Decision-Tree Instance-Space Decomposition with Guped Gain-

Ratio

Shahar CohénLior Rokach, Oded Maimoh
'Department of Industrial Engineering, Tel-Aviv University
Department of Information Systems Engineering, Ben-Gurion University of the
Negev
SHAHARCO@POST.TAU.AC.IL, LIORRK@BGU.AC.IL, MAIMON@BG.TAU.AC.IL

Abstract

This paper examines a decision-tree framework fwtance-space decomposition.
According to the framework, the original instang&se is hierarchically partitioned into
multiple subspaces and a distinct classifier iggagsl to each subspace. Subsequently, an
unlabeled, previously-unseen instance is classiiig@mploying the classifier that was
assigned to the subspace to which the instancedgeld\fter describing the framework,
the paper suggests a novel splitting-rule for taenEwork and presents an experimental
study, which was conducted, to compare variousémghtations of the framework. The
study indicates that using the novel splitting-rudesviously presented implementations

of the framework, can be improved in terms of aacyrand computation time.

Keywords: Classification, Multiple-Classifier Systens, Instance-Space

Decomposition, Decision-Trees

1 INTRODUCTION

Classification is an important task in data minamgl machine learning. Given a set of
training instances, the classification objectivetosinduce a classifier, that is, a
function that assigns instances to classes basddeorealization of some explaining
attributes. The classification performance is tgicmeasured in terms of accuracy.
Seeking to increase the classification performanuajerous authors have tackled the
classification task with multi-classifier metho&harkey [34]) distinguished between
two basic multi-classifier methodologies: decomposiand ensemble.

Ensemble method$1{, [2], [7], [9], [11], [14]) combine multiple classifiers in
order to obtain a more accurate and reliable reb@h when using just a single
classifier. In ensemble methods, each classifiggpally trained on data, selected or
sampled, from a single, common dataset. Since rdiring sets are taken from a

common dataset, each classifier can entirely dblweriginal problem.

In the decomposition methodology2{]), on the other hand, the single
classifiers cannot provide a solution to the omdjiproblem and the classification
requires the combination of all the classifiersorkr a different perspective,
decomposition can be seen as a methodology thakdrdown a classification
problem into multiple sub-problems, solves eachublem with a unique classifier,
and then combines the sub-solutions. In contrasheéoensemble methodology, the
sub-classifiers solve the sub-problems rather thanoriginal problem. Combining
the multiple classifiers is central in both methlodges and an issue that several
authors have addressddqd], [16], [22], [23], [38]). Decomposition methods can be
utilized for solving multi-class problems with biyaclassifiers [L0], [20], [33]).
Combining multiple binary classifiers, rather thaising a single (multi-class)
classifier can reduce the overall computational mlexity and allow the

incorporation of methods that are inherently bin@ryg., support vector machines).

Instance-Space Decomposition (ISD) is a specifigr@gch to decomposition.
In ISD, the instance space of the original probleampartitioned into several
subspaces. A distinct classifier is assigned tohesabspace. Subsequently, an
unlabeled, previously unseen instance is classifigdmploying the classifier that

was assigned to the subspace to which the instaioags.

Kusiak (19]) proposed three ISD strategies (although lierdit use the term
ISD): object-content decomposition, decision-vali@eomposition and feature-value
decomposition. In these strategies, the partitsonat induced automatically. Instead,
the analyst must determine the partition prior e training phase. Brodley4{)
proposed the model class selection (MCS) systemSM(S different classifiers to
different subspaces of the instance space, by sgmplmne of three classification

methods (a decision-tree, a discriminant functiorao instance-based method). In

order to select the classification method, MCS ues characteristics of the
underlined training-set, and a collection of expefes. Brodley's expert-rules were
based on empirical comparisons of the methods'opwadnce (i.e., on prior
knowledge). In the neural-networks community, Now#nd Hinton [26]) examined
the mixture of experts (ME) approach, which paotis the instance space into several
subspaces and assigns different experts (clas3ifierthe different subspaces. The
subspaces, in ME, have soft boundaries (i.e., #teyallowed to overlap). A gating
network then combines the experts’ outputs and ysexl a composite decision.
Jordan and Jacob$l{]) extended ME by considering hierarchical gemis. ME
variations have been developed for solving spedidimain problems, such as speech
recognition [12], [28]), time-series analysig36]), predicting the survival of AIDS
patients [27]) and handwriting recognitiori30]).

Decision-tree methods[3], [29]) are frequently employed in classification
problems. In an approach, which we term decisier-tfSD, the partition of the
instance-space is attained by a decision-tree.cAith the decision-tree, a decision-
tree ISD method employs another classification wattwhich classifies the tree's
leaves (the tree's leaves represent the differdogpmces). Namely, decision-tree ISD
methods produce decision-trees, in which the learesassigned with classifiers
rather than with simple class-labels. When a nanstn-tree method produces the
leaves' classifiers, the composite classifier metimes termed a decision-tree hybrid
classifier. The term decision-tree hybrid classiige however, used also in a broader
context, such as in the case where a sub-clag®ficenethod makes the decisions
regarding the growth of the tree and its prunii3d}). There are two basic techniques
for implementing decision-tree ISD. The first tejue is to use some decision-tree
method to create the tree and then, in a post-gigpphase, to attach classifiers to the
tree's leaves. The second technique is to con#ideclassifiers as part of the tree-
growing procedure. Potentially, the latter techeigoan achieve more accurate
composite classifiers. On the other hand, it uguabuires more computationally-

intensive procedures.

Carvalho and Freitag5]) proposed a hybrid decision-tree\genetic-alidponi
classifier, which tackles decision-tree I1SD witle tfirst technique. Their method
grows a decision-tree and assigns some of thedeaith class labels and the others
with genetic-algorithm classifiers. The leaves & assigned with the classifiers are
the ones that have a small number of corresponidstgnces. A previously unseen
instance is subsequently either directly assignitlal avclass label or is sub-classified
by a genetic-algorithm classifier (depending on kbaf to which the instance is
sorted). Zhou and Chef(]) suggested a method, called hybrid decisiee-{(HDT).
HDT uses the binary information gain-ratio criterjdo grow a binary decision-tree,
in an instance-space that is defined by the nongrglaining-attributes only. A feed-
forward neural network, subsequently classifiesltfages, whose diversity exceeds a
pre-defined threshold. The network uses the ordixylaining-attributes only.

In this paper, we focus on the second decision-ig&i2 technique, which
considers the classifiers as part of the decigiee’s growth. Employing this
technique, Kohavi[(L8]) proposed NBTree, a method which produces @sum-
tree\naive-Bayes hybrid classifier. In order to idecwhen to stop the recursive
partition of the instance-space (i.e., stop growthg tree), NBTree compares two
alternatives: partitioning the instance-space firtim (i.e., continue splitting the tree)
versus stopping the partition and producing a simglive-Bayes classifier. The two
alternatives are compared in terms of their erstin&tions, which are calculated by a
cross-validation procedure. Naive-Bayes classibicatby itself, is very efficient in
terms of its processing time. However, using cradgdation significantly increases
the overall computational complexity. Although Kehdas used naive-Bayes, to
produce the classifiers, other classification mdshare also applicable. However, due
to the cross-validation estimations, NBTree becowwsputationally expensive for

methods that are more time-consuming than naivee8ég.9., neural networks).

Although different researchers have targeted daeiBee ISD, there is still no
algorithmic framework that is common to all the iden-tree ISD methods. An
algorithmic framework helps the analyst to focustl@ specific characteristics that

differentiate one method from another and to comphliferent methods. This paper

describes a simple framework for decision-tree If&bmed decision-tree framework
for instance-space decomposition (DFID). The fraomwvhierarchically partitions the
instance-space using a top-down (pruning-free) sitatitree procedure. Various
implementations of DFID use different stopping-sjleplit-validation examinations
and splitting-rules. Our work aims to improve theality of currently available
decision-tree ISD methods. We suggest a novel DiRiEhod that can reduce the
processing time while keeping the composite clegsdccurate. The new method is
termed contrasted populations miner (CPOM). CPOMsus novel splitting-rule,
termed grouped gain-ratio. Grouped gain-ratio corebithe well-accepted gain-ratio
criterion with a heuristic grouping procedure. Axperimental study shows that the
proposed method outperforms previous decision-t&i@¢ methods (NBTree and
HDT).

The rest of this paper is organized as follows:tiBec2 formally defines the
objective of ISD. Section 3 describes the DFID &thgmic framework. Section 4
proposes the novel splitting-rule and describes @M algorithm. Section 5
describes the experimental study and discussesttidg's results. Finally, Section 6

concludes the work and suggests issues for fuasearch.

