
TALMUD – Transfer Learning for Multiple Domains
Orly Moreno, Bracha Shapira, Lior Rokach, Guy Shani

Department of Information Systems Engineering
Ben-Gurion University of the Negev

P.O.B. 653, Beer-Sheva, 84105. Israel
Deutsche Telekom Laboratories at Ben-Gurion University

Beer-Sheva, Israel

{orlymore, bshapira, liorrk, shanigu}@bgu.ac.il

ABSTRACT

Most collaborative Recommender Systems (RS) operate in a

single domain (such as movies, books, etc.) and are capable of

providing recommendations based on historical usage data which

is collected in the specific domain only. Cross-domain

recommenders address the sparsity problem by using Machine

Learning (ML) techniques to transfer knowledge from a dense

domain into a sparse target domain. In this paper we propose a

transfer learning technique that extracts knowledge from multiple

domains containing rich data (e.g., movies and music) and

generates recommendations for a sparse target domain (e.g.,

games). Our method learns the relatedness between the different

source domains and the target domain, without requiring

overlapping users between domains. The model integrates the

appropriate amount of knowledge from each domain in order to

enrich the target domain data. Experiments with several datasets

reveal that, using multiple sources and the relatedness between

domains improves accuracy of results.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information search

and Retrieval – information filtering; H.2.8 [Database

Management]: Database Applications – data mining.

General Terms

Algorithms, Experimentation

Keywords

Recommender Systems, Transfer Learning, Cross Domains,

Collaborative Filtering

1. INTRODUCTION
The overwhelming amount of information existing nowadays

raises the need for intelligent systems that will provide

personalized recommendations and services. Usually,

recommender systems (RS) provide recommendations or rating

predictions for a , etc). In

this domain the R historical

usage data that w

In many cases, the data

sparsity problem

accurate recommendations. This problem is especially critical

when using collaborative filtering (CF) algorithms whose

accuracy relies on the availability of observed ratings from a

sufficient number of users. If two users do not share a sufficiently

large set of rated items, then the user-to-user similarity

computation is not reliable and cannot support accurate rating

predictions [5].

Over the web there exists a considerable number of publicly

available user-item rating datasets from multiple sources. One can

leverage this abundance of available data for boosting the

performance of a specific recommender system of interest, by

reducing the sparsity of its dataset. Unfortunately, one rarely

possesses datasets which contain the exact same items, and even

more rarely the exact same users. Clearly some domains are more

closely related to the target domain then others. For example,

books are more closely related to movies than to electronic

gadgets. Thus, sophisticated methods are required to leverage data

collected on one domain to be useful for another domain. These

methods are often known as cross-domain recommenders in the

recommendation system literature.

Cross-domain techniques typically originate in the machine

learning literature and most specifically from Transfer Learning

(TL). Transfer learning is a set of methods for extracting

knowledge from one task or domain to be used in another task or

a different domain [16]. Recently, transfer learning techniques

were proposed for recommender systems applications in order to

improve predictions in sparse target domains by reusing related

domains data [14, 15, 20]. For example, Li et al. [14] suggested

transferring user-item rating patterns from a dense source rating

matrix in a single domain, to a sparse rating matrix in a related

target domain. However, these previous methods assume that all

domains are equally related and can positively contribute to the

target system.

When transferring knowledge from one domain to another, we

might transfer destructive information or data which is not

consistent with the target domain. For example, if the domains are

rarely related, or the users in the domains behave differently (they

tend to be more critical in one domain and more favorable in

another), using user behavior data from one domain for the other

negative effect on the model. This phenomenon is

known as Negative Transfer [16] and may result in decreasing the

target model accuracy.

In light of the above discussion and following Li et al. [14] we

propose a novel approach which we call TALMUD (Transfer

Learning for Multiple Domains) to alleviate the sparsity problem.

.

 single domain (such as movies, books

S provides recommendations based on

as collected only in the specific domain.

in particular when the system is new,

 arises, and prevents the system from g
enerating would have a
Our method enables to predict missing values in the target domain

by extracting knowledge from multiple source domains and

transferring it to a single sparse target domain. We do not assume

425

an identical level of relatedness between the domains. Rather, the

algorithm automatically learns the degree of relatedness according

to the rating patterns correspondence between the domains. Thus,

it determines the amount of knowledge to be transferred from

each source domain according to its relatedness to the target

domain and its sparseness. This is done without assuming that

there are shared users or items between the source and target

domains.

The rest of this paper is organized as follows. We survey several

studies which applied cross domain techniques for recommender

systems in Section 2. In Section 3 we present our method. Section

4 reports preliminary experimental results based on several

recommendation datasets. Section 5 presents an improved version

of the algorithm and experimental results. Concluding remarks

and future work are discussed in Section 6.

2. BACKGROUND
In this section we survey recommender systems, collaborative

filtering, and the data sparsity problem. Next, we discuss the

transfer learning approach to enhance machine learning datasets.

Finally, we discuss in depth previous attempts of using transfer

learning in recommender systems.

2.1 Recommender Systems
Recommender systems provide either recommended items, or

rating predictions, in many commercial applications nowadays.

For example, in NetFlix1, the popular online video rental service,

a user can view the predicted ratings for movies she has not yet

seen. This can help the user in making intelligent choices when

deciding which movie to rent.

