
Developing Constraint-based Recommenders

A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

Abstract Recommender systems provide valuable support for users whoare search-
ing for products and services in e-commerce environments. Research in the field
long focused on algorithms supporting the recommendation of quality & taste prod-
ucts such as news, books, or movies. Nowadays, the scope of those systems is ex-
tended to complex product domains such as financial servicesor electronic con-
sumer goods. Constraint-based recommenders are particularly well suited as they
support effective product and service selection processesin such domains. In this
chapter, we characterize constraint-based recommendation problems and provide an
overview of major technologies that support the development of knowledge bases
for constraint-based recommenders which is of high importance for a successful
application in commercial settings. Thereafter we give an overview of intelligent
interaction mechanisms which are supported by constraint-based recommender ap-
plications, discuss scenarios where constraint-based recommenders have been suc-
cessfully applied, and provide a discussion of different solution approaches. Finally,
this chapter is concluded with an outline of open research issues.

Alexander Felfernig
Graz University of Technology e-mail: alexander.felfernig@ist.tugraz.at

Gerhard Friedrich
University Klagenfurt e-mail: gerhard.friedrich@uni-klu.ac.at

Dietmar Jannach
TU Dortmund e-mail: dietmar.jannach@tu-dortmund.de

Markus Zanker
University Klagenfurt e-mail: markus.zanker@uni-klu.ac.at

1

2 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

1 Introduction

Traditional recommendation approaches (content-based filtering [41] and collabora-
tive filtering[34]) are well-suited for the recommendationof quality&taste products
such as books, movies, or news. However, especially in the context of products such
as cars, computers, appartments, or financial services those approaches are not the
best choice. For example, apartments are not bought very frequently which makes it
rather infeasible to collect numerous ratings for one specific item (exactly such rat-
ings are required by collaborative recommendation algorithms). Furthermore, users
of recommender applications would not be satisfied with recommendations based
on years-old item preferences (exactly such preferences would be exploited in this
context by content-based filtering algorithms).

Knowledge-based recommender technologies help to tackle these challenges
by exploiting explicit user requirements and deep knowledge about the underly-
ing product domain [11] for the calculation of recommendations. Those systems
heavily concentrate on knowledge sources that are not exploited by collaborative
filtering and content-based filtering approaches. Comparedto collaborative filter-
ing and content-based filtering, knowledge-based recommenders have no cold-start
problems since requirements are directly elicited within arecommendation session.
However, no advantage without disadvantage, knowledge-based recommenders suf-
fer from the so-called knowledge acquisition bottleneck inthe sense that knowledge
engineers must work hard to convert the knowledge possessedby domain experts
into formal, executable representations.

There are two basic specifics of knowledge-based recommenders: case-based
[3, 4, 36] and constraint-based recommenders [11, 13].1 In terms of used knowl-
edge both are similar: user requirements are collected, repairs for inconsistent re-
quirements are automatically proposed in situations whereno solutions could be
found [12, 13, 39], and recommendation results are explained. The major difference
lies in the way solutions are calculated [11]. Case-based recommenders determine
recommendations on the basis of similarity metrics whereasconstraint-based rec-
ommenders predominantly exploit predefinedrecommender knowledge basesthat
contain explicit rules about how to relate customer requirements with item features.
In this chapter we will focus on an overview of constraint-based recommendation
technologies. For a detailed review of case-based recommender technologies the
reader is referred to [3, 4, 36].

A recommender knowledge baseof a constraint-based recommender system (see
[16]) typically is defined by two sets of variables (VC, VPROD) and three different
sets of constraints (CR, CF , CPROD). Those variables and constraints are the major
ingredients of a constraint satisfaction problem [52]. A solution for a constraint
satisfaction problem consists of concrete instantiationsof the variables such that all
the specified constraints are fulfilled (see Section 4).

1 Utility-based recommenders are often as well categorized as knowledge-based, see for example
[4]. For a detailed discussion on utility-based approacheswe refer the interested reader to [4, 13].

Developing Constraint-based Recommenders 3

Customer Properties VC describe possible requirements of customers, i.e., re-
quirements are instantiations of customer properties. In the domain of financial ser-
viceswillingness to take risksis an example for a customer property andwillingness
to take risks = lowrepresents a concrete customer requirement.

Product Properties VPROD describe the properties of a given product assortment.
Examples for product properties arerecommended investment period, product type,
product name, or expected return on investment.

Constraints CR are systematically restricting the possible instantiations of cus-
tomer properties, for example,short investment periods are incompatible with high
risk investments.

Filter Conditions CF define the relationship between potential customer require-
ments and the given product assortment. An example for a filter condition is the
following: customers without experiences in the financial services domain should
not receive recommendations which include high-risk products.

Products Finally, allowed instantiations of product properties arerepresented by
CPROD. CPROD represents one constraint in disjunctive normal form that defines ele-
mentary restrictions on the possible instantiations of variables inVPROD.

A simplified recommender knowledge base for the domain of financial services
is the following (see Example 1).

Example 1.Recommender knowledge base (VC, VPROD, CR, CF , CPROD)

VC = {klc: [expert, average, beginner] . /* level of expertise */
wrc: [low, medium, high] . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] /* duration of investment */
awc: [yes, no] . /* advisory wanted ? */
dsc: [savings, bonds, stockfunds, singleshares] /* direct product search */
slc: [savings, bonds] . /* type of low-risk investment */
avc: [yes, no] . /* availability of funds */
shc: [stockfunds, singlshares] /* type of high-risk investment */}

VPROD= {namep: [text] . /* name of the product */
erp: [1..40] . /* expected return rate */
ri p: [low, medium, high] /* risk level */
mnivp: [1..14] /* minimum investment period of product in years */
instp: [text] . /* financial institute */}

CR = {CR1: wrc = high→ idc 6= shortterm,
CR2: klc = beginner→ wrc 6= high}

CF = {CF1: idc = shortterm→ mnivp < 3,
CF2: idc = mediumterm→ mnivp ≥ 3∧mnivp < 6,

4 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

CF3: idc = longterm→ mnivp ≥ 6,
CF4: wrc = low→ ri p = low,
CF5: wrc = medium→ ri p = low∨ ri p = medium,
CF6: wrc = high→ ri p = low∨ ri p = medium∨ ri p = high,
CF7: klc = beginner→ ri p 6= high,
CF8: slc = savings→ namep = savings,
CF9: slc = bonds→ namep = bonds}

CPROD= {CPROD1: namep = savings∧erp = 3∧ ri p = low∧mnivp = 1∧ instp = A;
CPROD2: namep = bonds∧erp = 5∧ ri p = medium∧mnivp = 5∧ instp = B;
CPROD3: namep = equity∧erp = 9∧ ri p = high∧mnivp = 10∧ instp = B}

On the basis of such a recommender knowledge base and a given set of customer
requirements we are able to calculate recommendations. Thetask of identifying a
set of products fitting a customer’s wishes and needs is denoted asrecommendation
task(see Definition 1).

Definition 1. A recommendation taskcan be defined as a constraint satisfaction
problem (VC, VPROD, CC ∪CF ∪CR∪CPROD) whereVC is a set of variables repre-
senting possible customer requirements andVPROD is a set of variables describing
product properties.CPROD is a set of constraints describing product instances,CR is
a set of constraints describing possible combinations of customer requirements, and
CF (also called filter conditions) is a set of constraints describing the relationship
between customer requirements and product properties. Finally, CC is a set of unary
constraints representing concrete customer requirements.

Example 2.Based on the recommender knowledge base of Example 1, the definition
of a concrete recommendation task could be completed with the following set of
requirementsCC={wrc = low,klc = beginner, idc = shortterm,slc = savings}.

Based on the definition of a recommendation task, we can introduce the notion
of a solution (consistent recommendation) for a recommendation task.

Definition 2. An assignment of the variables inVC andVPROD is denoted asconsis-
tent recommendationfor a recommendation task (VC, VPROD, CC∪CF ∪CR∪CPROP)
iff it does not violate any of the constraints inCC∪CF ∪CR∪CPROD.

Example 3.A consistent recommendation with regard to the recommenderknowl-
edge base of Example 1 and the customer requirements defined in Example 2 is
klc = beginner,wrc = low, idc = shortterm,slc = savings,namep = savings,erp =
3, ri p = low,mnivp = 1, instp = A.

In addition to the recommender knowledge base we have to define the intended
behavior of the recommender user interface. In order to support intuitive dialogs,
a recommender interface must be adaptive (see Section 3). There exist different

Developing Constraint-based Recommenders 5

alternatives to describe the intended behavior of recommender user interfaces. For
example, dialogs can be modeled explicitly in the form of finite state models [20] or
can be structured even more flexibly in a form where users themselves are enabled
to select interesting properties they would like to specify[37].