2 THE OBJECTIVE OF ISD

We begin this section by presenting our main notegti Consider the training set
S={<X1,Y1>, <Ko, Yo>, ..., <Xn,Yn>}, Where thg™ instance (for somgI{1,...,n}) consists

of x;, a vector of the concrete values of thexplaining attributesi;, A,,..., Ay, and

y;, the instance's class relation (label). Therdvapossible classes, which are denoted
by ¢, C,..., cu. We are only considering discrete explaining latiies, and we denote
the possiblel(i) values that the attribu® can receive bw 1, ai2,...,aiqi). The set of
these possible values is called the domairAipfand is denoted bgom(A;). The
instance-space, denoted B¥;, is defined by X=dom(A;)xdom(Az)X...xdom(Ay).
Classification methods are trained to produce tlass based on a training set. Let
be a classification method, aktkl(S) the classifier (hypothesis) that was produced

by trainingl based ors Given an instance1X, the classifier returns a class relation

H(X)O{c,, Cz,..., Cu}. Many classification methods produce classifidrat return a
vector of M probability estimations, describing the likelihodkdat the classifier
associates with thé1 possible class relations. However, we assume dhathe
classifiers return a crisp class-relation. Crispssification can be potentially gained
through maximization over the probability estimago

An instance-space partition breaks doXrinto multiple (mutually-exclusive
and collectively-exhaustive) subspae@sX,,..., X.. This definition of instance-space
partition does not impose any restrictions on tisicsure. This paper, however,
focuses on hierarchical partitions that can beesgmted by a univariate decision-tree.
An ISD method receive$S and|; finds an instance-space partition; and returns a
composite classifier, that is, a classifier thatsslfies instances fronq, (for some
IC{1,2,...,L}) according to the classifiel{S), whereS is the subset of the training
instances frons that belong tX. The objective of ISD is to find an optimal insten
space partition. Three optimality criteria are ddesed in this work: generalized
accuracy (which is estimated by the proportion esft tinstances that are classified
correctly by the composite classifier); time-conxitie and comprehensibility (which

is measured by the number of leaves in the congokEssifier).

3 DFID: A DECISION-TREE FRAMEWORK FOR ISD

Implementations of the new decision-tree framewof&r instance-space

decomposition (DFID) consist of a decision-treegagrapper) and another embedded
classification method (this method can, in pringjphlso be a decision-tree). The
embedded classification method generates the reuttipssifiers for the tree's leaves.
The DFID sequence is illustrated by the pseudo @odegure 1. DFID's inputs are:

training instances; a list of attributes (which Iwhle examined as candidates for
splitting the decision-tree); a classification noethand optionally (depending on the

specific implementation), some additional paranseter

The procedure begins by creating the decisionstreedt node. The root

represents the entire instance-spdc@/hen constructed, each node is attached with a

rule, which defines the subspaceXothat the node represents. The DFID framework
considers rules that can be expressed in a conjenmbrmal form. A rule may be, for
example: "A;=3 0 A;=4) [0 A,=1". DFID then checks whether there should be & spl
from the root node (i.e., whethXrshould be partitioned). This check, which is done
using some stopping-rules, is represented, in Eigur by the general function
check_stopping_rule. The function receives some inputs (dependinghen t
specific implementation) and returns a Boolean ealbat indicates whether the
stopping-rules are met. If the stopping-rules aet, thenl is trained using all of the
training instances, the classifier that resultsattsched to the root node, and the
procedure terminates. If however, the stoppingsrale not met, then DFID searches
for a split, according to some splitting-rule, regented, in Figure 1, by the general
function split. Splits in DFID are based on the values of a gertandidate
attribute. We assume that there exists at leastgdesattribute that can create a split
(or otherwise the stopping-rules would have indidathat there should be no more

splits).

The functionspl1it receives a training set, a set of candidate ate# and
optionally some additional inputs, and returns dttebute, on which values the split
is based, and a set of descendents nodes. Reagialighn its creation, each node is
attached with a rule, which defines the subspack tifat the node represents. The
rules for the descendent nodes are conjunctiorteofoot’'s rule and restrictions on
the values of the selected attribute. The split Was found may be then subjected to
a validation examination, represented, in Figure by, the general function
validate. If a split is found to be invalid, then DFID wilearch for another split
(another attribute). If there are no more candidétigbutes] will be trained using all
the training instances, and the classifier thatiltesvill be attached to the root node.
As soon as a valid split is found, the descendedes that were created by the split
are recursively considered for further splits. Rart splits are achieved by the
recurrence of DFID. In the recurrence, only a sulegethe training instances is
relevant (the instances that are actually sortethéocertain descendent node). In
addition, the attribute, which defined the curreptit, is removed from the list of

candidate attributes. The descendents are finalked to their parent (the root).
Different DFID implementations may differ in all @ome of the procedures that
implement the three main framework's componentgopping-rules (the function
check_stopping_rule), splitting-rules (the function sp1it) and split

validation examinations (the functiomalidate).

3.1 STOPPING-RULES

Stopping-rules are checked by the general functibreck_stopping_rule
(Figure 1). However, it should be noticed that gatiwe answer by this function is
not the only condition that stops the DFID recucesranother, and even more natural,

condition, is the lack of any valid split.

NBTree (18]) uses a simple stopping-rule, according tockhno splits are
considered, when there are 30 instances or les®iaxamined node. Splitting a node
with only few training instances will hardly affettte final accuracy and will lead, on
the other hand, to a complex and less comprehensiétision-tree (and hence a
complex and less comprehensible composite clagsifieloreover, since the
classifiers are required to generalize from théamses in their subspaces, they must
be trained on samples of sufficient size. Kohasitspping-rule can be revised to a
rule that never considers further splits in nodest torrespond t@#g instances or
less, where 05<1 is a proportion andy is the number of instances in original
training setS. When using this stopping rule (either in Kohaway or in the revised
version), a threshold parameter must be providddRtD as well as to the function
check_stopping_rule. Another heuristic stopping-rule is never to cossid
splitting a node, if a single classifier can acteisadescribe the node's subspace (i.e.,
if a single classifier which was trained by alltbe training instances, and using the
classification method appear to be accurate). ieedigt this rule can be checked by
comparing an accuracy estimation of the classtfiea pre-defined threshold (thus
using this rule requires an additional parameféne motivation for this stopping-rule

is that if a single classifier is good enough, whplace it with a more complex tree

that also has less generalization capabilitiesallinas mentioned above, another

(inherent) stopping-rule of DFID is the lack of ev@single candidate attribute.

3.2 SPLITTING-RULES

The core question of DFID is how to split nodese Hmswer to this question lies in
the general functiosp 11t (Figure 1). It should be noted that any splittmée that
Is used to grow a pure decision-tree, is also klaitsn DFID. In Section 4 we propose
a novel splitting rule, which combines the well-kmogain-ratio splitting rule with a

grouping heuristic.

Kohavi (18]) has suggested a new splitting-rule, whicltoiselect the attribute
with the highest value of a measure, which he reteto as the "utility". Kohavi
defined the utility as the 5-fold cross-validat@eccuracy estimation, of using a naive-
Bayes method for classifying the subspaces, which lve generated by the

considered split.

3.3 SPLIT VALIDATION EXAMINATIONS

Since splitting-rules, are heuristic, it may be dfemnal to regard the splits they
produce as recommendations that should be validktavi (18]) validated a split
by estimating the reduction in error, which is gaiby the split, and comparing it to a
predefined threshold of 5% (i.e., if it is estinthtbat the split will reduce the overall
error rate by only 5% or less, the split is regdras invalid). In an NBTree, it is
enough to examine only the first proposed splibrider to conclude that there are no
valid splits, if the one examined is invalid. THdlows since in an NBTree, the
attribute according to which the split is doneths one that maximizes the utility
measure, which is strictly increasing with the mdn in error. If a split, in
accordance to the selected attribute cannot rettheécaccuracy by more than 5%, then

no other split can.

This work suggests a new split validation procedMere details are provided

in Section 4, but in very general terms, a splitaading to the values of a certain

attribute is regarded as invalid, if the subspdbas result from this split are similar

enough to be grouped together.

DFID (S,A,I)

Get
S - a training set
A - a set of candidate input attributes
I - a classification method

Return

A classifier

Create a tree with a root node;
IF check_stopping_rule(s,A,I)
Attach the classifier I(S,A) to the root;
ELSE
A*EA;
valid<FALSE
WHILE A*z0 and NOT(valid)
(split_att,nodes) <split(s,A*);
IF validate(nodes,split_att,S)
valid€TRUE;

A€A \ split_att;

FOR each node O nodes
node_instances<the instances that belong to node;
attach the classifier DFID(node_instances,A,I) to

node;
1ink node to root;
END FOR
ELSE
A*€A* \ split_att;
END IF
END WHILE
IF NOT (valid)
Attach the classifier I(Ss,A) to the root;
END IF
END IF
RETURN tree;

Figure 1: DFID outline. A DFID implementation recursively partitions the instance space of
the training set, according to the values of the calidate attributes. As the recursive partition
ends, classifiers are attached to the leaves, by ploying the embedded classification method.

