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 Abstract 
 
Existing evaluations measures are insufficient when probabilistic classifiers are used for choosing objects to be included in 
a limited quota. This paper reviews performance measures that suit probabilistic classification and introduce two novel 
performance measures that can be used effectively for this task. It then investigates when to use each of the measures and 
what purpose each one of them serves. The use of these measures is demonstrated on a real life dataset obtained from the 
human resource field and is validated on set of benchmark datasets. 

 
1. Introduction and Motivation 
The aim of classification is to build a classifier (also known as a classification model) by induction from a pre-classified 
dataset. The classifier can be then used to classify unlabeled objects. Given the long history and recent growth of the field, 
it is not surprising that several mature approaches to induction are now available to the practitioner. 

This paper focuses on applications in which there is a limited quota and a list of new, unlabeled objects, and the 
decision maker is using a probabilistic classifier to fill in the quota with the objects most likely to achieve "success". 

The limited quota is a common situation in real-life applications. Usually organizations have resource limitations that 
require cost-benefit considerations. Resource limitations prevent the organization from choosing all the instances. For 
example, in direct marketing applications (Levin and Zahavi, 2005), instead of mailing everybody on the list, the 
marketing efforts must target the mailing audience with the highest probability to positively respond to the marketing offer 
without exceeding the marketing budget. 

Another example deals with a security officer in an air terminal. Following September 11, the security officer needs to 
search on all the passengers that are likely to carry dangerous instruments (such as scissors, penknives and shaving blades). 
For this purpose the officer is using a classifier that is capable to classify each passenger either as class A, which means, 
"Carry dangerous instruments" or as class B, "Safe". Suppose that searching a passenger is a time consuming task, and that 
the security officer is capable to check only 20 passengers before each flight. If the classifier has labeled exactly 20 
passengers as class A then the officer will check all these passengers. However if the classifier has labeled more than 20 
passengers as class A, then the officer is required to decide which predicated class A passenger should be ignored. On the 
other hand, if less than 20 people were classified as A, the officer, who must work constantly, has to decide who to check 
from those classified as B after concluding with the class A passengers.   

There also cases in which a quota limitation is known to be exist, but the size of the quota in not known in advance. 
Still the decision maker would like to evaluate the expected performance of the classifier. This case, for example, happens 
in some countries regarding the number of undergraduate students that can be accepted to a certain department in a state 
university. The actual quota for a given year is set according to different parameters including governmental budget.  In 
this case the decision maker would like to evaluate several classifiers for selecting the applicants while not knowing the 
actual quota size. Finding the most appropriate classifier in-advance is important because the chosen classifier can dictate 
what the important attributes are, i.e. (the information that the applicant should provide the registration and admission 
unit). 

The aim of this paper is to examine various measures for evaluating the performance of probabilistic classifier with 
limited quota restriction. We begin by reviewing existing measures and then suggest new measures. Finally we examine 
these measures on a real-world case study and on a various datasets obtained from UCI repository. 

 
2. Evaluation Measures 
Classifiers are evaluated based on some “goodness-of-fit” measures which assess how good the model fits the data. To the 
purpose of this paper we divide these measures into three categories: 

1. Measures for evaluating classifiers that are used on unlimited quota. 
2. Measures for evaluating classifiers that are used on limited and known in advance quota. 
3. Measures for evaluating classifiers that are used on limited and unknown in advance quota. 

The following subsections present measures for each category. 
 
2.1 Measures for evaluating unlimited quota 



 2

The most common and straightforward approach to evaluate the performance of the classifier is to use a test set of unseen 
instances that were not used during the training phase. For every instance in the test set, we compare the actual class to the 
class that was assigned by the trained classifier. A positive (negative) example that is correctly classified by the classifier 
is called a true positive (true negative); a positive (negative) example that is incorrectly classified is called a false negative 
(false positive). These numbers can be organized in a confusion matrix shown in Table 1. Based on the values in Table 1, 
one can define the following measures: 
 
Accuracy is:     (a+d)/(a+b+c+d) 
Misclassification rate is:   (b+c)/(a+b+c+d) 
Precision is:     d/(b+d) 
True positive rate (Recall) is:  d/(c+d)    (1) 
False positive rate is: b/(a+b) 
True negative rate is: a/(a+b) 
False negative rate is: c/(c+d) 
     

Table 1:A confusion matrix 
 Predicted 

negative 
Predicted 
positive 

Negative 
Examples 
 

A B 

Positive 
Examples 
 

C D 

 
Accuracy and its complement measure (misclassification rate) are the most common measures for evaluating classifiers. 

Nevertheless accuracy is not a sufficient measure to evaluate a model with an imbalanced distribution of the class. In such 
cases, where the data set contains significantly more majority class instances, than minority class instances, one can always 
select the majority class and obtain good accuracy performance. Well-known performance measures in this case are 
precision and recall. Precision measures how many examples classified as "positive" class are indeed "positive". Recall 
measures how many examples of "positive" class are correctly classified. The above measures are useful to evaluate crisp 
classifiers that are used to classify an entire dataset.  

However in the case discussed here we are interested in selecting the most appropriate instances to fill in the quota. 
Thus, other measures should be used to evaluate the classifiers.  
 
 
2.2 Measures for evaluating limited and known in advance quota 
2.2.1 Extended precision and recall measures 
In probabilistic classifiers, the abovementioned definitions of precision and recall can be extended and defined as a 
function of a probability threshold t . In this paper we evaluate a classifier based on a given a test set. This test set 
consists of n instances denoted as 1( , ,..., , )ny y< > < >1 nx x such that ix  represents the input features vector of 

instance i and iy  represents its true class ("positive" or "negative").  
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where M  represents a probabilistic classifier that is used to estimate the conditional likelihood of an observation xi to 
"positive" which is denoted as ˆ (" " )M iP positive x . Note the addition of the “hat” - ^ - to the conditional probability 
estimation is used for distinguishing it form the actual conditional probability. The typical threshold value of 0.5 means the 
predicted probability of "positive" must be higher than 0.5 for the instance to be predicted as "positive". By changing the 
value of t , one can control the number of instances that are classified as "positive". Thus, the t  value can be tuned to the 
required quota size. Nevertheless because there might be several instances with the same conditional probability, the quota 
size is not necessarily incremented by one.  

