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1 Introduction

Aggregation of preferences, criteria or similarities happens at various stages in rec-
ommender systems. Typically such aggregation is done by using either the arith-
metic mean or maximum/minimum functions. Many other aggregation functions
which would deliver flexibility and adaptability towards more relevant recommen-
dations are often overlooked. In this chapter we will review the basics of aggrega-
tion functions and their properties, and present the most important families, includ-
ing generalised means, Choquet and Sugeno integrals, ordered weighted averaging,
triangular norms and conorms, as well as bipolar aggregation functions. Such func-
tions can model various interactions between the inputs, conjunctive, disjunctive
and mixed behavior. Following, we present different methods of construction of ag-
gregation functions, based either on analytical formulas, algorithms, or empirical
data. We discuss how parameters of aggregation functions can be fitted to observed
data, while preserving these essential properties. By replacing the arithmetic mean
with more sophisticated, adaptable functions, by canceling out redundancies in the
inputs, one can improve the quality of automatic recommendations, and tailor rec-
ommender systems to specific domains.
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2 Types of aggregation in Recommender Systems

In general, recommender systems (RS) guide users to items of interest selected
from vast databases of electronic objects and information. The orientation toward
the presentation of personalized item-subsets distinguishes RS conceptually from
similar processes such as internet filtering, with the RS drawing on a number of
user-specific justifications in order to generate individualized recommendations.
Since their inception, the use of RS has expanded rapidly with existing applications
that recommend movies [34], web-pages [5], news articles [36], medical treatments
[14, 31], music and other products [32, 38].

Clearly, the justifications used to recommend an item will depend on the specific
application and the way data is collected and used by the system. Recommendations
based on justifications concerning item features can be broadly classified as content-
based (CB), whereas recommendations that utilize user similarity are referred to as
collaborative (CF) [1, 2]. It is useful to further identify demographic (DF), utility-
(UB) and knowledge-based (KB) methods [16] as distinct from the usual perception
of CB recommendation as anything that uses item-item similarity. The more recent
literature has been characterized by a focus on hybrid systems (HS), which combine
two or more of these approaches.

Collaborative methods use the item preferences or ratings of similar users as jus-
tification for recommendation. This type of RS has been successful for e-commerce
sites like Amazon.com [32] where interest is better inferred through similar taste
than vague or subjective item descriptions. Consider a periphery genre like Indie
music, which is defined loosely by its separation from the mainstream. As the genre
encompasses a broad range of styles, Indie artists may have little in common be-
sides their fans.1 Aggregation functions (usually the simple or weighted average)
are often employed to aggregate the ratings or preferences of similar users, however
they can also be used to determine user similarity and help define neighborhoods.

Content-based filtering methods form justifications by matching item-features to
user profiles. For instance, a news recommender may build a profile for each user
that consists of keywords and the interest in an unseen news item can be predicted
by the number of keywords in the story that correspond to those in the user’s profile.
The way aggregation functions are used (and whether they are used) for content-
based methods depends on the nature of the profile that is given to each user and
the description of items. We consider their use in item score computation, similarity
computation and the construction of profiles.

Demographic filtering techniques assign each user to a demographic class based
on their user profiles. Each demographic class has an associated user archetype or
user stereotype that is then used to form justifications for recommendation. Rather
than item history, user similarity here is more likely to be calculated from personal
information and hence may be of lower dimension than most collaborative tech-

1 It is interesting that Indie music fans, who thrive on a lack of conformity to pop culture and
consumerism, have become an easy target-market for e-commerce cites that utilize collaborative
RS. This is discussed in a recent literary article [26].
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niques. This makes nearest-neighbor or other classification and clustering tools par-
ticularly useful.

Rather than build long-term models, utility-based recommenders match items to
the current needs of the users, taking into account their general tendencies and pref-
erences. For instance, a user may be looking for a particular book, and it is known
from past behavior that old hardback editions are preferred even if it takes longer
to ship them. As is the case with content-based filtering, items can be described in
the system by their features and, more specifically, the utility associated with each
of those features. Aggregation can then be performed as it is with content-based
filtering, although the user profiles and system information may differ.

Knowledge-based recommenders use background knowledge about associated
and similar items to infer the needs of the user and how they can best be met.
Knowledge-based methods will then draw not only on typical measures of simi-
larity like correlation, but also on feature similarities that will interest the user. For
instance, when a user indicates that he liked A Good Year, a KB recommender sys-
tem might know that this film could be associated with either A Beautiful Mind
(which also stars Russell Crowe) or Jeux d’Enfants (which also stars Marion Cotil-
lard). Since the user has shown a preference for French films in the past, the system
will assume that the user liked A Good Year because it featured Marion Cotillard,
and recommend accordingly. It is pointed out in [16] that KB recommenders often
draw on case-based reasoning approaches.

Hybrid recommender systems are employed to overcome the inherent drawbacks
of each recommendation method. Burke [16] distinguishes weighted, mixed, switch-
ing, feature combination, cascade, feature augmentation and meta-level HS. Aggre-
gation functions may be involved in the hybridization process - e.g. to combine
different recommender scores in weighted HS or the features in feature combina-
tion HS. On the other hand, some of these hybrid methods are particularly use-
ful in improving the performance of aggregation functions used at different stages.
For instance, cascade methods use one filtering technique to reduce the size of the
dataset, while feature augmentation HS might use one method to reduce its dimen-
sion. Similarity measures used for CF could be based on the similarity between
user-specific aggregation functions (e.g. the similarity between weights and param-
eters) constructed in UB and CB frameworks. Similar meta-level HS are described
in [16]. The switching criteria in switching HS could be based to some degree on
aggregation functions, however here, as with mixed HS, their use is less likely.

Aggregation functions take multiple inputs and merge them into a single repre-
sentative output. Simple examples of aggregation functions include the arithmetic
mean, median, maximum and minimum. The use of more complicated and expres-
sive functions in RS would usually be motivated by the desire for more accurate
recommendations, however in some circumstances aggregation functions might pro-
vide a practical alternative to other data processing methods. In the following sub-
sections we will investigate the role of aggregation functions within different types
of recommender system, indicating where they can be and have been applied.
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2.1 Aggregation of Preferences in CF

Given a user u and a neighborhood of similar users Uk = {u1, ...,uk}, the preference
of u for an unseen item di can be predicted by aggregating the scores given by Uk.
We will denote the predicted degree of interest, rating or preference by R(u,di).

R(u,di) =
k

∑
j=1

sim(u,u j)R(u j,di) (1)

The function can be interpreted as a weighted arithmetic mean (WAM) where sim-
ilarities between the user and similar users sim(u,u j) = w j are the weights and
R(u j,di) = x j are the inputs to be aggregated. Provided w j,x j ≥ 0, the function
R(u,di) is an aggregation function. Whilst the WAM is simply interpreted, satis-
fies many useful properties and is computationally inexpensive, other aggregation
functions including power means (which can be non-linear) or the Choquet integral
(which accounts for correlated inputs) may give a more accurate prediction of the
users’ ratings.