In this chapter we will focus on the first alternative: recommendation dialogs are
modeled explicitly in the form in finite state models [20]. Transitions between the
states are represented as acceptance criteria on the user input. For example, an expert
(klc = expert) who is not interested in a recommendation session regarding financial
services (awc = no) is automatically forwarded toq4 (search interface that supports
the specificiation of technical product features). Figure 1depicts a finite state model
of the intended behavior of a financial services recommenderapplication.

Fig. 1 Recommender user interface description: a simple example recommendation process for
financial services. The process starts in stateq0, and, depending on the user’s knowledge level, is
forwarded to either stateq2 or stateq3. In the final state (one of the statesq4, q6, q7) the recom-
mended items are presented. Each stateqi has an assigned customer property var(qi) that represents
a question to be asked in this state.

The remainder of this chapter is organized as follows. In Section 2 we give an
overview of knowledge acquisition concepts for the development of recommender
knowledge bases and recommender process definitions. In Section 3 we introduce
major techniques for guiding and actively supporting the user in a recommendation
dialog. A short overview of approaches to solve recommendation tasks is given in
Section 4. In Section 5 we discuss successful applications of constraint-based rec-
ommender technologies. In Section 6 we present future research issues in constraint-
based recommendation. With Section 7 we conclude the chapter.

6 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

2 Development of Recommender Knowledge Bases

The major precondition for successfully applying constraint-based technologies in
commercial settings are technologies that actively support knowledge engineers and
domain experts in the development and maintenance of recommender applications
and thus help to limit knowledge acquisition bottlenecks asmuch as possible. Due
to very limited programming skills of domain experts, theretypically is a discrep-
ancy between knowledge engineers and domain experts in terms of knowledge base
development and maintenance know-how [13]. Thus domain experts are solely re-
sponsible for knowledge provision but not for the formalization into a corresponding
executable representation (recommender knowledge base).

The major goal of the commercially availableCWAdvisorenvironment presented
in [13] is to reduce the above mentioned knowledge acquisition bottleneck: it sup-
ports autonomous knowledge base development and maintenance processes for do-
main experts. In the following sections we will present parts of theCWAdvisorenvi-
ronment for demonstration purposes. TheCWAdvisorknowledge acquisition envi-
ronment (CWAdvisor Designer) takes into account majordesign principlesthat are
crucial for effective knowledge acquisition and maintenance [8, 13].

• First, rapid prototypingprocesses support the principle ofconcretenesswhere
the user can immediately inspect the effects of introduced changes to explana-
tion texts, properties of products, images, recommender process definitions, and
recommendation rules. This functionality is implemented in the form of tem-
plates that enable a direct translation of graphically defined model properties
into a corresponding executable recommender application.

• Second, changes to all the mentioned information units can be performed on a
graphical level. This functionality is very important to make knowledge aquisi-
tion environments more accessible to domain experts without a well-grounded
technical education. Domain experts are protected from programming details -
an approach that follows the principle of a strictseparation of application logic
and implementation details.

• Third, an integrated testing and debugging environment supports the principle of
immediate feedbackin the sense that erroneous definitions in the recommender
knowledge base and the recommendation process are automatically detected and
reported (end-user debugging support). Thus, knowledge bases are maintained in
a structured way and not deployed in a productive environment until all test cases
specified for the knowledge base are fulfilled. As a direct consquence, domain
experts develop a higher trust level since erroneous recommendations become
the exception of the rule.

Figure 2 provides examples for major modeling concepts supported by the
CWAdvisorrecommender development environment [13]. This environment can be
used for the design of a recommender knowledge base (see Example 2), i.e., cus-
tomer properties (VC), product properties (VPROD), constraints (CR), filter conditions
(CF), and the product assortment (CProd) can be specified on a graphical level. Figure
2 (upper part) depicts an interface for the design of filter conditions (CF) wheres the

Developing Constraint-based Recommenders 7

lower part represents an interface for the context-oriented specification of compat-
ibility constraints. Figure 3 shows theCWAdvisorProcess Designer user interface.
This component enables the graphical design of recommendation processes. Given
such a process definition, the recommender application can be automatically gener-
ated (see, e.g., Figure 4).

Fig. 2 CWAdvisor Designer Environment. Filter constraints (conditions) as well as compatibility
constraints can be defined in a context-sensitive editing environment.

Sometimes recommendation processes are faulty, for example, the transition con-
ditions between the states are defined in a way that does not allow the successful
completion of a recommendation session. If we would change the transition condi-
tion c1 : klc = beginnerin Figure 1 toc′1 : klc = expert, users who have nearly no
knowledge about the financial services domain would not be forwarded to any of the

8 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

following states (q2 or q3). For more complex process definitions, the manual iden-
tification and repair of such faults is tedious and error-prone. In [20] an approach is
presented which helps to automatically detect and repair such faulty statements. It
is based on the concepts of model-based diagnosis [20] that help to locate minimal
sets of faulty transition conditions.

In addition to a graphical process definition,CWAdvisorDesigner supports the
automated generation of test cases (input sequences including recommended prod-
ucts) [16]. On the one hand, such test cases can be exploited for the purpose of
regression testing, for example, before the recommender application is deployed in
the production environment. On the other hand, test cases can be used for debugging
faulty recommender knowledge bases (if some of the test cases are not fulfilled) and
faulty process definitions (e.g., when the recommender process gets stuck).

The basic principle of recommender knowledge base debugging [10, 12, 13, 16]
will now be shown on the basis of Example 4.2 Readers interested in the automated
debugging of faulty recommender process definitions are referred to [20]. A typical
approach to identify faults in a recommender knowledge baseis to test the knowl-
edge base with a set of examples (test cases)ei ∈ E. For simplicity, let us assume
that e1 : wrc = high∧ rrc ≥ 9% is the only example provided by domain experts
up to now. Testinge1∪CR results in the empty solution set due to the fact thate1 is
inconsistent withCR. A more detailed look at the example shows that the constraints
CR2, CR3 are inconsistent withe1. CR2,CR3 is denoted asconflict set[33, 43] that
can be resolved (under the minimality assumption) by simplydeleting one of its
elements. For example, if we deleteCR3 from CR, the consistency ofe1∪CR is re-
stored. The calculation of conflict sets can be realized using the conflict detection
algorithm proposed by [33], the automated resolution of conflicts is shown in detail
in [20].

Example 4.Faulty Recommender knowledge base (VC, VPROD, CR, CF , CPROD)

VC = {rrc: [1-3%, 4-6%, 7-9%, 9%] . /* return rate */
wrc: [low, medium, high] . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] /* durationof investment */}

CR = {CR1: wrc = medium→ idc 6= shortterm
CR2: wrc = high→ idc = long
CR3: idc = long→ rrc = 4−6%∨ rrc = 7−9%
CR4: rrc ≥ 9%→ wrc = high
CR5: rrc = 7−9%→ wrc 6= low }

VPROD= {} CF = {} CPROD= {}

Experiences from commercial projects in domains such as financial services [18],
electronic equipments [13], or e-tourism [47] clearly point out the importance of
the above mentioned principles regarding the design of knowledge acquisition and

2 For simplicity, we omit the specification ofVPROD, CF , andCPROD.

Developing Constraint-based Recommenders 9

Fig. 3 CWAdvisor Designer Environment. Recommendation processes are specified on a graphical
level and can be automatically translated into a corresponding executable representation. Faulty
transition conditions can be identified automatically on the basis of model-based diagnosis [20].

maintenance environments. Within the scope of user studies[10] significant time
savings in development and maintenance processes have beendetected due to the
availability of a graphical development, test, and automated debugging environment.
Experiences from the financial services domain [18] show that initially knowledge
bases have to be developed within the scope of a cooperation between domain ex-
perts and technical experts (knowledge engineers). Thereafter, most development
and maintenance requests are directly processed by the domain experts (e.g., updates
in product tables, adaptations of constraints, or recommender process definitions).

3 User Guidance in Recommendation Processes

As constraint-based recommender systems operate on the basis of explicit state-
ments about the current customer’s needs and wishes, the knowledge about these
user requirements has to be made available to the system before recommendations

10 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

can be made. The general options for such arequirements elicitation processin
increasing order of implementation complexity include thefollowing.

1. Session-independent customer profiles: users enter their preferences and interests
in their user profile by, for example, specifying their general areas of interest.
This is a common approach in web portals or social networkingplatforms.

2. Static fill-out forms per session: customers fill out a static web-based form every
time they use the recommender system. Such interfaces are easy to implement
and web users are well-acquainted with such interfaces, which are often used on
web shops search for items.

3. Conversational recommendation dialogs: the recommender system incrementally
acquires the user’s preferences in an interactive dialog, based on, for exam-
ple, “critiquing” [7], “wizard-like“ and form-based preference elicitation dialogs
[13], natural-language interaction [51] or a combination of these techniques.