The discussion in this paper is based on the assumption that the classification problem is binary. In case there are more 
than two classes, adaptation could be easily made by comparing one class to all the others.  
 
2.2.2 ROC Curves 
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Another measure is the ROC (Receiver operating Characteristic) curves which illustrate the tradeoff between true positive 
to false positive rates (see for instance Provost et al. 1998). Figure 1 illustrates a ROC curve in which the X-axis represents 
False positive rate and the Y-axis represents True positive rate.  The ideal point on the ROC curve would be (0,100), that is 
all positive examples are classified correctly and no negative examples are misclassified as positive.  

The ROC convex hull can also be used as a robust method of identifying potentially optimal classifiers (Provost and 
Fawcett, 2001). Given a family of ROC curves, the ROC convex hull can include points that are more towards the north-
west frontier of the ROC space. If a line passes through a point on the convex hull, then there is no other line with the 
same slope passing through another point with a larger true positive (TP) intercept. Thus, the classifier at that point is 
optimal under any distribution assumptions in tandem with that slope (Provost and Fawcett, 2001). 

  
Figure 1: A Typical ROC curve. 

 
 
 
 
2.2.3 Hit Rate Curve 
An and Wang (2001) suggested the hit rate curve. This curve presents the hit-ratio as a function of the quota size. Hit-rate 
is calculated by counting the actual positive labeled instances inside a determined quota. More precisely for a quota of size 
j and a ranked set of instances, Hit-rate is defined as: 

[ ]

1HitRate( )

j
k

k
t

j
j

==
∑

         (4) 

where [ ]kt  represents the truly expected outcome of the instance located in the k'th position when the instances are  
are sorted according to their conditional probability for "positive" by descending order. Note that if the k'th position can be 
uniquely defined (i.e. there is exactly one instance that can be located in this position) then [ ]kt  is either 0 or 1 depending 
on the actual outcome of this specific instance. Nevertheless if the k'th position is not uniquely defined and there are ,1km  

instances that can be located in this position, and ,2km  of which are truly positive, then:  
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The sum of [ ]kt  over the entire test set is equal to the number of instances that are labeled "positive".  Moreover 

[ ]Hit-Rate( ) Precision ( )jj p≈  where [ ]jp denotes the jth order of  1
ˆ ˆ(" " ),..., (" " )I I mP positive x P positive x .  The values are 

strictly equal when the value of jth is uniquely defined. It should be noticed that the hit-rate measure was originally defined 
without any reference to the uniqueness of certain position. However there are some classifiers that tend to provide the 
same conditional probability to several different instances. For instance in a decision tree, any instances in the test set that 
belongs to the same leaf get the same conditional probability. Thus, the proposed correction is required on those cases. 
Figure 2 illustrates a hit-curve.  
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Figure 2: A typical hit curve. 

 
 
2.2.4 Qrecall (Quota Recall) 
The hit-rate measure, presented above, is the “precision” equivalent for quota-limited problems.  Similarly, we suggest the 
Qrecall (for Quota Recall) to be the “recall” equivalent for quota-limited problems. The Qrecall for a certain position in a 
ranked list is calculated by dividing the number of positive instances, from the head of the list until that position, by the 
total positive instances in the entire dataset.  Thus, the Qrecall for a quota of  j is defined as: 

[ ]
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          (6) 

The denominator stands for the total number of instances that are classified as "positive" in the entire dataset, formally 
it can be calculated as: 
 

i{ ,y > :   " "}i in y positive+ = < =x        (7) 
 
 
2.2.5 Lift Curve 
A popular method of evaluating probabilistic models is Lift (Coppock, 2002). A ranked test set is divided into several 
portions (usually deciles). Lift is calculated as follows: the ratio of really positive instances in a specific decile divided by 
the average ratio of really positive instances in the population. Regardless of how the test set is divided, a good model is 
achieved if the lift decreases when proceeding to the bottom of the scoring list. A good model would present a lift greater 
than 1 in the top deciles and lift smaller than 1 in the last deciles. Figure 3 illustrates a lift chart for a typical model 
prediction. A comparison between models can be done by comparing the lift of the top portions, depending on the 
resources available and cost/benefit considerations. 

 
Figure 3 :A typical lift chart. 
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2.2.6 Pearson Correlation Coefficient 
There are also some statistical measures that are candidates to be used as performance evaluators of models. These 
measures are known in the statistical literature for quite some time and can be found in many statistical books (see for 
instance Siegel, 1956). In this work we examine the Pearson correlation coefficient. This measure can be used to find the 
correlation between the ordered estimated conditional probability (p[k]) and the ordered actual expected outcome (t[k]). 
Pearson correlation coefficient can have any value between -1 and 1 where the value 1 represents the strongest positive 
correlation. It should be noticed that this measure take into account not only the ordinal place of an instance but also its 
value  (i.e. the estimated probability attached to it).  The Pearson correlation coefficient for two random variables is 
calculated by dividing the co-variance by the product of both standard deviations. In this case the standard deviations of 
the two variables assuming a quota size of j are: 
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where )(),( jtjp represent the average of p[i]'s and t[i]'s respectively: 
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The co-variance is calculated as following: 
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Thus, the Pearson correlation coefficient for a quota j, is: 
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2.3 Measures for evaluating limited and unknown in advance quota 
The issue becomes more complicated when there is no specific quota to fill, but rather the interest is on the general 
performance of a classifier over an average quota or different sizes of quotas. Evaluating a probabilistic model without 
using a specific fixed quota is not a trivial task. 