2.2 Aggregation of Features in CB and UB Recommendation

Where the profile is representable as a vector of feature preferences, Pu =(p1, ..., pn),
items can then be described in terms of the degree to which they satisfy these fea-
tures, i.e. di = (x1, ...,xn). Here, a value of x j = 1 indicates that the preference p j
is completely satisfied by the item. Pu could also be a vector of keywords, in which
case x j = 1 might simply mean that the keyword p j is mentioned once. The overall
rating R(u,di) of an item is then determined by aggregating the x j,

R(u,di) = f (x1, ...,xn) (2)

Equation (2) is an aggregation function provided the function satisfies certain
boundary conditions and is monotone with respect to increases in x j. The R(u,di)
scores can be used to provide a ranking of unseen items, which can then be recom-
mended. If the RS allows only one item to be shown, the how and why of this score
evaluation becomes paramount. If the user is only likely to buy/view items when
all of their preferences are satisfied, a conjunctive function like the minimum should
be used. On the other hand, if some of the preferences are unlikely to be satisfied
simultaneously, e.g. the user is interested in drama and horror films, an averaging
or disjunctive function might be more reliable. We present many examples of these
broad classes of aggregation functions in Section 3.

In situations where it is practical to calculate item-item similarity, content-based
filtering could also be facilitated using methods that mirror those in collaborative
filtering [2]. In this case, a user profile might consist of all or a subset of previously
rated/purchased items, D = {d1, ...,dq}, and a measure of similarity is calculated
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between the unseen item di and those in D,

R(u,di) =
q

∑
j=1,( j 6=i)

sim(di,d j)R(u,d j). (3)

In this case, content-based methods can benefit from the use of aggregation func-
tions in determining item similarity and item neighborhoods as in Section 2.4.

2.3 Profile Construction for CB, UB

More sophisticated systems will assign a weight w j to each of the preferences in Pu.
To enhance the online-experience, many recommenders opt to learn the preferences
(and weights) from online behavior, rather than ask the user to state them explicitly.
The features of previously rated or purchased items can be aggregated to give an
overall score for each preference. Given a preference p j, let xi j be the degree to
which item di satisfies p j, then the score w(p j) will be

w(p j) = f (x1 j, ...,xn j). (4)

Once all the preferences are determined, these w(p j) can be used to determine w j
for use in calculations such as Eq. (2).

2.4 Item and User Similarity and Neighborhood Formation

The behavior and accuracy of recommendation when using (1) will be largely de-
pendent on how similarity (the weighting vector) is determined. The similarity be-
tween one user and another can be measured in terms of items previously rated or
bought, or may be calculated based on known features associated with each user -
e.g. the age, location and interests of a user may be known. The most commonly
used measures of similarity, i.e. the weights in Eq. (1), are based on the cosine cal-
culation [37] and Pearson’s correlation coefficient [36]. Recently, other similarity
measures have emerged such as fuzzy distance [4] and other recommender-specific
metrics [18, 3], based on the distribution of user ratings.

Eq. (1) can also be considered within the framework of a k-nearest-neighbors
(kNN) approach. Aggregation functions have been used to enhance the accuracy
and efficiency of nearest-neighbor rules, with the OWA and Choquet integral pro-
viding the framework to model decaying weights and neighbor interaction [43, 12].
In the nearest-neighbor setting, similarity is tantamount to multi-dimensional prox-
imity or distance. Euclidean distance was considered for measuring similarity for
recommenders that use both ratings and personal information as inputs in [40]. Eu-
clidean distance is just one type of metric, and may not capture the concept of dis-
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tance well - for instance, where the data dimensions are correlated to some degree or
even incommensurable. Metrics defined with the help of certain aggregation func-
tions, including the OWA operator and Choquet integral, have been investigated in
[39, 13] and could potentially prove useful for measuring similarity in some RS.

If we regard each value sim(u,u j) in (1) as a weight rather than a similarity, we
can keep in mind that the problem of weight identification for various aggregation
functions has been studied extensively. One method is to learn the weights from
a data subset by using least-squares fitting techniques. For instance, given a set of
mutually rated items D = {d1, ...,dq}, the weights of a WAM can be fitted using the
following program:

minimize
q

∑
i=1

(
R(u,di)−

k

∑
j=1

w jR(u j,di)

)2

s.t. w j ≥ 0, ∀ j
k

∑
j=1

w j = 1.

What is actually being determined is the vector of weights w = (w1, ...,wk) that min-
imizes the residual errors. Each weight is then the importance of a given user u j in
accurately predicting R(u,di). Non-linear functions such as the weighted geometric
mean can also be fitted in this way. Such algorithms are relatively efficient in terms
of computation time, and could be calculated either offline or in real-time depending
on the RS and size of the database.

Alternatively, aggregation functions can be used to combine differing measures
of similarity. Given a number of similarity measures sim1(u,u1), sim2(u,u1) etc., an
overall measure of similarity can be obtained. This type of aggregated similarity was
used in [20] for the recommendation of movies. In this example, cosine and correla-
tion scores were combined using the product, which is a non-linear and conjunctive
aggregation function.

2.5 Connectives in Case-Based Reasoning for RS

The approach of many researchers in the fuzzy sets community has been to frame the
recommendation problem in terms of case-based reasoning [23] where aggregation
functions can be used as connectives . This results in rules of the form,

If di1 is A1 AND di2 is A2 OR . . . din is An THEN ... (5)

x1,x2, . . . ,xn denote the degrees of satisfaction of the rule predicates di1 is A1, etc.,
and aggregation functions are used to replace the AND and OR operations. For
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instance, a user whose profile indicates a preference for comedies and action films
might have a recommendation rule “IF the film is a comedy OR an action THEN rec-
ommend it.” 2 Each genre can be represented as a fuzzy set with fuzzy connectives
used to aggregate the degrees of satisfaction. The OR- and AND-type behavior are
usually modeled by disjunctive and conjunctive aggregation functions respectively.
In recommender systems, it has been shown that the property of noble reinforce-
ment is desirable [42, 9]. This property allows many strong justifications to result
in a very strong recommendation, or a number of weak justifications to reduce the
recommendation if desired.

Functions that model (5) can be used to match items to profiles or queries in CB,
UB and KB. In some demographic RS, items will be generically recommended to
everyone in a given class, making the classification process the primary task of the
RS. It may be desirable to classify users by the degree to which they satisfy a number
of stereotypes, and in turn describe items in terms of their interest to each of these.
For instance, a personal loan with an interest-free period could be very attractive to
graduating students and somewhat attractive to new mothers, but of no interest to
someone recently married. A user could partially satisfy each of these archetypes,
requiring the system to aggregate the interest values in each demographic. This leads
to rules similar to (5). “IF the item is interesting to students OR interesting to moth-
ers THEN it will be interesting to user u” or “IF user u is unmarried AND either a
student OR mother, THEN recommend the item”.

2.6 Weighted Hybrid Systems

Given a number of recommendation scores obtained by using different methods,
e.g. RCF(u,di), RCB(u,di), etc., an overall score can be obtained using

R(u,di) = f (RCF(u,di),RCB(u,di), ...) (6)

with f an aggregation function. The P-Tango system [19] uses a linear combination
of collaborative and content-based scores to make its recommendations, and adjusts
the weight according to the inferred user preferences. Aggregation of two or more
methods can be performed using a number of functions with different properties and
behavior. The use of non-linear or more complicated functions would enable some
recommenders to fine-tune the ranking process, creating less irrelevant and more
accurate predictions.

2 We note here also that such rules could be used in any RS to decide when to recommend items,
e.g. “IF user is inactive THEN recommend something”
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3 Review of Aggregation Functions

The purpose of aggregation functions is to combine inputs that are typically inter-
preted as degrees of membership in fuzzy sets, degrees of preference, strength of
evidence, or support of a hypothesis, and so on. In this section, we provide prelim-
inary definitions and properties before giving an introduction to some well known
families.

