidence intervals 

have not previously been used for improving classifiers and 
decision trees in particular. Note that our goal is not to assign 
a confidence score to the classifier’s predictions, a concept 
that has been investigated before [21], but rather to improve 
the classification itself. 

III.  THE PROPOSED METHOD 

In this section we present the proposed method. We 
explain the required calculations needed during the 
generation of the tree and go over the proposed 
modifications to the classification process. 

A. Deriving the Confidence Intervals 

Confidence intervals are used to assess the reliability of 
an estimate. They enable us to define a range of values 
within which an instance, randomly sampled from a 
distribution, is likely to be. In other words, a confidence 
interval with a probability of (1-α) means that a random 
instance from the distribution has a (1-α) chance of being 
inside it, whereas α is the probability of the instance being 
outside the interval. For example, in normal distributions the 
confidence interval can be defined by [�-z·σ , �+ z·σ] where 
� is the average of the distribution, z is the corresponding 
value in the Z table for the requested significance level of the 
interval and σ is the standard deviation. 

According to the proposed method, once the decision tree 
has been generated, the following values are calculated for 
every internal node: 

1. the average value of the split attribute 
2. confidence intervals for values of the split attribute 

This is done separately for every class whose training set 
instances are included in the node. 

There are two prerequisites for the generation of the 
confidence intervals: 

1. The split attribute of the node should be numeric;  
2. A minimal number of instances m (a predefined 

threshold) exists for every class present in the node. 

We experimented with three different approaches for 
calculating the confidence intervals: one based on the t 
distribution, one based on the normal (Z) distribution and the 
third with both distributions combined (their application is 
explained later on). 

The t distribution is suitable for our needs because it 
enables us to make an inference regarding the mean when 
the standard deviation is unknown. In addition, it assumes 
that the distribution values are more dispersed than in a 
normal distribution, a fact which enables it to be suitable for 
a larger range of scenarios. The normal distribution, 
however, is meant to be used on values that are normally 
distributed. For data that is known to be normally distributed, 
calculating the confidence interval using the normal (Z) 
distribution will be more accurate. 

However, for obvious reasons, we cannot assume that the 
split attribute values are always normally distributed and 
therefore we used the Kolmogorov-Smirnov (K-S) test [17] 
on every node with a numeric split attribute. The following 
calculations (and subsequently, the algorithm presented here) 
were only applied on nodes for which all present class 



attributes "passed the test" (the K-S test was applied 
separately for each class attribute). 

We hypothesized that the normal distribution (when 
applicable) would be more accurate than the t distribution, 
but we were concerned that there could be datasets whose 
attributes would not be distributed in such a way. We 
therefore decided to test an approach that uses the normal 
distribution to generate the confidence intervals whenever 
possible and uses the t distribution in all other cases. We call 
this approach the combined approach. 

A general example of calculating these measurements is 
presented in Fig. 1. In this example the split attribute in the 
highlighted node is Y and the possible classes are A, B and C, 
where 100 instances from the training set are of class A, 100 
are of class B, and 30 are of class C. The average of the 
values of attribute Y of instances that belong to class A is 
4.75 and the confidence interval is [3,6.5]. 

The pseudo code for deriving the confidence intervals is 
presented in Alg. 1. For each node the algorithm first checks 
if it is a leaf or not (line 1). If the node is a leaf, or if the 
number of instances in the node is smaller than a predefined 
threshold m (or if the values of the node are not normally 
distributed when only the Z distribution is used), the 
procedure terminates; otherwise, the average and standard 
deviation of the split attribute are calculated separately for 
each class (lines 2-5). Then, the procedure is recursively run 
for each of the immediate descendant nodes (lines 6-7). 

The additional computations during the training phase 
include the calculation of the average and standard deviation 
of the split attribute for each class in every inner node. The 
computational complexity is therefore O(n·(d-1)), where n is 
the number of instances in the tree, and d is the number of 
levels in the tree (height of the tree). 