Perhaps the most widely used approach for computing rating

prediction is collaborative filtering (CF), where user or item (e.g.

movie) correlation is based on previously observed user-item

ratings. In CF, the dataset used for prediction can be modeled as a

user-item rating matrix, where each row represents a user and

each column represents an item, and each cell represents a user-

item rating. Clearly, as users seldom rate more than a few items in

many domains, this matrix is expected to be very sparse. The

accuracy of the rating prediction, however, is often improved as

the matrix becomes denser. This is known as the sparsity problem

in CF.

There are many available CF algorithms, such as direct user-user

correlation [2], singular value decomposition (SVD) [12],

clustering [9], and many more.

2.2 Transfer Learning
Transfer learning (TL) aims at extracting knowledge that was

learned for one task in a domain and use it for a target task in a

different domain [16]. In the field of Machine Learning we

usually train a model based on data that is available for the

problem that we are interested in (training data). This model is

used for predicting the behavior in the examined domain (using

the testing data). For example, in recommender systems this

model can help us predict whether the user will like the movie or

not.

As stated in [16] many machine learning methods are based on the

hypothesis that the training and the testing datasets have common

features and distribution. In contrast to those techniques, transfer

learning allows the domains, tasks and distribution of the training

1 www.Netflix.com

and testing to differ. Thus, when having insufficient data in the

domain of interest, we can exploit data from mature applications

(domains) which already have enough data. We can transfer the

knowledge that is consistent with the target domain in order to

train a model for it. For the text mining field transfer learning

might be used when labeled documents exist only for mature

domains and are not available for other domains. For example,

Dai et al. [4] utilized labeled documents from one domain in order

to classify unlabeled documents of a different domain with

different distribution, using co-clustering as a bridge between the

source and target domain. Xue et al. [19] had also coped with the

problem of unavailable labeled data for classifying text in a new

domain. They built a topic-bridge PLSA model that uses the

common topics between the domains in order to classify the new

domain's documents.

Another important characteristic of TL is that it does not

necessarily require content overlap between the different domains.

Regarding the recommender systems application, TL does not

require that the source and target domain will share users or items,

as it aims at finding common consumption patterns which exist in

related domains by recognizing latent behavior groups [14]. Let us

consider for example the Music and Games domains. Although

these domains do not seem to be strongly connected, we can still

find the same latent groups of users in both domains. For

example, there might be a group of consumers that always

purchase the new and trendy items, another group which likes to

consume low cost products, and other users that mainly like

childish items.

Transferring knowledge between domains is a very challenging

task because it cannot be guaranteed that the knowledge of one

domain is useful for another domain. The success of transfer

learning depends on a variety of factors, e.g. how correlated the

domains are (for example, it is possible that movies and books are

more correlated than movies and jokes), the data characteristics

(sparsity level, rating scale etc.) and whether the domains share

resources like items or users.

Henceforth, we refer to the system or domain for which the

recommendations are required as the target domain and the

domain from which data is extracted as the source domain.

2.3 Recommender Systems Cross-Domain

Techniques
In recommender systems, the transfer learning problem is often

known as cross-domain recommendation [13]. Several studies

have been conducted on applying cross domain techniques, and

transfer learning in particular.

Perhaps the simplest approach to cross-domain recommendations

is by importing relevant data from a different domain and

aggregating the data with the original target data. This aggregation

is simple when the domains share information on the same users.

Berkovsky et al. [1] refer to this problem as cross domain

mediation and introduce several techniques for importing relevant

data. For example, it is possible to merge the rating matrices such

that the items of the remote domain are added as additional

features. Then, executing any CF algorithm on the combined

matrix allows the system to leverage rating behavior similarity in

one domain to predict ratings in the other domain.

Possibly the most relevant work is by Li et al [14]. They

suggested that when insufficient data in the target domain

prevents us from training an accurate recommendation model, it is

possible to borrow useful knowledge from a different domain and

426

use its data to train the model. Li et al. [14] introduced the idea

that rating matrices of different domains may share similar user-

item rating patterns. Thus, they learn a user-item rating matrix of

the source domain which is referred to as a "codebook", and

transfer the rating patterns to the target domain in order to fill in

the target domain missing values.

Their algorithm consists of two steps. First, a rating pattern

(codebook) of the dense domain is created, which summarizes the

original rating data. Second, the codebook is expanded in order to

learn the missing values in the target domain.

The codebook consists of users clusters, and item clusters and

is constructed by simultaneously clustering the users (rows) and

items (columns) of the source rating matrix, using the orthogonal

non-negative matrix tri-factorization (ONMTF) clustering

algorithm [7]. This method is equivalent to the two-way K-means

clustering algorithm. As a result of the above process the

codebook indicates the rating that a user who belongs to a specific

user cluster will give to an item that belongs to a specific item

cluster.

The second step of the algorithm is based on the assumption that

there is a set of users/items in the target matrix that behaves like

the i-th user/item cluster pattern in the source domain. Thus, the

model maps target users and items to the corresponding source

clusters. Those mappings are denoted by the matrices and

 respectively. Each row in and indicates a target

user (for) or item (for) while each column indicates the

source domain user's cluster or item's cluster respectively.

and consist of binary values where "1" indicates a

membership of a user (from) or an item (from) to a

cluster from the source domain. Li et al. [14] assume (and we

follow their assumption), that each user and item belongs only to

one user's and item's cluster. Thus, only one value of "1" can be

assigned to each row. For example, Figure 1 shows that user

from the target domain, which is denoted as , belongs to

users cluster in the source domain, whereas item belongs to

items cluster in the source domain. Thus, according to the

source domain codebook, the missing rating of user to item

is 1.