3.1 Definitions and Properties

We will consider aggregation functions defined on the unit interval f : [0,1]n →
[0,1], however other choices are possible. The input value 0 is interpreted as no
membership, no preference, no evidence, no satisfaction, etc., and naturally, an ag-
gregation of n 0s should yield 0. Similarly, the value 1 is interpreted as full mem-
bership (strongest preference, evidence), and an aggregation of 1s should naturally
yield 1.

Aggregation functions also require monotonicity in each argument, where an in-
crease to any input cannot result in a decrease in the overall score.

Definition 1 (Aggregation function). An aggregation function is a function of
n > 1 arguments that maps the (n-dimensional) unit cube onto the unit interval
f : [0,1]n → [0,1], with the properties
(i) f (0,0, . . . ,0︸ ︷︷ ︸

n−times

) = 0 and f (1,1, . . . ,1︸ ︷︷ ︸
n−times

) = 1.

(ii) x≤ y implies f (x)≤ f (y) for all x,y ∈ [0,1]n.

For some applications, the inputs may have a varying number of components
(for instance, some values can be missing). Particularly in the case of automated
systems, it may be desirable to utilize functions defined for n = 2,3, . . . arguments
with the same underlying property in order to give consistent aggregation results.
Functions satisfying the following definition [33] may then be worth considering.

Definition 2 (Extended aggregation function). An extended aggregation function
is a mapping

F :
⋃

n∈{1,2,...}
[0,1]n → [0,1],

such that the restriction of this mapping to the domain [0,1]n for a fixed n is an n-ary
aggregation function f , with the convention F(x) = x for n = 1.

Aggregation functions are classed depending on their overall behavior in relation
to the inputs [17, 21, 22]. In some cases we require high inputs to compensate for
low inputs, or that inputs may average each other. In other situations, it may make
more sense that high scores reinforce each other and low inputs are essentially dis-
carded.
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Definition 3 (Classes). An aggregation function f : [0,1]n → [0,1] is:

Averaging if it is bounded by min(x)≤ f (x)≤max(x);
Conjunctive if it is bounded by f (x)≤min(x);
Disjunctive if it is bounded by f (x)≥max(x);
Mixed otherwise.

The class of aggregation function to be used depends on how the inputs of the
recommender system are interpreted and how sensitive or broad an output is desired.
When aggregating recommendation scores in CF, the use of averaging functions en-
sures that the predicted interest in an item is representative of the central tendency
of the scores. On the other hand, the semantics of some mixed aggregation func-
tions makes their use appealing. For instance, MYCIN [14] is a classical expert
system used to diagnose and treat rare blood diseases and utilizes a mixed aggre-
gation function so that inputs of only high scores reinforce each other, while scores
below a given threshold are penalized.

There are several studied properties that can be satisfied by aggregation func-
tions, making them useful in certain situations. We provide definitions for those that
are frequently referred to in the literature.

Definition 4 (Properties). An aggregation function f : [0,1]n → [0,1] is:

Idempotent if for every t ∈ [0,1] the output is f (t, t . . . , t) = t;
Symmetric if its value does not depend on the permutation of the arguments,

i.e., f (x1,x2, . . . ,xn) = f (xP(1),xP(2), . . . ,xP(n)) for every x and every permutation
P = (P(1),P(2), . . . ,P(n)) of (1,2 . . . ,n);

Associative if, for f : [0,1]2 → [0,1], f ( f (x1,x2),x3) = f (x1, f (x2,x3)) holds for
all x1,x2,x3;

Shift-invariant if for all λ ∈ [−1,1] and for all x = (x1, . . . ,xn), f (x1 +λ , . . . ,xn +
λ ) = f (x)+λ whenever (x1 +λ , . . . ,xn +λ ) ∈ [0,1]n and f (x)+λ ∈ [0,1];

Homogeneous if for all λ ∈ [0,1] and for all x = (x1, . . . ,xn), f (λx1, . . . ,λxn) =
λ f (x);

Strictly monotone if x≤ y but x 6= y implies f (x) < f (y);
Lipschitz continuous if there is a positive number M, such that for any two inputs

x,y∈ [0,1]n, | f (x)− f (y)| ≤Md(x,y), where d(x,y) is a distance between x and
y. The smallest such number M is called the Lipschitz constant of f .

Has neutral elements if there is a value e∈ [0,1] such that f (e, . . . ,e, t,e, . . . ,e) = t
for every t ∈ [0,1] in any position.

Has absorbing elements if there is a value a∈ [0,1] such that f (x1, . . . ,x j−1,a,x j+1, . . . ,xn)=
a for any x with x j = a.

3.1.1 Practical Considerations in RS

We will discuss some of the implications of each of these properties with some
examples before providing the formal definitions of many important and extensively
studied aggregation functions.
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Idempotency All averaging aggregation functions, including the means, OWA and
Choquet integral defined in Section 3.2, are idempotent3. The usual interpretation
of this property is toward a representation of consensus amongst the inputs. How-
ever in some RS applications, e.g. when aggregating ratings in CF, the relative
ranking of items is of more concern than the commensurability of input/output
interpretations.

Example 1. The geometric mean G(x,y) =
√

xy is idempotent, whereas
The product TP(x,y) = xy is not. For any two objects, d1 = (x1,y1) and d2 =
(x2,y2), however it follows that G(d1) > G(d2) implies TP(d1) > TP(d2).

Example 2. Let d1 = (0.5,0.5),d2 = (0.2,0.8). Using the geometric mean
and the product to aggregate gives G(d1) = 0.5,G(d2) = 0.4,TP(d1) =
0.25,TP(d2) = 0.16. If di are item scores in CF, it might be better to in-
terpret the outputs as the predicted ratings for user u, in which case we use
G. If di are items described by the degree to which they satisfy two of the
user preferences in UB filtering, the overall utility might be better indicated
by TP since we want most of the preferences satisfied.

Symmetry Symmetry is often used to denote equal importance with regard to the
inputs. Weighted and non-weighted quasi-arithmetic means can be used depend-
ing on the situation. Although the ordered weighted averaging function (OWA)
is defined with respect to a weighting vector, the inputs are pre-sorted into non-
increasing order, hence it is symmetric regardless of w.

Example 3. A collaborative RS considers an item rated by three similar
users di = (0.2,0.7,0.5). We consider using the weighting vector w =
(0.6,0.3,0.1) with either an OWA function or a weighted arithmetic mean
(WAM). In the case of the WAM, the weights suggest that user u1 is very
similar to user u, and further that sim(u,u1) > sim(u,u2) > sim(u,u3). The
aggregated score in this case would be R(u,di) = WAM(di) = 0.6(0.2)+
0.3(0.7)+0.1(0.5) = 0.38 since u1 didn’t particularly like the item. If us-
ing the OWA, one interpretation of the weights suggests that user u will
like the item if one or two similar users liked it, no matter which of the

3 Idempotency and averaging behavior are equivalent for aggregation functions due to the mono-
tonicity requirement. This property is sometimes referred to as unanimity since the output agrees
with each input when the inputs are unanimous.
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similar users it is. This gives R(u,di) = OWA(di) = 0.6(0.7)+ 0.3(0.5)+
0.1(0.2) = 0.59.

Associativity Associativity is a useful property for automatic computation as it
allows functions to be defined recursively for any dimension. This is potentially
useful for collaborative RS where data sparsity is a problem. The same function
could be used to evaluate one item rated by 10 similar users, and another rated
by 1000 similar users. T-norms and t-conorms, uninorms and nullnorms are as-
sociative, however the quasi-arithmetic means are not.