B. The Classification Phase 

During the classification phase, we first use the induced 
tree to provide a classification distribution. That is, the 
examined instance traverses the tree top-down to one of its 
leaves, thus producing a classification. This classification 
consists of the probabilities of the classified instance 
belonging to each of the class values, whose sum is always 1. 
For example, in Fig. 2 it can be seen that the probabilities 
produced by the decision tree (leaf number 1) are {1,0,0} for 
class A, B and C respectively, which indicates that the tree is 
100% certain of its classification. Using the class frequency 
in the tree leaves as-is will typically overestimate the 
probability. In order to avoid this phenomenon, it is useful to 
perform the Laplace correction [22]. Later, in Section 3.2.2 
we suggest a variation of the Laplace correction which better 
fits our goals. 

At this point we would like to define an additional term – 
assigned class. This term refers to the class which has the 
highest probability. For example, if the probabilities of 
classes A, B and C are 0, 0, and 1 respectively, then C will be 
defined as the assigned class. We will use this term from this 
point on. 

After the classification probabilities have been obtained, 
the classified instance “travels” up the tree, back to the root. 

For each of the nodes in its path, not including the leaf, we 
apply the following algorithm: 

1) If the instance is within the confidence interval of the 
assigned class - do nothing. The instance is said to be 
within the confidence interval of the assigned class if 
the instance’s value of the node’s split attribute is 
within the confidence interval of the split attribute of 
the assigned class. We consider this to be the “normal” 
situation where the value of the split attribute of the 
instance is within the area considered as “likely”. 

2) If the instance is not within the confidence interval of 
the class it is currently assigned to, there are two 
options: 

a) It is within the confidence interval of another class 
(or classes) – in this case we generate alternative 
routes. 

b) It is not within the confidence interval of any other 
class – in this case we impose certainty fines. 

X

Y 3

1 2

X>10X<=10

C: 70

{0, 0, 1}

B: 100

C: 30

{0, 0.769, 0.231}

Y<=7 Y>7

A: 100

{1, 0, 0}

A: 100 [3,9]

B: 100 [2,8]

C: 100 [9.5,15]

A: 100 [3-6.5]

B: 100 [6.8-10]

C: 30 [6-9]

 
Figure 1.  An example of the calculation of the confidence intervals for 
each class in the internal nodes. Squared brackets in the internal nodes 
indicate the confidence intervals. The values in the curly brackets indicate 
the classification distribution vector. 

Algorithm 1  Deriving the confidence intervals 

Input : Node node: a node in the tree 
           List<Instance> instances: all the training instances in the node 
1: IF  Is_Leaf(node)==true or node.size < m THEN  RETURN 
2: split_attribute � node.split_attribute; 
3:node.num_of_instances � Get_Num_Of_Instances_Per_ClassID(node); 
4. node.attribute_averages � Calculate_Attribute_Average_By_ClassID; 
5. node.stdevs � Calculate_Stdev_Per_Class_ID(instances,  
  num_of_instances, attribute_averages) 
6. Node[] sons � Get_Son_Nodes(split_attribute) 
7. FOR (int i=0; i<sons.Length; i++) DO 
 Build_Tree_With_Confidence_Intervals(sons[i],  
 Find_Instances_That_Match_Criteria(instances, split_criteria) 
8: END FOR 

These courses of action can best be explained by the 
example shown in Fig. 3. After being classified to leaf 1, the 
classified instance "travels" bottom-up the tree (note the 
direction of the arrows). The number of instance from each 
class and their confidence intervals are presented next to 



their corresponding internal nodes (the relevant confidence 
intervals in bold). In the internal node Y, the confidence 
interval of class A (the current assigned class) is the only one 
that contains the instance's attribute value. In the root node, 
however, the instance's attribute value is outside the 
confidence interval of A (it is, however, inside the 
confidence interval of class C). 

In the following sub-sections we will go over these two 
scenarios in detail. 

 
Figure 2.  An example for the classification process of a C4.5 decision 
tree. The attribute values of the classified instance, whose true class is C, 
are presented above the root node and correspond with X, Y and the true 
class. The probabilities of each class in the leaves is denoted by the curly 
brackets. 

 
Figure 3.  After its classification to leaf 1, the classified instance 
(presented at the top of the figure) “travels” bottom-up to the root node. 
The confidence intervals that are presented in square brackets are used to 
assess the plausibility of the classification in each inner node. The 
confidence intervals to which the instance’s attributes is assigned, are 
printed in bold. 

