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Feature selection is the process of identifying relevant features in the dataset and dis-
carding everything else as irrelevant and redundant. Since feature selection reduces the
dimensionality of the data, it enables the learning algorithms to operate more effec-
tively and rapidly. In some cases, classification performance can be improved; in other
instances, the obtained classifier is more compact and can be easily interpreted. There is
much work done on feature selection methods for creating ensemble of classifiers. Thus,
these works examine how feature selection can help ensemble of classifiers to gain diver-
sity. This paper examines a different direction, i.e. whether ensemble methodology can
be used for improving feature selection performance. In this paper we present a gen-
eral framework for creating several feature subsets and then combine them into a single
subset. Theoretical and empirical results presented in this paper validate the hypothesis
that this approach can help finding a better feature subset.

1. Introduction

Feature selection is a common issue on statistics, pattern recognition and machine
learning 7,21. The aim of feature selection is to distil the most useful subset of
features from a given subset.

There are two main strategies for performing feature selection. The first known
as filter 17 operates independent of any learning algorithm – undesirable features
are filtered out of the data before learning begins. These algorithms use heuristics
based on general characteristics of the data to evaluate the merit of feature subsets.

The second strategy argues that the bias of a particular induction algorithm
should be taken into account when selecting features. The second strategy, known as
wrapper 17, uses a learning algorithm along with a statistical re-sampling technique
such as cross-validation to select the best feature subset for this specific learning
algorithm.

Filter methods can be further divided into ranker and non-rankers. Rankers are
methods that employ some criterion to score each feature and provide a ranking.
From this ordering, several feature subsets can be chosen, either manually of setting
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a threshold. A non-ranker methods provide only a selected subset of the features
without providing any ranking.

The main advantages of the wrapper methods are: the fact that it generates
reliable evolutions and that it can be used for any induction algorithm. Nevertheless
the fact that the wrapper procedure repeatedly executes the inducer, is considered
major drawback. For this reason, wrappers may not scale well to large datasets
containing many features. Filters methods usually run faster and can scale well to
larger datasets. However their predictive performance is usually inferior to that of
the wrapper methods.

The aim of this paper is theoretically and experimentally examine whether en-
semble feature subsets can be used for improving the predictive performance of
non-ranker feature selection filters methods without significantly increase the exe-
cution time .

The rest of this paper is organized as follows: Section 2 reviews related works in
the field of feature selection and the usage of ensemble of feature selectors. Section 3
formulate the problem. Section 4 presents a new algorithm framework suggested to
the problem discussed here. Section 5 reports the experiments carried out on a real
case study. Section 6 discuss the usefulness of each method in view of the obtained
results. Finally, Section 7 concludes the work and presents further research in the
field.

2. Related work

First important aspects of features selection algorithms will be presented in Section
2.1. Then in Section 2.2 we will discuss the ensemble methodology and the recent
researches that combine feature selection with the ensemble methodology.

2.1. Feature Selection Algorithms

Feature selection algorithms search through the space of feature subsets in order to
find the best subset. This subset search has two major properties 18:

• Search Organization - How the search space of all possible feature subsets is
searched. Because it is not practical to perform an exhaustive search of all
possible feature subsets, there is a need of a heuristic search. Several heuris-
tic searches have been examined for feature selection, including: greedy hill
climbing methods 21 (with forward selection 16,5, backward elimination or
stepwise bi-directional search), best first search 26 (similar to hill climbing
but with backtracking capabilities) and genetic algorithms 35.

• Evaluation Strategy - How feature subsets are evaluated. As mentioned
above there are two main evaluation strategies: filters and wrappers. Several
evaluation methods have been developed in the literature. In this paper
we mainly use the Correlation-based Feature Subset Selection (CFS) as a
subset evaluator 11. CFS Evaluates the worth of a subset of attributes by
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considering the individual predictive ability of each feature along with the
degree of redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are preferred.
Beside the CFS, we will consider consistency subset evaluator 19.

2.2. Ensembles and Feature Selection

The main idea of ensemble methodology is to combine a set of models, each of
which solves the same original task, in order to obtain a better composite global
model, with more accurate and reliable estimates or decisions than can be obtained
from using a single model. The idea of building a predictive model by integrating
multiple models has been under investigation for a long time.

In the past few years, experimental studies conducted by the machine-learning
community show that combining the outputs of multiple classifiers reduces the
generalization error 29. Ensemble methods are very effective, mainly due to the
phenomenon that various types of classifiers have different ”inductive biases”. In-
deed, ensemble methods can effectively make use of such diversity to reduce the
variance-error 32, without increasing the bias-error. In certain situations, an en-
semble can also reduce bias-error, as shown by the theory of large margin classifiers
2.