Using continuous measures like hit curves, ROC curves and lift charts that were mentioned previously, is problematic.  
Such measures can give a definite answer to the question: "which is the best model?" only if one model dominates in the 
curve space, meaning that all the other model's curves are beneath it or equal to it over the entire chart space. If a 
dominating model does not exist, than there is no answer to that question, using only this measure. Complete order 
demands no intersections of the curves. Of course, in practice there is almost never one dominating model. The best 
answer that can be obtained is in which areas one model outperforms the others. As shown in Figure 4: Every model gets 
different values in different areas. If a complete order of models performance is needed, another measure should be used. 

 
Figure 4 :Areas of dominancy. A ROC curve is an example to a measure that gives areas of dominancy and not a 

complete order of the models. In this example the equally dashed line model is the best for f.p (false positive) < 0.2. 
The full line model is the best for 0.2 < f.p <0.4. The dotted line model is best for 0.4 < f.p <0.9 and from 0.9 to 1 

again the dashed line model is the best. 
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2.3.1 Area Under Curve (AUC) 
Area Under the ROC Curve (AUC) is a useful metric for classifier performance as it is independent of the decision 
criterion selected and prior probabilities. The AUC comparison can establish a dominance relationship between classifiers. 
If the ROC curves are intersecting, the total AUC is an average comparison between models (Lee, 2000). The bigger it is, 
the better the model is. As opposed to other measures, the area under the ROC curve (AUC) does not depend on the 
imbalance of the training set (Kolcz et al., 2003). Moreover Bradley (1997) argues the comparison of the AUC of to two 
classifiers is more fair and informative, than comparing their misclassification rates. 
 
 
2.3.2 Average Hit Rate  
Average hit rate is a weighted average of all hit-rate values. If the model is optimal, then all the really positive instances 
are located in the head of the ranked list, and the value of the average hit rate is 1. The use of this measure fits an 
organization that needs to minimize type II statistical error (namely including a certain object in the quota although in fact 
this object will be labeled as "negative"). Formally the Average Hit Rate for binary classification problems is defined as: 

[ ]

1
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j
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AverageHitRate
n

=
+

⋅
=
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   (12) 

 
where [ ]jt  is defined as in Equation 4 and is used as weighting factor. Note that the average hit-rate ignores all hit-rate 
values on unique positions that are actually labeled as "negative" class (because [ ]jt  =0 in these cases). 
 
 
 
2.3.3 Average Qrecall 
Average Qrecall is the average of all the Qrecalls which start from the position that is equal to the number of positive 
instances in the test set,  to the bottom of the list. Average Qrecall fits an organization that needs to minimize type I 
statistical error (namely not including a certain object in the quota although in fact this object will be labeled as 
"positive"). Formally Average Qrecall is defined as: 
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n

j n
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n n
+=
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where n is the total number of instances and n+ is defined in Equation (7). 
 

Table 2 illustrates the calculation of Average Qrecall and Average Hit-rate for a dataset of ten instances. The table 
presents a list of instances in descending ordered descending according to their predicted conditional probability to be 
classified as "positive". Because all probabilities are unique, the third column ( [ ]kt ) indicates the actual class ("1" 
represent "positive" and "0" represents "negative").  The average values are simple algebraic average of the highlighted 
cells.   
 

Table 2: An example for calculating Average Qrecall and Average Hit-rate 
Hit rate Qrecall [ ]kt  Positive probability  Place in list (j) 

1 0.25 1 0.45 1 
0.5 0.25 0 0.34 2 
0.667 0.5 1 0.32 3 
0.75 0.75 1 0.26 4 
0.6 0.75 0 0.15 5 
0.5 0.75 0 0.14 6 
0.571 1 1 0.09 7 
0.5 1 0 0.07 8 
0.444 1 0 0.06 9 
0.4 1 0 0.03 10 
0.747 0.893 Average:   

   
The different behavior of Qrecall and Hit-rate can be seen in Figure 5, which describes the values of the measures on Y 

axis versus the number of instances in a quota on the X axis. The values for the chart are taken from Table 2. Note that 
both average Qrecall and average Hit-rate gets the value 1 in an optimum classification, where all the positive instances 
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are located in the head of the list. This case is illustrated in Table 3. A summary of the key differences are provided in 
Table 4.  
 

Table 3 :Qrecall and Hit-rate in an optimum prediction 

Hit rate Qrecall [ ]kt  Positive probability  Place in list (j) 

1 0.25 1 0.45 1 
1 0. 5 1 0.34 2 
1 0.75 1 0.32 3 
1 1 1 0.26 4 
0.8 1 0 0.15 5 
0.667 1 0 0.14 6 
0.571 1 0 0.09 7 
0.5 1 0 0.07 8 
0.444 1 0 0.06 9 
0.4 1 0 0.03 10 
1 1 Average:   

 

 

 

Table 4:  Characteristics of Qrecall and Hit-rate. 

Parameter Hit-rate Qrecall 
Function increasing/decreasing Non monotonic  Monotonically increasing 

End point Proportion of positive samples in the set 1 
Sensitivity of the measures 
value to positive instances 

Very sensitive to positive instances at the 
top of the list. Less sensitive on going 
down to the bottom of the list. 

Same sensitivity to positive 
instances in all places in the list. 

Effect  of negative class on the 
measure 

A negative instance affects the measure 
and makes its value to decrease. 

A negative instance does not affect 
the measure. 

Range 0≤ Hit-rate ≤1 0≤ Qrecall ≤1 
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Figure 5 :Behavior of Qrecall and Hit-rate 

 
2.3.4 PEM (Potential Extract Measure) 
To better understand the behavior of Qrecall curves, consider the cases of random prediction and optimum prediction.  

• Suppose no learning process was applied on the data and the list produced as a prediction would be the test set in 
its original (random) order. Under the assumption that positive instances are distributed uniformly in the 
population, then a quota of random size contains a number of positive instances that is proportional to the a-priory 
proportion of positive instances in the population. Thus, a Qrecall curve that describes a uniform distribution 
(which can be considered as a model that predicts as well as a random guess, without any learning) is a linear line 
(or semi linear because values are discrete) which starts at 0 (for zero quota size) and ends in 1.  
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• Suppose now that a model gave an optimum prediction, meaning all positive instances are located at the head of 
the list and below them all the negative instances. In that case the Qrecall curve climbs linearly until a value of 1 
is achieved at point n+ (n+ = number of positive samples). From that point any quota that has a size bigger than 
n+, fully extracts test set potential and the value 1 is kept until the end of the list. 