1) Alternative Routes 

In this case, the instance is within the confidence interval 
of one or more classes. In this scenario we can assume that 
there is at least a chance that the instance has been 
incorrectly classified. Since we concluded that it may belong 

to a different class, we attempt to determine whether it needs 
to be “reassigned” to a different descendant node in the tree 
from what it originally was. For this reason, we assign the 
instance to all the immediate descendant nodes of the current 
node (including the originally chosen path) and then produce 
a weighted average of all the predictions they produce. The 
weight assigned to each son node is calculated as follows: 

( * )c
i c

c i

n
weight n

T
=∑  

where i is the index of the immediate descendant node, c is a 
class in whose confidence interval the classified instance is 
found, nc is the number of items from class c assigned to this 
immediate descendant node, and Ti is the total number of 
training instances in son node i. All the weights are then 
normalized to one, and each prediction is multiplied by this 
weight and summed. The resulting prediction is returned. 

The weight is designed such that the immediate 
descendant nodes that have a larger proportion of class x will 
have a higher weight and therefore a higher influence on the 
final prediction. Note that the threshold m (minimum number 
of instances) ensures that the weights are calculated based on 
a sufficient set of instances. The reason we use the square 
root of n in the equation instead of n itself (as is done in the 
C4.5 algorithm when the classified instance does not have a 
value in the split attribute) is our desire to alleviate the 
problem of imbalanced datasets. We have discovered 
through experimentation that this method improves 
performance on imbalanced datasets without affecting 
performance in balanced ones. 

This scenario is shown in Fig. 4. It can be seen that in the 
root node the use of confidence intervals has shown that the 
classification may be incorrect; despite being classified as 
belonging to class A by the decision tree, the confidence 
intervals indicate that the classified instance is more likely to 
belong to class C. Therefore, the following steps are taken: 

a) Since the instances of class C are assigned to both 
immediate descendant nodes of the root, both routes 
will be considered. 

b) The left (original) route will produce the following 
classification: [1,0,0] (100% for class A), which was 
generated in the leaf designated by "1". According to 
the formula presented above, its weight will be:  

30
30 * 0.714421

230
=

 
c) The right (alternative) route will produce the following 

classification: [0,0,1] (100% for class C). According to 
the formula presented above, its weight will be: 

70
70* 70 8.3666

70
= =

 

d) We now normalize both weights to one, which gives us 
{0.078672, 0.921328} for the original and alternative 
paths, respectively. 

e) Therefore, the final classification will be [0.078672, 0, 
0.921328]. We’ve gone from providing a wrong 
classification with absolute certainty to providing the 
correct classification with a high degree of certainty. 



This process is displayed in Fig. 4, with the alternative 
route shown by the dashed line. 

In our experiments we chose to use a higher degree of 
confidence for the assigned class and another, lower, 
confidence interval (that is, using a lower certainty level) 
when attempting to assign the analyzed instance to other 
classes. The reason for this decision is simple: by using a 
"smaller" confidence interval for the alternative classes we 
make it more difficult for instances to be assigned to other 
classes than to only be "unassigned" from their current class. 
This way, in cases of lesser certainty we apply the "certainty 
fines" and in cases of high certainty we use the alternative 
routes. 

2) Certainty fines 

In the second case the instance is not within the 
confidence interval of any class. In this scenario the 
classified instance cannot be assigned with sufficient 
certainty to any of the classes. Since in this scenario we have 
no way of knowing to which immediate descendant node(s) 
to assign the instance, we will instead impose a “certainty 
fine”. This is done by reducing the probability of the leading 
class (the one with the highest probability) by some value, 
and dividing it equally among all the classes whose instances 
were assigned to the current node during the creation of the 
tree. 

 
Figure 4.  With the confidence interval indicating that class C may be the 
correct classification, the alternative route (in the dashed line) is also 
considered. 

The idea behind this action is simple. We have a reason 
to doubt the classification derived by the decision tree, yet 
we are currently unable to offer an alternative. Therefore, we 
only somewhat reduce our certainty in the classification, and 
thus increase the likelihood that the following nodes will be 
able to change the classification, assuming more "suspicious" 
attribute values are detected. 