A common strategy for manipulating the training set is to manipulate the input
attribute set. The idea is to simply give each classifier a different projection of the
training set. Ensemble feature selection methods 25 extend traditional feature selec-
tion methods by looking for a set of feature subsets that will promote disagreement
among the base classifiers. Ho 12 has shown that simple random selection of feature
subsets may be an effective technique for ensemble feature selection because the
lack of accuracy in the ensemble members is compensated for by their diversity.
Tsymbal and Puuronen 31 presented a technique for building ensembles of simple
Bayes classifiers in random feature subsets.

The hill climbing ensemble feature selection strategy 6, randomly construct the
initial ensemble. Then, an iterative refinement is performed based of hill-climbing
search in order to improve the accuracy and diversity of the base classifiers. For all
the feature subsets, an attempt is made to switch (include or delete) each feature.
If the resulting feature subset produces better performance on the validation set,
that change is kept. This process is continued until no further improvements are
obtained.

The Genetic Ensemble Feature Selection strategy uses genetic search for ensem-
ble feature selection 25. It begins with creating an initial population of classifiers
where each classifier is generated by randomly selecting a different subset of fea-
tures. Then, new candidate classifiers are continually produced by using the genetic
operators of crossover and mutation on the feature subsets. The final ensemble is
composed of the most fitted classifiers.

An approach for constructing an ensemble of classifiers using rough set theory
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was presented in 14. The method searches for a set of reducts, which include all the
indispensable attributes. A reduct represents the minimal set of attributes which
has the same classification power as the entire attribute set.

Oliveira et al. 22 suggest creating a set of feature selection solutions using a
genetic algorithm. Then they create a Pareto-optimal front in relation to two dif-
ferent objectives: accuracy on a validation set and number of features. Following
that they select the best feature selection solution. Masulli and Rovetta 20 have
employed ensemble methodology for feature selection. Nevertheless their method
was specifically developed for micro-array data, and no general framework was pro-
posed.

Several researchers examined the possibility of using multi-objective genetic
algorithms (MOGA) to create ensemble of classifiers based on feature selection.
MOGAs are based on the Pareto dominance concept. Oliveira et al. 23 proposed a
hierarchical multi-objective genetic algorithm that especially effective when classi-
fiers have to work with very low error rates. Their algorithm works in two levels.
In the first level, feature selections methods are used to generate a set of classifiers
minimizing two criteria: misclassification rate and number of features. In the second
level the algorithm chooses the best set of classifiers and combine them by maximiz-
ing the following two criteria: accuracy of the ensemble and a measure of diversity.
Radtke et al. 24 examined a similar approach, however in the second level instead
of optimizing a diversity metric, they optimize the number of active classifiers in
order to reduce computation time during classification.

Recently Torkkola and Tuv 30 and Tuv and Torkkola 33 examined the idea of
using ensemble classifiers such as decision trees in order to create a better fea-
tures ranker. They have showed that this ensemble can be very effective in variable
ranking for problems with up to a hundred thousand input attributes. Note that
this approach uses inducers for obtaining the ensemble. Thus, it concentrates on
wrapper feature selectors.

There is much work done on feature selection methods for creating ensemble of
classifiers. These works examine how feature selection can help ensemble of classi-
fiers to gain diversity. Nevertheless there is hardly works that examine the other
way around, i.e. how can ensemble of feature selectors improve the feature selection
results.

3. Problem Definition and Theoretical Observations

The problem of feature selection ensemble is that of finding the best feature subset
by combining a given set of feature selectors, such that if a specific inducer is run
on it, the generated classifier will have the highest possible accuracy. Following
Kohavi and John 17 we adopt the definition of optimal feature subset with respect
to a particular inducer.

Definition 1. Given an inducer I, a training set S with input feature set A =
{a1, a2, ..., an} and target feature y from a fixed and unknown distribution D over
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the labeled instance space, the subset B ⊆ A is said to be optimal if the expected
generalization error of the induced classifier I(πB∪yS) will be minimized over the
distribution D.

where πB∪yS represents the corresponding projection of S and I(πB∪yS) represent
a classifier which was induced by activating the induction method I onto dataset
πB∪yS.

Definition 2. Given an inducer I, a training set S with input feature set A =
{a1, a2, ..., an} and target feature y from a fixed and unknown distribution D over
the labeled instance space, and an optimal subset B, a Feature Selector FS is said to
be consistent if it selects an attribute ai ∈ B with probability p > 1/2and it selects
an attribute aj /∈ Bwith probability q < 1/2.

Definition 3. Given a set of feature subsets B1, ..., Bω the majority combination
of features subsets is a single feature subset that contains any attribute ai such

that fc(ai, B1, ..., Bω) > ω
2 where fc(ai, B1, ..., Bω) =

ω∑
j=1

g(ai, Bj) and g(ai, Bj) =
{

1 ai ∈ Bj

0 otherwise

Definition 3 refers to a simple majority voting, in which attribute ai is in-
cluded in the combined feature subset if it appears in at least half of the base
feature subsets B1, ..., Bω, where ω is the number of base feature subsets. Note that
fc(ai, B1, . . . , Bω) counts the number of base feature subsets in which ai included.