After the cluster memberships and are constructed, the

target matrix can be filled using:

 ̃ [] [
]

The matrix is a binary matrix where if
 (this

entry is rated), otherwise . The notation of ◦ denotes the

entry-wise product. The target rating matrix reconstruction is

demonstrated in Figure 2. The examples in Figure 1 and Figure 2

are adopted from Li et al. [14]. Experimental results have shown

that additional information from a related domain can be gained

and improve recommendations in the target domain. However,

they do not measure the relatedness between the domains.

Moreover, this method enables to utilize knowledge from one

source domain only.

Li et al. [15] extended this method to integrate several sparse

domains. In this work they assume that multiple sources share a

single latent pattern. They discover this pattern and then learn the

probabilities of each user and item to belong to this shared latent

structure. In many cases, however, sources do not necessarily

share such a latent pattern, a problem that we address here.

Moreover, our work differs in the problem it aims to solve. While

our approach searches for the optimal solution that will most

accurately enrich the target domain, Li et al. [15] aim to

simultaneously enrich several domains, and there is no source-

target distinction. Their proposed model equally takes into

consideration the limitation and needs of all the domains and

therefore does not guarantee that the solution is the most optimal

one for a single domain. In Transfer learning, this is called the

multi task problem [16] and is generally treated differently. For

completeness we will compare our suggested method with the

method proposed in [15].

2.4 Other Related Works
Pan et al. [17] address two limitations of previous studies. First,

they transform knowledge from domains which have

heterogeneous forms of user feedback. For example, one domain

has ratings records while another domain records user's events on

the system. Second, they do not assume that the knowledge on

both the users and the items can be learned from the same domain.

They suggest that the user dimension can be learned from one

domain that has information on the same users, while the items

dimension can be learned from another domain that shares items

with the target domain. However, their proposed method can only

be applied in cases where the first source domain and the target

domain share the same users, and that the second source domain

and the target domain share the same items. In many real-world

applications such shared data does not exist.

Figure 1. Decomposition of the target matrix into

user membership matrix and item membership

matrix according to the source domain clusters

(codebook).

Figure 2. The reconstruction of the target rating matrix

427

Cao et al. [3] refer to the recommendation problem as a Link-

Prediction problem. Link prediction is defined by Getoor et al. [8]

as a problem that predicts the existence of a link between two

entities. In recommender systems we wish to predict a possible

link between a user and an item. This paper handles data sparsity

and the cold start problem, where a new user or a new item are

added to the system and we do not have enough data which is

relevant to them. The proposed method aims to improve the

performances of all recommendation tasks, by exploring the

correlation between link prediction tasks in multiple

heterogeneous domains and transfer the shared knowledge among

similar tasks. In order to find the different correlations between

the domains, they use a task similarity kernel while assuming that

the users in the different domains overlap. In our proposed

approach this is not a mandatory requirement.

Zhang et al. [20] address the sparsity problem by considering

collaborative filtering recommendation tasks of multiple sparse

domains together as one problem. This method models the rating

prediction problem using probabilistic matrix factorization. The

correlation between the domains is learned and exploited in the

model. However, similarly to Li et al. [15], this method refers to

the multi task problem [16] and simultaneously enriches several

domains.

To conclude, all the studies discussed above demonstrate the

effectiveness of applying cross domain techniques to alleviate the

sparsity problem comparing to other methods which mine only

single domain data. However, the majority of these papers assume

that the source and target domains are related but do not suggest

methods to calculate or estimate this relatedness.

The studies that do measure the correlation between the domains

assume that the domains share resources like items and users

although this restriction is unrealistic when one wishes to leverage

publicly available datasets to augment a specific recommender

system. Moreover, the studies that deal with using multiple

domains do not define a target domain which is sparse, but build a

model from all the domains in order to enrich all of them

simultaneously. The proposed approach measures the relatedness

between domains, without assuming overlapping users or items,

while allowing the use of multiple sources domains.

3. TALMUD
We now discuss our new method which we call TALMUD

(Transfer Learning for Multiple Domains), that allows us to

automatically learn the relatedness of multiple data sources, and

transfer knowledge from all these sources into a single target

domain.

Our method extends the algorithm proposed by Li et al. [14], for

transferring data from a single domain, allowing for transferring

data from multiple source domains with varying levels of

relevance. We use user-item source matrices, each represented

as an rating matrix, and denoted
 for source matrix

 . The target matrix is a sparse rating matrix,

denoted . The codebook encodes the user-item clusters in

. is a matrix where and are user defined

parameters that define the cluster dimensions. Each codebook

represents the transferred knowledge from its corresponding

source domain.

The proposed method linearly integrates the rating patterns of all

source domains into one model in order to enable prediction of the

target matrix missing values. The main challenge is in defining

the integration of knowledge from the different sources, and the

amount of knowledge that needs to be transferred from each

source domain. We hence define three sets of decision variables

{
,

, } for each source domain . Equation 1

formulates the optimization problem that finds the best users' and

items' cluster memberships and the relatedness coefficients. Thus,

the error of the prediction in the target domain is minimized.

Henceforth,
 and

 are denoted and for each

source domain .

‖[∑ (
)

] ‖

The first set of variables refers to the users' cluster memberships

 for each source . is a matrix. The second set

refers to the items' cluster memberships for each source . is

a matrix. and are binary matrices, where "1"

indicates a membership of user or item to a cluster respectively.

Following Li et al. [14], we use the notation for entry-wise

product and the notation to ensure that each

user or item will be assigned to one cluster only. The observed

ratings of the target domain are reflected in the binary Matrix

where if
 (i.e. this entry is rated), else .