The "size" of the fine is calculated using a variation of 
the Laplace Correction [22]. It is usually used in fields such 
as text mining [23, 24] in order to prevent probabilities from 
being zero. We, on the other hand, wish to use the correction 
in order to reduce large probabilities. For this reason, we 
define the “fine” as 10% of the largest probability (which is 

the probability of the assigned class). This way, the larger the 
current certainty of the classification, the larger the reduction 
is and vice versa. 

An example of this scenario is presented in Fig 5. We 
have altered the confidence interval of class C in the root so 
that the value 9.9 is no longer inside it. In this case, the 
following steps will be taken: 

a) The certainty by which the classified item is assigned 
to class A (the original classification made by the tree) 
would be reduced by 0.1 from 1 to 0.9 (1-(1×0.1)=0.9). 

b)  The 0.1 that was reduced from A will be distributed 
equally among all other classes whose items are in the 
node (in this case, classes B and C). 

c) The final classification returned by the decision tree 
would be {0.9, 0.05, 0.05}, thus reducing the 
classifier's "certainty" of its (mistaken) classification. 

 
Figure 5.  In this scenario no confidence interval in the root contains the 
value of the classified instance's attribute X. Therefore, a certainty fine will 
be imposed.  

The pseudo code for the classification of an instance 
using the modified decision tree is presented in Alg. 2. For 
each node, the algorithm first checks if it is a leaf or not (line 
1). If the node is a leaf, the procedure returns the probability 
of each class, as calculated by the decision tree algorithm 
used (C4.5, for example). If the node is not a leaf, assign the 
classified instance to the appropriate immediate descendant 
node(s) in order to obtain a classification (lines 2-3). Once a 
classification has been obtained, we check whether the split 
attribute value of the classified instance is within the 
confidence interval of the assigned class. If that is the case, 
then we return the current classification to the parent node 
(line 4). If it is not the case, we check the confidence 
intervals of the other classes in the node in order to 
determine if the classified instance is within the confidence 
interval of any of them (line 6). If any are found, we apply 
the alternative routes presented in Section 3.2.1 (line 7). If 
none are found, we use certainty fines (line 9). 

During the classification phase, the only substantial 
additional activity is the assignment to alternative routes. 
Since assigning an instance to an alternative route is equal to 
the classification of an additional instance, the complexity of 
classifying an instance cannot exceed m – the number of 



nodes in the tree; this number will be reached if all attributes 
are numeric and alternative routes are used at every node 
(i.e., worst case scenario). Therefore, the computational cost 
in the worst case scenario will be O(n·m) with n being the 
number of instances and m the number of nodes in the tree. 
This is slightly worse than O(n·h) (with h being the height of 
the tree), the complexity of classifying an instance is the 
original C4.5 tree, but the complexity remains linear 
nonetheless. 

Algorithm 2 Classify instance 

Input: Node current_node: a node in the tree 
Instance instance: the instance being classified 

Output:  a set of probabilities, one for each class 
1: IF  Is_Leaf(node)==true THEN RETURN  node.probs 
2: Probs � Classify_Instance(node.Get_Relevant_descendant(), 

instance) 
3: Current_classification_id � Get_Current_Classification(probs) 
4: IF  (Instance_Is_Within_Confidence_Interval(node.attribute_averages, 

node.stdevs, Current_classification, instance) THEN RETURN  
Probs; 

5: ELSE 
6: alternative_class_ids � 

Get_Class_ID_Whose_Stdevs_Contain_Instance( 
node.attribute_averages, node.stdevs, instance) 

7. IF  (alternative_class_ids.Length > 0) THEN RETURN  
Get_Weighted_descendant_Prediction( alternative_class_ids, 
node.descendants, instance) 

8. ELSE 
9. RETURN Impose_Certainty_Fine(probs, node.num_of_instances) 

3) Dealing with Missing Values 

In our experiments, we have learned that missing values 
pose a problem when using confidence intervals. Due to the 
C4.5 algorithm’s method of assigning instances with missing 
values to all possible paths, such instances were targets for 
changes along their many paths in the tree. This “excess 
diversity” actually harmed the classification outcome and 
therefore we modified the algorithm so that the proposed 
method would not be used in nodes following those for 
which there were missing values. 