Lemma 1. A majority combination of feature subsets obtained from a given a
set of independent and consistent feature selectors FS1, . . . , FSω (where ω is the
number of feature selectors) converges to the optimal feature subset when ω →∞.

Proof. For ensuring that for attributes for which ai ∈ B are actually selected we
need to show that:

lim
ω→∞,p>1/2

p
(
fc(ai) >

ω

2

)
= 1 (1)

We denote by pj,i > 1 the probability of FSj to select ai. We denote by pi =
min(pj,i). Note that pi > 1

2 . Because the feature selectors are independent we can
use approximation binomial distribution, i.e.:

lim
ω→∞

p
(
fc(ai) >

ω

2

)
≤ lim

ω→∞,pi>1/2

ω
2∑

k=0

(
ω

k

)
pk

i (1− pi)ω−k (2)

Due to the fact that ω → ∞ we can use the central limit theorem in which,
µ = ωpi, σ =

√
ωpi(1− pi):
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lim
ω→∞,pi>1/2

ω
2∑

k=0

(
ω

k

)
pk

i (1− pi)ω−k = lim
ω→∞pi>1/2

p

(
Z >

ω
2−piω√

ωpi(1−pi)

)
=

lim
ω→∞,pi>1/2

p

(
Z >

√
ω(1/2− pi)√
pi(1− pi)

)
= p (Z > −∞) = 1 (3)

For ensuring that for attributes for which ai /∈ B are actually selected we need
to show that:

lim
ω→∞

p
(
fc(ai) <

ω

2

)
= 0 (4)

We denote by qj,i < 1/2 the probability of FSj to select ai. We denote by
qi = max(qj,i). Note that qi < 1

2 . Because the feature selectors are independent we
can use approximation binomial distribution, i.e.:

lim
ω→∞

p
(
fc(ai) <

ω

2

)
≥ lim

ω→∞,qi<1/2

ω
2∑

k=0

(
ω

k

)
qk
i (1− qi)ω−k (5)

Due to the fact that ω → ∞ we can use the central limit theorem again this
time: µ = ωqi, σ =

√
ωqi(1− qi):

lim
ω→∞,qi<1/2

ω
2∑

k=0

(
ω

k

)
qk
i (1− qi)ω−k = lim

ω→∞,qi<1/2
p

(
Z >

ω
2 − qiω√
ωqi(1− qi)

)
=

lim
ω→∞,qi<1/2

p

(
Z >

√
ω(1/2− qi)√
qi(1− qi)

)
= p (Z > ∞) = 0 (6)

4. Independent Algorithmic Framework

Roughly speaking, the feature selectors in the ensemble can be created dependently
or independently. In the dependent framework the outcome of a certain feature se-
lector affect the creation of the next feature selector. Alternatively each feature
selector is built independently and their results are combined in some fashion. In
this paper we concentrate on independent framework. Figure 1 presents the pro-
posed algorithmic framework. This simple framework gets as an input the following
arguments:

(1) A Training set (S) – A labeled dataset used for feature selectors.
(2) A set of feature selection algorithms {FS1, . . . , FSξ} – A feature selection al-

gorithm is an algorithm that obtains a training set and outputs a subset of
relevant features. Recall that in this paper we employ non-wrapper and non-
ranker feature selectors.

(3) Ensemble Size (ω)
(4) Ensemble generator (G) – This component is responsible for generating a set

of ω pairs of feature selection algorithms and their corresponding training sets.
We refer to G as a class that implements a method called ”genrateEnsemble”.
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(5) Combiner (C) – The combiner is responsible to create the subsets and combine
them into a single subset. We refer to C as a class that implements the method
”combine”.

The proposed algorithm simply uses the ensemble generator to create a set of
pairs of feature selection algorithms and their corresponding training sets. Then
it call the combine method in C to execute the feature selection algorithm on its
corresponding dataset and then combine the various feature subsets into a single
subset.

Require: S, {FS1, . . . , FSξ}, G, C

Ensure: A combined feature subset.
1: {(S1, FS1), . . . , (Sω, FSω)} ← G.genrateEnsemble (S, (FS1, . . . , FSξ), ω)
2: Return C.combine ({(S1, FS1), . . . , (Sω, FSω)})

Fig. 1. Pseudo-code of Independent Algorithmic Framework for Feature Selection

4.1. Combining Procedure

We begin by describing two implementations for the combiner component. In the
literature there are two types of methods to combine the results of the ensemble
members: weighting methods and meta-learning methods. In this paper we concen-
trate on weighting methods. The weighting methods are best suited for problems
where the individual members have comparable success or when we would like to
avoid problems associated with added learning (such as over-fitting or long training
time).

