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Abstract The idea of decomposition methodology is to break down a complex Data Min-
ing task into several smaller, less complex and more manageable, sub-tasks that
are solvable by using existing tools, then joining their solutions together in or-
der to solve the original problem. In this chapter we provide an overview of
decomposition methods in classification tasks with emphasis on elementary de-
composition methods. We present the main properties that characterize various
decomposition frameworks and the advantages of using these framework. Fi-
nally we discuss the uniqueness of decomposition methodology as opposed to
other closely related fields, such as ensemble methods and distributed data min-
ing.
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1. Introduction

One of the explicit challenges in Data Mining is to develop methods that will
be feasible for complicated real-world problems. In many disciplines, when a
problem becomes more complex, there is a natural tendency to try to break
it down into smaller, distinct but connected pieces. The concept of breaking
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down a system into smaller pieces is generally referred to asdecomposition.
The purpose of decomposition methodology is to break down a complex prob-
lem into smaller, less complex and more manageable, sub-problems that are
solvable by using existing tools, then joining them together to solve the ini-
tial problem. Decomposition methodology can be considered as an effective
strategy for changing the representation of a classification problem. Indeed,
Kusiak (2000) considers decomposition as the “most useful form of transfor-
mation of data sets”.

The decomposition approach is frequently used in statistics, operations re-
search and engineering. For instance, decomposition of time series is consid-
ered to be a practical way to improve forecasting. The usual decomposition
into trend, cycle, seasonal and irregular components was motivated mainly
by business analysts, who wanted to get a clearer picture of the state of the
economy (Fisher, 1995). Although the operations research community has ex-
tensively studied decomposition methods to improve computational efficiency
and robustness, identification of the partitioned problem model has largely re-
mained an ad hoc task (Heet al., 2000).

In engineering design, problem decomposition has received considerable
attention as a means of reducing multidisciplinary design cycle time and of
streamlining the design process by adequate arrangement of the tasks (Kusiak
et al., 1991). Decomposition methods are also used in decision-making theory.
A typical example is the AHP method (Saaty, 1993). In artificial intelligence
finding a good decomposition is a major tactic, both for ensuring the transpar-
ent end-product and for avoiding a combinatorial explosion (Michie, 1995).

Research has shown that no single learning approach is clearly superior for
all cases. In fact, the task of discovering regularities can be made easier and
less time consuming by decomposition of the task. However, decomposition
methodology has not attracted as much attention in the KDD and machine
learning community (Buntine, 1996).

Although decomposition is a promising technique and presents an obviously
natural direction to follow, there are hardly any works in the Data Mining lit-
erature that consider the subject directly. Instead, there are abundant practical
attempts to apply decomposition methodology to specific, real life applications
(Buntine, 1996). There are also many discussions on closely related problems,
largely in the context of distributed and parallel learning (Zaki and Ho, 2000)
or ensembles classifiers (see Chapter 45 in this volume). Nevertheless, there
are a few important works that consider decomposition methodology directly.
Various decomposition methods have been presented (Kusiak, 2000). There
was also suggestion to decompose the exploratory data analysis process into
3 parts:model search, pattern search, andattribute search(Bhargava, 1999).
However, in this case the notion of “decomposition” refers to the entire KDD
process, while this chapter focuses on decomposition of the model search.
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In the neural network community, several researchers have examined the
decomposition methodology (Hansen, 2000). The“mixture-of-experts”(ME)
method decomposes the input space, such that each expert examines a different
part of the space (Nowlan and Hinton, 1991). However, the sub-spaces have
soft “boundaries”, namely sub-spaces are allowed to overlap. Figure 46.1 il-
lustrates an n-expert structure. Each expert outputs the conditional probability
of the target attribute given the input instance. A gating network is responsi-
ble for combining the various experts by assigning a weight to each network.
These weights are not constant but are functions of the input instancex.

Figure 46.1. Illustration of n-Expert Structure.

An extension to the basic mixture of experts, known as hierarchical mixtures
of experts (HME), has been proposed by Jordan and Jacobs (1994). This exten-
sion decomposes the space into sub-spaces, and then recursively decomposes
each sub-space to sub-spaces.

Variation of the basic mixtures of experts methods have been developed
to accommodate specific domain problems. A specialized modular network
called the Meta-pi network has been used to solve the vowel-speaker problem
(Hampshire and Waibel, 1992; Penget al., 1995). There have been other ex-
tensions to the ME such as nonlinear gated experts for time-series (Weigend
et al., 1995); revised modular network for predicting the survival of AIDS pa-
tients (Ohno-Machado and Musen, 1997); and a new approach for combining
multiple experts for improving handwritten numerals recognition (Rahman and
Fairhurst, 1997).
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However, none of these works presents a complete framework that considers
the coexistence of different decomposition methods, namely: when we should
prefer a specific method and whether it is possible to solve a given problem
using a hybridization of several decomposition methods.