10

4 THE CPOM ALGORITHM

This section presents a new DFID implementatiomnéel contrasted population
miner (CPOM), which splits nodes according to aai@plitting-rule, termed grouped
gain-ratio. Generally speaking, this splitting-risebased on the gain-ratio criterion
([29]), followed by a grouping heuristic. The gastio criterion selects a single
attribute from the set of candidate attributes, #mel grouping heuristic thereafter
groups together subspaces, which correspond terelft values of the selected
attribute.

4.1 CPOM OUTLINE

CPOM uses two stopping-rules. First, the algoritompares the number of training
instances to a pre-defined ratio of the numbensfances in the original training-set.
If the subset is too small, CPOM stops (since itnslesirable to learn from a too
small training subset). Secondly, CPOM comparesatiteiracy estimation of a single
classifier to a pre-defined threshold. It stopshi# accuracy estimation exceeds the
threshold (if a single classifier is accurate ergubere is no point in splitting further
on). Therefore, in addition to the inputs in Figuteg CPOM must receive two
parameters;S, the minimal ratio of the training instances aact, the maximal

accuracy estimation, that will still result in galonsiderations.

CPOM's split validation procedure is directly basedgrouped gain-ratio. The
novel rule is described in detail, in the followiisgbsection; however, in general
terms, the rule returns the splitting attribute anget of descendent nodes. The nodes
represent subspacesXthat are believed to be different. If the procedwaturns just

a single descendent node, the split it has gertkrmtegarded as invalid.

4.2 THE GROUPED GAIN-RATIO SPLITTING-RULE

Grouped gain-ratio is based on the gain-ratio oite([29]), followed by a grouping
heuristic. The gain-ratio criterion selects a sngttribute from a set of candidate

attributes. The instance-subspace, whose parti@rare now considering, may, in

11

principle, be partitioned so that each new sub4satxs will correspond to a unique
value of the selected attribute. Group gain-ratwids this alternative, through

heuristically grouping sub-subspaces together. Byiging sub-subspaces together,
grouped gain-ratio increases the generalizationalwéipes, as there are more

instances in a group of sub-subspaces than theiie #re individual sub-subspaces.

Before introducing the grouping heuristic, we pd®visome intuition. During
each split, we are considering a node of the datisee, which represents an
instance-subspace, and have an associated sub$ie¢ afriginal training set. For
expository reasons we will focus on the split frime tree's root (that is, we assume
that we are searching for a split that will pastitithe entire instance-spaeinto
several subspaces). The following intuition carapplied to the non-root nodes of the
tree as well. Let us further assume that there bella single split at most (i.e., we
either split the root node and attach classifierstdescendants, or we attach a single
classifier directly to the root). If we decide tplis it means that there are several
subspaces of that will be assigned with different classifief$ie only reason for us
to prefer this alternative is if we believe thaé thntire setS, cannot be accurately
described by the single classifigfS), and we think that it is better to train
separately, on the training subsets that correspmtite subspaces ®f Clearly, if we
separately traih on each subset and obtain the same exact clagsiiie each subset,
then there is no point in the split, since using thingle classifier for the entire
instance-space is as accurate as using the muitgssifiers; it is also much simpler
and understandable, and it can generalize better.other direction of this argument
is slightly less straightforward. If the classifiethat were trained over the training
subsets are very different from one another, tre@rerof them can classiy as one,
and we may believe that the split is beneficials&hon this observation, the grouped

gain-ratio splitting-rule groups together subspahas have similar classifiers.

The intuition regarding the classifier comparisgases questions of what is
similar, what is different and how to compare dfems? Although there may be
multiple classifiers, all of which must be simukanisly compared to each other, we

begin answering these questions with the simplee ch exactly two classifiers, using

12

a comparison heuristic, which we refer to as cinspection (see Figure 2). Cross-
inspection is based on two mutually-exclusive trainsubsets and a classification
method as inputs. The comparison begins by randpantytioning each subset into a
training sub-subset and a test sub-subset. Them,ctassifiers are produced, by
training the input method, once over each traisinlg-subset. After producing the two
classifiers, the cross-inspection heuristic cakadahe error rates of each classifier
over each of the test sub-subsets. If the errer ahthe first classifier over the first

test sub-subset is significantly (with confideneedlalpha) different from the error

of the first classifier over the second test sulbset, or vice versa, then the two
classifiers are regarded as different. As Diettersuggests [6]), the errors are

compared by testing the hypothesis that the ee@generated by the same binomial
random variable. The confidence level @tpha=0.01 was used throughout this

paper.

The cross-inspection heuristic compares only tvairtit classifiers. However,
in the DFID framework more than two classifiers s compared at a time (if the
attribute, which was selected by the gain-ratibeaon, has more than two possible
values). For example, if it is believed that gradustudents from different schools
behave differently, one may consider splitting adowy to the school's name. The
attribute 'school' can receive multiple values,adlivhich will have to be compared
simultaneously. A successful split will group sianischools together, while different
schools will be in different groups. Since an exdiae search, over all the possible
groupings, is unacceptable in terms of complexgtpuped gain-ratio (see Figure 3)
uses a greedy grouping heuristic, which is basedross-inspection. The procedure
begins by using cross-inspection, to compare &l distinct pairs of classifiers (if
there areq classifiers, there arg(g-1)/2 comparisons). For each instance-subspace,
the procedure computes the number of instancesbiélang to subspaces that are
similar to it (by definition the similarity by cresnspection is defined with regard to
classifiers rather than subspaces; each subspaeeyér, is described by a classifier).
The classifier that represents the subspace wéthatiyest such number is regarded as

the classifier that covers the maximal number sfances. The subspaces of all the

13

instances which are covered by this classifiergaoeiped together, and the procedure
iterates. The greedy aspect in grouped gain-rat&imilar to the considerations that
Harries and Horn presentgd%]). The heuristic does not explicitly guarantkat any
two classifiers in a group are equivalent, but egk@nce is assumed to be a transitive
relation. The greedy grouping procedure is a singhlsstering method and other
clustering methods, like graph colorifgX]) may also be suitable here. Alternatively
one could use the Warshall algorithfB5]) for finding the transitive closure of the
comparison matrix, which can be used for calcuipsimp;. However, this form of
calculation will not be convenient in this case dese it will tend to group too much

as it is illustrated in the following example.

We demonstrate grouped gain-ratio with a simplargta. Assume that we are
considering a split from the root node, and thatdghin-ratio criterion has selected the
attribute A;, which has six possible values. The training Seis consequently
partitioned into six mutually-exclusive subsetsd atine embedded classification
method is trained six times, once over each subi$et.six classifiers that result are
then compared in pairs, and each pair is markegitlasr similar or different. Let the
result of this comparison be as described by Figui&) (notice that each classifier is
by definition equivalent to itself), and assumet tthee six subsets, corresponding to
a; 1 throughays, have 100, 120, 150, 90, 80 and 200 instancescasply. The
classifier, which was trained on the first subseg¢refore covers 100+150+200=450
instances. In the same way, the remaining classifiever 320, 450, 170, 170 and 570
instances respectively. Therefore, the instancegade, which is associated with the
classifier that covers the maximal number of insésn is the subspace in which
A1=a; 6. Grouped gain-ratio will group this subspace witle subspaces in which
Ai=OR(@11, a2 &1 3. Since the two subspaces that remain can be tsedave
equivalent classifiers, there will be another groapd the split will be as in Figure 5.
Notice that the subspaces in whiéh=a; , and A;=a; 3 were grouped together
although their corresponding classifiers were marles non-equivalent. In this
example, using the transitive closure will leadgshte same results. However, If the

comparison matrix looked like in Figure 4 (B) (roatithat the only difference between

14

the two matrices is in the cedh 3a; 6) then the six classifiers would have covered
450, 320, 150, 170, 170 and 420 instances respéctiConsequently, there would
have been three subgroupsu {; a1 3 ai 6}, {ai1 2} and {a; 4. a1 5}. Notice however,
that the transitive closure, if used, would leanl$hie same results that were obtained

in the case of Figure 4 (A).

cross_inspection (S1,S2,I,alpha)
Get
S1,S; — mutually-exclusive training sets
I - a classification method
alpha - a confidence level
Return
a Boolean value reflecting equivalence

S11 € a random sample from Si;
S12 € S1 \ Si1;
S;1 € a random sample from S;;
S22 € S2 \ Sa1;
Hi € I(S11);
H2 € I(S21);
FOR i,jO{1,2}
€i,; € accuracy estimation of Hi over Sj,;
END FOR
IF &,; is different from &,1 with a confidence level alpha,
or &,1 is different from &, with confidence level alpha

return FALSE;
ELSE

return TRUE;
END IF

Figure 2: The cross-inspection procedure outline. fie procedure compares the accuracy
estimations of two distinct classifiers, searchinfpr statistical significance.