In the context of constraint-based recommendation, particularly this last type of
preference elicitation plays an important role and will be in the focus of this chapter,
because recommendation in complex domains such as financialservices [18] or
electronic consumer goods [25] often induces a significant cognitive load on the
end user interacting with the system. Thus, adequate user interfaces are required to
make sure that the system is usable for a broad community of online users.

Of course, the static information available in some user-specified customer pro-
file can also be an input source for a constraint-based recommender. The integration
of such general profile information (including particularly demographic informa-
tion) into the recommendation process is straightforward.In many cases, however,
this information is rather unspecific and broad so that the utility of these information
pieces is limited for an in-detail knowledge-based recommendation process.

Static fill-out forms for some applications work well for theabove-mentioned
reasons. However, in knowledge-intensive domains, for which constraint-based rec-
ommenders are often built, this approach might be too simplistic, particularly be-
cause the online user community can be heterogeneous with respect to their techni-
cal background, so that it is inappropriate to ask all users the same set of questions
or at the same level of technical detail [25].

Finally, we will also not focus on natural language interaction in this chapter as
only few examples such as [51] exist, that use a (complementing) natural language
recommender system user interface. Despite the advances inthe field of Natural-
Language-Processing and although human-like virtual advisors can be found as an
add-on to different web sites, they are barely used for recommending items to users
today, for which there are different reasons. First, such dialogs are often user-driven,
i.e., the user is expected to actively ask questions. In complex domains, however,
in particular novice users are not capable of formulating such questions about, for
example, the right medium-term investment strategy. In addition, the knowledge-
acquisition effort for such systems is relatively high, as the system should also be
capable of conducting casual conversation. Finally, end users often attribute more
intelligence to such human-like avatars than is warranted which carries the risk of
leaving them disappointed after interacting with the system.

Developing Constraint-based Recommenders 11

Critiquing Critiquing is a popular interaction style for knowledge-based recom-
mender systems, which was first proposed in [6] in the contextof Case-Based Rea-
soning(CBR) approaches to conversational recommendation. The idea is to present
individual items (instances), for example, digital cameras or financial products, to
the user who can then interactively give feedback in terms ofcritiques on individual
features. A user might, for instance, ask for a financial product with a “shorter in-
vestment period” or a “lower risk”. This recommend-review-revise cycle is repeated
until the desired item is found. Note that although this method was developed for
CBR recommendation approaches3, it can also be applied to constraint-based rec-
ommendation, as the critiques can be directly translated into additional constraints
that reflect the user’s directional preferences on some feature.

When compared with detailed search forms that can be found onmany online
shops, the critiquing interaction style has the advantage that it supports the user
in interactively exploring the item space. Moreover, the approach, which is often
also calledtweaking, is relatively easy to understand also for novice users. De-
veloping a critiquing application, however, requires somedomain knowledge, for
example, about the set of features the user can give feedback, suitable increment
values for number-valued attributes or logical orderings of attributes with enumera-
tion domains. In addition, when mappings from customer needs to product features
are needed, additional engineering effort is required.

The basic critiquing scheme was later on extended to also support compound
critiques[42, 50], where users can give feedback on several features in a single in-
teraction cycle. In the domain of financial services, a user could therefore ask for
a product that has lower risk and a longer investment horizonin one step, thus de-
creasing the number of required interaction cycles. While some sort of pre-designed
compound critiques were already possible in the initial proposal from [6], it is ar-
gued in [42] that the set of possible critiques should be dynamically determined
depending on the remaining items in the current user’s item space and in particular
on the level of variation among these remaining items. The results of experimen-
tal evaluations show that such compound critiques can help to significantly reduce
the number of required interaction cycles, thus making the whole interaction pro-
cess more efficient. In addition, the experiments indicate that compound critiques
(if limited to a size that is still understandable to the user) can also help the user
understand the logic of the recommendations generated by the system.

Recent developments in critiquing include the use of elaborate visual interfaces
[60], the application of the approach in mobile recommendersystems [47], or the
evaluation of critiquing styles regarding decision accuracy and cognitive effort [9].

Personalized preference elicitation dialogsAnother form of acquiring the user’s
wishes and needs for a constraint-based recommender systemis to rely on explicitly
modeled and adaptive preference elicitation dialogs. Suchdialog models can for
instance be expressed using adialog grammar[2] or by using finite-state automaton
as done in theCWAdvisorsystem [20, 13].

3 The general idea of exploring a database by criticizing successive examples is in fact much older
and was already proposed in the early 1980s in an information-retrieval context [53].

12 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

In the later system, the end user is guided by a “virtual advisor” through a series
of questions about the particular needs and requirements before a recommendation
is displayed, see Figure 4 for an example dialog. In contrastto static fill-out forms,
the set of questions is personalized, i.e., depending on thecurrent situation and
previous user answers, a different set of questions (probably also using a different
technical or non-technical language [29]) will be asked by the system.

Fig. 4 Interactive and personalized preference elicitation example. Customers specify their pref-
erences by answering posed questions.

In the CWAdvisorsystem, the required user interface adaptation is based on
manually-engineered personalization rules and on an explicit dialog model in the
form of a finite-state automaton as shown in Figure 1. Thus, a method is chosen
that represents a compromise between fill-out forms to whichweb users are well-
acquainted and fully free conversation as provided by approaches based on Natural
Language Processing.

Technically, the vertices of the finite-state automaton in Figure 1 are annotated
with logical expressions over the constraint variables that are used to capture the
user requirements. The process of developing the dialog andpersonalization model
is supported in theCWAdvisorsystem by an end-user oriented graphical process
modeling editor. At run time, the interaction-handling component of the framework
collects the user inputs and evaluates the transition conditions in order to decide
how to continue the dialog, see [13] for more details.

Beside the personalization of the dialog, different other forms of adaptation on
the level of content, interaction and presentation are implemented in the system
([30]) in order to support the design of preference elicitation and explanation dialogs
that support the end user in the best possible way.

While highly-dynamic and adaptive web applications can be valuable in terms
of ease-of-use and user experience, the technical realization and in particular the
maintenance of such flexible user interfaces for a constraint-based recommender
can be challenging. The main problem in this context are the strong interrelation-

Developing Constraint-based Recommenders 13

ships between the “model”, the “view” and the control logic of such applications:
consider, for instance, the situation, where the dialog model should be extended with
a new question (variable), a new answer option (new variabledomain), or whole di-
alog page (new dialog automaton state). In each case, the webpages that represent
the “view” of the recommender application, have to be adapted accordingly. There-
fore, toolkits for developing personalized preference elicitation processes, have to
provide mechanisms to at least partially automate the process of updating the user
interface, see [30] for details of the template-based approach inCWAdvisor.

Dealing with unfulfillable or too loose user requirements The issue of the de-
velopment of the user interface is not the only challenging problem in the context of
personalized preference elicitation in constraint-basedrecommenders. In the follow-
ing, we will sketch further aspects that have to be dealt within practical applications
of this technology.

In constraint-based recommenders, the situation can easily arise that no item in
the catalog fulfills all the constraints of the user. During an interactive recommen-
dation session, a message such as “no matching product found” is however highly
undesirable. The question therefore arises, how to deal with such a situation that
can also occur in CBR-based recommenders that in many cases at least initially
rely on some query mechanism to retrieve an initial set of cases from the product
catalog (case base). One possible approach proposed in the context of CBR-based
recommenders is based onquery relaxation[38, 39, 45, 23, 26]. In the context of
CBR recommenders, the set of recommendable items are conceptually stored in a
database table; the case retrieval process consists of sending a conjunctive queryQ
(of user requirements) to this case base. Query relaxation then refers to finding a
(maximal) subqueryQ′ of the original queryQ that returns at least one item.

The general idea of query relaxation techniques can also be applied in constraint-
based recommendation. Consider Example 5 (adapted from [26]), where the catalog
of four itemsCPROD is shown in tabular form in Figure 5.

namep slp
(type of low
risk inv.)

ri p

(associated
risk)

mnivp

(min. invest-
ment period)

erp

(expected
return)

instp
(financial
institute)

p1 stockfunds medium 4 5 % ABank
p2 singleshareshigh 3 5 % ABank
p3 stockfunds medium 2 4 % BInvest
p4 singleshareshigh 4 5 % CMutual

Fig. 5 Example item catalog (financial services).