Using this matrix we ensure that the error is calculated based only

on the observed ratings

We find the target's users and items clusters by examining the

different combinations of users/items clusters in all source

domains and choosing the combination that best predicts the

target ratings. This process is further described in Algorithm 1.

Since we utilize knowledge form multiple source domains, we

believe that the interaction between the sources affects the

relatedness of the user to the cluster in each source domain. Thus

the cluster memberships should be based on the user's global

behavior rather than on her behavior in a single domain.

For example, let us assume that we have only a single movie

source domain and respectively only one codebook , where user

 fits best to cluster according to the learned model. When we

take into account an additional music source domain, and more

knowledge is available, the best cluster memberships for the same

user based on data from all domains simultaneously, might

become cluster of the movie codebook .

Based on this intuition, we learn for each source domain its

correspondent matrices and based on all source domains

simultaneously, rather than learning each domain separately and

combining the models. This process results in multiple codebooks.

The third set of variables is where .

denotes the relatedness coefficient between source domain and

the target domain. We aim to find the optimal values such that

the MSE is minimized, while and are fixed. The error

function denoted as is defined in Equation 2. In practice,

minimizing is equivalent to minimizing the MSE.

 ‖[∑ (
)

] ‖

For simplicity, henceforth we denote
 as and

 as . Note that [
]

.

F

428

Equation 2 can be rewritten as follows:

 ∑ ∑ ([∑ []

])

Thus, the optimization formulation is defined as

 ⃗ ⃗⃗⃗[]

In order to solve equation 4, we calculate the gradient of ⃗ and set

it equal to zero as shown in equation 5.

 ∑ (∑ []

) []

 ∑ [] ∑ ∑ [] []

And rearranging gives:

∑ ∑ [] []

 ∑ []

Thus we obtain the following set of linear equations:

(

∑ []

 ∑ [] []

∑ [] []

∑ [] [] ∑ []

)

(

)

(

∑ []

∑ []

∑ [])

Finally, the optimal values can be obtained by solving (7):

(

)

(

∑ []

 ∑ [] []

∑ [] []

∑ [] [] ∑ []

)

(

∑ []

∑ []

∑ [])

We learn the decision variables { , , } until converging to

the local minimum.

After solving the optimization problem in equation we can

construct from each source domain a full matrix with the same

dimensions as the target matrix using
 . As shown in

equation 9, a linear combination between those matrices, weighted

by the set of , will establish the full target matrix. We denote

the full rating matrix as ̃ .

 ̃ [] [∑

]

3.1 Algorithm
The proposed cross-domain recommendation algorithm consists

of the following stages. On the first stage the algorithm learns the

rating patterns of each source domain separately. It constructs a

codebook from each source domain as described by Li et

al. [14]. On the next stage, the optimization problem defined

above (shown in Algorithm 1) is solved by learning the target

cluster memberships and and the relatedness coefficients

 . The optimization problem is solved iteratively; Each

iteration consists of three steps. On each step we solve one of

the three variable set types while fixing the other two

[10]. First, we initialize the three sets of variables (lines 1-9).

Then, to solve (lines 11-14) we create possible rating rows for

each user by expanding the codebooks, based on the item clusters

 that were discovered at the former iteration. Then, we find the

best linear combination of the target user's clusters, using the

values that minimize the error of the observed target ratings. In

line 12 we examine the different existing combinations of user's

clusters in all source domains and choose the combination that

decreases the differences between the observed ratings and the

Algorithm 1 Optimization Problem Solution

Input: Target rating matrix , source domains Codebooks ,

number of sources .

Output: the filled-in target rating matrix ̃

1. for n←1,…N do

2. for i←1,…,q do

3. Randomly select ̂from

4. [
] ̂ [

] ̂ for ̂

5. end for

6. end for

7. for do

8.

9. end for

10. for do

11. for do

12. ⃗ ⃗ ‖[] ∑

[[
]

]

 ‖

13. [

] ⃗[] [

] for [̂]

14. end for

15. for do

16. ⃗ ⃗ ‖[]
 ∑

[

]

 ‖

17. [

]
 ⃗[]

 [
]

 for jє{1,…,ln}/ ⃗[]

18. end for

19. ⃗ ‖[∑

(

)

] ‖

20. end for

21. ̃ [] [∑

]

ratings that are predicted using the model. We evaluate these

differences using a quadratic loss function. We adopt Li et al. [14]

notation to denote the weighted norm

‖ ‖

 [] , where [] denotes the i-th row in a

matrix and [] denotes the i-th column. We use an auxiliary

vector ⃗ (line 12) to maintain the best user's clusters indexes from

each domain. Then we calculate

 (line 13) for each source

domain and use it to create optional rating columns to the target

item. Similarly, we find the item's clusters correspondence and

calculate

 (lines 15-18). Then, we learn the relatedness

coefficient (line 19), by minimizing the error based on the

observed target ratings as shown in equation 4.

This iterative process stops with convergence to the local

minimum (or after performing iterations). Finally, we fill the

target rating matrix using equation 9. The knowledge required for

filling the rating matrix is drawn from each source domain

according to the degree of relatedness .

4. PRELIMINARY RESULTS
We now present some preliminary experiments that show the

strength of TALMUD, but also expose some problems. Then, we

propose how these problems can be reduced.

4.1 Datasets
For our experiments we used two benchmark datasets in the RS

community - Netfilx and Jester2. Additionally we used two

proprietary datasets obtained from Deutsche Telecom

2 http://goldberg.berkely.edu/jester-data/

429

Laboratories. Following is a summarization of the main data set

characteristics.