For example, if a classification path in a decision tree 
consists of six nodes and a classified instance is missing a 
value in the attribute needed for the third node (from the tree 
root), then the proposed method will not be applied in nodes 
four and five (the method will not be used in node six 
because it is a leaf). The proposed method will be used in 
node one, the root, and two. 

IV. EVALUATION  

This section is divided into two parts. In the first, we 
evaluate the model's performance on both binary and multi-
class datasets, use statistical tests in order to determine which 
version performs best and analyze the percentage of items 
affected by the proposed method. In the second half of this 
section we evaluate the proposed method's performance on 
varying training set sizes. 

A. Analysis of the proposed method's performance on 
binary and multi-class datasets 

The proposed method was tested on 10 two-class datasets 
(binary problems) and 7 multi-class datasets in order to 
assess its contribution (see Table 1). All datasets are well 
known and available online (from the UCI1 repository). On 
each dataset we tested the following four decision trees: 
original C4.5 algorithm (Org), the proposed ConfDTree 
when using the normal distribution for deriving the 
confidence intervals (ConfDTreeNORM), the proposed 
ConfDTree when using the t-distribution for deriving the 
confidence intervals (ConfDTreeTDIST), and the proposed 
ConfDTree when using both the normal distribution and t-
distribution for deriving the confidence intervals 
(ConfDTreeCOMB). We also tested and applied the 
RandomForest classifier, which we used as an upper bound, 
in order to compare it with the ConfDTree and understand 
the potential improvement of the decision tree. 

For the comparison of the performance of the four 
decision trees and RandomForest we chose to use the AUC 
(area under the ROC curve) measure [25]. For the two-class 
(binary) datasets this is a straightforward and well accepted 
comparison measure. For the multi-class datasets we 
calculated the AUC for each class by defining that class as 
"positive" and all other classes as "negative", and deriving 
the following measures as suggested in [26]: 
1. average AUC – a simple average of all calculated 

AUCs 
2. weighted average AUC – each AUC was assigned with 

a weight that was equal to the percentage of its 
"positive" class of the total number of instances (thus 
giving more weight to the more common classes). 

We used both balanced and unbalanced datasets in order 
to obtain a better insight on for which circumstances the 
proposed method contributes to the classic decision tree 
algorithm. The degree of imbalance of each dataset is 
presented in Table 1. The proposed method was 
implemented on the open source machine learning platform 
Weka [27] and all experiments were run on it. All results 
were obtained using a 10-fold cross validation. 
The experiments were run with following settings: 
1. The confidence interval that was used in order to 

determine whether an attribute is inside the confidence 
interval of the assigned class was that of two standard 
deviations for the normal distribution or a confidence 
level of 0.995 (i.e., α=0.5%) for the t_value distribution 
(line 4 in Alg. 2). 

2. The confidence interval that was used in order to 
determine whether an attribute is inside that of other 
classes (line 6 in Alg. 2) was generated using one 
standard deviation for the normal distribution or a 
confidence level of 0.9 (i.e., α=10%) for the t_value 
distribution. 

3. The value of m, the minimum number of instances for 
which confidence interval is computed was set to 5.

                                                           
1 http://archive.ics.uci.edu/ml/ 



TABLE I.  DATASETS PROPERTIES AND THE IMPROVEMENT OF AUC OF THE PROPOSED METHOD. 

Name 
Num 

of 
Classes 

Num of 
Numeric 

Atts 

Num of 
Instances Imbalance Ratio 

ConfDTree 
[NORM] ConfDTree [TDIST]  

ConfDTree 
[COMB] Random Forest 

cancer 2 30/30 569 1 : 1.168 3.1% 3.1% 3.6% 6.9% 
contraceptive 2 6/9 1473 1 : 3.423 1.3% 4.2% 3.5% 21.7% 
credit 2 6/15 690 1 : 1.247 0.3% 0.7% 0.6% 8.5% 
diabetes 2 8/8 768 1 : 1.865 4.5% 8.7% 8.2% 11.2% 
ecoli 2 7/7 336 1 : 8.6 3.2% 2.5% 3.4% 17.5% 
ionosphere 2 34/34 351 1 : 9.14 2.0% 8.7% 8.9% 16.7% 
pima 2 8/8 768 1 : 1.865 3.3% 6.0% 6.0% 5.4% 
spam 2 57/57 4601 1 : 1.5377 1.8% -6.9% 2.9% 6.1% 
yeast 2 8/8 1004 1 : 9.14 0.0% 7.8% 0.0% 27.2% 
MiniBooNE 2 50/50 130,000 1 : 2.5 6.0% -33.4% 8.1% 12.5% 