 
Note that a "good model", which outperforms random classification, though not an optimum one, will be "on average" 

between these two curves. It may drop sometimes below the random curve but generally, more area is delineated between 
the "good model" curve and random curve, above the latter then below it. If the opposite is true then the model is a "bad 
model" that does worse than a random guess. Figures 6 and 7 give an intuition of the above. The examples relate to a test 
set of 100 instances, 20 of them positive and 80 negative. 
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Figure 6: An example of a "good" model. 
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Figure 7 :An example of a "bad" model. 

 
The last observation leads us to consider a measure that evaluates the performance of a model by summing the areas 

delineated between the Qrecall curve of the examined model and the Qrecall curve of a random model (which is linear). 
Areas above the linear curve are added and areas below the linear curve are subtracted. The areas themselves are 
calculated by subtracting the Qrecall of a random classification from the Qrecall of the model's classification in every 
point as shown in Figure 8. The areas where the model performed better than a random guess increase the measure's value 
while the areas where the model performed worse than a random guess decrease it. If the last total computed area is 
divided in the area delineated between the optimum model Qrecall curve and the random model (linear) Qrecall curve, 
then it reaches the extent to which the potential is extracted, independently of the number of instances in the dataset. 
Formally, the PEM (Potential Extract Measure) measure is calculated as: 

 

3

21

S
SSPEM −

=      (14) 

 
where S1 is the area delimited by the Qrecall curve of the examined model above the Qrecall curve of a random model. S2 
is the area delimited by the Qrecall curve of the examined model under the Qrecall curve of a random model. S3 is the area 
delimited by the optimal Qrecall curve and the curve of the random model. The division in S3 is required in order to 
normalize the measure, thus datasets of different size can be compared. In this way, if the model is optimal, then PEM gets 
the value 1. If the model is as good as a random choice, then the PEM gets the value 0.  If it gives the worst possible result 
(that is to say, it puts the positive samples in the bottom of the list), then its PEM is -1. Based on the notations defined 
above the PEM can be formulated as:  
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where n- denotes the number of instances that are actually classified as "negative". Table 5 illustrates the calculation of 
PEM for the instances in Table 2. Note that the random Qrecall does not represent a certain realization but the expected 
values. The optimal qrecall is calculated as if the "positive" instances have been located in the top of the list. 

 
 
 

 
Figure 8: A qualitative representation of PEM. 

 
 

 
Table 5: An example for calculating PEM for instances of Table 2. 

S3 S2 S1 Optimal 
Qrecall 

Random 
Qrecall 

 Model 
Qrecall 

[ ]kt  Success 
probability 

Place in 
list 

0.15 0 0.15 0.25 0.1 0.25 1 0.45 1 
0.3 0 0.05 0.5 0.2 0.25 0 0.34 2 
0.45 0 0.2 0.75 0.3 0.5 1 0.32 3 
0.6 0 0.35 1 0.4 0.75 1 0.26 4 
0.5 0 0.25 1 0.5 0.75 0 0.15 5 
0.4 0 0.15 1 0.6 0.75 0 0.14 6 
0.3 0 0.3 1 0.7 1 1 0.09 7 
0.2 0 0.2 1 0.8 1 0 0.07 8 
0.1 0 0.1 1 0.9 1 0 0.06 9 
0 0 0 1 1 1 0 0.03 10 
3 0 1.75 Total      

 
Note that the PEM somewhat resembles the Gini index produced from Lorentz curves which appear in economics when 

dealing with the distribution of income.  Indeed this measure indicates the difference between the distribution of positive 
samples in a prediction and the uniform distribution. Note also that this measure gives an indication of the total lift of the 
model in every point. In every quota size, the difference between the Qrecall of the model and the Qrecall of a random 
model expresses the lift in extracting the potential of the test set due to the use in the model (for good or for bad). 

 
 
 

2.3.5 Which measure should be used? 
Average Hit-rate provides an answer to the question: "which classifier grants the best ratio of relevant instances over the 
total number of instances in an 'average quota'?". The answer to this question suits a decision maker that needs to fill a 
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flexible quota and the cost of accepting an irrelevant instance is high. It may be useful for decision maker that needs to 
minimize Type 2 statistical error.  

An alternative question that might suits the needs of the decision maker is: "which classifier grants the best ratio of 
relevant instances over the total number of relevant instances available in the data set?". This question fits cases in which 
the cost of not accepting a relevant instance is high. It may be useful for decision maker that needs to minimize Type 1 
statistical error. Such a decision maker would prefer to use average Qrecall or PEM. 

This claim can be shown mathematically. As depicted in Figure 9, the line (c0) indicates the instances that are truly 
negative and the line (c1) indicates the instances that are truly positive. On the X axis is the estimated probability of an 
instance, according to a model's prediction. The threshold for a quota was set to c (cut off point). All the instances of c1 
that got probability lower than c are out of the quota and therefore are false negative. All the instances of c0 that got 
probability greater than c are inside the quota and therefore are false positive. 

   

Figure 9 :False negative and false positive errors in a model's prediction ordered in a ranked list. The red line (c0) 
indicates the negative instances and the blue line (c1) indicate the positive instances. 

 
Recall from Table 1 and note that:  
α = Type 1 statistical error. 
β = Type 2 statistical error. 
c1 = describes the instances that really have positive class. 
c0 = describe the instances that really have negative class. 
r.p = the number of real positive instances (c+d in Table 1). 
r.n = the number of real negative instances (a+b in Table 1).  
f.n = the number of rejected instances under c1 (c in Table 1).  
f.p = the number of accepted instances under c0 (b in Table 1).  
p.p = the number of instances that were predicted positive (b+d in Table 1). 
 