4.1.1. Simple Weighted Voting

Figure 2 presents an algorithm for selecting a feature subset based on the weighted
voting of feature subsets. As this is an implementation of the abstract combiner
used in Figure 1, the input of the algorithm is a set of pairs; every pair is built
from one feature selector and a training set. It executes the feature selector on
its associated training set to obtain a feature subset. Then the algorithm employs
some weighting method and attaches a weight to every subset. Finally it uses a
weighted voting to decide which attribute should be included in the final subset.
We considered the following methods for weighting the subsets:

(1) Majority Voting – In this weighting method the same weight is attached to
every subset such that the total weights is 1, i.e. if there are ωsubsets then
the weight is simply1/ω. Note that the inclusion of a certain attribute in the
final result requires that this attribute will appear in at least ω/2 subsets. This
method should have a low false positive rate, because selecting an irrelevant
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attribute will take place only if at least ω/2 feature selections methods will
decide to select this attribute.

(2) ”Take-It-All” – In this weighting method all subsets obtain a weight that is
greater than 0.5. This leads to the situation in which any attribute that has been
in at least one of the subsets will be included in the final result. This method
should have a low false negative rate, because loosing a relevant attribute will
take place only if all feature selections methods will decide to filter out this
attribute.

(3) ”Smaller is Heavier” – The weight for each selector is defined by its bias
to smallest subset. Selectors that tend to provide small subset will gain more
weight than selectors that tend to provide large subset. This approach is in-
spired by the fact that the precision rate of selectors tend to decrease as the
size of the subset increases. This approach can be used to avoid noise caused
by feature selectors that tend to select most of the possible attributes. More
specifically the weights are defined as (note that in this case the weights are
normalized and sum up to 1):

wi =
|Bi|

ω∑
j=1

|Bj |

/
ω∑

k=1

|Bk|
ω∑

j=1
|Bj |

(7)

Require: {(S1, FS1), . . . , (Sω, FSω)}
Ensure: A Combined feature subset
1: for all (Si, FSi) ∈ F do
2: Bi = FSi.getSelectedFeatures(Si)
3: end for
4: {w1, . . . , wω} = getWeight ({B1, ..., Bω})
5: B ← ∅
6: for all aj ∈ A do
7: totalWeight=0
8: for i = 1 to ω do
9: if aj ∈ Bi then

10: totalWeight ← totalWeight+Wi

11: end if
12: end for
13: if totalWeight> 0.5 then
14: B ← B ∪ aj

15: end if
16: end for
17: Return B

Fig. 2. Pseudo-code of combining procedure
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4.1.2. Näıve Bayes Weighting using Artificial Contrasts

Using Bayesian approach a certain attribute should be filtered out if:
P (ai /∈ B |B1, ..., Bω) > 0.5 or P (ai /∈ B |B1, ..., Bω) > P (ai ∈ B |B1, ..., Bω)

where B ⊆ A denote the set of relevant features
By using the Bayes Theorem we obtain:

P (ai /∈ B |B1, ..., Bω) =
P (B1, ..., Bω |ai /∈ B )P (ai /∈ B)

P (B1, ..., Bω)
(8)

However calculating the above probability as-is might be difficult. Thus we are
using the Näıve Bayes combination. This is a well-known combining method due to
its simplicity and its relatively outstanding results. According to the näıve Bayes
assumption, the results of the feature selectors are independent given the fact that
the attribute ai is not relevant. Thus, using this assumption we obtain:

P (B1, ..., Bω |ai /∈ B )P (ai /∈ B)
P (B1, ..., Bω)

=
P (ai /∈ B)

ω∏
j=1

P (Bj |ai /∈ B )

P (B1, ..., Bω)
(9)

Using Bayes Theorem again:

P (ai /∈B)
ω∏

j=1
P (Bj |ai /∈B )

P (B1,...,Bω) =
P (ai /∈B)

ω∏
j=1

P (ai /∈B|Bj )
P (ai /∈B) P (Bj)

P (B1,...,Bω) =
ω∏

j=1
P (Bj)

ω∏
j=1

P (ai /∈B|Bj )

P (B1,...,Bω)·P ω−1(ai /∈B)

(10)

Thus a certain attribute should be filtered out if:
ω∏

j=1
P (Bj)

ω∏
j=1

P (ai /∈B|Bj )

P (B1,...,Bω)·P ω−1(ai /∈B) >

ω∏
j=1

P (Bj)
ω∏

j=1
P (ai∈B|Bj )

P (B1,...,Bω)·P ω−1(ai∈B) (11)

or after omitting the common term from both sides:
ω∏

j=1
P (ai /∈B|Bj )

P ω−1(ai /∈B) >

ω∏
j=1

P (ai∈B|Bj )

P ω−1(ai∈B) (12)

Assuming that the a-priori probability for ai to be relevant is equal to that of not
being relevant:

ω∏

j=1

P (ai /∈ B |Bj ) >

ω∏

j=1

P (ai ∈ B |Bj ) (13)

Using the complete probability theorem:
ω∏

j=1

P (ai /∈ B |Bj ) >

ω∏

j=1

(1− P (ai /∈ B |Bj )) (14)
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Because we are using non-ranker feature selectors the above probability is estimated
using:

P (ai /∈ B |Bj ) ≈
{

P (a /∈ B |a ∈ Bj ) if ai ∈ Bj

P (a /∈ B |a /∈ Bj ) if ai /∈ Bj
(15)

Note that P (a /∈ B |a ∈ Bj ) does not refer to a specific attribute, but to the general
bias of the feature selector j. In order to estimate the remaining probabilities, we
are adding to the dataset a set of φ contrast attributes that are known to be truly
irrelevant and analyzing the number of artificial features φj included in the subset
Bjobtained by the feature selector j:

P (a ∈ Bj |a /∈ B ) =
φj

φ
; P (a /∈ Bj |a /∈ B ) = 1− φj

φ
(16)

The artificial contrast variables are obtained by randomly permuting the values of
the original n attributes across m instances. Generating just random attributes from
some simple distribution, such as Normal Distribution, is not sufficient, because
the values of original attributes may exhibit some special structure. Using Bayes
Theorem:

P (a /∈ B |a ∈ Bj ) =
P (a /∈ B)P (a ∈ Bj |a /∈ B )

P (a ∈ Bj)
=

P (a /∈ B)
P (a ∈ Bj)

φj

φ
(17)

P (a /∈ B |a /∈ Bj ) =
P (a /∈ B)P (a /∈ Bj |a /∈ B )

P (a /∈ Bj)
=

P (a /∈ B)
1− P (a ∈ Bj)

(1− φj

φ
) (18)

where P (a ∈ Bj) = |Bj |
n+φ

4.2. Feature Ensemble Generator

In order to make the ensemble more effective, there should be some sort of di-
versity between the feature subsets. Diversity may be obtained through different
presentations of the input data or variations in feature selector design.

4.2.1. Multiple Feature Selectors

In this approach we simply use a set of different feature selection algorithms. The
basic assumption is that using different algorithms have different inductive biases’
and thus they will create different feature subsets.

In this paper we examined the proposed method mainly using the Correlation-
based Feature Subset Selection (CFS) as a subset evaluator 11. As for the search
organization the following methods have been examined: Best First Search 26, For-
ward Selection Search 16 by using Gain Ratio 28, Chi-Square 15, OneR classifier 13,
and Information Gain 27.

Beside the CFS, we also have considered other evaluation methods such as
consistency subset evaluator 19 and the the wrapper subset evaluator with simple
classifiers (K-nearest neighbors 1, logistic regression 4 and näıve bayes 9)
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4.2.2. Bagging

The most well-known independent method is bagging (bootstrap aggregating). In
this case each feature selector is executed on a sample of instances taken with
replacement from the training set. Usually each sample size is equal to the size of
the original training set. Note that since sampling with replacement is used, some
of the instances may appear more than once in the same sample and some may not
be included at all. So the training samples are different from each other, but are
certainly not independent from statistics point of view

5. Experimental Study

In order to illustrate the theoretical results shown above, a comparative experiment
has been conducted on benchmark data sets. The following subsections describe the
experimental set-up and the obtained results.

5.1. Dataset Used

The selected algorithms were examined on 10 data sets of which have been selected
manually from the UCI Machine Learning Repository. The datasets chosen vary
across a number of dimensions such as: the number of target classes, the number
of instances, the number of input features and their type (nominal, numeric).

5.2. Algorithms Used

Table 1 presents 10 feature ensemble alternatives examined in this experiment.
The first column indicates the abbreviation used to denote each alternative. All
multiple generators used 5 different feature selection algorithms. Recall that all
the algorithms use Correlation-based Feature Subset Selection (CFS) as a subset
evaluator. The algorithms differ by their search method: Best First Search (BFS),
Forward Selection Search by using Gain Ratio, Chi-Square, OneR classifier, and
Information Gain. The bagging approach was used by employing the CFS with
BFS as a search method.

5.3. Evaluation Method

Based on the problem formulation described above, the main goal of the feature
selection is to minimize the generalization error of a particular inducer.

J48 algorithm is used as the induction algorithm. J48 is a java version of the
well-known C4.5 algorithm 28.

In order to estimate the generalization error 10-fold cross-validation procedure
was used. Each dataset was randomly divided into 10 equal parts in order to provide
10 different iterations of feature selection and classification. For each iteration 1/10
of the dataset was used as the test set and 9/10 of the dataset was used as train.
All experiments were performed in the WEKA framework 34.
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Table 1. Accuracy Results of Various Ensemble Alternatives

Alternative Generator Combiner
BMV10 Bagging of size 10 Majority Voting
BMV5 Bagging of size 5 Majority Voting
BSH10 Bagging of size 10 ”Smaller is Heavier”
BSH5 Bagging of size 5 ”Smaller is Heavier”
BTA10 Bagging of size 10 ”Take-It-All”
BTA5 Bagging of size 5 ”Take-It-All”
MMV Multiple Majority Voting
MNB Multiple Näıve Bayes Weighting using Artificial Contrasts
MSH Multiple ”Smaller is Heavier”
MTA Multiple ”Take-It-All”

5.4. Predictive Power Results

Table 2 summarizes the experimental results of the various feature ensemble im-
plementations. It can be seen that the MTA (Multiple Take-It-All) implementation
achieved on average the best results. On the other hand MNB (Multiple Using Näıve
Bayes) obtained on average the worst results. Still there is one dataset (Bridges)
in which MNB had significantly outperforms MTA. All other methods achieved on
average comparable results.