Example 5.Query Relaxation
For sake of clarity and simplicity of the example, let us assume that the customer
can directly specify the desired properties of the investment product on an “ex-
pert screen” of the advisory application. The set of corresponding customer proper-
tiesVc thus containsslc (investment type),ric (risk class),minimumreturnc (min-

14 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

imum value for expected return) andinvestmentdurationc (desired investment du-
ration). The filter constraints (conditions) in this example simple map customer re-
quirements fromCc to item features, i.e.,CF = {CF1 : slc = slp, CF2 : ric = ri p,
CF3 : investmentdurationc >= mnivp, CF4 : erp >= minimumreturnc}
Let the concrete customer requirementsCC be as follows:{slc = singleshares,
ric = medium, investmentdurationc = 3, minimumreturnc = 5}.

As can be easily seen, no item in the catalog (see Figure 5) fulfills all relevant
constraints in the given task, i.e., no consistent recommendation can be found for the
recommendation task. When following a “constraint relaxation“ approach, the goal
now consists of finding a maximal subset of the constraints ofCF , for which a rec-
ommendation can be found. The maximization criterion is typically chosen because
the constraints directly relate to customer requirements,i.e., the more constraints
can be retained, the better the retrieved items will match these requirements.

While this problem of finding consistency-establishing subsets ofCF seems to be
not too complex at a first glance, in practical settings, computational effectiveness
becomes an issue. Given a constraint base consisting ofn constraints, the number of
possible subsets is 2n. Since real-world recommender systems have to serve many
users in parallel and typically the acceptable response time is about one second,
naive subset probing is not appropriate.

Different techniques have therefore been proposed to solvethis problem more
efficiently. In [38], for instance, an incremental mixed-initiative to recovery from
failing queries in a CBR recommender was suggested. In [45],a relaxation method
based on manually-defined feature hierarchies was proposed, which despite its in-
complete nature has shown to be an effective help in a travel recommender sys-
tem. Finally, in [26] and [27] a set of complete algorithms for the query relaxation
problem in constraint-based recommenders was developed. The algorithms not only
support the computation of minimum relaxations in linear time (at the cost of a
preprocessing step and slightly increased memory requirements) but also the com-
putation of relaxations that lead to “at least n” remaining items. In addition, also
a conflict-directed algorithm for interactive and incremental query relaxation was
proposed which makes use of recent conflict-detection technology [33].

The main idea of the linear-time constraint relaxation technique can be sketched
as follows. Instead of testing combinations of constraints, the relevant constraints are
evaluated individually, resulting in a data structure thatassigns to every constraint
the list of catalog items that fulfill the constraint, see Figure 6.

ID Product p1Product p2Product p3Product p4

CF1 0 1 0 1
CF2 1 0 1 0
CF3 0 1 1 0
CF4 1 1 0 1

Fig. 6 Evaluating the subqueries individually. For example, product p1 is filtered out by the filter
conditionCF1 under the assumption thatslc = singleshares.

Developing Constraint-based Recommenders 15

The table should be interpreted as follows. ConstraintCF1 on the type of invest-
ment (single shares) in line 1 of the table would filter out productsp1 andp3.

Given this table, it can be easily determined, which constraints of a given setCF

have to be relaxed to have a certain product in the result set,i.e., consistent with the
constraints and the user requirements. For example, in order to havep1 in the result
set, the constraintsCF1 andCF3 of CF have to be relaxed. Let us call this a “product-
specific relaxation” forp1. The main idea of the method from [26] is that the overall
“best” relaxation for given productsCPROD, filter conditionsCF and a given set of
concrete requirementsCC has to be among the product-specific relaxations. Thus, it
is sufficient to scan the set of product-specific relaxations, i.e., no further constraint
solving step is required in this phase.

In the example, the relaxation of constraintCF2 is optimal, when the number of
relaxed constraints determines the best choice as only one customer requirement has
to be given up. All other relaxations require at least two constraints to be ignored,
which can be simply determined by counting the number of zeros in each column.
Note that the number of involved constraints is only one possible optimization cri-
terion. Other optimization criteria that take additional “costs of compromise” per
constraint into account can also be implemented based on this technique as long as
the cost function’s value is monotonically increasing withthe size of the relaxation.

Technically, the computation of product-specific relaxations can be done very
efficiently based on bit-set operations [26]. In addition, the computation can partially
also be done in advance in the start-up phase of the recommender.

Suggesting alternatives for unfulfillable requirements In some application do-
mains, the automated or interactive relaxation of individual constraints alone may
be not suffice as a means to help the user out of a situation, in which his or her
requirements cannot be fulfilled. Consider, for instance, asituation where the rec-
ommender in an interactive relaxation scenario proposes a set of alternatives of con-
straints to be relaxed. Let us assume that the user accepts one of the proposals, i.e.,
agrees to relax the constraints related to two variables ofVC, for example,A andB.
If, however, the values ofA andB are particularly important to him (or mandatory),
he will later on put different constraints on these variables. These new values can,
however, again cause an inconsistency with the other requirements of the user. This
might finally lead to an undesirable situation, in which the user ends up in trying out
different values but gets no clear advise, which values to take to receive a consistent
recommendation.

Overall, it would be thus desirable, if the system could immediately come up
with suggestions for new values forA andB, for which it is guaranteed that some
items remain in the result set when the user’s other requirements are also further
taken into account.

Let us first consider the basic CBR-style case retrieval problem setting as used
in [38, 39, 45], in which constraints are directly placed on item features. The con-
straints in this example shall be{slp = singleshares, ri p = medium, minvp < 3,
erp >= 5 }. Again, no item fulfills these requirements.

16 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

In such a setting, the detailed information about the catalog items can be used
to compute a set of suggestions for alternative constraints(“repairs”) on individual
features. Based on this information, the system could – instead of only proposing the
user to relax the constraints on the investment type and on the investment duration –
inform the user that “if the single shares requirement is abandoned and the minimum
investment duration is set to 4” one or more items will be found. Thus, the user will
be prevented from (unsuccessfully) trying a minimum investment duration of 3.

In this example, the calculation of such alternative valuescan be accomplished by
the system by choosing one relaxation alternative (investment duration and invest-
ment type) and searching the catalog for items that fulfill the remaining constraints.
The values for the investment duration and the investment type (e.g., of product 1 in
Figure 5) can be directly taken as suggestions for the end user [19] [14].

While this approach seems intuitive and simple, in practical applications the fol-
lowing problems have to be dealt with.

• The number of possible repairs. In realistic scenarios, thenumber of possible
repair alternatives is typically very large as for every possible relaxation – there
might be already many of them – various solutions exist. In practice, however,
end users cannot be confronted with more than a few overall alternatives. Thus,
the problem exists to select and prioritize the repair alternatives.

• The size/length of the repair proposals. Repair suggestions that contain alterna-
tive values for more than three features are not easy to understand for end users.

• Computational complexity for non-trivial constraints. When only simple con-
straints on product features are allowed, the information from the item catalog
can help to determine possible repairs as described above. In constraint-based
systems such asCWAdvisor, however, the definition of constraints that relate
often qualitative user needs to (technical) product features is possible. Con-
sequently, also the repair suggestions must relate to user requirements, which
means that the search space of possible repair alternativesis determined by the
domains of the user-related variables. In addition, determining whether or not a
specific combination of user requirements (i.e., a repair alternative) leads to a
non-empty result set, requires a probably costly catalog query.

In order to address these issues at least to some extent, theCWAdvisorsystem
uses a combination of query relaxation and different searchheuristics and additional
domain-specific knowledge for the calculation of repair suggestions in a financial
services application [17].

The method implemented in the system interleaves the searchfor relaxations
with a bounded search for repair alternatives. The possiblerelaxations are deter-
mined in increasing order of their cardinality. For each relaxation, repair alterna-
tives are determined by varying the values of the variables that are involved in the
relaxed constraints. The selection of alternative values can for instance be guided
by a “nearness” heuristic that is based on an externally or implicitly defined order
of the values. Thus, when varying for instance a user requirement of “at least 5 %
expected return”, the neighboring value of “4 %” is evaluated, assuming that such
an alternative will be more acceptable for the end user than an even stronger relax-

Developing Constraint-based Recommenders 17

ation. In order to avoid too many similar repair suggestions, the algorithm can be
parameterized with several threshold values that, for example, determine the number
of repairs for a relaxation, the maximum size of a relaxationand so forth. Overall,
anecdotal evidence in the financial service domain indicates that such a repair fea-
ture, even if it is based on heuristics, is well-appreciatedby end users as a means for
shortening the required dialog length.

Query tightening Beside having no item in the result set, havingtoo manyitems
in the result set is also not desirable in an interactive recommender. In many real-
world applications the user is informed that “too many itemshave been found” and
that more precise search constraints have to be specified. Often, only the first few
results are displayed (as to, e.g., avoid long page loading times). Such a selection
may however not be optimal for the current user, since the selection is often simply
based on the alphabetic order of the catalog entries.