15

grouped_gain_ratio (S,A,I,root,alpha)
Get
S - a training set
A - a set of candidate input attributes
I - a classification method
root — the node from which the split is considered
alpha - confidence Tlevel
Return
split_att - the attribute that splits the current node
nodes - the set of nodes that results from the split

Ai € the attribute from A with the maximal gain-ratio;
S1,S2,..,Sd¢) € a partition of S, according to values of A;;
FOR all j and k in {1,2,..,d(i)} so that j<k

Ej,x € cross_inspection(S;,Sk,I,alpha);

Ek,j & Ej,k;

END FOR
FOR all j O {1,2,..,d()}
supj € the number of instances in the subsets Sk for which
E;j,k=TRUE;
END FOR
L € a list of the subsets indices sorted descending by sup;;
nodes €« an empty set of nodes
WHILE L 1is not empty

create a new node;

Attach the rule which is a conjecture of the root's rule
and a disjoint of the values that correspond to Sj the
first member of L and the members Sk for which E; «=TRUE;

Remove from L any member that is described by the new node;

Add node to nodes;

END WHILE
RETURN (Aj,nodes)

Figure 3: The grouped gain-ratio procedure outline.The procedure groups together similar
values of a candidate attribute. Similarity is basé on the cross-inspection heuristic.

16

ap ay; a3 aj 4 ays Q)¢ ap ajz a3 aj 4 ays a ¢
ap A X A X X N a N X N X X N
a; N X X X Y a; N X X X N
aj; N X X N ap s N X X X
a4 v N X a . N N X
as N X a s A X
ai ¢ Y Q)¢ Y

(A) (B)

Figure 4: An illustration of the pair-wise comparison results.J represents equivalence an
represents non-equivalence.

740 instances

Alzam or Alzal’z or

A1:CIL3 OrAlzal, Al:a1‘4 0rA1:a1’5

570 instances 170 instances

Figure 5: The split that results from grouped gainratio.

5 EXPERIMENTAL STUDY

A comparative experimental-study was carried osing mainly benchmark data sets
(three synthetic datasets were handcrafted foegperiments in Section 5.10). The
primary objective of the study was to evaluategbeentials of the DFID framework,

and especially of the CPOM algorithm. The followisgbsections describe the

experimental set-up and discuss the obtained sesult

17

5.1 THE EMBEDDED CLASSIFICATION-METHODS

The experimental study compared the performanceCBOM, when using the
following embedded classification methods: naiveydda backpropagation (to train
artificial neural networks) and C4.5. The naive &aynethod was chosen in order to
compare CPOM with NBTree, and backpropagation wasen in order to compare
CPOM with the HDT algorithm. The C4.5 method wasosdgn because it is
considered to be a state-of-the-art decision-tigarighm, and is widely used in many

other comparative studies.

All the experiments were made with the WEKA envirenmt (37]). The
experiments with C4.5 took place using J48, the Jearsion of C4.5. We have used
the NBTree implementation, which is included in WAHKor simulating Kohavi's
original work. We also implemented HDT in WEKA. Thdginal implementation of
HDT has utilized a specific multi-layer, feed-fomgdaneural-network named FANNC
([38]). However, in our implementation, we employedckpropagation, that is
already available in the WEKA environment, and wkhis more widely-used in the
literature. CPOM was, of course, also implementedMEKA. In all the CPOM
executions, 95% was chosen as the maximal accastayation that would still be
considered for further splits and the minimal thagnsubset size was chosen to be
one-fifth of the initial training-set size.

5.2 THE BENCHMARK DATASETS

All the compared methods were trained over 20 é@tdasvhich were manually
selected from the UCI Machine Learning Repositofg4)). Although this
repository’s limitations for comparing algorithmgeaknown [32]), it is still
considered to be objective since the publishedlteesan be validated. The selected
datasets vary across several dimensions: the nuwmibetasses, the number of
instances, the number of explaining attributes #rel type of attributes. Table 1

describes the datasets' characteristics.

18

Table 1: The datasets' characteristics

Dataset N.O' of No. of No. of Classes % of Numeric
Attributes Instances Attributes
Audiology 70 200 23 0
Australian 15 690 2 40
Breast Cance 10 699 2 100
Car 7 1,728 4 0
Hayes-Roth 5 132 3 0
Iris 5 150 3 100
Labor 17 57 2 50
Led-17 25 220 10 0
Letter 17 15,000 26 100
Monk-1 7 124 2 0
Monk-2 7 169 2 0
Monk-3 7 122 2 0
Mushroom 22 8,124 2 0
Nurse 9 12,960 5 0
Sonar 61 208 2 100
Soybean 36 683 19 0
Tic-Tac-Toe 10 958 2 0
Vote 17 435 2 0
Wine 14 178 3 100
Z00 17 101 7 12

The datasets went through a simple preprocessayg.stn this stage, missing
values were replaced by a distinctive value, andaric attributes were made discrete
by dividing their original range into ten equalezintervals (or one per observed
value, whichever was least). Accuracy results cdwdde been improved by using a

more robust way for treating the missing values (se examplg29]).

5.3 THE EVALUATION CRITERIA

The following list describes the evaluation cri¢eithat were measured in each
execution of each of the evaluated methods.

i. The Generalized Accuracy

The generalized accuracy is the probability thatuatabeled, previously-unseen
instance will be classified correctly, by the outfoossibly composite) classifier. In
order to estimate this probability, a 10-fold cresfidation procedure has been

19

implemented. In 10-fold cross-validation, the datds randomly partitioned into 10
disjoint, equal-sized subsets. Each subset is osed as a test set and nine times as
part of the training set. The partition (i.e., th@me folds) was used in all of the
methods. Furthermore, a single-tailed paired t-t@gh a confidence level of 95%,
was used in order to verify the statistical sigr@fice of the differences between the

accuracy estimations, of the examined methods.
il. The Number of Leaves in the Composite Decision-Tree

The complication of the output-classifier was meadun terms of the total number
of leaves in the composite decision-tree. The lottes number, the simpler and

potentially more comprehensible and general i<tmeposite classifier.
lii. The Overall Number of Sub-Classifiers that were lauced

This criterion indicates the number of times, iniebhthe embedded classification
methods was trained, in order to produce the coitgpokassifier. This criterion may
have a dramatic effect on the computational comiyeXhis effect is especially
important when the computational complexity of #mbedded method is more than
linear (such as in the case of C4.5 or backprojpagat

iv. Execution Time

The execution time is the actual time (in secondsyuired for producing the
composite classifier. We conducted all of our ekpents on the following hardware
configuration: A desktop computer with an Intel Bem 4-2.8GHz, Windows XP

operating system, and 1GB of physical memory.

5.4 CPOM WITH NAIVE BAYES: RESULTS AND DISCUSSION

Table 2-A compares the performance of CPOM, wittven8ayes as the embedded
classification method (CPOM-NB) to NBTree and siemphlive Bayes. The results
indicate that the average accuracy of CPOM-NB @%)/is higher, by about 3%,
than the average accuracy of NBTree (83.75%), andbout 4% than the average
accuracy of simple naive Bayes (82.99%). Examiring statistical significance of

20

the results indicates that CPOM-NB is significanthpre accurate than NBTree in
eight datasets, while NBTree shows significantlghier accuracy in only three
datasets. The "+" superscripts, next to some ohtloeiracy measures, in Table 2-A,
indicate that the accuracy of CPOM-NB was signiftbahigher (with a confidence
level of 5%) than the accuracy of the method umnvdeich the "+" is superscripted.
The "-" superscripts, similarly, indicate that tlecuracy of CPOM-NB was

significantly lower.

Table 2-A also presents the number of leaf nodehencomposite classifier,
and the number of (inner) classifiers that weredede as part of the construction of
this composite classifier. It should be recalledt ttihe number of leaves is a way of
assessing the classifier's comprehensibility, dednumber of inner-classifiers is a
way of assessing the computational complexity. e indicates that CPOM-NB
required only 10% of the leaves and 2% of the irtessifiers, compared to NBTree.
The reduced number of inner-classifiers is partlg tb the more compact trees that
CPOM-NB builds, but it is also (and probably ma)ntiue to the splitting rule that
NBTree uses. In order to select the attribute wWithhighest utility, NBTree estimates
the accuracies of all the possible splits, wheheach split is evaluated using a 5-
fold cross-validation procedure. The number of rarlassifiers that are needed for
this splitting-rule becomes a significant burdenewtthe number of attributes and
overall splits increases. CPOM, on the other haogés not use cross-validation but
builds inner-classifier only for the attributes titzaie selected by gain-ratio splitting
criterion. The last observation is also supportgdhe actual execution time of the
two algorithms. The execution of CPOM-NB took, areie@ge, only 13% of the time
that NBTree required.