For benchmarking the ensemble approach, all the feature selection algorithms
mentioned above were separately experimented on the same datasets. Moreover
we examined the result obtained with no feature selection. Table 3 summarizes
the comparison of MTA with these algorithms. The second column indicates the
accuracy obtained by employing J4.8 algorithm on the original feature set (i.e.
without running any feature selection). The third column refers to the accuracy
of the MTA approach (as it also appears in Table 2). The subsequent columns
(columns 4 to 8) indicate the accuracy obtained by employing a single filter feature
selection approach followed by J4.8 algorithm. The filter feature selection methods
that were examined are the same methods that were used in generation of the
ensemble (see Section 4.2.1). The superscript ”+” indicates that the accuracy rate
of MTA was significantly higher than the corresponding algorithm at confidence
level of 5%. The ”–” superscript indicates the accuracy was significantly lower.

When observing the results, two important observations appear: First, as seen on
Table 3, MTA did much better than other methods for feature selection. Applying
t-test (paired two sample for means) validates the above observation, by providing
p < 0.05 for all methods vs. MTA. Statistically the empirical results validate the
theoretical results shown on Section 3. Ensemble method may yield better feature
subset when the goal is to improve classification accuracy.

Another important observation from Table 3 indicates that employing MTA
before using induction algorithm provides better results than not using MTA. Using



June 26, 2007 9:13 WSPC/INSTRUCTION FILE fse

Improving Non-ranker Feature Selection Filters 9

T
a
b
le

2
.
A

cc
u
ra

cy
R

es
u
lt

s
o
f
V

a
ri

o
u
s

E
n
se

m
b
le

A
lt

er
n
a
ti

v
es

D
at

as
et

B
M

V
10

B
M

V
5

B
SH

10
B

SH
5

B
T
A

10
B

T
A

5
M

M
V

M
N

B
M

SH
M

T
A

A
rr

hy
th

m
ia

68
.1

3
67

.9
3

69
.5

1
67

.8
7

64
.4

4
65

.2
5

66
.8

9
66

.1
8

67
.3

4
68

.7
1

A
ud

io
lo

gy
72

.0
2

71
.4

9
72

.0
2

71
.4

9
73

.3
5

73
.4

8
71

.8
1

64
.9

8
71

.8
9

77
.5

4
B

al
an

ce
78

.1
8

78
.1

8
78

.1
8

78
.1

8
78

.1
8

78
.1

8
77

.6
1

78
.1

8
77

.6
1

78
.1

8
B

ri
dg

es
57

.8
8

58
.4

3
57

.8
8

57
.6

0
58

.1
8

58
.7

3
58

.4
5

62
.6

2
58

.1
7

58
.4

3
C

ar
77

.5
0

77
.5

0
77

.5
0

77
.5

0
78

.0
5

77
.5

0
77

.5
0

77
.5

0
77

.5
0

86
.3

9
K

r-
vs

-k
p

90
.3

4
90

.3
4

90
.3

4
90

.3
4

90
.3

4
90

.3
4

90
.3

4
71

.1
5

90
.3

4
90

.6
9

L
et

te
r

85
.9

0
85

.9
0

85
.9

0
85

.9
0

85
.9

0
85

.9
0

85
.9

0
85

.5
3

85
.9

0
85

.9
7

P
en

di
gi

ts
95

.1
8

95
.1

4
95

.0
3

95
.1

4
95

.2
1

95
.2

1
95

.2
0

95
.2

9
95

.2
0

95
.6

3
So

yb
ea

n
88

.9
5

89
.0

8
88

.7
8

89
.0

8
88

.6
1

88
.6

5
88

.5
2

87
.7

9
88

.5
2

88
.4

4
Sp

am
ba

se
92

.0
3

91
.9

4
91

.9
4

91
.9

4
92

.4
4

92
.0

3
92

.3
4

91
.4

6
92

.2
7

92
.3

8
Sp

lic
e

93
.3

0
93

.3
0

93
.3

0
93

.3
0

93
.5

9
93

.2
6

93
.3

0
89

.7
2

93
.3

0
93

.3
0



June 26, 2007 9:13 WSPC/INSTRUCTION FILE fse

10 Rokach and Chizi

Table 3. Classification Results

Datasets J48
With-
out FS

MTA CFS-
BFS

CFS-
For-
ward
Se-
lec-
tion
Search-
Gain
Ratio

CFS-
For-
ward
Selec-
tion
Search-
Chi
Square

CFS-
For-
ward
Selec-
tion
Search-
OneR

CFS-
For-
ward
Se-
lec-
tion
Search-
Infor-
ma-
tion
Gain

Arrhythmia61.84+ 68.71 68.19 68.58 66.89 66.04 64.93+

Audiology 75.00 77.53 72.01+ 73.27+ 71.40+ 71.73+ 71.89
Balance 74.40+ 78.17 77.61+ 78.17 77.61+ 77.61+ 77.61+