 We used a subset of Netflix –A movies ratings dataset with a

rating scale of 1 to 5. We extracted 110 users, 110 items and

12,100 rating records to ensure no sparsity (the matrix is full

of ratings) for using it as source matrix in the experiments.
 Jester is a jokes rating dataset (scale -10 to 10). We used a

subset with no sparsity that contains 500 users, 100 items and

a total of 50,000 rating records. In order to achieve consistent

rating scale of 1-5 ratings, we uniformly normalized the rating

scale from 1 to 5.

 The Music Loads3 and Games Loads4 datasets consist of

recorded user's events on products in the system (e.g., a user

buys an item, a user clicks on an item, etc). Since the matrices

are very sparse (99.99%), the most dense matrices that we

managed to extract are of ~97% sparsity. We randomly

selected 632 users that have events on at least 10 different

items, and 817 music items with at least 5 events of different

users. We performed the same process on the Games Loads

dataset resulting with 632 users and 1264 items. As a

preparation of the data for the preliminary evaluation we

transformed the data from events to ratings. We use an

exponential scale to score the events in order to emphasis the

difference between the events. E.g. the most meaningful user

event, buying an item, gets the highest score. Moreover, we

considered the number of events that a user performed on the

same item. That is, if a user plays a song a couple of times it

may indicate that the user really likes the item compared to

another song that he plays only once. The process is

demonstrated in Table 1 and Table 2. Table 1 shows score

categories. For example, a score of 2 is assigned when the

user either clicks on an item or clicks to recommend the item.

Table 2 demonstrates the aggregation of scores in a case that a

user has multiple events on the same item. This is done by

multiplying the score of the event by the number of times it

occurred. In order to make sure that the rating scale is

identical for all the users, we performed individual

normalization for each user, so that the rating is between1-5.

4.2 Experimental Settings
The goal of the proposed method is to learn the missing values in

a target matrix using multiple domains. Thus, we compare the

accuracy results of our method TALMUD (Transfer Learning for

Multiple Domains) to Li et al. [14] method, CBT, which learns

only from one source domain.

We conducted two experiments. In the first experiment we use the

Games loads dataset as target domain while the other domains

were used as source domains. In the second experiment the Music

loads dataset was used as target domain. The target domain was

divided into training and testing datasets. The training data

consisted of 80% of the ratings while the testing data consisted of

the remaining 20%. Since the Loads datasets events have time

stamps we used the most recent 20% of the events for testing.

Both TALMUD and CBT were executed with three different

combinations of source domains for building the model. Each

combination of two source domains was examined (e.g. on the

first experiment the combinations were: movies and jokes, music

and jokes, music and movies). Using this setting we are able to

3 http://www.musicload.de/

4 http://www.gamesload.de/

 Table 1. Music Loads and Games Loads events scores

Score 2 Score 4 Score 8 Score 16

User clicks

item

User adds to

watch list

User plays

item

User buys

item

User clicks

recommend

ed item

User tags item
User streams

item

User buys

recommended

item

User comments

item

User adds to

shopping cart

Users adds to

play list

Table 2. An example of calculating the score of user to

item based on his events regarding the item

Event Score Number of

events

Sum score

User clicks item 2 5 10

User plays item 8 3 24

User buys item 16 1 16

Total score - - 50

create multiple scenarios to compare the two approaches. The

codebook dimensions, and , were set according to the intuition

suggested by Li et al. [15] that the clusters model should be

compact enough to avoid over-fitting, but expressive enough to

capture significant behavior patterns. We set and to 20 for all

source domains similarly to Li et al. [15].

In addition, we compared our method with a trivial linear

combination of multiple source domains. That is, we built a model

on each source domain separately using the CBT algorithm and

aggregated the models by extracting an equal amount of

knowledge from each source domain. This method was applied

with the same domain combinations as TALMUD. We used Mean

Absolute Error as the evaluation metric (MAE).
∑ | |

where is the predicted rating and is the actual rating. Smaller

MAE values indicate higher accuracy.

4.3 Experimental Results
The experiment results are reported in Table 3 and Table 4. Table

3 shows the results of the first experiment, where games is the

target domain, while Table 4 shows the results of the second

experiment where music is used as the target domain. In each

section of the tables we present a scenario in which only two

specific source domains are available. In each scenario we

examine the effectiveness of using just one of the sources or the

combination of the two sources. We tested the results for

significance using a paired sign test. For each scenario, an asterisk

(*) indicates that the method was significantly outperformed by

TALMUD, whereas a plus (
+
) sign indicates that the method

significantly outperformed TALMUD.

Examining the results in Table 3, we can see that when Jokes and

Music are the available sources, using more than one source

domain improves the prediction accuracy. The same trend is

observed in the second scenario. These results reinforce our

assumption that the use of multiple source domains can improve

the accuracy of the prediction.