Autos 6 
7/17 

205 1 : 7.3 : 9 : 10.6 : 18 : 22.3 
0.09% 

(0.10%) 
2.67% 

(3.04%) 
2.67% 

(3.04%) 
4.89% 

(5.25%) 

Glass 6 
9/9 

214 1 : 1.44 : 1.88 : 9.66 : 7.77 : 8.44 
0.74% 

(1.42%) 
4.57% 

(3.83%) 
4.44% 

(3.85%) 
13.19% 

(11.15%) 

Letter 26 
16/16 

20,000 max ratio of 1 : 1.1 
0.04% 

(0.04%) 
6.09% 

(6.07%) 
6.11% 

(6.08%) 
8.35% 

(8.33%) 

Segment 7 
19/19 

2310 1 : 1 : 1 : 1 : 1 : 1 : 1 
0.46% 

(0.46%) 
1.24% 

(1.24%) 
1.08% 

(1.08%) 
1.95% 

(1.95%) 

Vehicle 4 
18/18 

846 1 : 1.065 : 1.094 : 1.095 
2.92% 

(2.98%) 
8.34% 

(8.51%) 
8.07% 

(8.18%) 
14.35% 

(14.52%) 

Vowel 7 
10/13 

989 1 : 2 : 2 : 2 : 2 : 2 : 2 
1.47% 

(1.18%) 
4.83% 
(4.5%) 

4.61% 
(4.22%) 

11.56% 
(10.77%) 

Waveform 3 
40/40 

5000 1 : 1 : 1 
11.17% 

(11.18%) 
12.69% 
(12.7%) 

12.69% 
(12.80%) 

21.31% 
(21.33%) 

Datasets properties include: the number of classes, number of instances and the ratio between the majority and minority classes. 
The improvement in AUC, realtive to the original C4.5. algorithm,  is presented for the three variations of the proposed method and for all datasets. Weighted average AUC is presented for multi-class datasets in 

parentheses. RandomForest is also presented, as an upper-bound. 
 

Results for the three versions of the proposed method 
(ConfDTreeNORM, ConfDTreeTDIST, and ConfDTreeCOMB) are 
presented in Table 1. As can be seen in Table 1, all variations 
of the proposed method outperform the original C4.5 
algorithm (J48 in Weka) except for the ConfDTreeTDIST on 
the datasets spam and MiniBooNE. The ConfDTreeCOMB 
clearly performs best – it achieved high scores on all of the 
binary and multi-class datasets (Table 1). 

Using both a paired t-test and the Wilcoxon test we were 
able to determine that the proposed method outperforms the 
original decision tree with p-value<0.05. From Table 2 we 
can see that according to both tests the average AUC and 
weighted average AUC of the ConfDTreeTDIST and 
ConfDTreeCOMB were significantly better than the original 
version of the decision tree for the multi-class datasets. For 
the binary datasets both the ConfDTreeCOMB and 
ConfDTreeNORM outperformed the original version of the 
decision tree. To conclude, the combination of t-distribution 
and normal distribution version of the ConfDTree is the 
preferable choice according to our experiments. 

Since the proposed method is designed to tackle a 
specific problem, namely, of attributes whose values are 
“uncharacteristic” of their class, it would be impossible to 
understand the results without knowing what percentage of 
instances has been affected by the method. We decided to 
define "affected" as instances whose assignment probabilities 
were modified by 10% or more. We chose this definition 
because we believe that other definitions (for example, 
instances whose assigned class was changed) were 
inadequate since they would not represent the many 

instances in which the proposed method had a serious effect 
on the classification. One such example could be the 
reduction of the certainty of a mistaken classification from 
100% to 51%. The results of the analysis are presented in 
Table 3. 