2. Decomposition Advantages

2.1 Increasing Classification Performance (Classification
Accuracy)

Decomposition methods can improve the predictive accuracy of regular
methods. In fact Sharkey (1999) argues that improving performance is the
main motivation for decomposition. Although this might look surprising at
first, it can be explained by the bias-variance tradeoff. Since decomposition
methodology constructs several simpler sub-models instead a single compli-
cated model, we might gain better performance by choosing the appropriate
sub-models’ complexities (i.e. finding the best bias-variance tradeoff). For in-
stance, a single decision tree that attempts to model the entire instance space
usually has high variance and small bias. On the other hand, Naı̈ve Bayes can
be seen as a composite of single-attribute decision trees (each one of these
trees contains only one unique input attribute). The bias of the Naı̈ve Bayes
is large (as it can not represent a complicated classifier); on the other hand, its
variance is small. Decomposition can potentially obtain a set of decision trees,
such that each one of the trees is more complicated than a single-attribute tree
(thus it can represent a more complicated classifier and it has lower bias than
the Näıve Bayes) but not complicated enough to have high variance.

There are other justifications for the performance improvement of decompo-
sition methods, such as the ability to exploit the specialized capabilities of each
component, and consequently achieve results which would not be possible in a
single model. An excellent example to the contributions of the decomposition
methodology can be found in Baxt (1990). In this research, the main goal was
to identify a certain clinical diagnosis. Decomposing the problem and building
two neural networks significantly increased the correct classification rate.

2.2 Scalability to Large Databases

One of the explicit challenges for the KDD research community is to de-
velop methods that facilitate the use of Data Mining algorithms for real-world
databases. In the information age, data is automatically collected and therefore
the database available for mining can be quite large, as a result of an increase
in the number of records in the database and the number of fields/attributes in
each record (high dimensionality).



Decomposition Methodology forKnowledge Discovery and Data Mining 985

There are many approaches for dealing with huge databases including: sam-
pling methods; massively parallel processing; efficient storage methods; and
dimension reduction. Decomposition methodology suggests an alternative way
to deal with the aforementioned problems by reducing the volume of data to
be processed at a time. Decomposition methods break the original problem
into several sub-problems, each one with relatively small dimensionality. In
this way, decomposition reduces training time and makes it possible to apply
standard machine-learning algorithms to large databases (Sharkey, 1999).

2.3 Increasing Comprehensibility

Decomposition methods suggest a conceptual simplification of the original
complex problem. Instead of getting a single and complicated model, decom-
position methods create several sub-models, which are more comprehensible.
This motivation has often been noted in the literature (Prattet al., 1991; Hrycej,
1992; Sharkey, 1999). Smaller models are also more appropriate for user-
driven Data Mining that is based onvisualization techniques. Furthermore, if
the decomposition structure is induced by automatic means, it can provide new
insights about the explored domain.

2.4 Modularity

Modularity eases the maintenance of the classification model. Since new
data is being collected all the time, it is essential once in a while to execute a
rebuild process to the entire model. However, if the model is built from several
sub-models, and the new data collected affects only part of the sub-models, a
more simple re-building process may be sufficient. This justification has often
been noted (Kusiak, 2000).

2.5 Suitability for Parallel Computation

If there are no dependencies between the various sub-components, then par-
allel techniques can be applied. By using parallel computation, the time needed
to solve a mining problem can be shortened.

2.6 Flexibility in Techniques Selection

Decomposition methodology suggests the ability to use different inducers
for individual sub-problems or even to use the same inducer but with a differ-
ent setup. For instance, it is possible to use neural networks having different
topologies (different number of hidden nodes). The researcher can exploit this
freedom of choice to boost classifier performance.
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The first three advantages are of particular importance in commercial and
industrial Data Mining. However, as it will be demonstrated later, not all de-
composition methods display the same advantages.

3. The Elementary Decomposition Methodology

Finding an optimal or quasi-optimal decomposition for a certain supervised
learning problem might be hard or impossible. For that reason Rokach and
Maimon (2002) proposedelementary decomposition methodology. The ba-
sic idea is to develop a meta-algorithm that recursively decomposes a classi-
fication problem using elementary decomposition methods. We use the term
“elementary decomposition” to describe a type of simple decomposition that
can be used to build up a more complicated decomposition. Given a certain
problem, we first select the most appropriate elementary decomposition to that
problem. A suitable decomposer then decomposes the problem, and finally a
similar procedure is performed on each sub-problem. This approach agrees
with the “no free lunch theorem”, namely if one decomposition is better than
another in some domains, then there are necessarily other domains in which
this relationship is reversed.