We conclude that CPOM outperforms NBTree in all thmportant criteria:
accuracy, model complexity (as measured by numbéraves) and execution time.
The high number of inner-classifiers that NBTreeduces implies that this method
may be impractical, when employed with more comipanal-intensive embedded
methods, such as neural networks. On the other,hasdsubsequent sections
demonstrate, CPOM, can be used with other embeueé#ubds.

21

The results also indicate that there was not alesidgtaset on which simple
naive Bayes was significantly more accurate tha®®&MNB. On the other hand,
CPOM-NB was significantly more accurate than nddages in nine of the datasets.
In terms of the training time, naive Bayes is, digafaster than CPOM-NB.
However, we believe that the speed of CPOM is detdép

Table 2-B provides the root mean square error (RM8Ethe compared
methods. For every dataset, we provide both the RMfthe training set and the
RMSE, which is based on 10-folds cross validatibhe results indicate that on
average CPOM-NB obtains the best RMSE values (witmean of 0.213685)
followed by NBTree (with a mean of 0.228955) aniveaBayes (with a mean of
0.25192). As expected in most of the cases the RiISHEe training set is smaller
than the RMSE calculated over the 10 folds crosislatton. Nevertheless it can be
seen that the lowest difference between these w@laes is obtained for the naive
Bayes algorithm with a mean of 0.03187. The largifé¢rence is obtained for the
NBTree algorithm with a mean of 0.08986. The medfer@nce obtained for the
CPOM-NB is 0.05561. These results can be explaimgedhe complexity of the
classifier (that can be measured by the numbegeafds presented in Table 2-A). As

the number of leaves increases, so does the RMffedice.

22

Table 2-A: Comparison of CPOM-NB to NBTree and naie Bayes

NBTree CPOM-NB Naive Bayes
Dataset # # inner- Execution time # # inner- Execution Execution time
Accuracy leaves| classifiers (in sec.) Accuracy leaves| classifiers time (in Accuracy (in sec.)
sec.)
Audiology 72.5+3.16 27 7210 27.94 72+5.84 14 247 1.92 “65.5+7.39 0.01
Australian 84.782.64 24 5620 4.72 87.24:3.96 6 606 0.49 84.93+2.7 0.01
Breast Cancer | 96.56:1.46 28 2250 0.83 97.421.16 1 92 0.05 97.42+1.16 0.01
Car "85.30:0.92 1 105 0.3 93.92t0.74 8 90 0.13 "85.30:0.92 0.01
Hayes-Roth “67.427.11| 10 225 0.32 77.278.56 4 54 0.06 81.0619.61 0.01
Iris 94+5.17 4 220 0.14 9616 2 8 0.05 95.3345.05 0.02
Labor "87.71+4.73 3 510 0.44 94.734.61 2 32 0.01 92.9814.52 0.01
Led-17 58.634.16 6 1815 4.27 60.905.12 8 28 0.22 63.1848.7 0.01
Letter 81.13:0.82 | 916 52180 234.61 77.70:0.64 25 892 32.34 "73.29+1 0.13
Monk-1 "91.12+4.16 5 340 0.2 97.58:3.97 7 72 0.02 "73.39+6.7 0.01
Monk-2 58.58+2.21 6 420 0.34 59.53+5.43 4 57 0.03 "56.21+6.1 0.01
Monk-3 92.62+3.61 1 30 0.06 92.62+3.61 1 6 0.02 92.62+3.61 0.01
Mushroom "99.95:0.07 18 12420 9.02 99.3#0.17| 10 262 1.12 "95.48+0.9 0.08
Nurse '95.920.96 | 139 45500 10.11 94.21#0.54| 15 77 0.83 790.26+0.49 0.05
Sonar '62.98:7.68| 19 9000 17.95 76.44£7.62 2 772 4.21 75.48+7.3 0.02
Soybean “91.511.27| 34 9500 55.61 93.41%#1.49| 18 122 0.24 91.95+1.99 0.02
Tic-Tac-Toe 75.6#45.82 51 2135 2.64 76.5%1.87 7 18 0.08 '69.27+3.2 0.01
Vote 94.06:3.24 35 4080 1.17 96.2+3.31 2 8 0.11 "90.34+3.44 0.01
Wine '93.44t5.69| 10 1950 2.72 96.62t3.35 1 368 0.01 96.62£3.35 0.01
Zoo “91.08:6.25 8 540 0.42 95.04+5.05 5 36 0.03 "89.11+7 0.01

23

Table 2-B: Comparison of the RMSE of CPOM-NB, NBTre and naive Bayes

NBTree CPOM-NB Naive Bayes
Dataset (ramng | RMSE@0 | fESE | RMSE(0 | [HESE | RMSE (10
Set) Fold CV) Set) Fold CV) Set) Fold CV)
Audiology 0.1088 0.1447 0.1173 0.1359 0.1209 0.148
Australian 0.2065 0.348 0.2866 0.3271 0.3261 0.3368
Breast Cancer 0.1557 0.1704 0.1557 0.159 0.1557 1598.
Car 0.2218 0.2263 0.115 0.1577 0.2218 0.226
Hayes-Roth 0.3114 0.3762 0.3021 0.3624 0.3066 Q.354
Iris 0.1251 0.1621 0.1268 0.1482 0.1495 0.155
Labor 0.0751 0.2961 0.1041 0.251 0.1532 0.263}
Led-17 0.1188 0.2413 0.1499 0.2294 0.1718 0.224
Letter 0.0674 0.1058 0.0881 0.126 0.1166 0.121]
Monk-1 0.1447 0.2952 0.1399 0.2761 0.3836 0.4089
Monk-2 0.3368 0.5052 0.3905 0.4895 0.4711 0.5048
Monk-3 0.2644 0.2891 0.2644 0.2851 0.2644 0.2851
Mushroom 0.0106 0.006 0.0111 0.015 0.181 0.1858
Nurse 0.0893 0.1 0.117 0.1364 0.1762 0.176]
Sonar 0.0712 0.4655 0.2092 0.4361 0.2733 0.442b
Soybean 0.0543 0.0885 0.0641 0.0707 0.0765 0.0817
Tic-Tac-Toe 0.173 0.3152 0.2413 0.3073 0.423 0.4298
Vote 0.1552 0.183 0.1496 0.1669 0.2924 0.299]
Wine 0.0822 0.1643 0.0895 0.1326 0.0895 0.132
Zoo 0.0478 0.0962 0.0393 0.061 0.0478 0.1021
5.5 CPOM WITH NEURAL NETWORKS: RESULTS AND DISCUSSION

Table 3 compares the performance of CPOM, with paogagation as the embedded

method (CPOM-NN) to the performance of HDT and s$enpackpropagation.

Backpropagation was trained on 500 epochs anduhwer of hidden units that was

used in each dataset is described in Table 3. €helts indicate that the average

accuracy of CPOM-NN is higher by about 1% (92.788&n the average accuracy of

HDT (91.69%) and by about 2% from the average aguof a single neural network

(90.63%). Although the mean differences are reddyivmoderate, some of the per-

dataset

differences are statistically significarpecifically, CPOM-NN is

significantly more accurate than HDT fiive datasets, and significantly more accurate

than a single neural network in eight datasetstt@nother hand, HDT and a single

neural network were not found to be significantlgren accurate than CPOM-NN in

any of the datasets.

The improved accuracy of CPOM-NN required an exeautime that is, on

average, 14 times greater than the execution timsnaple backpropagation. When

compared with the execution time of HDT, it cansken that, on average, CPOM-NN

24

required an execution time that is four times gretttan that of HDT. Notice that in
HDT the leaf-classifiers are trained in a post-gr@maphase (see the discussion on the
two decision-tree ISD techniques in Section 1)l,Skere are four datasets, in which
HDT required more time than CPOM-NN.

Table 3 also presents the number of leaf nodekarcomposite classifier and
the number of inner-classifiers that were needgdthle two methods. CPOM-NN
requires more than two times of inner-classifighen HDT requires. It should be
noted, again, that in HDT, the leaf-classifiers tia@ned only after the final tree
structure is decided upon. Moreover, not all learedHDT have a classifier (it
depends on the leaf-node's diversity). Thus theeased number of inner-classifiers
that CPOM-NN requires is not surprising. On theeothand, the table indicates that
CPOM-NN tends to build trees with fewer leavegah be seen that HDT on average
results in five times more leaves than CPOM-NN. EBmmCPOM-NN creates more

compact and comprehensible composite classifiers.