Note that the connections are:  
α = f.n/r.p          (16) 
β = f.p/r.n          (17) 
 
Based on the precision definition in Equation 1:  
 
 
 
 
 
 
 
 
 

. * .1 1

. .
d b d d b f p r nprecision

b d b d b d p p p p
β+ −

− = − = = = =
+ + +

 (18) 

 

c0

c1

c

acceptreject

10

No. of 
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Estimated 
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f.n f.p
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This is the percentage of instances that were accepted and do not fit (relative area of f.p under all the accepted areas of 
c1 and c0 in Figure 9). Therefore high precision leads to a low β. 

 
On the other hand: 

.1 1
.

d c d d c f nrecall
c d c d c d r p

α+ −
− = − = = = =

+ + +
   (19) 

This is the percentage of instances that fit and were not accepted (relative area of f.n under c1 in Figure 9). 
Thus, high recall leads to a low α 
 

4. Experimental Study 
 

4.1 Objectives 
So far, several evaluation measures were presented. This section reviews experiments in which those measures were used. 
The experiments were designed to examine whether all the measures that were designed to evaluate a probabilistic 
classification according to its success, may provide a fair tool to use, no matter what the goals of the process are. Yet, is it 
important to define what type of error should be minimized in order to choose the most suitable measure for the task? Does 
it influence in any way on the achieved results? Moreover, the experiments should study the differences and similarities of 
the measures behaviors, in order to determine whether one of the measures can be used instead of another, even though 
they were developed in different ways and on different background. Particularly, it is interesting to examine the similarity 
of the novel measures suggested in this paper to the well validated, parametric measure: Pearson Correlation Coefficient 
and AUC measure. 
 
The experimental study contains two parts.  The first part introduce a real-world case study in which the proposed 
measures were used to evaluate the performance of models that were applied during an ensemble classification process. 
The second part validates the results on 20 datasets obtained from UCI repository.    
 
4.2 Test Case  

The test case that was used for the experiments was taken from the field of human resources. A company recruits each 
year several employees for a job. The job is very complex and requires considerable mechanical and cognitive skills. 
Hence, the training period for the job is very long and expensive. Since the qualifications needed for the job are 
compound, only a few applicants fit the company's needs. In order to save money and training time of applicants who will 
not complete the training period, the company prefers that only the applicants with the best chances for completing the 
training period will begin it. 

One of the ways that the company uses to screen the applicants is by giving them missions in a simulator to check their 
skills in different scenarios. Each such mission creates a dataset in which each row represents an applicant and each 
column is a feature that represents the performance of the applicant in one of the skill parameters that is being checked. 
Some of the features contain continuous numbers and some are binary features. In addition, there are features that are 
transformations of other features in the dataset. The target attribute is a binary feature that has two classes: 1, if the 
applicant finished the training period and 0, if the applicant failed to complete his training period. Overall there are 52 
datasets that contain past information about applicants that have already finished or failed to finish their training period. 
Each one represents a mission and contains the data of the applicants in a specific scenario. The scenarios are varied and 
check different skills. 

Each one of the missions can be considered as a sensor that provides information about the applicant in certain areas 
which it was designed to test. Since the goal is to evaluate the overall performance of an applicant in all the areas in order 
to determine his chances of succeeding, this problem can be regarded as a sensor fusion problem. 

It should be mentioned that the data was part of an experiment in which applicants that did not do well in the tests were 
allowed to continue the training period to see if they would succeed or fail. Since no one involved knew about their test 
performance scores, there is no possibility that self-fulfilling wishes substantially changed the results.   

 
4.2.1 Experiment Design 
The measures were tested through a data mining technique called selective voting. In selective voting the first best X 
models are taken and their results are combined by simple average. By increasing X from 1 to 52, a graph of the 
performance of the integrated prediction as a function of X is achieved. Figure 10 a-d illustrates the results of 4 
experiments. In each experiment, models were created from a training set which included 250 instances and tested on a test 
set which included 50 instances. The ratio of positive instances out of the total instances in both sets was 0.2. Each one of 
the experiments included different instances in the test set. On the X axis are marks of 52 predictions made by 52 models. 
Every prediction is basically a scoring list of the instances of the test set, ordered by their estimated probability to finish 
the training period of the company. Each such prediction got 4 marks, which are presented on the Y axis, according to its 
success. The marks were given in average Hit-rate, average Qrecall, PEM and Pearson correlation coefficient. The scores 
provided by average Hit-rate and average Qrecall were normalized. 
 



 12

selectiv e v oting according to 4 measures in experiment 1

-0.2

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36 41 46 51

best X models

pe
rf

or
m

an
ce

Hit-rate norm.

Qrecall norm.

P.E.M

correl

 

selective voting according to 4 measures in experiment 2

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 5 9 13 17 21 25 29 33 37 41 45 49

best X models

pe
rf

or
m

an
ce

Hit-rate norm.

Qrecall norm.

P.E.M

correl

 
selective voting according to 4 measures in experiment 3

0

0.1

0.2

0.3

0.4

0.5

0.6

1 6 11 16 21 26 31 36 41 46 51

best X models

pe
rf

or
m

an
ce

Hit-rate norm.

Qrecall norm.

P.E.M

correl

 

selectiv e v oting according to 4 measures in experiment 4
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Figure 10a-d :Marks of 52 predictions of a scoring list, according to 4 measures 

 
4.2.2 Comparison between performance measures  
Looking at Figure 10 a-d, the next notions can be made: 

• All measures have, most of the time, the same tendency. They increase and decrease simultaneously. This means 
that using any of those measures, with no respect to the type of error that is needed to be minimized will not 
cause a huge error. This outcome was expected for the first three evaluation measures because all of them were 
designed to render high marks if positive instances are at the top of a list and vice versa. It is encouraging to see, 
though, that the Pearson Correlation Coefficient displays a similar behavior. 

• The measures reach a global maximum at different points on the graphs. As can be seen in Table 6. This means 
that despite the resembling tendency of the measures, the exact measure to use is significant for achieving 
optimality according to specific objectives.  

 
 
 

Table 6: Points on the graphs, where global optimum was achieved. 