430

Table 3. MAE on Games Loads using jokes movies and music

as source domains

CBT TALMUD
Simple Linear

Combination

Jokes Music Jokes + Music Jokes + Music

 α=2.520 α=-1.331 α=0.5 α=0.5

0.914* 0.883* 0.5644 0.9092*

Jokes Movies Jokes + Movies Jokes + Movies

 α=0.511 α=0.681 α=0.5 α=0.5

0.914* 0.533* 0.4867 0.9366*

Music Movies Music + Movies Music + Movies

 α=-1.120 α=2.030 α=0.5 α=0.5

0.883* 0.533 0.6144 0.9068*

Table 4. MAE on Music Loads using jokes, movies and games

as source domains

CBT TALMUD
Simple Linear

Combination

Jokes Games Jokes + Games Jokes + Games

 α=3.568 α=-1.606 α=0.5 α=0.5

0.907* 1.098* 0.7957 0.7960

Jokes Movies Jokes + Movies Jokes + Movies

 α=0.419 α=0.660 α=0.5 α=0.5

0.907* 0.7484 0.7614 0.8358*

Games Movies Games + Movies Games + Movies

 α=-0.489 α=1.631 α=0.5 α=0.5

1.098* 0.7484
+
 0.8208 0.6743

+

In some cases, the optimal relatedness coefficient for a source

domain changes when we use this source together with different

additional source domains. For example, in Table 3, when using

jokes and movies as sources, the relatedness coefficient of jokes is

significantly smaller compared to the use of jokes with music. It

should be noted that the relatedness coefficient are learned for

specific datasets of domains, but they do not represent a general

relatedness level between the domains. The relatedness may be

affected by various factors such as the data sparsness level, the

interaction between the source domains, etc. Thus, the relatedness

coefficient should be learned specifically for each problem at

hand. In future work we intend to investigate the factors that the

relatedness coefficient is influenced by. The meaning of a nonzero

coefficient value, positive or negative, is that the source domain

contributes to the model and balances the predicted error. A zero

coefficient means that it is better not to use the source because it

would have a negative impact on the model.

 In the third scenario, when using music and movies as sources,

the algorithm sets nonzero values to both source domains,

which means that the learner uses both sources, but it performs

worse than a learner which uses a single source only. This is an

example of the Negative Transfer phenomenon which the

algorithm fails to recognize due to the well-known over fitting

problem in machine learning [6]. As we add more source domains

to the problem, the model becomes more complex and therefore

adapts itself better to the training data. Thus, when building the

model on the training data, it seems better to use multiple sources

in order to improve prediction. But, when examining the results

on the testing data, it is preferable to consider only one source

domain. The same problem can be observed in Table 4. In the first

scenario, when only games and jokes are the available datasets,

the use of both source domains improves accuracy. But for the

second and third scenarios using only one source domain

outperformed the use of multiple source domains.

The over fitting phenomenon is demonstrated using Figure 3 and

Figure 4. In both figures, we compare the MAE results of the

learning process from a single source domain (movies) and the

results of learning from multiple domains (movies and jokes in

Figure 3, and movies and music in Figure 4). At the end of each

iteration we compute the MAE value that is achieved on the

training data and on the testing data. We present for the learning

process only the first iterations since the exact same trend

continuous until convergence.

In Figure 3, observing the training curves, we see that the model

that uses the two source domains achieves a smaller error on the

training data, compared to the model that learns from one source

domain only. This is also the case when examining the models on

the testing data. The curve that describes multiple domains

transfer learning is always below the curve that describes the

single domain transfer learning, which means that the error is

consistently smaller.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1 2 3 4 5 6 7 8 9 10 11 12

MAE

Iterations until convergence

Learning from Movies and Jokes to Games

Training error- Movies and Jokes Testing error- Movies and Jokes

Training error- Movies Testing error- Movies

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 2 3 4 5 6 7 8 9 10 11 12

MAE

Iterations until convergence

Learning from Movies and Music to Games

Training error- Movies and Music Testing error- Movies and Music

Training error- Movies Testing error- Movies

Figure 4. The learning process from a single domain

(Movies) and multiple domains (Movies and Music)

Figure 3. The learning process from a single domain

(Movies) and multiple domains (Movies and Jokes)

431

In Figure 4, however, a different trend is observed. While the use

of multiple source domains is superior when measuring the MAE

of training data, the accuracy on the testing data shows opposite

results. That is, on the training data, the model that uses two

sources is superior, while on the testing data, the model that uses a

single source performs better.

The complexity of the model that uses two source domains leads

to an over fitting of the model to the training data and degrades

the accuracy of the resulting model on the testing data. We next

propose an improved algorithm that mitigates the problem of over

fitting and prevents negative transfer.

When comparing TALMUD to the simple linear combination for

predicting games ratings (Table 3), it can be seen that TALMUD

is significantly superior in all examined scenarios.

For predicting music (Table 4), TALMUD is superior in two

scenarios out of three. When using games and movies to predict

music, a smaller error is achieved while using a simple linear

combination due to the over fitting problem. In the other scenarios

TALMUD outperformed the simple linear combination

significantly. This clearly demonstrates the value of learning the

relatedness coefficients in most cases.

5. HEURISTIC DOMAIN ORDERING
In order to deal with the over fitting problem, we suggest an

improvement to our algorithm. We propose a heuristic method

that considers the trade- off between the knowledge that is gained

by using multiple source domains and the over fitting problem

that arises when the model complexity increases due to the

additional source.

The method consists of two stages. First, it heuristically ranks the

available sources from the most correlated to the target domain to

the least correlated. Then, sources are added by decreasing

heuristic correlation estimate until an over fitting problem is

detected.

For computing the heuristic correlation estimate, the algorithm

constructs a codebook for each domain using the method

proposed by Ding et al. [7]. We then permute the rows and

columns, and calculate the distance between each source matrix

and the target matrix. The distance is computed by applying the

codebook transfer phase of the CBT algorithm from the source

domain codebook to the target domain codebook. Thus, the

similarity between the domains’ clusters (codebooks) is

computed. The underlying heuristic assumption is hence that the

source cluster that is most similar to the target cluster (has the

smallest distance) is also most correlated to it.