5.6 CPOM WITH DECISION-TREES: RESULTS AND DISCUSSION

At first sight it seems pointless to use CPOM w@h.5 as the embedded method
(CPOM-C4.5), since the result of this configuratiam a pure decision-tree.
Nonetheless, this section describes experiments @GROM-C4.5, with a twofold
motivation. First, CPOM-C4.5 can be seen as a kinlwokahead-based method for
producing decision-trees. Lookahead-based algosithattempt to predict the
profitability of a split at some node by estimatitige effect of this split on deeper
decedents of the nodg8], [25]). By using CPOM-C4.5, one actually examines th
effect of a certain split with the depth of at le@# levels. The second motivation for
using CPOM-C4.5 can be explained by the grouped-gdio splitting rule that
suggests a new way to branch the tree. The coninnat the new splitting rule

together with C4.5's splitting-rule extends theseearch-space.

25

Table 3: Comparison of CPOM-NN to HDT and backpropayation

HDT CPOM-NN Backpropagation
Dataset # # inner- Execution # # inner- Execution | # Hidden Execution
Accuracy leaves| classifiers | time (in sec.) Accuracy leaves| classifiers | time (in sec.) Units Accuracy time (in sec.)
Audiology 95.113.22 31 12 8911.62 96.012.78 6 74 9798.06 47 "93+1.22 203.52
Australian 85. 8:2.94 23 2 18.66 86.312.18 5 55 212.17 9 85.2+2.66 12.87
Breast Cancer | 95.6t1.31 55 48 4720 95.28t1.16 3 621 6409.38 6 95.7(Gt1.28 446.66
Car 99.25+0.44 | 131 35 966.05 99.25+0.44 4 18 562.14 6 99.65+0.35 91.92
Hayes-Roth 81.94+8.3 19 6 22.15 81.819.06 3 34 29.66 4 81.0+8.18 4.08
Iris '93.98+4.72 4 1 591 96.1+ 4.1 2 8 20.85 4 95.743 .2 5.12
Labor “93.71+4.73 3 1 24.11 96.48:3.83 4 42 294.82 10 "93.9+3.1 22.18
Led-17 55.71+1.77 35 35 152.08 56.711.17 8 102 432.59 18 "50+0.96 20.63
Letter “89.5+4.38 | 9562 281 3996.72 96.2+1.73 8 45 1281.11 22 "82.511.43 32.18
Monk-1 95.17+6.39 12 1 4.77 94.35-6.91 3 10 10.86 5 95.9%6.44 3.03
Monk-2 '96.16:0.93| 18 2 8.61 1000 1 3 9.51 5 1000 4
Monk-3 92.62+3.61 9 0 0.61 91.95t9.28 3 8 10.38 5 "89.34+6.19 2.97
Mushroom 1000 23 7 25432.21 100+0 6 32 98471.95 12 1000 7858.17
Nurse 99.32+0.37 | 355 66 41268.64 99.32:0.37 6 22 13268.64 7 "98.76+0.42 949.64
Sonar '84.245.72| 42 26 644.8 87.1+4.16 4 67 1121.58 32 "84.14t3.84 62.19
Soybean 93.2£1.27 56 46 396.86 93.7#1.73 8 98 646.8 28 90.212.68 33.17
Tic-Tac-Toe | 95.6%4.95 95 24 755.11 96.87+4.22 7 18 717.94 6 "92.115.17 61.45
Vote 96.12:3.82 11 1 57.89 96.1A#2.50 2 8 226.08 10 96+1.05 55.22
Wine 95.66t2.11 37 6 981.76 96.62:3.35 3 62 6712.09 9 94.44+3.22 228.69
Zoo 95.04t5.05 13 2 8.63 95.04+5.05 1 6 11.05 12 95.04+5.05 6.53

26

Table 4 compares the performance of CPOM-C4.5 with performance of
simple C4.5. The table indicates that, on aver&@)M-C4.5 is almost 2% (85.07%)
more accurate than C4.5 (83.29%). It can be sesnrimine of the datasets the two
methods have obtained the same accuracy resulddl. dh these datasets, CPOM has
decided, in the light of the C4.5 inner-classifeperformance, not to split the
instance-space. In three out of the remaining llasgés, CPOM-C4.5 was
significantly more accurate than C4.5.

Table 4: Comparison of CPOM-C4.5 to C4.5

CPOM-C4.5 C4.5
Dataset # # inner- Execution Execution time
Accuracy leaves | classifiers | time (in sec.) Accuracy (in sec.)

Audiology 74+5.54 10 226 1.11 76+7.87 0.06
Australian 85.3612.26 4 582 0.67 86.812.37 0.02
Breast Cancer | 94.42:2.62 3 482 0.5 93.412.86 0.02
Car 94.1+0.97 7 35 0.2 “91.781.93 0.03
Hayes-Roth 78.7%9.21 3 34 0.14 '68.18:7.41 0.01
Iris 95.335.97 1 12 0.11 95.335.97 0.02
Labor 73.68:12.3 1 5 0.09 73.68:12.3 0.02
Led-17 61.81+3.14 1 8 0.36 61.81+3.14 0.03
Letter 73.45:0.67 1 21 16.8 73.45:0.67 1.19
Monk-1 98.3%3.77 2 15 0.13 *75+7.82 0.01
Monk-2 63.918.86 2 11 0.19 61.54:7.82 0.01
Monk-3 92.62£5.82 2 11 0.14 93.44t5.34 0.01
Mushroom 100+0 1 5 0.28 100t0 0.13
Nurse 97.430.31 1 4 0.52 97.430.31 0.41
Sonar 70.67£6.82 8 3967 3.33 71.15:8.74 0.11
Soybean 91.51£1.68 1 7 0.41 91.51%1.68 0.13
Tic-Tac-Toe 87.7%2.07 2 8 0.13 86.0%1.71 0.03
Vote 96.21£2.45 1 12 0.09 96.2112.45 0.01
Wine 79.78+3.25 2 769 0.47 80.8%2.70 0.02
Zoo 92.08+6.57 1 4 0.08 92.08+6.57 0.05

5.7 MEASURING THE EFFECT OF THE GROUPING HEURISTIC

This section focuses on the contribution of theugesl gain-ratio splitting-rule and
the grouping heuristic, in particular. For this pose we compared the performance of
CPOM-NB with that of a method which is similar tdPOM-NB, except for its
splitting rule. This second method, henceforth snCPOM-NB with no grouping,
uses the simple gain-ratio splitting-rule (inste&ddrouped gain-ratio).

Table 5 compares the performance of the two methdus table indicates that

the grouping heuristic tends to improve the acagurat the composite classifier

27

(86.74% versus 83.81%). As a matter of fact, inenohthe datasets does the gain-
ratio rule significantly outperform grouped gairioa Thus, it is probable to assume
that the grouping heuristic is a beneficial (isibspaces that are described by similar

classifiers should be grouped together).

The grouping heuristic has also a positive effecthee number of leaves and on
the execution time. Grouping makes the hierarctstaicture more compact. More
specifically, the average number of leaves with dheuped gain-ratio rule was 7.1,
where the average number of leaves with the sirgpie-ratio rule was 9.85. This
observation can be explained by the fact that witllee grouping, one branch is built
for each distinct value of the splitting attribu@n the other hand, when grouping is

employed then one branch in the tree may represwetral values.

Table 5: The Effect of grouping heuristic on the C®M's performance

CPOM-NB - no Grouping CPOM-NB
Dataset # #inner- E>_<ecut_|on 4 #inner- E>_<ecut_|on
Accuracy e time (in | Accuracy o time (in
leaves| classifiers leaves| classifiers
sec.) sec.)
Audiology | 71.8G:4.84 28 129 0.78 72+5.84 14 247 1.92
Australian | 84.322.92 8 712 0.52 87.24:3.96 6 606 0.49
Breast +
Cancer 93.84t1.86| 10 2250 0.83 97.42:1.16 1 92 0.05
Car “89.64+0.96 7 102 0.17 93.92:0.74 8 90 0.13
Hé‘ggls' '64.3%:9.43| 13 96 0.15 | 77.2%856 | 4 54 0.06
Iris 96+6 2 8 0.05 966 2 8 0.05
Labor 94.73:4.61 2 32 0.01 94.73:4.61 2 32 0.01
Led-17 61.817.22 8 32 0.25 60.9(t5.12 8 28 0.22
Letter 77.73:0.64 25 892 32.34 77.70£0.64 25 892 32.34
Monk-1 | *70.16t8.49 9 564 0.09 97.58:3.97 7 72 0.02
Monk-2 61.53:4.35 8 126 0.08 59.53+5.43 4 57 0.03
Monk-3 92.9%3.57 1 6 0.02 92.62+3.61 1 6 0.02
Mushroom| 99.28-0.23 12 326 1.56 99.3#0.17| 10 262 1.12
Nurse “92.8(+0.36 9 36 0.75 94.21#0.54| 15 77 0.83
Sonar *70.199.09| 28 328 12.62 76.44:7.62 2 772 421
Soybean | 93.9%:1.03 7 167 0.31 93.411.49| 18 122 0.24
T'CT'(I;‘C' 78.7G61.43 | 7 45 025 |765%1.87| 7 18 0.08
Vote "91.03:3.32 7 12 0.13 96.2+3.31 2 8 0.11
Wine 96.014.24 1 368 0.05 96.62:3.35 1 368 0.01
Z00 95.04t5.05 5 36 0.03 95.04t5.05 5 36 0.03