For implementing this decomposition methodology, one might consider the
following issues:

What type of elementary decomposition methods exist for classification
inducers?

Which elementary decomposition type performs best for which prob-
lem? What factors should one take into account when choosing the ap-
propriate decomposition type?

Given an elementary type, how should we infer the best decomposition
structure automatically?

How should the sub-problems be re-composed to represent the original
concept learning?

How can we utilize prior knowledge for improving decomposing meth-
odology?

Figure 46.2 suggests an answer to the first issue. This figure illustrates a
novel approach for arranging the different elementary types of decomposition
in supervised learning (Maimon and Rokach, 2002).

In intermediate conceptdecomposition, instead of inducing a single compli-
cated classifier, several sub-problems with different and more simple concepts
are defined. The intermediate concepts can be based on an aggregation of the
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Figure 46.2. Elementary Decomposition Methods in Classification.

original concept’s values (concept aggregation) or not (function decomposi-
tion).

Classical concept aggregation replaces the original target attribute with a
function, such that the domain of the new target attribute is smaller than the
original one.

Concept aggregation has been used to classify free text documents into pre-
defined topics (Buntine, 1996). This paper suggests breaking the topics up
into groups (co-topics). Instead of predicting the document’s topic directly, the
document is first classified into one of the co-topics. Another model is then
used to predict the actual topic in that co-topic.

A general concept aggregation algorithm calledError-Correcting Output
Coding(ECOC) which decomposes multi-class problems into multiple, two-
class problems has been suggested by Dietterich and Bakiri (1995). A classifier
is built for each possible binary partition of the classes. Experiments show that
ECOC improves the accuracy of neural networks and decision trees on several
multi-class problems from the UCI repository.

The idea to decompose aK class classification problems intoK two class
classification problems has been proposed by Anandet al. (1995). Each prob-
lem considers the discrimination of one class to the other classes. Lu and
Ito (1999) extend the last method and propose a new method for manipulating
the data based on the class relations among training data. By using this method,
they divide aK class classification problem into a series ofK(K − 1)/2 two-
class problems where each problem considers the discrimination of one class
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to each one of the other classes. They have examined this idea using neural
networks.

Fürnkranz (2002) studied the round-robin classification problem (pairwise
classification), a technique for handling multi-class problems, in which one
classifier is constructed for each pair of classes. Empirical study has showed
that this method can potentially improve classification accuracy.

Function decomposition was originally developed in the Fifties and Sixties
for designing switching circuits. It was even used as an evaluation mecha-
nism for checker playing programs (Samuel, 1967). This approach was later
improved by Biermannet al. (1982). Recently, the machine-learning commu-
nity has adopted this approach. Michie (1995) used a manual decomposition
of the problem and an expert-assisted selection of examples to construct rules
for the concepts in the hierarchy. In comparison with standard decision tree
induction techniques, structured induction exhibits about the same degree of
classification accuracy with the increased transparency and lower complexity
of the developed models. Zupanet al. (1998) presented a general-purpose
function decomposition approach for machine-learning. According to this ap-
proach, attributes are transformed into new concepts in an iterative manner
and create a hierarchy of concepts. Recently, Long (2003) has suggested using
a different function decomposition known as bi-decomposition and shows it
applicability in data mining.

Original Conceptdecomposition means dividing the original problem into
several sub-problems by partitioning the training set into smaller training sets.
A classifier is trained on each sub-sample seeking to solve the original prob-
lem. Note that this resembles ensemble methodology but with the following
distinction: each inducer uses only a portion of the original training set and
ignores the rest. After a classifier is constructed for each portion separately,
the models are combined in some fashion, either at learning or classification
time.

There are two obvious ways to break up the original dataset: tuple-oriented
or attribute (feature) oriented. Tuple decomposition by itself can be divided
into two different types: sample and space. In sample decomposition (also
known as partitioning), the goal is to partition the training set into several sam-
ple sets, such that each sub-learning task considers the entire space.

In space decomposition, on the other hand, the original instance space is
divided into several sub-spaces. Each sub-space is considered independently
and the total model is a (possibly soft) union of such simpler models.