Example 4. A collaborative RS uses personal information to determine
similarity between users (i.e. the values do not need to be reassessed every
time a new item is rated). Rather than store an items×users matrix for each
user, the system uses a uninorm U(x,y) to aggregate the similar user ratings
and stores a single vector of aggregated item scores d = (U(di), ...,U(dn)).
When a new item score xi j is added, the system aggregates U(U(di),xi j)
and stores this instead of U(di). The advantage here is that neither the pre-
vious scores nor the number of times the item is rated is required in order
to update the predicted rating.

Shift-invariance and Homogeneity The main advantage of shift-invariant and ho-
mogeneous functions is that translating or dilating the domain of consideration
will not affect relative orderings of aggregated inputs. The weighted arithmetic
mean, OWA and Choquet integral are all shift invariant, so it makes no differ-
ence whether inputs are considered on [0,100] or [1,7], as long as the inputs are
commensurable.

Strict monotonicity Strict monotonicity is desired in applications where the num-
ber of items to be shown to the user is limited. Weighted arithmetic means and
OWA functions are strictly monotone when w j > 0,∀ j, while geometric and
harmonic means are strict for x ∈]0,1]n. Aggregation functions which are not
strict, the maximum function for instance, could not distinguish between an item
d1 = (0.3,0.8) and another d2 = (0.8,0.8).

Example 5. A holiday recommendation site uses a utility-based RS where
the Łukasiewicz t-conorm SL(x,y) = min(x+y,1) is used to aggregate item
features. It is able to show the user every item SL(di) = 1 by notifications
through e-mail. It doesn’t matter that d1 = (0.3,0.8) and d2 = (0.8,0.8),
since both of them are predicted to completely satisfy the user’s needs.
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Lipschitz continuity Continuity, in general, ensures that small input inaccuracies
cannot result in drastic changes in output. Such a property is especially important
in RS where the inputs, whether item descriptions or user ratings, are likely to
be inexact. Some functions only violate this property on a small portion of the
domain (See Example 6). As long as this is taken into account when the RS
considers the recommendation scores, the function might still be suitable.

Example 6. The geometric mean G(x,y) =
√

xy fails the Lipschitz property
since the rate-of-change is unbounded when one of the inputs is close to
zero. On the other hand, the harmonic mean, given by H(x,y) = 2xy

x+y (in the
two-variate case) is Lipschitz continuous with Lipschitz constant M = 2.

Neutral and absorbent elements Absorbent elements could be useful in RS to en-
sure that certain items always or never get recommended. For example, a UB
recommender could remove every item from consideration which has any fea-
tures that score zero, or definitely recommend items which completely satisfy
one of the user preferences. T-norms and t-conorms each have absorbent ele-
ments. Incorporating functions with neutral elements into a recommender system
that aggregates user ratings (in either a CF or CB framework) allows values to be
specified which will not affect recommendation scores. A movie that is liked by
many people, for instance, would usually have its overall approval rating reduced
by someone who was indifferent toward it but still required to rate it. If a neutral
value exists it will not influence the aggregated score.

3.2 Aggregation Families

3.2.1 Quasi-Arithmetic Means

The family of weighted quasi-arithmetic means generalizes the power mean, which
in turn includes other classical means such as the arithmetic and geometric mean as
special cases (see [15] for an overview of means).

Definition 5 (Weighted quasi-arithmetic means). For a given strictly monotone
and continuous function g : [0,1]→ [−∞,+∞], called a generating function or gen-
erator, and a weighting vector w = (w1, ...,wn), the weighted quasi-arithmetic mean
is the function

Mw,g(x) = g−1

(
n

∑
i=1

w jg(x j)

)
. (7)

where ∑w j = 1 and w j ≥ 0 ∀ j.
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Special cases include:

Arithmetic means WAMw =
n
∑
j=1

w jx j, g(t) = t;

Geometric means Gw =
n
∏
j=1

x
w j
j , g(t) = log(t);

Harmonic means Hw =

(
n
∑
j=1

w j
x j

)−1

, g(t) = 1
t ;

Power means Mw,[r] =

(
n
∑
j=1

w jxr
j

) 1
r

, g(t) = tr

The term mean is usually used to imply averaging behavior. Quasi-arithmetic means
defined with respect to a weighting vector with all w j = 1

n are symmetric, and asym-
metric otherwise. Usually the weight allocated to a particular input is indicative of
the importance of that particular input. All power means (including WAMw,Gw and
Hw) are idempotent, homogeneous and strictly monotone on the open interval ]0,1[n,
however only the weighted arithmetic mean is shift-invariant. The geometric mean
is not Lipschitz continuous4.

3.2.2 OWA Functions

Ordered weighted averaging functions (OWA) are also averaging aggregation func-
tions, which associate a weight not with a particular input, but rather with its relative
value or order compared to others. They have been introduced by Yager [41] and
have become very popular in the fuzzy sets community.

Definition 6 (OWA). Given a weighting vector w, the OWA function is

OWAw(x) =
n

∑
j=1

w jx( j),

where the (.) notation denotes the components of x being arranged in non-increasing
order x(1) ≥ x(2) ≥ . . .≥ x(n).

Special cases of the OWA operator, depending on the weighting vector w include:

Arithmetic mean where all the weights are equal, i.e. all w j = 1
n

Maximum function for w = (1,0, ...,0);
Minimum function for w = (0, ...,0,1);
Median function for w j = 0 for all j 6= m, wm = 1 if n = 2m+1 is odd, and w j = 0

for all j 6= m,m+1, wm = wm+1 = 0.5 if n = 2m is even.

The OWA function is a piecewise linear idempotent aggregation function. It is sym-
metric, homogeneous, shift-invariant, Lipschitz continuous and strictly monotone if
w j > 0,∀ j.

4 The Lipschitz property for quasi-arithmetic means and other generated aggregation functions is
explored in [11].
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3.2.3 Choquet and Sugeno integrals

Referred to as fuzzy integrals, the Choquet integral and the Sugeno integral are
averaging aggregation functions defined with respect to a fuzzy measure. They are
useful for modeling interactions between the input variables x j.

Definition 7 (Fuzzy measure). Let N = {1,2, . . . ,n}. A discrete fuzzy measure is
a set function5 v : 2N → [0,1] which is monotonic (i.e. v(A)≤ v(B) whenever A⊆B)
and satisfies v( /0) = 0,v(N ) = 1. Given any two sets A,B⊆N , fuzzy measures are
said to be:

Additive where v(A∪B) = v(A)+ v(B), for v(A∩B) = /0;
Symmetric where |A|= |B| → v(A) = v(B);
Submodular if v(A∪B)− v(A∩B)≤ v(A)+ v(B);
Supermodular if v(A∪B)− v(A∩B)≥ v(A)+ v(B);
Subadditive if v(A∪B)≤ v(A)+ v(B) whenever A∩B = /0;
Superadditive if v(A∪B)≥ v(A)+ v(B) whenever A∩B = /0;
Decomposable if v(A∪B) = f (v(A),v(B)) whenever A∩B = /0, for a given func-

tion f : [0,1]2 → [0,1];
Sugeno (λ -fuzzy measure) if v is decomposable with f = v(A)+v(B)+λv(A)v(B),

λ ∈]−1,∞[.