After computing the heuristic estimates, the algorithm builds a

model only from the most correlated source domain. Then, it tries

to add more sources in decreasing heuristic estimate order. We

use a wrapper method [11] in order to examine if using source

domains is better than using source domains. We build the

model with only 80% of the training data and examine the error

on the remaining 20% of the training data (often called the

validation set). We then compare the error achieved by each

model and decide whether to stop or not.

At the end of this process we identify the source domains that can

be used for building the complete model without over fitting.

Then, we use the entire training data to build the final complete

model that will be used to predict ratings.

5.1 Experimental Results
We ran the improved algorithm with four domains, namely:

games, music, movies and jokes as described above. In two

separate runs we use games and music as target domains and the

other three domains as optional sources from which the algorithm

chooses the related sources that it is worth learning from. Here we

also compare our results to results obtained by running the

RMGM method [15] that aims to fill missing values in all sparse

domains. For RMGM we use the same cluster level settings

 , and we examine the results obtained for the

defined target domains.

Table 5 and Table 6 present the results of building a model for the

games target domain while Table 7 and Table 8 present the results

of building a model for the music target domain. Table 5 shows

the MAE observed on the training data that are used to build the

model, while Table 6 presents the results obtained from using the

final model. The first row in Table 5 shows the similarity

computation results between each of the codebook source

domains and the codebook target domain. As can be seen in the

table, Movies is the most correlated domain (has the smallest

distance) to the target and Music is the least correlated, given our

heuristic estimate. The rest of Table 5 (Rows 2, 3, 4) presents the

decisions that the algorithm made at each step based on the

computed MAE, where each row corresponds to an iteration of

the algorithm. As explained above, on this stage the algorithm

uses only the training data. The model is built using 80% of the

training data and the error is computed using the validation set,

which is the remaining 20% of the training data.

On the first step, the algorithm computes the MAE from learning

only from Movies (the most correlated domain) using the CBT

method [14]. Then, the algorithm adds the next correlated source

domain, Jokes, and performs TALMUD for multiple source

domains (row 3). The use of two source domains is preferable and

obtains more accurate results (MAE=0.4864) than using one

source domain. Therefore, the algorithm continues to add another

source domain, Music, to the model (row 4). As can be observed

in rows 3 and 4, the use of two source domains outperformed the

use of three source domains. Thus, the algorithm selects only two

source domains, Movies and Jokes, for the complete model

construction.

Finally, the algorithm uses the complete training data to train the

model using Movies and Jokes and computes the final MAE on

the testing data. The final model is presented in Table 6. The

results in Table 5 are consistent with results from Table 3. The

most accurate predictions were achieved using the Movies and

Jokes source domains. Given the three source domains we were

able to reach this result without examining all possible

combinations (e.g., movies and music, jokes & music, or each of

the domains separately). The improved algorithm built the most

accurate model given the three source domains.

On the games domain, however, the error on the validation set

increases after adding the second source domain. As Table 7

shows, our algorithm indicates that if we start with Movies, and

then add the Jokes source, then the MAE increase. Thus, it is

better to use only a single source in this case – the movies domain.

This is consistent with the results in Table 4, where the movies

domain alone was superior to TALMUD.

Table 9 presents the results of comparing TALMUD to the

RMGM method. Table 9 shows that TALMUD outperforms

RMGM significantly for both target domains.

432

TALMUD heuristically chooses the source domain to learn from

and does not necessarily use all the available related domains

while RMGM builds the model from all source domains.

Moreover, TALMUD aims to optimize predictions with regards to

a single target domain while RMGM optimizes for all domains

simultaneously.

Table 5. A demonstration of the algorithm performances of

choosing the source domains when Games Loads is the target

domain

Method
Source domains MAE on

validation

data Movies Jokes Music

1
Heuristic

correlation
0.0198 0.5286 0.6100 -

2 CBT α=1 - - 0.5338

3 TALMUD α=0.67 α=0.50 - 0.4864

4 TALMUD α=2.78 α=2.99 α=-4.76 0.6859

Table 6. Final model results for Games Loads

 Source domains MAE on testing data

 Jokes Movies

TALMUD α=0.511 α=0.681 0.4867

Table 7. A demonstration of the algorithm performances of

choosing the source domains when Music Loads is the target

domain

Method
Source domains MAE on

validation

data Movies Jokes Games

1
Heuristic

correlation
0.026 0.045 0.678 -

2 CBT α=1 - - 0.7810

3 TALMUD α=0.693 α=0.373 - 0.7835

Table 8. Final model results for Music Loads

 Source domains MAE on testing data

 Movies

CBT α=1 0.7484

Table 9. A comparison between the MAE results using

TALMUD and RMGM

Target domain TALMUD RMGM

Games loads 0.4867 0.5458*

Music loads 0.7484 0.7806*

6. CONCLUSION AND FUTURE WORK
In this paper we presented TALMUD, a new multi-domain

transfer learning method aimed at addressing the sparsity problem

in recommender systems. The proposed method augments the

codebook-based knowledge transfer (CBT) method which extracts

knowledge from only one source domain to transfer knowledge

from multiple source domains. Our method takes into

consideration the possible interaction between the source

domains, as well as the different degrees of relatedness between

the sources and the target domain. It learns this relatedness and

linearly integrates the rating patterns of all source domains into

one model in order to enable prediction of the target matrix

missing values. Although the complexity of building the model is

high, it is a preprocessing stage that is performed offline that does

not affect the recommendation time (and therefore should not

pose a problem in practice). We address an applicative problem in

which there is no guarantee of overlapping users or items between

the domains, as is common in real-world scenarios. Our results

show that using multiple source domains leads to more accurate

predictions of the missing ratings. Thus, our method is useful for

collaborative filtering applications. We further demonstrate that

learning from multiple sources can lead to an over-fitting

problem. We address this issue by heuristically choosing the best

sources to learn from. The experimental results in the last section

demonstrate the improvement in the accuracy gained by

heuristically choosing the source domains according to their

relatedness to the target domain.