Space decomposition also includes the divide and conquer approaches such
as mixtures of experts, local linear regression, CART/MARS, adaptive sub-
space models, etc., (Johansen and Foss, 1992; Jordan and Jacobs, 1994; Rama-
murti and Ghosh, 1999; Holmstromet al., 1997).
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Feature set decomposition (also known as attribute set decomposition) gen-
eralizes the task of feature selection which is extensively used in Data Min-
ing. Feature selection aims to provide a representative set of features from
which a classifier is constructed. On the other hand, in feature set decompo-
sition, the original feature set is decomposed into several subsets. An inducer
is trained upon the training data for each subset independently, and generates
a classifier for each one. Subsequently, an unlabeled instance is classified by
combining the classifications of all classifiers. This method potentially facili-
tates the creation of a classifier for high dimensionality data sets because each
sub-classifier copes with only a projection of the original space.

In the literature there are several works that fit the feature set decomposition
framework. However, in most of the papers the decomposition structure was
obtained ad-hoc using prior knowledge. Moreover, as a result of a literature
review, Roncoet al. (1996) have concluded that “There exists no algorithm or
method susceptible to perform a vertical self-decomposition without a-priori
knowledge of the task!”. Bay (1999) presented a feature set decomposition
algorithm known as MFS which combines multiple nearest neighbor classi-
fiers, each using only a subset of random features. Experiments show MFS
can improve the standard nearest neighbor classifiers. This procedure resem-
bles the well-known bagging algorithm (Breiman, 1996). However, instead of
sampling instances with replacement, it samples features without replacement.

Another feature set decomposition was proposed by Kusiak (2000). In this
case, the features are grouped according to the attribute type: nominal value
features, numeric value features and text value features. A similar approach
was used by Gama (2000) for developing the linear-bayes classifier. The basic
idea consists of aggregating the features into two subsets: the first subset con-
taining only the nominal features and the second subset only the continuous
features.

An approach for constructing an ensemble of classifiers using rough set the-
ory was presented by Hu (2001). Although Hu’s work refers to ensemble
methodology and not decomposition methodology, it is still relevant for this
case, especially as the declared goal was to construct an ensemble such that
different classifiers use different attributes as much as possible. According to
Hu, diversified classifiers lead to uncorrelated errors, which in turn improve
classification accuracy. The method searches for a set of reducts, which in-
clude all the indispensable attributes. A reduct represents the minimal set of
attributes which has the same classification power as the entire attribute set.

In another research, Tumer and Ghosh (1996) propose decomposing the fea-
ture set according to the target class. For each class, the features with low
correlation relating to that class have been removed. This method has been
applied on a feature set of 25 sonar signals where the target was to identify the
meaning of the sound (whale, cracking ice, etc.). Cherkauer (1996) used fea-
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ture set decomposition for radar volcanoes recognition. Cherkauer manually
decomposed a feature set of 119 into 8 subsets. Features that are based on dif-
ferent image processing operations were grouped together. As a consequence,
for each subset, four neural networks with different sizes were built. Chen
et al. (1997) proposed a new combining framework for feature set decompo-
sition and demonstrate its applicability in text-independent speaker identifica-
tion. Jenkins and Yuhas (1993) manually decomposed the features set of a
certain truck backer-upper problem and reported that this strategy has impor-
tant advantages.

A paradigm, termed co-training, for learning with labeled and unlabeled
data was proposed in Blum and Mitchell (1998). This paradigm can be con-
sidered as a feature set decomposition for classifying Web pages, which is
useful when there is a large data sample, of which only a small part is la-
beled. In many applications, unlabeled examples are significantly easier to
collect than labeled ones. This is especially true when the labeling process is
time-consuming or expensive, such as in medical applications. According to
the co-training paradigm, the input space is divided into two different views
(i.e. two independent and redundant sets of features). For each view, Blum
and Mitchell built a different classifier to classify unlabeled data. The newly
labeled data of each classifier is then used to retrain the other classifier. Blum
and Mitchell have shown, both empirically and theoretically, that unlabeled
data can be used to augment labeled data.

More recently, Liao and Moody (2000) presented another option to a de-
composition technique whereby all input features are initially grouped by us-
ing a hierarchical clustering algorithm based on pairwise mutual information,
with statistically similar features assigned to the same group. As a conse-
quence, several feature subsets are constructed by selecting one feature from
each group. A neural network is subsequently constructed for each subset. All
netwroks are then combined.