In order to better support the user also in this situation, in[46] an Interactive
Query Managementapproach for CBR recommenders is proposed, that also in-
cludes techniques for “query tightening”. The proposed tightening algorithms takes
as an input a queryQand its large result set and selects – on the basis of information-
theoretic considerations and the entropy measure – three features that are presented
to the user as proposals to refine the query.

Overall, an evaluation ofInteractive Query Managementwithin a travel recom-
mender system that implemented both query relaxation and query tightening [48],
revealed that the relaxation feature was well-appreciatedby end users. With respect
to the tightening functionality, the evaluation indicatedthat query tightening was not
that important to end users who were well capable of refining their queries by them-
selves. Thus, in [40] a different feature selection method was proposed, that also
take a probabilistic model of feature popularity into account. An evaluation showed
that in certain situations the method of [40] is preferable since it is better accepted
by end users as a means to further refine their queries.

4 Calculating Recommendations

Following our characterization of a recommendation task (see Definition 1), we
will now discuss corresponding problem solving approaches. Typical approaches to
solve a recommendation task areconstraint satisfaction algorithms[52] andcon-
junctive database queries[44].

Constraint Satisfaction Solutions forconstraint satisfaction problemsare calcu-
lated on the basis of search algorithms that use different combinations ofback-
trackingandconstraint propagation- the basic principle of both concepts will be
explained in the following.

Backtracking. In each step, backtracking chooses a variable and assigns all the
possible values to this variable. It checks the consistencyof the assignment with
the already existing assignments and defined set of constraints. If all the possible

18 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

values of the current variable are inconsistent with the existing assignments and
the constraints, the constraint solver backtracks which means that the previously
instantiated variable is selected again. In the case that a consistent assignment has
been identified, a recursive activation of the backtrackingalgorithm is performed
and the next variable is selected [52].

Constraint Propagation. The major disadvantage of pure backtracking-based
search is ”trashing” where parts of the search space are revisited although the solver
has already detected that no solution exists in these parts.In order to make con-
straint solving more efficient, constraint propagation techniques have been intro-
duced. These techniques try to modify an existing constraint satisfaction problem
such that the search space can be reduced significantly. The methods try to create
a state oflocal consistencythat guarantees consistent instantiations among groups
of variables. The mentioned modification steps turn an existing constriant satisfac-
tion problem into an equivalent one. A well known type of local consistency isarc
consistency[52] which states that for two variables X and Y there must notexist a
value in the domain of Y which does not have a corresponding consistent value in X.
Thus, arc consistency is a directed concept which means thatif X is arc consistent
with Y, the reverse must not necessarily be the case.

When using a constraint solver, constraints are typically represented in the form
of expressions of the corresponding programming language.Many of the exist-
ing constraint solvers are implemented on the basis of Java (see, for example,ja-
cop.osolpro.com).

Conjunctive Database QueriesSolutions toconjunctive queriesare calculated on
the basis of database queries that try to retrieve items which fulfill all of the defined
customer requirements. For details on the database technologies and the execution
of queries on database tables see, for example, [44].

Ranking Items Given a recommendation task, both constraint solvers and database
engines try to identify a set of items that fulfill the given customer requirements.
Typically, we have to deal with situations where more than one item is part of a
recommendation result. In such situations the items (products) in the result set have
to be ranked. In both cases (constraint solvers and databaseengines), we can apply
the concepts of multi-attribute utility theory (MAUT) [54]that helps to determine
a ranking for each of the items in the result set. Examples forthe application of
MAUT can be found in [13].

An alternative to the application ofMAUT in combination with conjunctive
queriesareprobabilistic databases[35] which allow a direct specification of rank-
ing criteria within a query. Example 6 shows such a query which selects all products
that fulfill the criteria in the WHERE clause and orders the result conform to a sim-
ilarity metric (defined in the ORDER BY clause). Finally, instead of combining the
mentionedstandard constraint solvers with MAUT, we can represent a recommen-
dation task in the form of soft constraints where the importance (preference) for
each combination of variable values is determined on the basis of a corresponding
utility operation (for details see, for example, [1]).

Developing Constraint-based Recommenders 19

Example 6.Queries in probabilistic databases
Result = SELECT * /* calculate a solution */
FROM Products /* select items from ”Products” */
WHEREx1=a1 andx2=a2 /* ”must” criteria */
ORDER BY score(abs(x3-a3), ..., abs(xm-am)) /* similarity-based utility function */
STOP AFTER N; /* at most N items in the solution (result set) */

5 Experiences from Projects and Case Studies

TheCWAdvisorsystem has been commercialized in 2002 and since then more than
35 different applications have been instantiated and fielded. They have been ap-
plied in commercial domains ranging from financial services[17] to electronic con-
sumer goods or tourism applications [32] as well as to application domains that are
considered rather untypical for recommender systems such as providing counsel-
ing services on business plans [28] or supporting software engineers in selecting
appropriate software estimation methods.

Based on this installation base different forms ofempirical researchhave been
conducted that try to assess the impact and business value ofknowledge based rec-
ommender systems as well as to identify opportunities for advancing their state-of-
the-art. In the following we will differentiate them based on their study design into
user studies, evaluations on historical dataandcase studies of productive systems.

Experimental user studies simulate real user interactions and research the accep-
tance or rejection of different hypotheses. [15] conducteda study to evaluate the
impact of specific functionalities of conversational knowledge-based recommenders
like explanations, proposed repair actions or product comparisons. The study as-
signed users randomly to different versions of the recommender system that varied
the functionalities and applied pre- and post-interactionsurveys to identify users’
level of knowledge in the domain, their trust in the system orthe perceived compe-
tence of the recommender. Quite interestingly, the study showed that study partici-
pants appreciate these specific functionalities as they increase their perceived level
of knowledge in the domain and their trust in the system’s recommendations.

The COHAVE project initiated a line of research that investigated how psycho-
logical theories might be applied to explain users’ behavior in online choice situa-
tions. For instance, asymmetric dominance effects arise ifproposed itemsets contain
decoy products that are dominated by other products due to their relative similarity
but a lower overall utility. Several user studies in domainssuch as electronic con-
sumer goods, tourism and financial services showed, that knowing about these ef-
fects a recommender can increase the conversion rate of somespecific items as well
as a users confidence in the buying decision.

Algorithm evaluations on historical datasets are off-line experimentations [24].
A dataset that contains past user transactions is split intoa training and testing set.
Consequently, the training set is exploited to learn a modelor tune algorithm’s pa-

20 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

rameters in order to enable the recommender to predict the historic outcomes of
the user sessions contained in the testing set. Such an evaluation scenario enables
comparative research on algorithm performance. While collaborative and content-
based recommendation paradigms have been extensively evaluated in the literature,
comparing knowledge-based recommendation algorithms with other recommenda-
tion paradigms received only few attention in the past. One reason is that they are
hard to compare, because they require different types of algorithm input: collabo-
rative filtering typically exploits user ratings while constraint-based recommender
systems require explicit user requirements, catalog data and domain knowledge.
Consequently, datasets that contain all these types of input data - like the Entree
dataset provided by Burke [5] - would allow such comparisons, however they are
very rare. One of the few is described in [59]. The dataset stems from a retailer
offering premium cigars and it includes implicit ratings signifying users’ purchase
actions, users’ requirements input to a conversational recommender and a product
catalog with detailed item descriptions. Therefore, offline experiments compared
knowledge-based algorithm variants that exploited user requirements with content-
based and collaborative algorithms working on ratings. Oneof the interesting re-
sults were that knowledge-based recommenders did not perform worse in terms
of serendipity measured by the catalog coverage metric thancollaborative filter-
ing. This is especially true if a constraint-based recommender is cascaded with a
utility-based item ranking scheme like theCWAdvisorsystem. However, collabora-
tive filtering does better in terms of accuracy, if there are 10 and more ratings known
from users. Nevertheless, an evaluation of a knowledge-based recommender always
measures the quality of the encoded knowledge baseandthe inferencing itself.

Another study was instrumented in [58] that focuses on explicit user require-
ments as the sole input for personalization mechanisms. It compares different hy-
bridization variants between knowledge-based and collaborative algorithms, where
collaborative filtering interprets explicit requirementsas a form of rating. Result sets
of knowledge-based recommenders turn out to be very precise, if users formulated
some specific requirements. However, when only few constraints apply and result
sets are large the ranking function is not always able to identify the best matching
items. In contrast, collaborative filtering learns the relationships between require-
ments and actually purchased items.Therefore, the study shows that a cascading
strategy where the knowledge-based recommender removes candidates based on
hard criteria and a collaborative algorithm does the ranking does best.