The behavior of the Sugeno and Choquet integral depends on the values and
properties of the associated fuzzy measure. The fuzzy measure used to define the
Choquet integral can be interpreted as a weight allocation, not merely to individual
inputs but rather to each subset of inputs. It may be that there are redundancies
among the inputs, or that certain inputs complement each other.

Definition 8 (Choquet integral). The discrete Choquet integral with respect to a
fuzzy measure v is given by

Cv(x) =
n

∑
j=1

x( j)[v({k|xk ≥ x( j)})− v({k|xk ≥ x( j+1)})], (8)

where (.) in this case denotes the components of x being arranged in non-decreasing
order such that (x(1) ≤ x(2) ≤ ·· · ≤ x(n)) (note that this is opposite to OWA).

Special cases of the Choquet integral include weighted arithmetic means and the
OWA function where the fuzzy measure is additive or symmetric respectively. Sub-
modular fuzzy measures result in Choquet integrals which are concave, the upshot
of which is that increases to lower inputs affect the function more than increases
to higher inputs. Conversely, supermodular fuzzy measures result in convex func-
tions. Choquet integrals are idempotent, homogeneous, shift-invariant and strictly

5 A set function is a function whose domain consists of all possible subsets of N . For example,
for n = 3, a set function is specified by 23 = 8 values at v( /0), v({1}), v({2}), v({3}), v({1,2}),
v({1,3}), v({2,3}), v({1,2,3}).
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monotone where A( B→ v(A) < v(B). Where the fuzzy measure is symmetric, the
function will obviously satisfy the symmetry property.

The Choquet integral has been predominantly used for numerical inputs, the
Sugeno integral defined below is useful where the inputs are ordinal. It also uses
fuzzy measures for its definition.

Definition 9 (Sugeno integral). The Sugeno integral with respect to a fuzzy mea-
sure v is given by

Sv(x) = max
j=1,...,n

min{x( j),v(H j)}, (9)

where (.) denotes a non-decreasing permutation of the inputs such that (x(1)≤ x(2)≤
·· · ≤ x(n)) (the same as with the Choquet integral), and H j = {( j), . . . ,(n)}.

Certain indices have been introduced in order to better understand the behavior of
the Choquet and Sugeno integrals. In particular, the Shapley value gives an indica-
tion of the overall importance of a given input, while the interaction index between
two inputs shows to what extent they are redundant or complimentary.

Definition 10 (Shapley value).
Let v be a fuzzy measure. The Shapley index for every i ∈N is

φ(i) = ∑
A⊆N \{i}

(n−|A|−1)!|A|!
n!

[v(A∪{i})− v(A)].

The Shapley value is the vector φ(v) = (φ(1), . . . ,φ(n)).

Definition 11 (Interaction index). Let v be a fuzzy measure. The interaction index
for every pair i, j ∈N is

Ii j = ∑
A⊆N \{i, j}

(n−|A|−2)!|A|!
(n−1)!

[v(A∪{i, j})− v(A∪{i})− v(A∪{ j})+ v(A)].

Where the interaction index is negative, there is some redundancy between the two
inputs. Where it is positive, the inputs complement each other to some degree and
their weight together is worth more than their combined individual weights.

3.2.4 T-Norms and T-Conorms

The prototypical examples of conjunctive and disjunctive aggregation functions are
so-called triangular norms and conorms respectively (t-norms and t-conorms) [28].
Given any t-norm T : [0,1]2 → [0,1], there is a dual function which is a t-conorm S,
with

S(x,y) = 1−T (1− x,1− y)
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and vice-versa. T-norms and t-conorms are hence often studied in parallel, as many
properties concerning S can be determined from T . Triangular norms are associative,
symmetric with the neutral element e = 1, whereas triangular conorms are associa-
tive, symmetric and have the neutral element e = 0. The definitions of the four basic
t-norms and t-conorms are provided below.

Definition 12 (The four basic t-norms). The two-variate cases for the four basic
t-norms are given by
Minimum Tmin(x,y) = min(x,y);
Product TP(x,y) = xy;
Łukasiewicz t-norm TL(x,y) = max(x+ y−1,0);

Drastic Product TD(x,y) =

{
0, if (x,y) ∈ [0,1[2,
min(x,y) otherwise.

.

Definition 13 (The four basic t-conorms). The two-variate cases for the four basic
t-conorms are given by
Maximum Smax(x,y) = max(x,y);
Probabilistic Sum SP(x,y) = x+ y− xy;
Łukasiewicz t-conorm SL(x,y) = min(x+ y,1);

Drastic Product SD(x,y) =

{
1, if (x,y) ∈]0,1]2,
max(x,y) otherwise.

.

There are families of parameterized t-norms and t-conorms that include the above
as special or limiting cases. These families are defined with respect to generating
functions and are known as Archimedean t-norms.

Definition 14 (Archimedean t-norm). A t-norm is called Archimedean if for each

(a,b) ∈]0,1[2 there is an n = {1,2, ...} with T (
n−times︷ ︸︸ ︷
a, ...,a) < b.

For t-conorms, the inequality is reversed, i.e. the t-conorm S > b. Continuous
Archimedean t-norms can be expressed by use of their generators as

T (x1, ...,xn) = g(−1)(g(x1)+ ...+g(xn)),

where g : [0,1]→ [0,∞] with g(1) = 0 is a continuous, strictly decreasing function
and g(−1) is the pseudo inverse of g, i.e.,

g(−1)(x) = g−1(min(g(1),max(g(0),x))).

Archimedean families include Schweizer-Sklar, Hamacher, Frank, Yager, Dombi,
Aczel-Alsina, Mayor-Torrens and Weber-Sugeno t-norms and t-conorms.

3.2.5 Nullnorms and Uninorms

In some situations, it may be required that high input values reinforce each other
whereas low values pull the overall output down. In other words, the aggregation
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function has to be disjunctive for high values, conjunctive for low values, and per-
haps averaging if some values are high and some are low. This is typically the case
when high values are interpreted as “positive” information, and low values as “neg-
ative” information.

In other situations, it may be that aggregation of both high and low values moves
the output towards some intermediate value. Thus certain aggregation functions
need to be conjunctive, disjunctive or averaging in different parts of their domain.

Uninorms and nullnorms are typical examples of such aggregation functions, but
there are many others. We provide the definitions below.

Definition 15 (Nullnorm). A nullnorm is a bivariate aggregation function V : [0,1]2→
[0,1] which is associative, symmetric, such that there exists an element a belonging
to the open interval ]0,1[ verifying

∀t ∈ [0,a], V (t,0) = t,

∀t ∈ [a,1], V (t,1) = t.

Definition 16 (Uninorm). A uninorm is a bivariate aggregation function U : [0,1]2→
[0,1] which is associative, symmetric and has a neutral element e belonging to the
open interval ]0, 1[.

Some uninorms can be built from generating functions in a similar way to quasi-
arithmetic means and Archimedean t-norms. These are called representable uni-
norms.

Definition 17 (Representable uninorm). Let u : [0,1]→ [−∞,+∞] be a strictly in-
creasing bijection verifying g(0) = −∞,g(1) = +∞ such that g(e) = 0 for some
e ∈]0,1[.

• The function given by

U(x,y) =
{

g−1(g(x)+g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
0, otherwise.

is a conjunctive uninorm with the neutral element e, known as a conjunctive
representable uninorm.

• The function given by

U(x,y) =
{

g−1(g(x)+g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
1, otherwise.

is a disjunctive uninorm with the neutral element e, known as a disjunctive rep-
resentable uninorm.