In the statistics literature, the most well-known decomposition algorithm
is the MARS algorithm (Friedman, 1991). In this algorithm, a multiple re-
gression function is approximated using linear splines and their tensor prod-
ucts. It has been shown that the algorithm performs an ANOVA decomposi-
tion, namely the regression function is represented as a grand total of several
sums. The first sum is of all basic functions that involve only a single attribute.
The second sum is of all basic functions that involve exactly two attributes,
representing (if present) two-variable interactions. Similarly, the third sum
represents (if present) the contributions from three-variable interactions, and
so on.

Other works on feature set decomposition have been developed by extending
the Näıve Bayes classifier. The Naı̈ve Bayes classifier (Domingos and Pazzani,
1997) uses the Bayes’ rule to compute the conditional probability of each pos-
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sible class, assuming the input features are conditionally independent given the
target feature. Due to the conditional independence assumption, this method is
called “Näıve”. Nevertheless, a variety of empirical researches show surpris-
ingly that the Näıve Bayes classifier can perform quite well compared to other
methods, even in domains where clear feature dependencies exist (Domingos
and Pazzani, 1997). Furthermore, Naı̈ve Bayes classifiers are also very simple
and easy to understand (Kononenko, 1990).

Both Kononenko (1991) and Domingos and Pazzani (1997), suggested ex-
tending the Näıve Bayes classifier by finding the single best pair of features to
join by considering all possible joins. Kononenko (1991) described the semi-
Näıve Bayes classifier that uses a conditional independence test for joining fea-
tures. Domingos and Pazzani (1997) used estimated accuracy (as determined
by leave–one–out cross-validation on the training set). Friedmanet al. (1997)
have suggested the tree augmented Naı̈ve Bayes classifier (TAN) which ex-
tends the Näıve Bayes, taking into account dependencies among input fea-
tures. The selective Bayes Classifier (Langley and Sage, 1994) preprocesses
data using a form of feature selection to delete redundant features. Meretakis
and Wthrich (1999) introduced the large Bayes algorithm. This algorithm em-
ploys ana-priori-like frequent pattern-mining algorithm to discover frequent
and interesting features in subsets of arbitrary size, together with their class
probability estimation.

Recently Maimon and Rokach (2005) suggested a general framework that
searches for helpful feature set decomposition structures. This framework
nests many algorithms, two of which are tested empirically over a set of bench-
mark datasets. The first algorithm performs a serial search while using a new
Vapnik-Chervonenkis dimension bound for multiple oblivious trees as an eval-
uating schema. The second algorithm performs a multi-search while using
wrapper evaluating schema. This work indicates that feature set decomposi-
tion can increase the accuracy of decision trees.

It should be noted that some researchers prefer the terms “horizontal decom-
position” and “vertical decomposition” for describing “space decomposition”
and “attribute decomposition” respectively (Roncoet al., 1996).

4. The Decomposer’s Characteristics

4.1 Overview

The following sub-sections present the main properties that characterize de-
composers. These properties can be useful for differentiating between various
decomposition frameworks.
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4.2 The Structure Acquiring Method

This important property indicates how the decomposition structure is ob-
tained:

Manually (explicitly) based on an expert’s knowledge in a specific do-
main (Blum and Mitchell, 1998; Michie, 1995). If the origin of the
dataset is a relational database, then the schema’s structure may imply
the decomposition structure.

Predefined due to some restrictions (as in the case of distributed Data
Mining)

Arbitrarily (Domingos, 1996; Chan and Stolfo, 1995) - The decomposi-
tion is performed without any profound thought. Usually, after setting
the size of the subsets, members are randomly assigned to the different
subsets.

Induced without human interaction by a suitable algorithm (Zupanet al.,
1998).

Some may justifiably claim that searching for the best decomposition might
be time-consuming, namely prolonging the Data Mining process. In order
to avoid this disadvantage, the complexity of the decomposition algorithms
should be kept as small as possible. However, even if this cannot be accom-
plished, there are still important advantages, such as better comprehensibility
and better performance that makes decomposition worth the additional com-
putational complexity.

Furthermore, it should be noted that in an ongoing Data Mining effort (like
in a churning application) searching for the best decomposition structure might
be performed in wider time buckets (for instance, once a year) than when train-
ing the classifiers (for instance once a week). Moreover, for acquiring decom-
position structure, only a relatively small sample of the training set may be
required. Consequently, the execution time of the decomposer will be rela-
tively small compared to the time needed to train the classifiers.

Roncoet al. (1996) suggest a different categorization in which the first two
categories are referred as “ad-hoc decomposition” and the last two categories
as “self-decomposition”.