In future work we intend to extend this research in the following

directions:

An analytical proof of convergence. In this paper we assume

Algorithm 1 convergence based on empirical evidence of our

experiments. We demonstrate the convergence process in Figure 1

and Figure 2. We next intend to provide an analytical proof that

Algorithm 1 monotonically decreases the objective function that is

described in equation 1.

Evaluating the effect of data features. We further intend to

examine the influence of different data features on the algorithm's

performance. This will be done by extending the number of

source domains as well as using larger datasets with different

degrees of density.

Parameters calibration. The codebook dimensions, and ,
directly influence the quality of knowledge that is learned from

the source domains. The number of the clusters should not be too

small since it may cause a loss of knowledge, but using too many

clusters can lead to over-fitting and is also computationally

intensive. Thus, we intend to examine this tradeoff and formulate

a rule of thumb that will help to determine the size of the

codebooks.

Handling over fitting. We would like to further investigate the

use of methods that may overcome the over fitting problem and

compare them to our proposed solution.

Handling binary data. Prediction accuracy is the most discussed

property in the recommendation system literature [18]. However,

in industry most data is composed of binary preference or event

data since users do not cooperate in providing explicit ratings. We

would like to extend our method to support binary data.

7. REFERENCES
[1] S. Berkovsky, T. Kuflik, and F. Ricci. Cross-domain

mediation in collaborative filtering. User Modeling 2007,

pages 355-359, 2007.

[2] J. Breese, D. Heckerman, C. Kadie, et al. Empirical analysis

of predictive algorithms for collaborative filtering. In

Proceedings of the 14th conference on Uncertainty in

Artificial Intelligence, pages 43-52, 1998.

433

[3] B. Cao, N. Liu, and Q. Yang. Transfer learning for collective

link prediction in multiple heterogeneous domains. In

Proceedings of the 27th International Conference on

Machine Learning, Haifa, Israel. Citeseer, 2010.

[4] W. Dai, G. Xue, Q. Yang, and Y. Yu. Co-clustering based

classification for out-of-domain documents. In Proceedings

of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 210-219.

ACM, 2007.

[5] C. Desrosiers and G. Karypis. A comprehensive survey of

neighborhood-based recommendation methods.

Recommender Systems Handbook, pages 107-144, 2011.

[6] T. Dietterich. Overfitting and undercomputing in machine

learning. ACM Computing Surveys, 27(3):326-327, 1995.

[7] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal

nonnegative matrix t-factorizations for clustering. In

Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages

126-135. ACM, 2006.

[8] L. Getoor and C. Diehl. Link mining: a survey. ACM

SIGKDD Explorations Newsletter, 7(2):3-12, 2005.

[9] T. Hofmann and J. Puzicha. Latent class models for

collaborative filtering. In International Joint Conference on

Artificial Intelligence, volume 16, pages 688-693.

LAWRENCE ERLBAUM ASSOCIATES LTD, 1999.

[10] H. Kiers. Setting up alternating least squares and iterative

majorization algorithms for solving various matrix

optimization problems. Computational statistics & data

analysis, 41(1):157-170, 2002.

[11] R. Kohavi and D. Sommerfield. Feature subset selection

using the wrapper method: Overfitting and dynamic search

space topology. In Proceedings of the First International

Conference on Knowledge Discovery and Data Mining,

pages 192 U-197, 1995.

[12] Y. Koren and R. Bell. Advances in collaborative filtering.

Recommender Systems Handbook, pages 145-186, 2011.

[13] B. Li. Cross-domain collaborative filtering: A brief survey.

In 2011 23rd IEEE International Conference on Tools with

Artificial Intelligence, pages 1085-1086. IEEE, 2011.

[14] B. Li, Q. Yang, and X. Xue. Can movies and books

collaborate? cross-domain collaborative filtering for sparsity

reduction. In Proceedings of the 21st international jont

conference on Artificial intelligence, pages 2052-2057.

Morgan Kaufmann Publishers Inc., 2009.

[15] B. Li, Q. Yang, and X. Xue. Transfer learning for

collaborative filtering via a rating-matrix generative model.

In Proceedings of the 26th Annual International Conference

on Machine Learning, pages 617-624. ACM, 2009.

[16] S. Pan and Q. Yang. A survey on transfer learning.

Knowledge and Data Engineering, IEEE Transactions on,

22(10):1345-1359, 2010.

[17] W. Pan, E. Xiang, N. Liu, and Q. Yang. Transfer learning in

collaborative filtering for sparsity reduction. In Proceedings

of the 24rd AAAI Conference on Artificial Intelligence, 2010.

[18] G. Shani and A. Gunawardana. Evaluating recommendation

systems. Recommender Systems Handbook, pages 257-297,

2011.

[19] G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged plsa for

cross-domain text classification. In Proceedings of the 31st

annual international ACM SIGIR conference on Research

and development in information retrieval, pages 627-634.

ACM, 2008.

[20] Y. Zhang, B. Cao, and D. Yeung. Multi-domain collaborative

filtering. In Proceedings of the 26th Conference on

Uncertainty in Artificial Intelligence (UAI), Catalina Island,

California, USA, 2010.

434