28

5.8 MEASURING THE EFFECT OF THE NUMBER OF INTERVALS

Recall that the numeric attributes, in all previexperiments, were made discrete by
dividing their original range into ten equal-sizetervals. The selection of the value
ten was arbitrary. In this section we examine tifiece of the number of equal-sized

intervals on the performance of the CPOM-NB. Tableresents the performance
obtained, when using two intervals and five int&yan all datasets that include

numeric attributes. The results indicate that tiffer@nces between 5 and 10 intervals
are usually negligible. Still, in the Wine dataght 10 intervals alternative has led to
a significantly better accuracy (based on a sitgjled paired t-test, with a confidence
level of 95%). The difference in accuracy is mamarkable when the 10-intervals
discretization is compared to binary discretizationthree datasets (Iris, Sonar and
Wine) the binary discretization have led to lossirdormation. This indicates that

converting numeric attributes to binary intervaligint be too rough.

It should be noticed that while the 10-intervalcdégization increases the search
space, there is minimal affect on the final classitomplexity (measured by the
number of leaves). This supports the observatianh @POM with grouping usually

creates compact trees.

Table 6: Comparison of the accuracy measures, wharsing 10-interval discretization, 5-interval
discretization and binary discretization

Two Intervals Five Intervals Ten Intervals
Dataset Accuracy # leaveg Accuracy # leaves Accuragy #dsdv
Australian 88.68+3.51 3 86.8(:3.12 2 87.24:3.96 6
Breast Cancer| 96.56+1.72 6 97.2#1.91 13 97.42:1.16 1
Iris *76.53+ 4.7 1 94.65:5.72 2 96+6 2
Labor 94.65+3.95 2 95.12:5.03 3 94.734.61 2
Letter 78.7540.82 1 76.74:0.66 10 77.73:0.64 25
Sonar *69.44+7.53 1 76.216.34 2 76.44:7.62 2
Wine *89.27+5.12 1 "93.79:2.91 1 96.62:3.35 1
Z00 95.04+5.05 5 95.04t5.05 5 95.04t5.05 5

5.9

THE PERFORMANCE ACROSS VARIOUS METHODS: RESULTS

AND DISCUSSION

When comparing the number of leaves, the variouBZkmplementations obtained,
it can be seen that the simpler the embedded fitaggin method, the greater the

number of leaves. More specifically, with naive Baythe average number of leaves

29

is 7.1, while with backpropagation this averagepdrto 4.3. Moreover, the simpler
the embedded method, the greater the potentiatibation of CPOM to the overall
accuracy (in naive Bayes, CPOM improved the acguiag about 4%, but in
backpropagation it improved the accuracy by onlgual?2%). In general, therefore,
one should consider using CPOM, when the baseifitasi®n method is relatively

weak.

Moreover, we have examined the correlations betwbenaccuracy-gain of
using the various decision-tree ISD methods. Tlheiracy gain of a certain decision-
tree ISD method, with respect to a certain dataseltefined by dividing the accuracy
estimation of the method over the dataset, by tiearacy estimation of the embedded
method alone over the same dataset. Table 6 psefiamtcorrelation coefficients
between the accuracy-gains. A high correlation &ues near 1.0) between two
methods indicates that the two methods are consisteer the datasets. The table
provides some interesting insights: the neural ogivbased methods are strongly
correlated with one another and the naive Baye$iodstare strongly correlated with
one another. This may suggest that the effectiweoéglecision-tree ISD methods
depends more on the base inducer algorithm tharthendataset characteristics

(although the correlation between CPOM-C4.5 and KIFNIB cannot be neglected).

Table 6: Performance correlation coefficients acrasdecision-tree ISD methods. The
performance is measured in terms of the accuracy-@ra

NBTree CPOM-NB HDT CPOM-NN C&?SM
NBTree 1.00
CPOM-NB 0.82 1.00
HDT -0.03 -0.23 1.00
CPOM-NN -0.05 -0.24 0.90 1.00
CPOM-C4.5 0.34 0.66 -0.20 -0.27 1.00

5.10 THE CAPABILITY OF CPOM
POPULATIONS

TO DIFFERENTIATE BETWEEN

This section demonstrates an interesting abilityhef CPOM algorithm: identifying

different populations within the underlined dataseFor the purpose of this
subsection, three synthetic datasets were crebdle first dataset we have merged
the three Monk datasets into a single dataset, adued an additional attribute

(denoted by 4 which indicates on the original Monk dataset.(i&n instance in

30

which az=i belongs to the dataset monKeri=1,2,3). The Monk datasets are suitable
to this experiment because they all have the sampet iattributes, but the target
attribute represents a completely different funtti@he selection of the new; a
attribute in the root of the decision-tree is thdication for the correct instance-space
decomposition. The second syntactic dataset (deraseé\rtl) consists of 10 Boolean
input attributesa;-a;p, and a Boolean target attribute. The target afteibvas set
according to:

If a1=0, Y=(axlaslau) U (as[aslar) Dasp

Else (Ifa;=1), Y=(-azlas0ag) U (~asLasHag) U (—asg).
The attributes, —a;o were drawn from a uniform distribution. The datasnsists of
400 records, while in exactly 200 (randomly seldriastancesa; was set to 0, and
in the remaining instanceg=1. The third dataset (denoted as Art2) consists000
records, and 10 input attributes. Nine of the ingititibutes were Boolearaft-a),
and the remaining attributey had 4 possible values. The target attribute veds s
according to:

If a3=1, Y=(axlas) 0 (auas) O ayg,

If &1=2, Y=(~azlas) U (aslay) U (—~aso),

If &1=3, Y=(as[- ag) U (mas[lar) L au.

If a1=4, Y=(~ag[ag) 1 (~aglazg) U au.

Table 7 presents the accuracy estimations of CP@iM, the three embedded
classification methods, over the three synthetimsis. Each accuracy measure is
compared to the accuracy which was obtained byuixerthe embedded method
alone (without wrapping it by CPOM.) The table gmets some interesting insights. It
can be seen that the CPOM has improved the accuralive to the embedded
method, in all the datasets. In the C4.5 and n&ages implementations, this
improvement is statistically significant in all tidatasets. Moreover, when analyzing
the tree structures that the CPOM implementatidiained, it was seen that CPOM
tended to succeed in selecting the differentiatigibute at the root node. For
example, in the case of the "Monk-All" dataset, #tgibute a has been selected at
the root node in 26 of the 30 executions (10 faldes 3 embedded methods). All the
four executions, in which the attribute has not been selected at the root node,
occurred when the embedded method was backpropagalti may be interesting to

note that in the single decision-tree that wasiobthby the simple C4.5 algorithm,

31

the attribute awas selected at the root node in only three otéheexecutions. This
observation probably explains why C4.5 has not eeded in obtaining accuracy

measures comparable to those of CPOM-C4.5.

Table 7: The CPOM performance on the datasets witthe contrast populations

Classification Method Datasets
Monk-All Artl Art2
Naive Bayes Simple NB “67.08+3.59 “58.810.02 “70.6%0.03
CPOM-NB 77.584.23 88.720.01 79.520.04
Neural Network Simple Backprop. 96.93+1.91 *92.38-0.08 94.130.05
CPOM-NN 97.1G:1.92 97.3%0.02 94.230.04
Decision-tree Simple C4.5 *80.47+2.56 *81.510.06 "91.24+0.05
CPOM-C4.5 85.35:2.89 96.920.01 94.260.04

6 CONCLUSION

This paper introduced a decision-tree frameworkifstance-space decomposition
(DFID) — an automatic, general, decision-tree basachework for instance-space
decomposition and contrasted populations miner (@POan implementation of the

DFID framework that uses a new splitting rule, tedngrouped gain-ratio. DFID

recursively partitions the underlined instance-spaccording to the values of the
explained attributes until some pre-determined @taprules are met. Subsequently,
for each subspace that was formed by the partitioaonique classifier is attached
using an embedded classification method. The CP@ddrithm implements the

DFID framework by incorporating a new splitting eukermed grouped gain-ratio. In
the grouped gain-ratio, an attribute is first sedcaccording to the gain-ratio
criterion. Thereafter, a greedy grouping heurigfioups-together similar subspaces

that correspond to different values of the seleatétbute.