The 3−Π function is an example of a representable uninorm [44]. It uses a
generating function g(x) = ln( x

1−x ) and is used by the expert system PROSPECTOR
[24] for combining uncertainty factors.
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f (x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1− xi)
,

with the convention 0
0 = 0. It is conjunctive on [0, 1

2 ]n, disjunctive on [ 1
2 ,1]n and

averaging elsewhere. It is associative, with the neutral element e = 1
2 , and discon-

tinuous on the boundaries of [0,1]n.

4 Construction of Aggregation Functions

There are infinitely many aggregation functions. The question is how to choose the
most suitable aggregation function for a specific application. Sometimes one func-
tion may suffice for all components of the application, at other times a different type
of aggregation may be employed at various stages. The following considerations
should be helpful.

4.1 Data Collection and Preprocessing

The type of data, and how it is collected affects the way it can be aggregated to form
justifications. If users could thoughtfully provide accurate scores on a consistent
scale for each item, or numerical descriptions of themselves with their preferences
expressed to a degree of certainty, an RS could quite comfortably make some rel-
evant recommendations. Of course, the aesthetic preference is usually to limit the
explicit information required from the user and hence enhance the interactive expe-
rience. We will briefly consider the different types of data that systems are able to
obtain and how this might affect the suitability of certain aggregation functions.

Ordinal Data CF recommenders that ask for explicit ratings information will usu-
ally do so on a finite ordinal scale - e.g. {1 = didn’t like it!,..., 5 = loved it!}. On
the other hand, it may be possible to convert user actions into ordinal values
as part of their profile - e.g. {regularly views, sometimes views, etc.}. Where
there is an ordinal scale, these values can be turned into numbers and aggregated.
For non-homogeneous functions and those which lack the shift-invariance prop-
erty, it will be necessary to express these ordinal values on the unit interval. The
coarseness of the aggregated values may make the difference between, say, the
weighted arithmetic mean and the geometric mean negligible. Examples of ag-
gregation functions particularly suitable for the aggregation of ordinal data are
the Sugeno integral and the induced OWA.

• The Sugeno integral Sv (Def. 9), is a function which is able to process ordinal
data and take into account interactions. It is necessary for the fuzzy measure
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values to be on the same ordinal scale as the input values. The Sugeno inte-
gral is capable of modeling median-type functions as well as minimum and
maximum functions, and has the advantage of expressing outputs as ordinal
values.

• The induced OWA function [43] is capable of modeling nearest-neighbor ap-
proaches even if the similarity is expressed as ordinal values, although it does
require the ratings to be expressed numerically.

Numerical Data Where a system is capable of representing user inputs or ac-
tions as numerical data, it is useful to take into account whether these values
are accurate, whether they are commensurate, and whether they are independent.
Functions such as the geometric mean have a higher rate of change when in-
put values are high than the arithmetic mean. This can help provide granularity
to the outputs, however it also means that errors on this portion of the domain
will influence the recommendation accuracy. In CF, two users might have sim-
ilar preferences however one may consistently overrate items. In these cases, it
might make sense to standardize the ratings before aggregating so the values be-
tween users are comparable. The use of the WAM implies independence between
inputs, however other averaging functions, especially the Choquet integral, can
express interaction and correlation either among certain inputs or relative scores.

Categorical Data In some cases, the use of categorical data may make it imprac-
tical to use aggregation functions. If there is no order between categories, it is
meaningless to take the average or maximum, and other techniques may be use-
ful for establishing similarity between users etc. It may be possible to transform
the categorical data, for example, by the degree to which it contributes towards a
certain archetype in DF.

There could however, be variations: some components of the vectors associated with
di could be missing - e.g. ratings in CF, or the inputs di = (x1, ...,xn) may have vary-
ing dimension by construction. In other cases, the uncertainty associated with some
of the inputs or outputs could prescribe a range of values - e.g., the interval [6,8] as
a rating for a film. Associative or generating functions are capable of aggregating
inputs of varying dimension with some consistency in terms of the properties, while
either transformations of the data or interval-valued functions can be employed in
the latter case.

4.2 Desired Properties, Semantics and Interpretation

The first step in choosing an aggregation function once the data structure is known is
usually to decide which class of either averaging, conjunctive, disjunctive or mixed
is desired. As discussed in Section 3.1.1, sometimes it will be more important to
have a function which sorts items into order of preference than one which gives
easily interpreted outputs. We consider four functions whose semantics can be used
to decide which class of function is required:
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Minimum (conjunctive) The minimum uses the minimum input as its output. This
means the function can only return a high output if all the inputs are high. Such
aggregation is useful for certain KB or UB systems using Eq. (5) or even CB
where it is desired that all the inputs be satisfied. Functions such as the product
(TP) have an accumulative effect for any output which is not perfect, so might be
less useful than the min when the dimension is high.

Maximum (disjunctive) Whereas the minimum models AND-like aggregation,
disjunctive functions model OR. This type of aggregation results in outputs
which are equal to or greater than the highest input. This is useful in KB, UB
or CB as well if there are multiple preferences or criteria and one good score is
enough justification for recommendation. Consider Example 7.

Example 7. A user of a CB news recommender has the keywords {Haruki
Murakami, X-Men, bushfires, mathematics, Jupiter orbit} associated with
her profile. It is unlikely that any one news story will be highly relevant to
all or even any few of these keywords, so the RS uses disjunctive aggrega-
tion as a basis for recommendation.

Arithmetic Mean (averaging) When aggregating user ratings in CF or item fea-
tures in CB it is reasonable to assume that although scores will vary, if enough
inputs are used, the output will be reliable. We do not want the recommendations
to be severely affected by an isolated user that is unsatisfied with every item he
purchases, or a single feature among twenty or so that is completely satisfied.

Uninorm (mixed) In cases where different behavior is required on different parts
of the domain, a mixed aggregation function may be required. This can be as
straightforward as deciding that only values with all high inputs should be high,
or it could be that the bounded behavior affects the accuracy of the function.
The use of a uninorm, for instance, allows high values to push the score up and
low values push the score down. An item with consistently high scores would be
preferred to one with mostly high scores but one or two low ones.

Certain properties of aggregation functions might also make them appealing. Ta-
ble 1 lists the main aggregation functions we have presented and whether they al-
ways, or under certain circumstances, satisfy the properties detailed in Section 4.

4.3 Complexity and the Understanding of Function Behavior

In some cases, simple functions such as the WAM will be adequate to meet the
goals of recommendation, with potential improvements to the RS lying in other
directions. Due to its properties, the WAM is quite a robust and versatile function. It
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Table 1 Aggregation Functions and Properties

Property WAMw Gw Hw Mw,[r] Cv Sv OWAw max min TP TL U V

idempotent ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
symmetric ♦ ♦ ♦ ♦ ♦ ♦ ¨ ¨ ¨ ¨ ¨ ¨ ¨
asymmetric ♦ ♦ ♦ ♦ ♦ ♦
associative ¨ ¨ ¨ ¨ ¨ ¨
strictly monotone ♦ ♦ ♦ ♦ ♦
shift-invariance ¨ ♦ ¨ ¨ ¨ ¨ ¨
homogeneous ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Lipschitz continuous ¨ ¨ ♦ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 4
neutral elements ♦ ¨ ¨ ¨ ¨ ¨
absorbent elements ¨ ¨ ♦ ¨ ¨ ¨ ¨

¨ = always ♦ = depending on weights 4= depends on T,S used

is not biased towards high or low scores, it does not accumulate the effects of errors,
it is computationally inexpensive and its common use makes it well understood
and easily interpreted. We present the power mean and Choquet integral as two
example alternatives whose properties might make them more appropriate in certain
situations.