It is clear that when using the t-value distribution for the 
generation of the confidence intervals, the percentage of 
affected instances is higher. This is due to the fact that this 
method can be applied on all nodes whose split attributes is 
numeric (without the need for checking whether the split 
attribute is normally distributed for each class). However, to 
our surprise, we were not able to find correlation between the 
percentage of affected instances and the performance of the 
proposed method.  

B. Evaluation of the proposed method using varying 
training set sizes 

We hypothesized that the method proposed here would 
be especially beneficial when applied on small training sets. 
Our rationale was that while small training sets might make 
it more difficult for the C4.5 to generate accurate split values 
for many attributes, the proposed method will be able to (at 
least partially) compensate for incorrect classifications by 
using confidence intervals to identify them. 

We tested this hypothesis by generating different sizes of 
training sets for all the algorithms presented in the previous 
section. By generating training set sizes varying from 10% to 
90% of the dataset, we hoped to identify clear trends in the 
proposed method's performance. For each training set size, 
we randomly created 10 divisions (while maintaining the 



imbalance ratio) of the dataset and averaged the model's 
performance. For the multi-class datasets we present the 
comparison of their average-AUCs. 

TABLE II.  PAIR-T TEST AND WILCOXON TEST RESULTS 

Measure Dataset Decision tree Wilcoxon Paired-t 

AVG Multi-class Org vs. ConfDTreeNORM z= -2.023 
p =0.043 

t= -1.650 
p =0.15 

AVG Multi-class Org vs. ConfDTreeTDIST 
z = -2.366 
p =0.018 

t = -4.429 
p =0.004 

AVG Multi-class Org vs. ConfDTreeCOMB 
z = -2.366 
p =0.018 

t =-4.332 
p =0.005 

Weighted 
AVG Multi-class Org vs. ConfDTreeNORM z = -2.366 

p =0.018 
t =-1.716 
p =0.137 

Weighted 
AVG Multi-class Org vs. ConfDTreeTDIST 

z = -2.366 
p =0.018 

t =-4.378 
p =0.005 

Weighted 
AVG Multi-class Org vs. ConfDTreeCOMB 

z = -2.366 
p =0.018 

t =-4.251 
p =0.005 

AVG Binary Org vs. ConfDTreeNORM z =-2.803 
p =0.005 

t =-4.182 
p =0.002 

AVG Binary Org vs. ConfDTreeTDIST 
z =-0.968 
p =0.333 

t =0.106 
p =0.075 

AVG Binary Org vs. ConfDTreeCOMB 
z =-2.803 
p =0.005 

t =-4.385 
p =0.002 

TABLE III.  PERCENTAGE OF INSTANCES AFFECTED BY THE PROPOSED 
METHODS IN THE BINARY-CLASS AND MULTI-CLASS DATASETS 

Dataset ConfDTree 
[NORM]  

ConfDTree 
[TDIST]  

ConfDTree 
[COMB]  

Cancer 5.80% 70.10% 6.6% 
Contraceptive 2.1% 44.20% 12.5% 
Credit 1.10% 3.50% 2.2% 
Diabetes 4% 78.40% 15% 
Ecoli 3.90% 56% 7.2% 
Ionosphere 49.40% 83% 81.7% 
Pima 5.50% 84.30% 14.2% 
Spam 10.10% 99% 16.6% 
Yeast 1.20% 7.90% 0.7% 
MiniBooNE 14.3% 99% 29.4% 

Autos 11.3% 18.2% 17.1% 
Glass 1.1% 12.7% 5% 
Letter 11.8% 74.4% 73.89% 
Segment 3.8% 87% 76.3% 
Vehicle 10.4% 78.7% 47.8% 
Vowel 21% 71.4% 40.7% 
Waveform 16.8% 99% 36.9% 

The results of the comparison are presented in Figure 6, 
which shows the average relative improvement for the 
binary and multi-class datasets. It is clear that there is a 
downward trend in the relative improvement for both types 
of datasets as the size of the training set increases.  

We found that in the binary datasets, the downward trend 
in relative improvement was best observed in three datasets – 
Ecoli, Ionosphere and Yeast. These results are very 
interesting, as they are the three most imbalanced datasets, 
and Ecoli and Ionosphere are also the two smallest datasets. 
Moreover, the three datasets in which there was virtually no 
decline in relative improvement, Credit, Cancer and 
MiniBooNe, are also the most balanced (see Table 1). This 
leads us to conclude that the proposed method is especially 
beneficial in cases where the available training set is small or 
highly imbalanced. 