Consequently, in [55] a meta-level hybridization approachbetween knowledge-
based and collaborative filtering was proposed and validated. There collaborative
filtering learns constraints that map users’ requirements onto catalog properties of
purchased items and feeds them as input into a knowledge-based recommender that
acts as the principal component. Offline experiments on historical data provided
initial evidence that such an approach is able to outperformthe knowledge base
elicited from the domain experts with respect to algorithm’s accuracy. Based on
these first promising results further research on automatically extracting constraints
from historic transaction data will take place.

Developing Constraint-based Recommenders 21

Case studies on productive systemsare the most realistic form of evaluation be-
cause users act under real-world conditions and possess an intrinsic motivation to
use the system. In [13] experiences from two commercial projects in the domains
of financial services and electronic consumer goods are reported. In the latter do-
main a conversational recommender for digital cameras has been fielded that was
utilized by more than 200.000 online shoppers at a large Austrian price comparison
platform. Replies to an online questionnaire supported thehypothesis that advisor
applications help users to better orientate themselves when being confronted with
large sets of choices. A significantly higher share of users successfully completed
their product search when using the conversational recommender compared to those
that did not use it. Installations of knowledge-based recommenders in the financial
services domain follow a different business model as they support sales agents while
interacting with their prospective clients. Empirical surveys among sales representa-
tives figured out that time savings when interacting with clients are a big advantage
which in turn allows sales staff to identify sales opportunities [13, 17].

In [56] a case study researches how the application of a knowledge-based conver-
sational sales recommender on a Webshop for Cuban cigars affects online shoppers
behavior. Therefore the sales records in the period before and after introducing the
recommender were analyzed. One interesting finding of this study is that the list
of top ranked items in the two periods differs considerably.In fact items that were
infrequently sold in the period before but very often recommended by the system
experienced a very high demand. Thus the relative increase of items was positively
correlated with how often the recommender proposed these items. The advice given
by recommendation applications is followed by users and leads to online conver-
sions. This confirms the results of user studies like [15] that were initially discussed.
Finally, another evaluation of a knowledge-based recommender in the tourism do-
main was conducted to compare conversion rates, i.e., the share of users that turned
into bookers, between users and non-users of the interactive sales guide [57]. This
study strongly empirically confirms that the probability ofusers issuing a booking
request is more than twice as high for those having interacted with the interactive
travel advisor than for the others.

Thus, based on these results we are able to summarize that constraint-based rec-
ommendation has been successfully deployed in several commercial application do-
mains and is well accepted by their users.

6 Future Research Issues

On the one hand constraint-based recommender systems have proven their utility in
many fielded applications on the other hand we can identify several challenges for
improvements. Such improvements will lead to enhancing thequality for users, the
broadnessof the application fields, and thedevelopmentof recommender software.

22 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

Automated product data extraction A constraint-based recommender is only as
good as its knowledge base. Consequently, the knowledge base has to be correct,
complete, and up-to-date in order to guarantee high qualityrecommendations. This
implies significant maintenance tasks, especially in thosedomains where data and
recommendation knowledge changes frequently, for example, electronic consumer
products. Currently, maintenance is done by human experts,for example, collecting
product data or updating rule-bases. However, in many domains at least product data
is accessible for machines on the web. By exploiting the internet as a resource for
data and knowledge almost all necessary pieces for many recommender applications
could be collected. The major research focuses in this context are the automated
extraction of product data from different information sources and the automated de-
tection and adaptation of outdated product data. This includes identifying relevant
information sources (for instance, Web pages), extractingproduct data, and resolv-
ing contradictions in those data. A related recent challenge is extracting product
information directly from digital multimedia products such as books, CDs, DVDs,
and TV programs.

However, the fundamental problem for machines is the presentation of data in
the web. Data in the Web is usually presented with the goal that humans can easily
access and comprehend information. Unfortunately, the opposite is true for comput-
ers which are currently not particulary capable in interpreting visual information.
Therefore, a fundamental research question is how we can enable machines such
that they can “read” the web similarly as humans do. In fact, this task goes far be-
yond recommender systems and is a central endeavor of the Semantic Web and on
a more general level of Artificial Intelligence. Although itseems that currently this
task is far too ambitious to be solved in the near future, we can exploit the particular-
ities of recommendation domains. For example, when dealingwith the extraction of
product data from the web, we can search for product descriptions in tabular form,
extract the data of these product descriptions, and instantiate a product database
[31]. Of course the success of such methods depends on the domains. For example
in the domain of electronic consumer products like digital cameras the description
of cameras follows a common structure (e.g., data-sheets ofdifferent brands are
very similar) whereas in other domains like holiday resortsproduct descriptions are
mostly expressed by natural language text. It has to be mentioned that instead of an
automatic translation of human readable content in machineprocessable data there
is the alternative to provide such machine processable datain addition or instead
of human readable content. Indeed strong market forces likeinternet search engine
vendors might offer improved search services if machine processable information
is provided. For example, product vendors supply their datain specific formats and
benefit by an improved ranking in search results. However, inthis scenario search
machine vendors dictate which descriptions of which products are available for rec-
ommendations purposes which leads to a strong dependency onsingle authorities.
Therefore, the aim to enable computers to read the web as humans do remains an
important point on the research agenda.

Developing Constraint-based Recommenders 23

Community-based knowledge acquisitionThe cornerstone of constraint-based
recommendation is efficient knowledge acquisition and maintenance. This problem
has been addressed in the past in different dimensions, the main focus lying on
knowledge representation and conceptualization issues aswell as on process mod-
els for capturing and formalizing a domain expert’s knowledge. Historically, one
main assumption of these approaches was that there shall exist one single point of
knowledge formalization and in consequence one (user-oriented) conceptualization
and a central knowledge acquisition tool. In most cases in real world, however, the
domain knowledge is in the heads of different stakeholders,typical examples being
cross-department or cross-organization business rules ornew types of applications,
in which large user communities are sharing knowledge in an open-innovation, web-
based environment. Only recently, with the emergence and spread of Web 2.0 and
Semantic Web technologies, the opportunities and also the problems of collabora-
tive knowledge acquisition have again become a topic of interest. With regard to the
types of knowledge to be acquired, the main focus of these recent developments,
however, is on acquiring “structural” knowledge, i.e., on terms, concepts, and re-
lationships among them. New developments aim at going a stepfurther and target
at the collaborative acquisition and refinement of domain-constraints and business
rules as they represent the most crucial, frequently updated, and thus costly part
in many knowledge-based applications. The main questions to be answered com-
prise the following: How can we automatically detect and resolve conflicts if knowl-
edge acquisition is distributed between different knowledge contributors? How can
we assist the knowledge contributors to acquire knowledge by asking them the
“right” questions, i.e., minimizing the interaction needed? How can we generate
“good” proposals for changing the knowledge base from different, possibly only
partially-defined knowledge chunks, i.e., find plausible (in the eyes of the contribu-
tors) changes of the knowledge base?

Usually the termknowledge acquisitionrefers to methods supporting the user
to formulate rules, constraints, or other logical descriptions depending on the em-
ployed language. This task is complicated in recommender systems since in most
cases the output includes a preference relation over the recommended items. Conse-
quently, knowledge acquisition has to support also the formulation, debugging, and
testing of such preference descriptions [21].

A further factor which complicates the search for a satisfying knowledge base
is the demand for high quality explanations. Explanations in constraint-based rec-
ommender systems are generated by exploiting the content ofthe knowledge base.
In fact, different knowledge bases can provide the equivalent input/output behavior
with respect to recommendations but show significant differences in their explana-
tory quality. Consequently, a further important goal of knowledge acquisition is sup-
porting the formulation of comprehensible knowledge baseswhich serve the user to
gain confidence in the recommendations.

Knowledge bases for recommender systems have to be considered as dynamic.
Unfortunately this dynamics are not only caused by changingproduct catalogs but
also by shifts of customer preferences. For example, the pixel resolution of digi-
tal photos considered to be sufficient for printing an A4 picture changes over time

24 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

because of higher demands for quality. Consequently, automatic detection of such
shifts and supporting a subsequent adaptation of the knowledge base are of great
interest.

Validation Successfully developing and maintaining recommender knowledge bases
requires intelligent testing environments that can guarantee recommendations’ cor-
rectness. Particularly in application areas where a certain recommendation qual-
ity must be assured (e.g., financial products) a company employing recommender
systems has to be sure about the quality of the recommendation process and its
outcome. So, future research must focus on developing mechanisms to automati-
cally configure optimal test suites that both maximize the probability of identifying
faulty elements in the recommender knowledge base and minimize the number of
test cases needed to achieve this goal. Minimizing the number of test cases is im-
portant because domain experts must validate them manually. This validation output
fits nicely with supporting knowledge acquisition since anyfeedback from a knowl-
edge engineer can be exploited for learning recommendationknowledge bases. In
particular an interesting research question is to which extend arguments of a user in
favor or against a recommendation can be exploited to improve knowledge bases. In
[49] an algorithm is described which learns constraints based on arguments why an
example (e.g., a product) should be recommended or not.