Usually in real-life applications the decomposition is performed manually
by incorporating business information into the modeling process. For instance
Berry and Linoff (2000) provide a practical example in their book saying:

It may be known that platinum cardholders behave differently from gold card-
holders. Instead of having a Data Mining technique figure this out, give it the
hint by building separate models for the platinum and gold cardholders.
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Berry and Linoff (2000) state that decomposition can be also useful for han-
dling missing data. In this case they do not refer to sporadic missing data but to
the case where several attribute values are available for some tuples but not for
all of them. For instance: “Historical data, such as billing information, is avail-
able only for customers who have been around for a sufficiently long time” or
“Outside data, such as demographics, is available only for the subset of the
customer base that matches”). In this case, one classifier can be trained for
customers having all the information and a second classifier for the remaining
customers.

4.3 The Mutually Exclusive Property

This property indicates whether the decomposition is mutually exclusive
(disjointed decomposition) or partially overlapping (i.e. a certain value of a
certain attribute in a certain tuple is utilized more than once). For instance,
in the case of sample decomposition, “mutually exclusive” means that a cer-
tain tuple cannot belong to more than one subset (Domingos, 1996; Chan and
Stolfo, 1995). Bay (1999), on the other hand, has used non-exclusive feature
decomposition.

Similarly CART and MARS perform mutually exclusive decomposition of
the input space, while HME allows sub-spaces to overlap.

Mutually exclusive decomposition can be deemed as apuredecomposition.
While pure decomposition forms a restriction on the problem space, it has
some important and helpful properties:

A greater tendency in reduction of execution time than non-exclusive
approaches. Since most learning algorithms have computational com-
plexity that is greater than linear in the number of attributes or tuples,
partitioning the problem dimensionality in a mutually exclusive man-
ner means a decrease in computational complexity (Provost and Kolluri,
1997).

Since mutual exclusiveness entails using smaller datasets, the models
obtained for each sub-problem are smaller in size. Without the mutually
exclusive restriction, each model can be as complicated as the model
obtained for the original problem. Smaller models contribute to compre-
hensibility and ease in maintaining the solution.

According to Bay (1999), mutually exclusive decomposition may help
avoid some error correlation problems that characterize non-mutually
exclusive decompositions. However, Sharkey (1999) argues that mutu-
ally exclusive training sets do not necessarily result in low error corre-
lation. This point is true when each sub-problem is representative (i.e.
represent the entire problem, as in sample decomposition).



994 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Reduced tendency to contradiction between sub-models. When a mu-
tually exclusive restriction is unenforced, different models might gener-
ate contradictive classifications using the same input. Reducing inter-
models contraindications help us to grasp the results and to combine
the sub-models into one model. Ridgewayet al. (1999), for instance,
claim that the resulting predictions of ensemble methods are usually in-
scrutable to end-users, mainly due to the complexity of the generated
models, as well as the obstacles in transforming theses models into a
single model. Moreover, since these methods do not attempt to use all
relevant features, the researcher will not obtain a complete picture of
which attribute actually affects the target attribute, especially when, in
some cases, there are many relevant attributes.

Since the mutually exclusive approach encourages smaller datasets, they
are more feasible. Some Data Mining tools can process only limited
dataset size (for instance when the program requires that the entire
dataset will be stored in the main memory). The mutually exclusive
approach can make certain that Data Mining tools are fairly scalable to
large data sets (Chan and Stolfo, 1997; Provost and Kolluri, 1997).

We claim that end-users can grasp mutually exclusive decomposition
much easier than many other methods currently in use. For instance,
boosting, which is a well-known ensemble method, distorts the original
distribution of instance space, a fact that non-professional users find hard
to grasp or understand.

4.4 The Inducer Usage

This property indicates the relation between the decomposer and the in-
ducer used. Some decomposition implementations are “inducer-free”, namely
they do not use intrinsic inducers at all. Usually the decomposition procedure
needs to choose the best decomposition structure among several structures that
it considers. In order to measure the performance of a certain decomposition
structure, there is a need to realize the structure by building a classifier for
each component. However since “inducer-free” decomposition does not use
any induction algorithm, it uses a frequency table of the Cartesian product of
the feature values instead. Consider the following example. The training set
consists of four binary input attributes (a1, a2, a3, a4) and one target attribute
(y). Assume that an “inducer-free” decomposition procedure examines the fol-
lowing feature set decomposition: (a1, a3) and (a2, a4). In order to measure the
classification performance of this structure, it is required to build two classi-
fiers; one classifier for each subset. In the absence of an induction algorithm,
two frequency tables are built; each table has22 = 4 entries representing the
Cartesian product of the attributes in each subset. For each entry in the table,
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we measure the frequency of the target attribute. Each one of the tables can be
separately used to classify a new instancex: we search for the entry that corre-
sponds to the instancex and select the target value with the highest frequency
in that entry. This “inducer-free” strategy has been used in several places. For
instance the extension of Naı̈ve Bayes suggested by Domingos and Pazzani
(1997), can be considered as a feature set decomposition with no intrinsic in-
ducer. Zupanet al. (1998) have developed the function decomposition by
using sparse frequency tables.