Experiment 4 Experiment 3 Experiment 2 Experiment 1   
38 12 23 32 Average Hit-rate 
13 33 13 11 Average Qrecall 
26 12 13 and 25 11and 31 PEM 

31 12 25 32 
Pearson Correlation 
Coefficient 

 
Remarks: 
• The absolute numbers that a prediction gets is not important. When deciding between alternatives, what matters 

is the relative mark that a prediction got in comparison to other predictions using the same measure. 
• The fact that for a certain prediction, a mark given by one measure is higher than a mark given by another 

measure, does not mean that the higher measure is better. The measures measure different things and therefore 
can not be compared by their absolute values. 

Table 7 and Figure 11 show the correlation between the marks that were given by the different measures. The 
correlation was checked on the results presented in Figure 10 a-d. Highlighted are the highest results (correlation greater 
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than 0.95). It can be noticed that average Qrecall is highly correlated to PEM. There is no wonder about it because PEM is 
based on Qrecall curves. Another notion is that Pearson correlation coefficient has high correlation with PEM and they 
behave in a resembling manner. This notion has a very high value since it means two things: 
1. PEM provides similar results to a traditional, high validated measure from the field of parametric statistics. In some 

aspects it makes this measure, which has not yet been tested and gained validity, more “trustable”. 
2. It also means that Pearson correlation coefficient, which was not designed for purposes of evaluating the performance 

of probabilistic classification of models, can be in fact used for that task exactly and provide very good results. 
 
 

 
Figure 11: Correlation between measures in selective voting 

 

 

 
 
 
 
 
 
 
 
 

Table 7:  Correlation between measures in selective voting 

Exp. 4Exp. 3Exp. 2Exp. 1measures
0.639342-0.019780.7790440.878913H.r # Q.r
0.785190.4570210.8715750.941348H.r # PEM

0.8593060.796210.8920640.951883H.r # correl
0.9742880.8708690.9828450.98482Q.r # PEM
0.9120670.4194680.9395990.92394Q.r # correl
0.9711140.7585520.9715710.970244PEM#correl  

 
4.3 UCI Repository Datasets 
In order to examine the potential of the proposed measures on various classification problems, a comparative experiment 
has been conducted. The following subsections describe the experimental set-up and the obtained results. 

4.3.1 Experiment Design 
This experiment uses three different types of probabilistic classifiers, more specifically: C4.5, Naïve Bayes and Neural 
Networks. The C4.5 algorithm was chosen because it is considered as the state-of-the-art decision tree algorithm which is 
widely used in many other comparative studies. Naïve Bayes was chosen because it is considered as a simple but yet 
efficient classifier. Neural Networks was chosen due its popularity. 

The selected algorithms were examined on 20 datasets which have been selected manually from the UCI Machine 
Learning Repository (Merz and Murphy, 1998). The datasets chosen vary across a number of dimensions such as:  the 
number of classes, the number of instances, the number of input features and their type (nominal, numeric).  

-0.50 0.5 1 

H.r # Q.r

H.r # PEM

H.r # correl

Q.r # PEM

Q.r # correl

PEM#correl

Exp. 4 Exp. 3 Exp. 2 Exp. 1
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We randomly split the dataset into a training set (2/3 of the instances) and a test set (1/3 of the instances). We have 
trained the classifier using the training set and evaluate each measure on the test set. The experiment was conducted using 
the Weka framework (Witten and Frank, 2005). For this purpose we have extended its regular evaluation methods to 
measure the new proposed measures (average hit-rate, average qrecall and PEM).  

4.3.2 Comparison between performance measures 
Table 8 and Table 9 present the obtained results for the smallest class and the largest class respectively.  In most of the 
cases all measures lead to the same conclusion regarding the performance of each classifier relative to the other classifiers. 
This result is consistent with the results that were obtained in the abovementioned test case. 
 
When comparing the AUC measure and the PEM measure the following observations can be identified:  
 

1. Both measures obtain the maximum value (1) together.  
2. In binary problems, AUC always gets the same value for both classes. In PEM this is not necessarily true. For 

instance for the Labor dataset, the values are equal when Naïve Bayes is used, but these values are not equal when 
C4.5 is used. In fact for Naïve Bayes in all binary cases the values of PEM measures are identical. In Neural 
Networks 11 of 12 cases this observation is true. However for C4.5 this observation was true only for the 
mushroom dataset. Note that the mushroom dataset is the biggest binary training set. This behavior of C4.5 can be 
explained by the fact that in this decision trees, it is more frequent to have two different instances with the same 
predicted probability (as both instances are affiliated to the same leaf) 

3. It is interesting to notice that although the PEM and AUC measures get different values, still using them as a 
method for selecting the best classifier among C4.5, Naïve Bayes and Neural Networks, result always with the 
same decision.  Even when there quite small differences between the classifiers (see for instance the difference 
between NN and DT on chess dataset), still the decisions based on AUC and PEM were consistent. In the smallest 
class of the breast cancer dataset both Naïve Bayes  and Neural Networks got the same AUC value but the PEM 
value of Naïve Bayes was a bit higher. A closer look has indicated that in this case the accuracy of Naïve Bayes 
was 71.4286 % while the accuracy of Neural Networks was only 70.4082 %.  Thus, PEM is potentially more 
sensitive. However it is important to note that using average hit rate in the smallest class (Table 8) would leads to 
a different conclusion in this case.  

 
When comparing the Average QRecall with PEM, it seems that not in all cases do these measures leads to the same 
decision regarding which the best classifier is  (for instance Aust Credit, Audiology or Monks3 regarding the largest class). 
Thus, although PEM measure is based on Qrecall curves, it still provides new perspective for the decision maker. 
 