The power mean The power mean is a parameterized function, capable of ex-
pressing functions that graduate from the minimum to the maximum including
the WAM. This makes it immediately useful when fitting techniques are at our
disposal, since we can use the one process to identify any number of functions as
the best candidate. Consider the harmonic mean Mw,[−1] and the quadratic mean
Mw,[2]. The harmonic mean cannot give an output greater than zero if even one
of the inputs is zero. This has the nice interpretation of only allowing items to be
considered that at least partially satisfy every criteria, however it is not conjunc-
tive, so still gives a score somewhere between the highest and lowest inputs. The
harmonic mean is also concave and its output is equal to or less than the WAM
for any choice of di. This allows less compensation for low inputs, so items must
satisfy more of the criteria overall to rate highly. On the other hand, the quadratic
power mean tends more towards high scores, favoring items that have a few very
high scores which compensate more for low-scoring features or ratings.

The Choquet integral As with the power mean, the Choquet integral is capable
of expressing functions ranging between the minimum and maximum. The use
of the Choquet integral is most interesting in asymmetric situations where there
tends to be some correlation. For example, in a KB recommender, sometimes
preferences will be contradictory while at other times one implies the other. In
the case of Entree [16], it is noted that users might demonstrate a preference
for inexpensive and nice restaurants. Since usually some trade-off is involved, a
restaurant that does satisfy these criteria should be especially rewarded when it
comes to recommendation. In the case of CB movie recommendation, it could
be that a user likes Johnny Depp and Tim Burton. As there is a high frequency
of films which are directed by Tim Burton that also star Johnny Depp, it might
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not make sense to double-count these features. The Choquet integral can account
for a combination of these situations, since a weight is allocated to each subset
of criteria. The subset of “stars Depp AND is directed by Burton” would be allo-
cated less weight than the sum of its parts, while inexpensive and nice restaurants
in the KB example would be allocated more.

Of course, sometimes the structure of the data might be difficult to understand and
interpret towards the use of a particular function. In these cases, it might be worth-
while to check the accuracy of a number of functions on a subset of the data. A
comparison of the minimum, maximum, arithmetic mean and harmonic mean could
suggest much about which functions will be useful.

4.4 Weight and Parameter Determination

The determination of weights for use in ratings aggregation for CF is often under-
stood in terms of the similarity between users and neighborhood formation. Weights
in CB and UB are a measure of the importance of each feature to the user, while the
weights in weighted HS are indicative of the reliability of each component in recom-
mendation. Weights can be selected using predetermined measures like cosine, or
might be decided in advance by the RS designers - e.g. we decide to weight the sim-
ilar users with a decreasing weighting vector w = (0.4,0.3,0.2,0.1). Some systems
adjust weights incrementally according to implicit or explicit feedback concerning
the quality of recommendation, for instance in the hybrid RS, P-Tango [19]. In Sec-
tion 5, programming methods are discussed for determining weights from available
data-sets.

5 Sophisticated Aggregation Procedures in Recommender
Systems: Tailoring for Specific Applications

We consider the fitting problem in terms of a CF recommender, however it is also
possible to fit weights in CB and UB recommender systems provided the system has
access to input and output values so that the strength of fit can affirm the suitability
of the weights or parameters. Fitting can be accomplished by means of interpolation
or approximation. In the case of interpolation, the aim is to fit the specified output
values exactly (in the case of aggregation functions, the pairs ((0,0, . . . ,0),0) and
((1,1, . . . ,1),1) should always be interpolated). In the case of RS, the data will nor-
mally contain some errors or degree of approximation, and therefore it may not be
appropriate to interpolate the inaccurate values. In this case our aim is to stay close
to the desired outputs without actually matching them. This is the approximation
problem.
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The selection of an aggregation function can be stated formally as follows:

Let us have a number of mathematical properties P1,P2, . . . and the data D =
{(xk,yk)}K

k=1. Choose an aggregation function f consistent with P1,P2, . . ., and sat-
isfying f (xk)≈ yk,k = 1, . . . ,K.

We can also vary the problem to accommodate a fitting to intervals, i.e. we require
f (xk) ∈ [yk,yk]. How these values are specified will depend on the application. In
some cases it may be possible to fit the function exactly without violating any of the
desired properties, however most of the time we merely want to minimize the error
of approximation.

Mathematically, the satisfaction of approximate equalities f (xk) ≈ yk can be
translated into the following minimization problem.

minimize ||r|| (10)
subject to f satisfies P1,P2, . . . ,

where ||r|| is the norm of the residuals, i.e., r ∈ RK is the vector of the differences
between the predicted and observed values rk = f (xk)−yk. There are many ways to
choose the norm, and the most popular are the least squares norm

||r||2 =

(
K

∑
k=1

r2
k

)1/2

,

and the least absolute deviation norm

||r||1 =
K

∑
k=1
|rk|,

or their weighted analogues if some of the yk are considered less reliable than
others.

Consider Example 8.6

Example 8. In a CF recommending application we want to use five similar
users to predict the ratings of new objects for a given user. At hand we have a
data set of many items previously rated by the user and the five similar users
or neighbors {(di,R(u,di))}1

i=10 where di = (R(u1,di), ...,R(u5,di)) denotes
the ratings given by each of the neighbors u1, ...,u5 to a past item di, and the
R(u,di) are the user’s actual ratings. I.e. di = xk,R(u,di) = yk from above.
Table 2 shows an example data set with two items rated by the neighbors
which the user is yet to rate and could be recommended. We want to define

6 All examples in this section utilize the software packages aotool and fmtools [8]
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a weighted arithmetic mean using the least squares approach that assigns a
weight wi to each user. So we have

minimize
1
∑

i=1
0

(
5
∑
j=1

w jR(u j,di)−R(u,di)

)2

subject to
5
∑
j=1

w j = 1,

w1, . . . ,w5 ≥ 0.

This is a quadratic programming problem, which is solved by a number of
standard methods. In the current example one resulting model allocates the
weights w =< 0.27,0.07,0.06,0.19,0.41 > with recommendation scores of
4.7 and 7.9 for the unrated items. The maximum difference between ob-
served and predicted ratings is 2.45 with an average of 0.98. If we had
instead used the cosine calculation to define the weights, we would have
w =< 0.19,0.24,0.23,0.18,0.17 > and recommendation scores of 5.6 and
7.1. The accuracy is similar for this method, with maximum error 2.48 and
average error 1.6. Interestingly u5 was least similar using this measure, but
most important when accurately predicting the ratings for u.

Table 2 Example dataset for mutually rated items in CF

Items i = 1..10 rated by user and neighbors Unrated
User ratings R(u,di) 6 4 6 8 10 5 7 7 5 5 ? ?
Neighbor ratings
R(u1,di) 4 4 4 8 10 3 7 5 3 3 4 7
R(u2,di) 6 0 6 4 6 1 3 3 1 5 8 7
R(u3,di) 3 1 8 5 7 2 4 4 2 2 7 5
R(u4,di) 6 5 6 8 8 6 5 5 3 5 3 8
R(u5,di) 6 4 6 7 8 1 5 8 5 8 5 9

As mentioned, if the number of items to be recommended is limited, the rank-
ing, rather than the accuracy of prediction becomes crucial (see also [27]). In sit-
uations where it makes sense, the ranking of the outputs can be preserved with
f (R(u1,dk), ...,R(un,dk)) ≤ f (R(u1,dl), ...,R(un,dl)) if R(u,dk) ≤ R(u,dl) for all
pairs k, l added as an extra constraint. In CF, imposing this condition weights the
similar users higher who have rankings that better reflect the user’s. This is useful
when we know that some users might tend to overrate or underrate items, but will
be consistent in terms of the items they prefer.