Bridges 55.55+ 58.43 57.59+ 58.19 58.16 58.43 58.16
Car 89.45 86.38 77.50+ 77.50+ 77.50+ 86.38 77.50+

Kr-vs-
kp

99.63− 90.68 90.33 71.15+ 90.33 90.33 90.33

Letter 85.92 85.97 85.89 85.37+ 85.89 85.97 85.89
Pendigits 95.93 95.62 95.04 95.25 95.19 95.62 95.19
Soybean 88.12 88.44 88.57 88.44 88.44 88.44 88.45
Spambase 92.20 92.37 92.00 90.51+ 92.37 90.88 92.06
Splice 91.88+ 93.29 93.29 89.72+ 93.29 93.29 93.29

t-test (paired two sample for means) validates the above by providing p < 0.05
for J48 without any feature selection procedure vs. MTA. When handling noisy
data sets which involved irrelevant and redundant information, feature selection
can provides better classification accuracy. Nevertheless, this improvement is not
guaranteed. Some feature selection techniques might reduce the accuracy in certain
datasets (see for instance the Audiology dataset). However in this experimental
study, it becomes evident that MTA has almost never reduced the accuracy of the
inducer (the only dataset in which MTA has significantly reduced accuracy was
Kr-vs-kp). Thus, the MTA can be referred as a more reliable preprocessing step for
induction algorithm.

5.5. Dimensionality Reduction Results

Table 4 presents the number of features selected by each one of the methods. Not
surprisingly MTA has selected the largest feature subset. This is can be explained
by the fact that MTA takes any feature that appears at least once. As for BTA5
and BTA10 (which also use the ”Take-It-All” strategy), their feature subset size
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is smaller than the MTA, because the random bagging can be considered as pre-
filtering which results with smaller base feature subsets.

In most of the cases there is correlation between the classification accuracy
and the feature subsets. This observation indicates that filters methods usually
over-filter the feature set, namely these methods remove relevant features that can
contribute to the classifier performance.

5.6. Comparing to Wrapper approach

In this section we compare the performance of the MTA (Multiple-Take-It-All)
and MMV (Majority Voting) with the performance of a GA-based feature selector
using wrapper approach as a subset evaluator. The wrapper evaluator was set to
perform 5 folds while using the J4.8 as the base classifier. Following 35 we set the
GA according to the following parameter settings:

Probability of crossover: 0.6 Number of generations: 20 Probability of mutation:
0.001 Population Size: 50

Moreover we also examine the performance of revised versions of MTA and
MMV that employ wrapper as a subset evaluator (instead of CFS) and denote
them as MTA-W and MMV-W respectively.

Table 5 presents the obtained results. For each method we provide the obtained
accuracy and the number of selected features. The superscript ”-” indicates that
the accuracy rate of MTA was significantly lower than the corresponding algo-
rithm at confidence level of 5%. The results indicate that in most of the cases the
wrapper methods outperform the filters ensemble. However it is interesting to note
that MTA-W and MMV-W have obtained comparable results to GA-based feature
selection.

Using only classification accuracy as the only performance measure, is in practice
not necessarily optimal, as the feature selectors that are given more execution time
may have a higher accuracy, but also an overall higher cost. Thus, there is a trade-
off between the execution time and the classification accuracy. Table 6 provides
information regarding the execution time of the feature selection and the subsequent
induction of the classifier. GA method is around 500 times slower than MTA. Thus,
the practitioner should decide if she is ready to compromise accuracy for getting the
results faster. Note that the execution time of MMV is faster than MTA, because
MMV creates smaller feature subsets which results with a shorter training time.

5.7. Filtering irrelevant attributes

Following Guyon 10 we tested the ability of the various proposed feature selectors
to filtering irrelevant attributes. For this purpose we added to every training date
100 random features distributed similarly to the real features in the same way
we created the artificial contrast variables (see Section 4.1.2). In what follows we
refer to such features as probes to distinguish them from the real features. This
will allow us to rank algorithms according to their ability to filter out irrelevant
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features. The method with smallest number of random probes in the feature set
wins. Table 7 presents the mean number of features selected by MTA and MMV,
the mean number of probes selected and the accuracy over 10-fold cross validation.
The results indicate that MMV is usually more efficient in filtering random probes.
However this capability is gained by compromising the classifier accuracy.