Table 8: Summary of experimental results for the smallest class.  
C4.5 NB NN Dataset # Instances # Attributes # 

Classes AUC Average 
HitRate 

Average  
Qrecall 

PEM AUC Average 
HitRate 

Average  
Qrecall 

PEM AUC Average 
HitRate 

Average  
Qrecall 

P
E
M

Aust 690 15 2 0.864 0.903 0.912 0.747 0.9317 0.919 0.977 0.8634 0.9014 0.918 0.941 0
Audiology 226 70 24 1 1 1 1 1 1 1 1 1 1 1 1
Breast .Ca 286 10 2 0.604 0.468 0.703 0.158 0.676 0.561 0.779 0.351 0.676 0.616 0.751 0
Hepatitis 155 20 2 0.7184 0.319 0.7803 0.4040 0.8914 0.7116 0.9267 0.7828 0.9217 0.7245 0.952 0
Iris 150 5 3 0.967 0.955 0.968 0.927 0.987 0.980 0.993 0.975 0.998 0.996 1.0 0
Kr-vs-kp 3196 37 2 0.9981 0.9983 0.9984 0.9958 0.9217 0.9189 0.9649 0.8433 0.9992 0.9993 0.9993 0
Labor 57 17 2 0.835 0.892 0.890 0.736 0.978 0.968 0.989 0.956 1 1 1 1
Lung Ca. 32 57 3 0.7321 0.4583 0.8214 0.1428 0.75 0.7611 0.8571 0.5 0.7143 0.5666 0.8928 0
Monks1 124 7 2 0.7413 0.7707 0.8701 0.5064 0.8853 0.91 0.93 0.7705 1 1 1 1
Monks2 169 6 2 0.5251 0.3863 0.74 0.0579 0.4878 0.358 0.688 0.0244 1 1 1 1
Monks3 122 6 2 0.9841 0.9923 0.9931 0.9818 0.9388 0.9604 0.9546 0.877 0.9365 0.958 0.9546 0
MUSH 8124 22 2 1 1 1 1 0.9978 0.997 0.999 0.9956 1 1 1 1
Nurse 12960 8 5 0.9533 0.7956 0.9544 0.9059 0.9956 0.8266 0.9975 0.9911 0.9996 0.9898 0.9996 0
OPTIC 5628 64 10 0.7027 0.46 0.8 0.5722 0.9853 0.8998 0.99 0.97 0.96 0.87 0.975 0
Pima I. Dia. 768 9 2 0.8137 0.647 0.875 0.616 0.8551 0.762 0.91 0.7101 0.7855 0.6741 0.855 0
Sonar 208 60 2 0.6774 0.7362 0.82 0.365 0.769 0.799 0.892 0.538 0.9563 0.968 0.968 0
Soybean 683 35 19 1 1 1 1 1 1 1 1 1 1 1 1
Vote 290 16 2 0.9899 0.99 0.987 0.972 0.9801 0.974 0.99 0.96 0.9991 0.9987 0.9998 0
Wine 178 13 3 0.963 0.902 0.991 0.932 1 1 1 1 1 1 1 1
Zoo 101 8 7 1 1 1 1 1 1 1 1 1 1 1 1
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Table 9: Summary of experimental results for the largest class.  

C4.5 NB NN Dataset # 
Instances 

# 
Attributes 

# 
Classes AUC Average 

HitRate
Average  
Qrecall 

PEM AUC Average 
HitRate

Average  
Qrecall 

PEM AUC Average 
HitRate 

Average  
Qrecall

PEM 

Aust Cred 690 15 2 0.864 0.787 0.950 0.709 0.9317 0.938 0.955 0.8634 0.9014 0.85 0.961 0.8027
Audiology 226 70 24 0.9315 0.8956 0.937 0.8469 0.9923 0.9807 0.997 0.984 0.9881 0.9671 0.9982 0.9761
Breast .Ca 286 10 2 0.604 0.736 0.88 0.257 0.676 0.791 0.903 0.351 0.676 0.7514 0.919 0.326
Hepatitis 155 20 2 0.7184 0.936 0.9419 0.4696 0.8914 0.9762 0.9747 0.7828 0.9217 0.9841 0.9772 0.8434
Iris 150 5 3 1 1 1 1 1 1 1 1 1 1 1 1 
Kr-vs-kp 3196 37 2 0.9981 0.9981 0.9994 0.9966 0.9217 0.931 0.957 0.8433 0.9992 0.9992 0.9999 0.9984
Labor 57 17 2 0.835 0.843 0.934 0.604 0.978 0.988 1 0.956 1 1 1 1 
Lung Ca. 32 57 3 0.9375 0.9166 1 0.9166 0.9167 0.8055 1 0.8333 0.875 0.7555 0.9583 0.75 
Monks1 124 6 2 0.7413 0.6976 0.8722 0.4588 0.8853 0.8557 0.9653 0.7705 1 1 1 1 
Monks2 169 6 2 0.5251 0.6540 0.8146 0.0424 0.4878 0.673 0.815 0.0244 1 1 1 1 
Monks3 122 6 2 0.9841 0.972 1 0.9546 0.9388 0.8957 0.99 0.877 0.9365 0.8811 0.9863 0.873
MUSH 8124 22 2 1 1 1 1 0.9978 0.9979 0.9987 0.9956 1 1 1 1 
Nurse 12960 8 5 1 1 1 1 1 1 1 1 1 1 1 1 
OPTIC 5628 64 10 0.8084 0.299 0.7365 0.41 0.9939 0.9485 0.9966 0.9877 0.963 0.924 0.9656 0.9621
Pima I. Dia. 768 9 2 0.8137 0.8978 0.935 0.638 0.8551 0.9191 0.9465 0.7101 0.7855 0.869 0.932 0.571
Sonar 208 60 2 0.6774 0.6411 0.8436 0.3444 0.769 0.7582 0.886 0.538 0.9563 0.9435 0.99 0.912
Soybean 683 35 19 0.989 0.945 0.996 0.982 0.984 0.924 0.989 0.968 0.981 0.942 0.984 0.962
Vote 290 16 2 0.9899 0.995 0.998 0.987 0.9801 0.986 0.991 0.96 0.9991 0.999 0.9996 0.9981
Wine 178 13 3 0.859 0.759 0.918 0.708 0.9942 0.991 0.995 0.988 0.9965 0.9941 0.9988 0.993
Zoo 101 8 7 1 1 1 1 1 1 1 1 1 1 1 1 

 
5. Conclusions   
Real life problems are usually subject to resources constraints. In these cases, in order to obtain an effective classification 
process that can lead to effective decisions, a probabilistic classification must be used. This kind of classification obligates 
the use of appropriate measures that can give an evaluation of the performance of a model. Without such measures no 
definite comparison can be made between models.  
 