With datasets that were manually selected fromwk-known UCI Machine
Learning repository, CPOM improved the obtained usgcy compared to the
examined embedded methods (naive Bayes, backprigagad C4.5). CPOM has
been found to be more accurate than other decisgentSD methods. Moreover, the
grouping heuristic was shown to significantly imypedhe accuracy results, compared
to a variation of CPOM which does not group. Finalising three synthetic datasets,

CPOM was able to distinguish between different pajpens in an underlined dataset.

32

As to future research, the CPOM algorithm can liereded in various ways. An
essential part of the algorithm lies in groupingditer similar instance subspaces.
The grouping heuristic in this paper was basecdherctoss-inspection procedure (see
Figure 2). We suggest examining different heurgstfor determining what similarity
is. In addition, it is well-known that the accuraafydecision-trees can benefit from a
pruning capability. The fact that the proposed atgm has no pruning capabilities is
considered to be a limitation. Thus the algorithmawdd be extended to include such a
capability. Moreover, due to the explosive increa$edata volumes, incremental
(online) learning has become a very important céipakin machine learning
methods, which are designed for solving real-wopidbblems. Developing an
incremental version of CPOM is not necessarily $anecause it requires
incremental adaptation of the hierarchical struetas well as incremental adaptation
of the inner-classifiers. Additional issues to beHler studied include examining how
the proposed algorithm can be implemented usingrattassification methods, such
as support vectors machines or Bayesian networksngAwith improving the
practical framework, a further theoretical inveatign is required in order to better

understand under what circumstances the propogedagh is advantageous.

REFERENCES

[1] E. Bauer & R. Kohavi, An empirical comparison oftimg classification
algorithms: Bagging, boosting, and variants, MaeHhiearning 36 (1999) 105-
139.

[2] L. Breiman, Bagging predictors, Machine Learning(2496) 123-140.

[3] L. Breiman, J.H. Olshen & C.J. Stone, Classificatemd Regression Trees,
Chapman Hall, New York, 1984.

[4] C.E. Brodley, Recursive automatic bias selectiancfassifier construction,
Machine Learning 20 (1995) 63-94.

[5] D.R. Carvalho & A.A. Freitas, A hybrid decision¢/genetic algorithm
method for data mining, Information Science 1630@013-35.

[6] T.G. Dietterich, Approximate statistical tests foomparing supervised
classification learning algorithms, Neural CompigtatlO (1998) 1895-1923.

[7] T.G. Dietterich, An experimental comparison of #hrenethods for
constructing ensembles of decision trees: baggirmosting and
randomization, Machine Learning 40 (2000), 139-157.

33

[8] S. Esmeir & S. Markovitch, Lookahead-based algorghfor anytime
induction of decision trees. In Proceedings of Tweenty-First International
Conference on Machine Learning, pp. 257-264, Motganfmann, 2004.

[9] Y. Freund & R. Schapire, A short introduction toobting, Journal of
Japanese Society for Artificial Intelligence 14 999, 771-780.

[10] J. Furnkranz, Round robin rule learning, in: Prog.the 18" International
Conference on Machine Learning, Williamstown, MA02, pp. 146-153.
[11] J. Furnkranz, Round robin ensembles, IntelligentaD&nalysis 7 (2003)

385-403.

[12] J.B. Hampshire & A. Waibel, The meta-pi network wildéing distributed
knowledge representation for robust multisoursdepatrecognition, IEEE
Trans. on Pattern Analysis and Machine Intelligeb4€1992) 751-769.

[13] J.V. Hansen, Combining predictors: comparison @k fimeta machine
learning methods, Information Science 119 (1999)04.

[14] L. Hansen & P. Salamon, Neural network ensembieSEI Trans. on Pattern
Analysis and Machine Intelligence 12 (1990) 993100

[15] M.B. Harries & K. Horn, Learning stable conceptsdimmains with hidden
changes in context, in M. Kubat and G. Widmer (Edsearning in context-
sensitive domains (Workshop Notes), ™ 3nternational Conference on
Machine Learning, Bari, Itali, 1996 pp. 106-122.

[16] T. Horton & B. Lausen, Bundling classifiers by bagp trees,
Computational Statistics and Data Analysis 49 (20@®&8-1078.

[17] M.IL. Jordan & R.A. Jacobs, Hierarchical mixture experts and the EM
algorithm, Neural Computation 6 (1994) 181-214.

[18] R. Kohavi, Scaling up the accuracy of naive-Baylessifiers: a decision-
tree hybrid, in: Proc. Of the"® International Conference on Knowledge
Discovery and Data Mining, Portland, OR, 1996, 22-207.

[19] A. Kusiak, Decomposition in data mining: an indigtcase study, IEEE
Trans. on Electronics Packaging Manufacturing ZB0(@, 345-353.

[20] O. Lezoray & H. Cardot, Combining multiple pairwiseeural networks
classifiers: a comparative study, in: Internationsbrkshop on Artificial
Neural Networks and Intelligent Information Prodegs Barcelona, Spain
2005, pp. 52-61.

34

[21] O. Maimon & L. Rokach, Decomposition Methodologyr finowledge
Discovery and Data Mining: Theory and Applicatiowéprid Scientific, 2005.

[22] C.J. Mertz, Dynamical selection of learning aldams, in: C. Fisher & H.
Lenz (Eds.), Learning from Data: Artificial Intejence and Statistics,
Springer-Verlag, 1996, pp. 281-290.

[23] C.J. Mertz, Using correspondence analysis to coenbiassifiers, Machine
Learning 36 (1999) 33-58.

[24] C.J. Mertz & P.M. Murphy, UCI repository of machitearning databases,
Available at: http://www.ics.uci.edu/~mlearn/MLRegitory. html.

[25] S. Murthy & S. Salzberg, Lookahead and pathologydgtision tree
induction, in Proceedings of the 14th Internatiodaint Conference on
Artificial Intelligence, pp. 1025-1031, Morgan Kawénn, 1995.

[26] S.J. Nowlan & G.E. Hinton, Evaluation of adaptivéxiures of competing
experts, in: Advances of Neural Information ProgessSystems 3, Denver
CO, 1990, pp. 774-780.

[27] L. Onho-Machado & M.A. Musen, neural networks foedrcal prognosis:
Quantifying the benefits of combining neural netkgofor survival prediction,
Connection Science 9 (1997) 71-86.

[28] F. Peng, R.A. Jacobs & M.A. Tanner, Bayesian imfeeein mixture-of-
experts and hierarchical mixture-of-experts modgith an application to
speech recognition, Journal of the American StatisAssociation 91 (1996)
953-960.

[29] J.R. Quinlan, C4.5: programs for machine learnMgrgan Kaufmann, San
Francisco, CA, 1993.

[30] A.F.R. Rahman & M.C. Fairhurst, A new hybrid appriean combining
multiple experts to recognize handwritten numerdsttern Recognition
Letters 18 (1997) 781-790.

[31] A. Sakar & R.J. Mammone, Growing and pruning neudraé networks,
IEEE Trans. on Computers 42 (1993) 291-299.

[32] S.L. Salzberg, On comparing classifiers: pitfalle @void and a
recommended approach. Data Mining and Knowledgedvesy, 1, 317-328,
1997.

35

[33] P. Savicky & J. Furnkranz, Combining pairwise dffes with stacking, in
Advances on Intelligent Data Analysis V, Berlin, r@any, 2003, pp. 219-
229.

[34] A.J.C. Sharkey, Multi-net systems, in: A.J.C. SlegrKEd.), Combining
Artificial Neural Nets: Ensemble and Modular MuNet Systems, Springer-
Verlag, 1999, pp. 1-30.

[35] S. Warshall, A theorem on Boolean matrices, Joushéhe ACM 9 (1962)
11-12.

[36] A.S. Weigend, M. Mangeas & A.N. Srivastava, Nondingated experts for
time-series - discovering regimes and avoiding fittiag, International
Journal of Neural Systems 6 (1995) 373-399.

[37] I.H. Witten & E. Frank, Data Mining: Practical maeé learning tools and
techniques, 2nd Edition, Morgan Kaufmann, San Rsan¢ 2005.

[38] D.H. Wolpert, Stacked generalization, Neural Nekgds (1992) 241-259.

[39] Z. Zhou, S. Chen & Z. Chen, FANNC: A fast adaptiveural network
classifier, Knowledge and Information Systems 20®0.15-129

[40] Z. Zhou & C. Chen, Hybrid decision tree, Knowledggsed Systems 15
(2002) 515-528.

[41] B. Zupan, M. Bohanec, J. Demsar & |. Bratko, Featwansformation by
function decomposition, IEEE Intelligent Systems(1398) 38-43.

36