The approximation problem thus far described may turn out to be a general non-
linear optimization problem, or a problem from a special class. Some optimization
problems utilize a convex objective function or variant of this, in which case the
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difficulty is not so much in this step, but rather in defining the constraints. Fitting
the Choquet integral, for instance has an exponential number of constraints which
need to be defined. Many problems, however can be specified as linear or quadratic
programming problems, which have been extensively studied with many solution
techniques available. Example 9 uses the same dataset (Table 2) with the Choquet
integral as the desired function. In practice, it is preferable to have a much larger
data set for the Choquet integral given that it is defined at 2n points (so ideally, the
number of data for fitting should be well above this). This ensures that the resulting
function is not too specialized.

Example 9. (Continued from Example 8)... The system designers decide that
they would prefer to use a Choquet integral to predict the unknown ratings.
To make the fitting process less susceptible to outliers, they decide to use
the least absolute deviation norm and express the optimization process as the
following.

minimize
5
∑

i=1
|Cv(di)−R(u,di)|

subject to v(A)− v(B)≥ 0, for all B⊆ A,

v(A)≥ 0,∀A⊂N ,v( /0) = 0,v(N ) = 1

This results in a Choquet integral defined by a fuzzy measure with the follow-
ing values

v({1}) = 1,v({2}) = 0.33,v({3}) = 0,v({4}) = v({5}) = 0.67

v({2,3}) = 0.33,v({2,4}) = v({3,4}) = v({3,5}) = v({2,3,4}) = 0.67

v(A) = 1 for all other subsets.

The Shapley values provide a good indication of the influence of each of the
neighbors, and are given as

φ1 = 0.39,φ2 = 0.11,φ3 = 0,φ4 = 0.22,φ5 = 0.28

As with the weighted arithmetic mean, the values suggest that neighbors 1, 4
and 5 are perhaps more similar to the given user. We also note the interaction
indices for pairs, given as

I12 = I24 = I45 =−0.17, I14 =−0.33, I15 =−0.5

Ii j = 0 for all other pairs.

This shows the redundancy between some of the neighbors. In particular,
neighbors 1 and 5 are very similar. The maximum error in this case is 1.6
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and the average error is 0.6, with resulting recommendations 6.0 and 8.7. Be-
cause of the substitutive variables, the function behaves similar to a maximum
function. We see the high score given for the latter item, mainly due to the high
ratings given by neighbors 4 and 5.

The families of aggregation functions defined in Section 3.2 are convenient to
use when trying to understand and interpret the results. The weights and parameters
have a tangible meaning and fitting these functions essentially involves finding the
best values for each parameter to maximize the reliability of the RS.

In other situations however, the interpretation side of things may not be as impor-
tant: we just want to predict the unknown ratings reliably and automatically. There
are many non-parametric methods for building aggregation functions, which do not
have the advantage of system interpretation, however can be constructed automat-
ically and fit the data closely. One “black-box” type method is to build a general
aggregation operator piecewise from the data. We can ensure that monotonicity and
boundary conditions are specified by smoothing the data and ensuring these proper-
ties hold for each individual segment. We consider here, the construction of spline
based aggregation functions [10].

Monotone tensor product splines are defined as

fB(x1, ...,xn) =
J1

∑
j1=1

J2

∑
j2=1

...
Jn

∑
jn=1

c j1 j2... jn B j1(x1)B j2(x2)...B jn(xn).

If it is desired the built function belong to a particular class or hold certain proper-
ties, additional constraints can be added when fitting. In particular, we can ensure
monotonicity holds by expressing linear conditions on the coefficients c j1 j2... jn . The
fitting of this function to data involves sparse matrices, their size increasing with the
number of basis functions in respect to each variable and exponentially with n. We
give an example of this fitting process in the Example 10.

Example 10. (Continued from Examples 8-9)... It is not necessary in our ap-
plication that the weighting of similar users be known. We simply want au-
tomatically built functions that can predict the ratings of unseen items. We
decide that we still desire the properties of monotonicity and idempotency to
ensure reliable outputs, and build a general aggregation operator represented
by tensor product splines. The following quadratic programming problem is
used.
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minimize
5
∑

i=1
( fB(di)−R(u,di))

2

subject to
J1
∑

j1=1

J2
∑

j2=1
...

Jn
∑

jn=1
c j1 j2... jn ≥ 0,

fB(0, ...,0) = 0, fB(1, ...,1) = 0

Idempotency is also ensured by imposing a number of interpolation conditions
such that fB(ti, ..., ti) = ti. These conditions must be chosen in a certain way
(see [6, 7]). The fitted non-parametric function gives resulting recommenda-
tion scores for the unrated items of 4.2 and 8.1 so it seems that the latter item
should be suggested to the user.

Clearly it is the choice of system designers of whether to use non-parametric
or parametric methods, and how complex an aggregation function should be used.
Recommender systems usually require timely decisions and deal with large data
sets, so a compromise between expressibility and simplicity is usually sought.

6 Conclusions

The purpose of this chapter has been to present the state of the art in aggregation
functions and introduce established families of these functions that have proper-
ties useful for the purposes of recommendation. This has included means defined
with various weights, Choquet integrals defined with respect to fuzzy measures, t-
norms/t-conorms which can be built from generators, and representable uninorms.
Many of the current methods used in recommender systems involve constructing
weighted arithmetic means where weights are determined by varying measures of
similarity, however in many cases the accuracy and flexibility of functions could
be improved with only slight increases to complexity. We have provided a num-
ber of illustrative examples of the different ways in which aggregation functions
can be applied to recommendation processes including ratings aggregation, feature
combination, similarity and neighborhood formation and component combination
in weighted hybrid systems. We also referred to some current software tools which
can be used to fit these functions to data (see also [29, 25]) when we are trying to
find weights, similarity or the parameters used that best model the dataset.

The research in aggregation functions is extensive with a number of important
results, some of which have been explored with the application to recommender
systems in mind. As only an introduction has been provided here, we recommend
the recent books listed under Further Reading which provide details of many aggre-
gation methods.
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7 Further Reading

• Alsina, C., Frank, M.J. and Schweizer, B.: Associative Functions: Triangular
Norms And Copulas. World Scientific, Singapore (2006)

• Beliakov, G., Pradera, A. and Calvo, T.: Aggregation Functions: A guide for prac-
titioners. Springer, Heidelberg, Berlin, New York (2007)

• Calvo, T. and Mayor, G. and Mesiar, R.: Aggregation Operators: New Trends and
Applications. Physica-Verlag, Heidelberg, New York (2002)

• Grabisch, M., Marichal, J.-L. Mesiar, R. and Pap, E.: Aggregation Functions.
Cambridge University Press, Encyclopedia of Mathematics and its Applications,
No 127, Cambridge (2009)

• Klement, E.P., Mesiar, R. and Pap, E.: Triangular Norms. Kluwer, Dordrecht,
(2000)

• Torra, V. and Narukawa, Y.: Modeling Decisions. Information Fusion and Ag-
gregation Operators. Springer, Berlin, Heidelberg (2007)
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