This paper suggests two new evaluation measures: Qrecall and PEM. The measures suggested here usually behave in a 
similar manner, but since they are designed for different tasks they reach optimality in different points and may differ in 
their "opinion" about the best prediction out of a given set of predictions. The experiments indicated that the measures do 
not act the same in all cases and there is a great importance to define first the targets for which the classification process is 
implemented and only then to decide which measure to use. The paper shows the relation between the types of statistic 
errors that should be minimized and the evaluation measure that should be used. More specifically, this paper concludes 
that when type-1 error is of interest, then Qrecall or PEM should be used, and when type-2 error is of concern, then hit 
rates should be used. 
 
Another way to look at it is through the concepts of negative screening and positive screening. Negative screening means 
screening out all instances that have a low chance to belong to the class of interest. Positive screening means accepting all 
the instances that have sufficient chances to belong to the class of interest. Different situations require different kinds of 
screening. For example, in a progressive screening, where after each phase a smaller number of instances proceed to the 
next phase, one may encounter in the preliminary phases a negative screening, which purpose is to screen out all instances 
with zero probability of belonging to the class of interest. This kind of screening at this phase cut down expenses in the 
next phases without loosing potential instances. However, in the mature phases of the screening, a positive screening is 
more appropriate when a certain quota has to be filled. Generally, every measure can be used for both tasks. Yet, for 
negative screening that aims to keep potential instances while denying very low potential instances, measures like Qrecall 
and PEM might be more appropriate. For positive screening that is oriented to minimize the misses in a quota, Hit-rate 
might be more appropriate. 
 
This paper also shows the usefulness of Pearson Correlation Coefficient, a traditional measure from the field of statistics 
for the purpose of evaluating a probabilistic classification and showing the similarity of its results to the results of the 
novel measures suggested here. 
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Correction Report 
# 
Reviewer  

# 
Comment 

Comment Description Correction Description 

1 1  The motivation and necessities are still unclear even 
though the 
authors explained it in the Introduction. MORE 
SPECIFIC examples should be provided for the two 
reasons. The readers who aren't familiar with this 
topic may not capture the key points. 

The introduction has been revised and it 
includes 3 examples. Moreover the 
motivation has been revised to make it 
clearer regarding the contribution of this 
paper. 

1 2 The paper is TOO verbose and flat. The 
orgarnization is not good. The paper should be 
revised to CLARIFY their points in many phrases 
and sentences. 

A major revision in the structure and 
phrasing has been made. The measures 
are now organized into 3 categories (see 
page 2). Some measures (such as 
spearman rank) that are not relevant to 
the understanding of this paper have been 
removed. New notations are used in order 
to make all equations clearer and 
accurate.    

1 3 The experiment is not sufficient as its current form. 
More 
experiments are required to justify the authors' 
suggestions. 

We extended the experimental study 
(see section 4.3). This experiment uses 
three different types of inducers (C4.5, 
Naïve Bayes and Neural Networks). It 
include 20 datasets from the UCI 
repository. The datasets chosen vary 
across a number of dimensions such 
as:  the number of classes, the number 
of instances, the number of input 
features and their type (nominal, 
numeric). We are also compare the 
results to the well-known AUC 
measure. 
 

2 1 The quality of the report need to be improved by 
evaluating the performance measures for a classifier 
for different types of data sets (numerical, 
categorical, sequence etc) with analysis of the 
results. Even large training and test sets with more 
number of classes are to be considered. 

We extended the experimental study 
(see section 4.3). This experiment uses 
three different types of inducers (C4.5, 
Naïve Bayes and Neural Networks). It 
include 20 datasets from the UCI 
repository. The datasets chosen vary 
across a number of dimensions such 
as:  the number of classes, the number 
of instances, the number of input 
features and their type (nominal, 
numeric). We are also compare the 
results to the well-known AUC 
measure. 
 

2 2 Check the formulas and limits of the variables 
provided 

Done 

3 1 In page 2, under table 2, following definitions should
be given clearly, because they are used in later 
sections. 
 
True positive rate (recall) is: d/(c+d) 
False positive rate is: b/(a+b) 
True negative rate is: a/(a+b) 
False negative rate is: c/c+d 

Done 
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3 2 In page 11, in the definition of Average Hit-rate, 
"j=1/tk=1" should 
be "j=1/tj=1".  

Equation 12 on page 6. We are now using 
new notations in order to make all 
equations clearer and accurate.   

3 3 In page 15, in the definition of PEM using Hit-rate 
and Qrecall, 
(n+1)/2 should be subtracted from denominator. 
 

Done 

3 4 In page 15, following definition should be given. 
Cw=the Qrecall curve of a worst prediction 
 

We have removed the notation Ci in and 
explain the areas verbally on page 8. 

3 5 In page 6, in "Pearson Correlation Coefficient", 
definition of mean 
and variance should be given 

The explanation for the use of Pearson in 
this paper has been added. See equations 
8 – 11. 

3 6 In page 11, "i=model index" should be omitted Done 

3 7 The number of all formulas should be rearranged. Done 

3 8 In page 5, "2.2 Statistical Evaluation aMeasures" 
should be "2.2 
Statistical Evaluation Measures". 
 

In order to save place and make the paper 
more readable we have reorganized the 
measures. We have left only one 
statistical measure (Pearson), thus this 
correction is not relevant any more. 

3 9 In page 15, "Co=the Qrecall curve of an optimal 
perdiction" should be "Co=the Qrecall curve of an 
optimal prediction". 

We have removed the notation Ci in and 
explain the areas verbally on page 8. 

 