Recommendation of configurable products and servicesWith the production of
the Model T about 100 years ago, Henry Ford revolutionized manufacturing by
employing mass production (the efficient production of manyidentical products).
Nowadays, mass production is an outmoded business model, and companies must
provide goods and services that fit customers’ individual needs. In this context,
mass customization – the production of highly variant products and services un-
der mass production pricing conditions – has become the new paradigm. A phe-
nomenon accompanying mass customization is mass confusion, which occurs when
items are too numerous and complex for users to survey. Developing recommender
technologies that apply to configurable products and services can help tackle mass
confusion. For example, recommender technology could be adapted to help the
uninformed customer to discover her wishes, needs, and product requirements in
a domain of almost unlimited product variants. However, recommendation of con-
figurable products pushes the limits of current recommendertechnologies. Current
techniques assume that items to be recommended can be extensionally represented.
But configuration domains frequently offer such a high product variance that the
set of all possible configurations can only be intensionallycharacterized by config-
uration descriptions. For example, configurable systems may comprise thousand
of components and connections. In these domains searching for the most preferred
configurations satisfying the customer requirements is a challenging task.

Intelligibility and explanation To be convincing, recommendations must be ex-
plained to customers. When they can challenge a recommendation and see why a
system recommended a specific product customers will start to trust that system. In
general, explanations are provided for outputs of recommender systems and serve

Developing Constraint-based Recommenders 25

a wide spectrum of tasks, for example, increase transparency and trust, persuade a
customer, or improve customer satisfaction just to name some. These explanations
depend on the state of the recommendation process and the user profile, for ex-
ample, her aims, desires, and prior knowledge. The vision offuture recommender
systems is that pro-actively information is provided to theuser such that explanation
goals are optimized, i.e., if the recommender recognizes that a customer does not
understand the differences between alternative products then explanations of these
differences are offered. Conversely, customers with a richbackground of a product
domain and a clear understanding what they want can be offered a quick jump to a
recommendation with a detailed technical justification. Consequently, the research
challenge is to create an artificial recommender agent that acts flexibly to the needs
of customers. Explanations are a cornerstone in such a general endeavor.

Theories of consumer buying behaviorA truly intelligent recommender agent
adapts to the user. This implies that the recommender has a model of the user which
allows predictions about her reaction depending on the information provided. In
particular, if we have a model about the influencing factors of consumer buying
behavior then it is possible to reason about the best next actions a recommender
agent can take. Therefore, research in recommender technology can greatly benefit
from insights of cognitive and decision psychology. One canargue that such “intelli-
gent” behavior of recommender agents is questionable from an ethical point of view.
However, every information provided to a customer influences her buying behavior.
Therefore, it is important to understand the consequences of communications with
the customer thus allowing a more planned design of recommender systems.

Context awareness and ambient intelligenceRecommender systems may not
only be regarded as simple software tools accessible via a PCbut rather as intelli-
gent agents recommending actions in various situations. For example, in future cars
artificial assistants will provide advice for various driving tasks, for example, over-
taking, turning, or parking. In order to give recommendations in such environments
the recommender has to be aware of the situation and the goalsof a user. Other
typical scenarios are recommendations for tourists duringtheir journeys. In such
situations, recommendations depend not only on customer preferences but also on
the context, which can include attributes such as time of day, season, weather con-
ditions, and ticket availability. Note, that the mentionedscenarios requires so called
ambient intelligence. Not the traditional computer is the only interface to the cus-
tomer but speech and gesture play an important role for the communication between
user and recommender.

Semantic Web The W3C states “The Semantic Web provides a common frame-
work that allows data to be shared and reused across application, enterprise, and
community boundaries.” In particular Semantic Web technologies offer methods to
relate data in the web. This can be exploited to implement a decentralized web of
entities who trust each other or relations between customers and products they rated.
Based on such relations between customers or products many improvements are fea-
sible. We already mentioned that the extraction of product data and knowledge ac-

26 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

quisition can benefit from the machine readable content descriptions. However, we
can go a step further and use the information in the Semantic Web to improve the
quality of recommendations [22, 61]. In particular, an agent can consider only those
ratings of trustworthy agents in order to avoid intentionalmisguidance. Further-
more, the Semantic Web allows to integrate data of various sources in the reasoning
process. On the one hand this enhances knowledge-based recommendation since
knowledge is contributed and maintained by a community on a decentralized com-
puting infrastructure and therefore knowledge-acquisition efforts are shared. How-
ever, on the other hand many research questions for this scenario arise: How can the
quality of recommendations be guaranteed or at least assessed? How can we assess
the trustworthiness and quality of knowledge sources? How can we make sure that
for the description of products and services there is a common agreement on the
concepts and values used? How can we deal with differences inthe meaning of con-
cepts and values? How can we assess not only the correctness of recommendations
but also their completeness?

7 Summary

In this chapter we provided an overview of major constraint-based recommendation
technologies. These technologies are especially applicable to large and potentially
complex product assortments where collaborative filteringand content-based filter-
ing technologies have their drawbacks. The usefulness of constraint-based recom-
mendation technologies has been shown in different commercial applications - those
applications have been analyzed in this chapter. Finally, to trigger further research in
the field, we provide an extensive overview of important future research directions.

References

1. Bistarelli, S., Montanary, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM44, 201–236 (1997)

2. Bridge, D.: Towards conversational recommender systems: a dialogue grammar approach. In:
D.W. Aha (ed.) Proceedings EWCBR-02 Workshop on Mixed Initiative CBR, pp. 9–22 (2002)

3. Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl.
Eng. Rev.20(3), 315–320 (2005)

4. Burke, R.: Knowledge-Based Recommender Systems. Encyclopedia of Library and Informa-
tion Science69(32) (2000)

5. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-
Adapted Interaction12(4), 331–370 (2002)

6. Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information
spaces. In: In Proceedings of the 13th National Conference on Artificial Intelligence, pp.
462–468. AAAI Press (1996)

7. Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe Approach to Assisted Browsing.
IEEE Intelligent Systems12(4), 32–40 (1997)

Developing Constraint-based Recommenders 27

8. Burnett, M.: Hci research regarding end-user requirement specification: a tutorial. Knowledge-
based Systems16, 341–349 (2003)

9. Chen, L., Pu, P.: Evaluating critiquing-based recommender agents. In: Proceedings of the
21st National Conference on Artificial Intelligence and theEighteenth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI’06, pp. 157–162. AAAI Press, Boston, Mas-
sachusetts, USA (2006)

10. Felfernig, A.: Reducing Development and Maintenance Efforts for Web-based Recommender
Applications. Web Engineering and Technology3(3), 329–351 (2007)

11. Felfernig, A., Burke, R.: Constraint-based recommender systems: technologies and research
issues. In: ICEC ’08: Proceedings of the 10th internationalconference on Electronic com-
merce, pp. 1–10. ACM, New York, NY, USA (2008)

12. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of con-
figuration knowledge bases. Artificial Intelligence152(2), 213–234 (2004)

13. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the de-
velopment of knowledge-based recommender applications. International Journal of Electronic
Commerce11(2), 11–34 (2007)

14. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible
Repairs for Inconsistent Requirements. In: 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pp. 791–796. Pasadena, CA, USA (2009)

15. Felfernig, A., Gula, B.: An Empirical Study on Consumer Behavior in the Interaction with
Knowledge-based Recommender Applications. In: Eighth IEEE International Conference on
E-Commerce Technology (CEC 2006) / Third IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (EEE 2006), p. 37 (2006)

16. Felfernig, A., Isak, K., Kruggel, T.: Testing Knowledge-based Recommender Systems. OE-
GAI Journal4, 12–18 (2007)

17. Felfernig, A., Isak, K., Szabo, K., Zachar, P.: The VITA Financial Services Sales Support Envi-
ronment. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
pp. 1692–1699. Vancouver, Canada (2007)

18. Felfernig, A., Kiener, A.: Knowledge-based Interactive Selling of Financial Services using
FSAdvisor. In: 17th Innovative Applications of Artificial Intelligence Conference (IAAI’05,
pp. 1475–1482. AAAI Press, Pittsburgh, PA (2005)

19. Felfernig, A., Mairitsch, M., Mandl, M., Schubert, M., Teppan, E.: Utility-based Repair of
Inconsistent Requirements. In: 22nd International Conference on Industrial, Engineering and
Other Applications of Applied Intelligence Systems, p. to appear. Springer Lecture Notes on
Artificial Intelligence, Taiwan (2009)

20. Felfernig, A., Shchekotykhin, K.: Debugging user interface descriptions of knowledge-based
recommender applications. In: IUI ’06: Proceedings of the 11th international conference on
Intelligent user interfaces, pp. 234–241. ACM Press, New York, NY, USA (2006)