Other implementations are considered as an “inducer-dependent” type,
namely these decomposition methods use intrinsic inducers, and they have
been developed specifically for a certain inducer. They do not guarantee ef-
fectiveness in any other induction method. For instance, the work of Lu and
Ito (1999) was developed specifically for neural networks.

The third type of decomposition method is the “inducer-independent” type.
These implementations can be performed on any given inducer, however, the
same inducer is used in all subsets. As opposed to the “inducer-free” im-
plementation, which does not use any inducer for its execution, “inducer-
independent” requires the use of an inducer. Nevertheless, it is not limited
to a specific inducer like the “inducer-dependent”.

The last type is the “inducer-chooser” type, which, given a set of inducers,
the system uses the most appropriate inducer on each sub-problem.

4.5 Exhaustiveness

This property indicates whether all data elements should be used in the de-
composition. For instance, an exhaustive feature set decomposition refers to
the situation in which each feature participates in at least one subset.

4.6 Combiner Usage

This property specifies the relation between the decomposer and the com-
biner. Some decomposers are combiner-dependent. That is to say they have
been developed specifically for a certain combination method like voting or
Näıve Bayes. For additional combining methods see Chapter 45 in this vol-
ume. Other decomposers are combiner-independent; the combination method
is provided as input to the framework. Potentially there could be decomposers
that, given a set of combiners, would be capable of choosing the best combiner
in the current case.

4.7 Sequentially or Concurrently

This property indicates whether the various sub-classifiers are built sequen-
tially or concurrently. In sequential framework the outcome of a certain clas-
sifier may effect the creation of the next classifier. On the other hand, in con-
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current framework each classifier is built independently and their results are
combined in some fashion. Sharkey (1996) refers to this property as “The re-
lationship between modules” and distinguishes between three different types:
successive, cooperative and supervisory. Roughly speaking the “successive”
refers to “sequential” while “cooperative” refers to “concurrent”. The last type
applies to the case in which one model controls the other model. Sharkey
(1996) provides an example in which one neural network is used to tune an-
other neural network.

The original problem inintermediate concept decompositionis usually con-
verted to a sequential list of problems, where the last problem aims to solve the
original one. On the other hand, inoriginal concept decompositionthe problem
is usually divided into several sub-problems which exist on their own. Never-
theless, there are some exceptions. For instance, Quinlan (1993) proposed an
original concept framework known as “windowing” that is considered to be
sequential. For other examples the reader is referred to Chapter 45 in this vol-
ume.

Naturally there might be other important properties which can be used to
differentiate a decomposition scheme. Table 46.1 summarizes the most rele-
vant research performed on each decomposition type.

Table 46.1. Summary of Decomposition Methods in the Literature.

Paper Decomposition
Type

Mutually
Exclusive

Structure
Acquiring
Method

(Anandet al., 1995) Concept No Arbitrarily
(Buntine, 1996) Concept Yes Manually
(Michie, 1995) Function Yes Manually
(Zupanet al., 1998) Function Yes Induced
(Ali and Pazzani, 1996) Sample No Arbitrarily
(Domingos, 1996) Sample Yes Arbitrarily
(Ramamurti and Ghosh, 1999) Space No Induced
(Kohaviet al., 1997) Space Yes Induced
(Bay, 1999) Attribute No Arbitrarily
(Kusiak, 2000) Attribute Yes Manually

5. The Relation to Other Methodologies

The main distinction between existing approaches, such as ensemble meth-
ods and distributed Data Mining to decomposition methodology, focuses on
the following fact: the assumption that each model has access to a comparable
quality of data is not valid in the decomposition approach (Tumer and Ghosh,
2000):
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A fundamental assumption in all the multi-classifier approaches is that the de-
signer has access to the entire data set, which can be used in its entirety, resam-
pled in a random (bagging) or weighted (boosting) way, or randomly partitioned
and distributed. Thus, except for boosting situations, each classifier sees train-
ing data of comparable quality. If the individual classifiers are then appropriately
chosen and trained properly, their performances will be (relatively) comparable
in any region of the problem space. So gains from combining are derived from
the diversity among classifiers rather that by compensating for weak members
of the pool.