In the multi-class datasets, the downward trend was clear 
for 4 out of the 7 datasets (Letter, Vowel, Segment and 
Vehicle) and a (relatively) fixed improvement existed for 2 
additional datasets (Autos and Waveform). For the 7th dataset 
(Glass) there was an upward trend which was later reversed 
to a downward trend. 

When attempting to understand these results, three 
factors need to be considered – the size of the dataset, the 
number of classes and the degree of imbalance. We found 
that two of the three datasets in which there was no 
downward trend (Autos and Glass) have a small number of 
instances (around 200), a large number of classes (6) and the 
highest degree of imbalance of all datasets. It seems logical 
to assume that this combination makes it very difficult for 
reliable confidence intervals to be created for these datasets 
with very few samples. In the case of the third dataset 
without a downward trend (Waveform) the case is exactly the 
opposite; it has a relatively large number of instances (5000), 
only 3 classes and no imbalance. We believe this indicates 
that even a small percentage of the dataset was sufficient for 
an accurate model to be created. 

 
Figure 6.  The relative improved (averged over all multi-class and binary-
class datasets) of the proposed method over the original C4.5 as a function 

of the percentage of the training set of all instances.  

V. DISCUSSION 

In this paper we present and evaluate a method for 
enhancing decision trees. The method can be used to deal 
with three important problems of decision trees: reduced 
performance when applied on small training sets, the 
rigidness of the classification process and outlier attribute 
values that interfere with correctly classifying an instance. 

Evaluation results show that the proposed method 
performs significantly better than the original C4.5 
algorithm, both for binary and multi-class datasets. The 
improvement was even larger when the size of the training 
sets was reduced (from an average 5% improvement to 9% 
on the smallest training sets), a testament to the proposed 
method’s robustness. In addition, the results show that the 
more imbalanced or diverse the dataset, the greater the 
improvement the proposed method is likely to yield. 

The fact that the proposed method performs better on 
imbalanced and diverse datasets is not surprising. In 
imbalanced datasets it is less likely that the underrepresented 
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class will be correctly classified, while in multi-class datasets 
the decision process is prolonged because of the need to use 
binary splits to classify multiple examples. 

The proposed method’s ability to be integrated with 
every decision tree algorithm is important. This enables the 
most suitable algorithm to be selected for a specific dataset 
and still have the benefit of using confidence intervals. 

The proposed algorithm has also two drawbacks: (1) it 
slightly increases the computational cost of classifying a new 
instance; and (2) it reduces the comprehensibility of the 
model. In particular some instances are affected by our 
method and eventually assigned a different class distribution. 
This also indicates that a simple transformation of the 
decision tree to a set of if-then rules is not as simple. 

We believe, however, that the loss of comprehensibility 
of the model is minimal since most of classified instances 
will not be affected by the proposed model, as we only target 
"outliers". For the classification of outliers, "certainty fines" 
(whose meaning is clear) can be easily annotated on the path 
shown to the user. Only the alternative routes may actually 
reduce comprehensibility; however they also can be marked 
to indicate that additional paths were inspected. 

Four future research directions are currently being 
considered. The first direction regards the issue of missing 
values. Currently, we do not apply the method beyond the 
point in which such values are detected. We are considering 
using the values of the instance’s other normally distributed 
attributes in order to determine the paths to which it should 
be classified and their relative weight. The second research 
direction deals with the issue of imbalance. The proposed 
method already performs better on imbalanced datasets, but 
we would like to add additional improvements such as taking 
the relative imbalance into account when choosing 
alternative routes and certainty fines. The third direction is 
an attempt to use the method in conjuncture with ensemble 
algorithms which utilize decision trees (e.g., RotationForest 
and RandomForest). We will try to determine in which 
scenarios the use of the method improves results and what 
modifications (if any) are required for the algorithm. The 
final research direction currently being considered is the 
expansion of the method to nominal values. We wish to try 
and adapt the method so that it can infer whether an item’s 
nominal attributes are unlikely when considering its assigned 
class. Techniques similar to those used by SMOTE [28] and 
similar algorithms will also be considered. 
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