21. Felfernig, A., Teppan, E., Friedrich, G., Isak, K.: Intelligent debugging and repair of utility
constraint sets in knowledge-based recommender applications. In: J.M. Bradshaw, H. Lieber-
man, S. Staab (eds.) IUI, pp. 217–226. ACM (2008)

22. Gil, Y., Motta, E., Benjamins, V., Musen, M. (eds.): The Semantic Web - ISWC 2005, 4th
International Semantic Web Conference, ISWC 2005, Galway,Ireland, November 6-10, 2005,
Proceedings,Lecture Notes in Computer Science, vol. 3729. Springer (2005)

23. Godfrey, P.: Minimization in cooperative response to failing database queries. International
Journal of Cooperative Information Systems6(2), 95–149 (1997)

24. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems22(1), 5–53 (2004)

25. Jannach, D.: Advisor Suite - A knowledge-based sales advisory system. In: R.L. de Mantaras,
L. Saitta (eds.) Proceedings of European Conference on Artificial Intelligence, pp. 720–724.
IOS Press, Valencia, Spain (2004)

26. Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: Proceed-
ings of IEEE Intelligent Systems Conference IS’2006, pp. 355–360. IEEE Press, Westminster,
UK (2006)

28 A. Felfernig and G. Friedrich and D. Jannach and M. Zanker

27. Jannach, D.: Techniques for fast query relaxation in content-based recommender systems. In:
C. Freksa, M. Kohlhase, K. Schill (eds.) KI 2006 - 29th GermanConference on AI, pp. 49–63.
Springer LNAI 4314, Bremen, Germany (2006)

28. Jannach, D., Bundgaard-Joergensen, U.: Sat: A web-based interactive advisor for investor-
ready business plans. In: Proceedings of International Conference on e-Business, pp. 99–106
(2007)

29. Jannach, D., Kreutler, G.: Personalized user preference elicitation for e-services. In: IEEE
International Conference on e-Technology, e-Commerce, and e-Services, pp. 604–611. IEEE
Computer Society, Hong Kong (2005)

30. Jannach, D., Kreutler, G.: Rapid development of knowledge-based conversational recom-
mender applications with advisor suite. Journal of Web Engineering6, 165–192 (2007)

31. Jannach, D., Shchekotykhin, K., Friedrich, G.: Automated ontology instantiation from tabular
web sources - the allright system p. to appear (2009)

32. Jannach, D., Zanker, M., Jessenitschnig, M., Seidler, O.: Developing a conversational travel
advisor with advisor suite. In: Proceedings of the International Conference on Information
and Communication Technologies in Tourism (ENTER), pp. 43–52 (2007)

33. Junker, U.: Quickxplain: Preferred explanations and relaxations for over-constrained prob-
lems. In: Proceedings of National Conference on Artificial Intelligence - AAAI’04, pp. 167–
172. AAAI Press, San Jose (2004)

34. Konstan, J., Miller, N., Maltz, D., Herlocker, L., Gordon, R., Riedl, J.: GroupLens: applying
collaborative filtering to Usenet news. Communications of the ACM40(3), 77–87 (1997)

35. Lakshmanan, L., Leone, N., Ross, R., Subrahmanian, V.: Probview: A flexible probabilistic
database system. ACM Trans. Database Syst.22(3), 419–469 (1997)

36. Lorenzi, F., Ricci, F., Tostes, R.M., Brasil, R.: Case-based recommender systems: A unifying
view. In: In: Intelligent Techniques in Web Personalisation. LNAI. Springer-Verlag, pp. 89–
113. Springer Verlag (2005)

37. Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender systems. In:
ICEC ’07: Proceedings of the ninth international conference on Electronic commerce, pp.
75–84. ACM Press, New York, NY, USA (2007)

38. McSherry, D.: Incremental relaxation of unsuccessful queries. In: P. Funk, P.G. Calero (eds.)
Proceedings of the European Conference on Case-based Reasoning, pp. 331–345. Springer
LNAI 3155 (2004)

39. McSherry, D.: Retrieval Failure and Recovery in Recommender Systems. Artif. Intell. Rev.
24(3-4), 319–338 (2005)

40. Mirzadeh, N., Ricci, F., Bansal, M.: Feature selection methods for conversational recom-
mender systems. In: EEE ’05: Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE’05) on e-Technology, e-Commerce and e-
Service, pp. 772–777. IEEE Computer Society, Washington, DC, USA (2005)

41. Pazzani, M.: A Framework for Collaborative, Content-Based and Demographic Filtering. Ar-
tif. Intell. Rev.13(5-6), 393–408 (1999)

42. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: 7th European Con-
ference,ECCBR 2004, pp. 763–777. Madrid, Spain (2004)

43. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987).
DOI http://dx.doi.org/10.1016/0004-3702(87)90062-2. URL http://dx.doi.org/10.1016/0004-
3702(87)90062-2

44. R.Elmasri, Navathe, S.: Fundamentals of Database Systems. Addison Wesley (2006)
45. Ricci, F., Mirzadeh, N., Bansal, M.: Supporting user query relaxation in a recommender

system. In: Proceedings of the 5th International Conference in E-Commerce and Web-
Technologies - EC-Web, pp. 31–40. Zaragoza, Spain (2004)

46. Ricci, F., Mirzadeh, N., Venturini, A.: Intelligent query management in a mediator architec-
ture. In: Proceedings of First International IEEE Symposium on Intelligent Systems, pp. 221–
226 vol.1. Varna, Bulgaria (2002)

47. Ricci, F., Nguyen, Q.: Acquiring and revising preferences in a critique-based mobile recom-
mender system. IEEE Intelligent Systems22(3), 22–29 (2007)

Developing Constraint-based Recommenders 29

48. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product recommen-
dation with interactive query management and twofold similarity. In: Proceedings of 5th In-
ternational Conference on Case-Based Reasoning, pp. 479–493. Trondheim, Norway (2003)

49. Shchekotykhin, K., Friedrich, G.: Argumentation basedconstraint acquisition p. to appear
(2009)

50. Smyth, B., McGinty, L., Reilly, J., McCarthy, K.: Compound critiques for conversational
recommender systems. In: IEEE/WIC/ACM International Conference on Web Intelli-
gence(WI’04), pp. 145–151. Maebashi, Japan (2004)

51. Thompson, C.A., Göker, M., Langley, P.: A personalizedsystem for conversational recom-
mendations. Journal of Artificial Intelligence Research21, 393–428 (2004)

52. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London and San Diego
(1993)

53. Williams, M., Tou, F.: Rabbit: An interface for databaseaccess. In: ACM 82: Proceedings of
the ACM ’82 conference, pp. 83–87. ACM, New York, NY, USA (1982)

54. Winterfeldt, D., Edwards, W.: Decision analysis and behavioral research. Cambridge Univer-
sity Press (1986)

55. Zanker, M.: A collaborative constraint-based meta-level recommender. In: 2nd ACM Inter-
national Conference on Recommender Systems (ACM RecSys), pp. 139–146. ACM Press,
Lausanne, Switzerland (2008)

56. Zanker, M., Bricman, M., Gordea, S., Jannach, D., Jessenitschnig, M.: Persuasive online-
selling in quality & taste domains. In: Proc. 7th International Conference on Electronic Com-
merce and Web Technologies (EC-Web), pp. 51–60. Springer, Krakow, Poland (2006)

57. Zanker, M., Fuchs, M., Höpken, W., Tuta, M., Müller, N.: Evaluating recommender systems
in tourism - a case study from austria. In: Proceedings of theInternational Conference on
Information and Communication Technologies in Tourism (ENTER), pp. 24–34 (2008)

58. Zanker, M., Jessenitschnig, M.: Case-studies on exploiting explicit customer requirements in
recommender systems. User Modeling and User-Adapted Interaction: The Journal of Person-
alization Research, A. Tuzhilin and B. Mobasher (Eds.): Special issue on Data Mining for
Personalization19(1-2), 133–166 (2009)

59. Zanker, M., Jessenitschnig, M., Jannach, D., Gordea, S.: Comparing recommendation strate-
gies in a commercial context. IEEE Intelligent Systems22(May/Jun), 69–73 (2007)

60. Zhang, J., Jones, N., Pu, P.: A visual interface for critiquing-based recommender systems. In:
EC’08: Proceedings of the 9th ACM conference on Electronic commerce, pp. 230–239. ACM,
New York, NY, USA (2008)

61. Ziegler, C.N.: Semantic web recommender systems. In: W.Lindner, M. Mesiti, C. Türker,
Y. Tzitzikas, A. Vakali (eds.) EDBT Workshops,Lecture Notes in Computer Science, vol.
3268, pp. 78–89. Springer (2004)