This assumption is clearly invalid for decomposition methodology, where
classifiers may have significant variations in their overall performance. Fur-
thermore when individual classifiers have substantially different performances
over different parts of the input space, combining is still desirable (Tumer
and Ghosh, 2000). Nevertheless neither simple combiners nor more sophisti-
cated combiners are particularly well-suited for the type of problems that arise
(Tumer and Ghosh, 2000):

The simplicity of averaging the classifier outputs is appealing, but the prospect of
one poor classifier corrupting the combiner makes this a risky choice. Weighted
averaging of classifier outputs appears to provide some flexibility. Unfortunately,
the weights are still assigned on a per classifier basis rather than a per tuple basis.
If a classifier is accurate only in certain areas of the input space, this scheme fails
to take advantage of the variable accuracy of the classifier in question. Using a
combiner that provides different weights for different patterns can potentially
solve this problem, but at a considerable cost.

The ensemble methodology is closely related to the decomposition method-
ology (see Chapter 45 in this volume). In both cases the final model is a com-
posite of multiple models combined in some fashion. However, Sharkey (1996)
distinguishes between these methodologies in the following way: the main idea
of ensemble methodology is to combine a set of models, each of which solves
the same original task. The purpose of ensemble methodology is to obtain a
more accurate and reliable performance than when using a single model. On
the other hand, the purpose of decomposition methodology is to break down
a complex problem into several manageable problems, enabling each inducer
to solve a different task. Therefore, in ensemble methodology, any model can
provide a sufficient solution to the original task. On the other hand, in decom-
position methodology, a combination of all models is mandatory for obtaining
a reliable solution.

Distributed Data Mining(DDM) deals with mining data that might be inher-
ently distributed among different, loosely coupled sites with slow connectivity,
such as geographically distributed sites connected over the Internet (Kargupta
and Chan, 2000). Usually DDM is categorized according to data distribution:

Homogeneous.In this case, the datasets in all the sites are built from the same
common set of attributes. This state is equivalent to the sample decom-
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position discussed above, when the decomposition structure is set by the
environment.

Heterogeneous.In this case, the quality and quantity of data available to each
site may vary substantially. Since each specific site may contain data for
different attributes, leading to large discrepancies in their performance,
integrating classification models derived from distinct and distributed
databases is complex.

DDM can be useful also in the case of “mergers and acquisitions” of cor-
porations. In such cases, since each company involved may have its own IT
legacy systems, different sets of data are available.

In DDM the different sources are given, namely the instances are pre-
decomposed. As a result, DDM is mainly focused on combining the various
methods. Several researchers discuss ways of leveraging distributed techniques
in knowledge discovery, such as data cleaning and preprocessing, transforma-
tion, and learning.

Prodromidiset al. (1999) proposed the JAM system a meta-learning ap-
proach for DDM. The meta-learning approach is about combining several mod-
els (describing several sets of data from several sources of data) into one high-
level model. Guo and Sutiwaraphun (1998) describe a meta-learning concept
know-asknowledge probing. In knowledge probing, supervised learning is or-
ganized into two stages. In the first stage, a set of base classifiers is constructed
using the distributed data sets. In the second stage, the relationship between
an attribute vector and the class predictions from all of the base classifiers is
determined. Grossmanet al. (1999) outline fundamental challenges for mining
large-scale databases, one of them being the need to develop DDM algorithms.

A closely related field isParallel Data Mining (PDM). PDM deals with
mining data by using several tightly-coupled systems with fast interconnection,
as in the case of a cluster of shared memory workstations (Zaki and Ho, 2000).

The main goal of PDM techniques is to scale-up the speed of the Data Min-
ing on large datasets. It addresses the issue by using high performance, multi-
processor computers. The increasing availability of such computers calls for
extensive development of data analysis algorithms that can scale up as we at-
tempt to analyze data sets measured in terabytes on parallel machines with
thousands of processors. This technology is particularly suitable for applica-
tions that typically deal with large amounts of data, e.g. company transaction
data, scientific simulation and observation data. Another important example of
PDM is the SPIDER project that uses shared-memory multiprocessors systems
(SMPs) to accomplish PDM on distributed data sets (Zaki, 1999). Please refer
to Chapter 48 for more information.
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6. Summary

In this chapter we have reviewed the necessity of decomposition methodol-
ogy in Data Mining and knowledge discovery. We have suggested an approach
to categorize elementary decomposition methods. We also discussed the main
characteristics of decomposition methods and showed its suitability to the cur-
rent research in the literature.
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