5.8. Using various subset evaluators

In this section we repeat the above experimental study using the same search or-
ganization methods but but instead of using a single subset evaluator (CFS) for all
base feature selectors, we are using the following five different subset evaluators:

• Consistency Subset evaluator
• CFS
• Wrapper Subset evaluator with the K-nearest neighbors classifier
• Wrapper Subset evaluator with simple logistic regression
• Wrapper Subset evaluator with simple näıve bayes classifier

Note that in evaluators 3 to 5 (wrapper evaluation methods) we have not used
the targeted classifier (J4.8) but simple classifiers that were selected due to their
training speedup when compared to more discriminant approaches.

Table 8 presents the results obtained by using various subset evaluators. As
oppose to the first experiment (see Table 2), the new results indicate that the dif-
ference between MTA and MMV are now negligible. Both MNB and MSH obtained
almost the same accuracy performance as MTA. However MTA used 3 or 4 times
more features than the MNB and MSH respectively.

6. Discussion

It appears from the experimental study that the MTA method (Multiple-Take-It-
All) obtained the best results because it compensates in part the weakness of filter
feature selection methods. This is especially true if the base attribute selectors select
only a small portion of the original features and accidently filter out unnoticeable
but still relevant features (over-filtering). The over-filtering can be explained by
the fact the filters methods does not take into account the targeted classifier. The
experimental study indicates that majority voting (MMV) might not be sufficient
to compensate over filtering. This argument is supported by the results presented
in Table 5. When wrapper approach is used instead of filtering and subsequently
over-filtering is less likely, then MMV-W performs as well as MTA-W. Thus MTA
is preferred approach if either the cost or the chance of losing relevant information
is high . On the other hand, MMV is preferred if the dataset has many irrelevant
features because the chance that an irrelevant feature will be selected by at least
half of the feature selectors is low. The results presented in Table 7 supports this
argument by showing that MMV was capable to filter out the irrelevant features in
7 of 11 cases (as oppose of 4 of 11 cases with MTA).
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The relatively poor results of MNB (Multiple Using Näıve Bayes) in Table 2
might be explained by the fact that the feature selectors are not really independent
as MNB requires. Recall that all feature selectors used the CFS as a subset evalu-
ator. Thus all base feature selectors are biased to the same subset. However when
different subset evaluators have been used, MNB provided comparable accuracy
but with a smaller feature subset.

The results of MSH and MMV in Table 2 are almost identical. This can be
explained by the fact that if the base feature subsets are similar in size then MSH
behaves similarly to MMV. In fact if the size of all subsets is identical (|Bj | = |Bi|)
then the weights of all subsets is 1

ω . The MSH strategy might provide a different
result when all feature subsets have similar accuracy performance but have different
sizes. However when various subset evaluators are used then the results of MSH
depart from the results of MMV (see in Table 8). Thus, MSH provides a potential
contribution when the base feature selectors are diverse.

7. Conclusions

This paper examines theoretically and experimentally whether ensemble of feature
subsets can be used for improving feature selection performance.

Theoretically, it has been shown that using an ensemble method provides better
subset than using other feature selection technique. As mentioned on Lemma 1, the
probability of choosing “good” attribute for the subset is much higher than on
other feature selection technique. More, this probability becomes higher as the size
of the ensemble become bigger. Empirically, the experiments shown on this paper
provides validation for the theoretical results. This paper examines several methods
for ensemble feature selection.

From the empirical study, we can conclude that ensemble approach can effi-
ciently achieve high degree of dimensionality reduction and enhance or maintain
predictive accuracy with selected features. Selecting the most suitable ensemble
method for a given problem depends on the dataset characteristics (such as the
portion of irrelevant features), the base feature selectors and the decision maker
preferences regarding the possibility of losing relevant information.

Additional issues to be further studied include: examining the effectiveness of
the proposed methodology using other inducers like neural networks and developing
a similar methodology for ranker feature selector filters.
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Table 6. Execution time of Filter Feature Selection Ensemble and Wrapper Methods

Dataset GA MMV-W MTA-W MMV MTA
Exec. Time Exec. Time Exec. Time Exec. Time Exec. Time

Arrhythmia 12650.5 14523.3 14523.9 16.25 16.52
Audiology 167.41 265.13 269.06 0.67 1.09
Balance 6.06 8.484 8.562 0.17 0.19
Bridges 10.2 11.22 11.32 0.09 0.14

Car 7.67 15.41 12.78 0.25 0.53
Kr-vs-kp 620.74 816.44 739.19 5.55 5.52
Letter 167782.1 136292.92 136307.61 48.75 60.13

Pendigits 10666.47 12799.764 12801.99 24.17 24.7
Soybean 176.09 207.05 209.14 0.72 0.7

Spambase 7339.16 5871.328 5871.73 13.61 13.48
Splice 2638.86 401.37 405.63 21.5 22.31
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20 Rokach and Chizi
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