
1 

Decision-Tree Instance-Space Decomposition with Grouped Gain- 

Ratio  

 

Shahar Cohen1, Lior Rokach2, Oded Maimon1 
1Department of Industrial Engineering, Tel-Aviv University 

2Department of Information Systems Engineering, Ben-Gurion University of the 
Negev 

SHAHARCO@POST.TAU.AC.IL, LIORRK@BGU.AC.IL, MAIMON@ENG.TAU.AC.IL  

 

 

Abstract 

This paper examines a decision-tree framework for instance-space decomposition.  

According to the framework, the original instance-space is hierarchically partitioned into 

multiple subspaces and a distinct classifier is assigned to each subspace. Subsequently, an 

unlabeled, previously-unseen instance is classified by employing the classifier that was 

assigned to the subspace to which the instance belongs. After describing the framework, 

the paper suggests a novel splitting-rule for the framework and presents an experimental 

study, which was conducted, to compare various implementations of the framework. The 

study indicates that using the novel splitting-rule, previously presented implementations 

of the framework, can be improved in terms of accuracy and computation time.  

 

Keywords: Classification, Multiple-Classifier Systems, Instance-Space 

Decomposition, Decision-Trees 

 

 

1 INTRODUCTION 

Classification is an important task in data mining and machine learning. Given a set of 

training instances, the classification objective is to induce a classifier, that is, a 

function that assigns instances to classes based on the realization of some explaining 

attributes. The classification performance is typically measured in terms of accuracy. 

Seeking to increase the classification performance, numerous authors have tackled the 

classification task with multi-classifier methods. Sharkey ( [34]) distinguished between 

two basic multi-classifier methodologies: decomposition and ensemble.  



2 

Ensemble methods ( [1],  [2],  [7],  [9],  [11],  [14]) combine multiple classifiers in 

order to obtain a more accurate and reliable result than when using just a single 

classifier. In ensemble methods, each classifier is typically trained on data, selected or 

sampled, from a single, common dataset. Since the training sets are taken from a 

common dataset, each classifier can entirely solve the original problem.  

In the decomposition methodology ( [21]), on the other hand, the single 

classifiers cannot provide a solution to the original problem and the classification 

requires the combination of all the classifiers. From a different perspective, 

decomposition can be seen as a methodology that breaks down a classification 

problem into multiple sub-problems, solves each sub-problem with a unique classifier, 

and then combines the sub-solutions. In contrast to the ensemble methodology, the 

sub-classifiers solve the sub-problems rather than the original problem. Combining 

the multiple classifiers is central in both methodologies and an issue that several 

authors have addressed ( [13],  [16],  [22],  [23],  [38]). Decomposition methods can be 

utilized for solving multi-class problems with binary classifiers ( [10],  [20],  [33]). 

Combining multiple binary classifiers, rather than using a single (multi-class) 

classifier can reduce the overall computational complexity and allow the 

incorporation of methods that are inherently binary (e.g., support vector machines). 

Instance-Space Decomposition (ISD) is a specific approach to decomposition. 

In ISD, the instance space of the original problem is partitioned into several 

subspaces. A distinct classifier is assigned to each subspace. Subsequently, an 

unlabeled, previously unseen instance is classified by employing the classifier that 

was assigned to the subspace to which the instance belongs.  

Kusiak ( [19]) proposed three ISD strategies (although he did not use the term 

ISD): object-content decomposition, decision-value decomposition and feature-value 

decomposition. In these strategies, the partition is not induced automatically. Instead, 

the analyst must determine the partition prior to the training phase. Brodley ( [4]) 

proposed the model class selection (MCS) system. MCS fits different classifiers to 

different subspaces of the instance space, by employing one of three classification 

methods (a decision-tree, a discriminant function or an instance-based method). In 
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order to select the classification method, MCS uses the characteristics of the 

underlined training-set, and a collection of expert rules. Brodley's expert-rules were 

based on empirical comparisons of the methods' performance (i.e., on prior 

knowledge). In the neural-networks community, Nowlan and Hinton ( [26]) examined 

the mixture of experts (ME) approach, which partitions the instance space into several 

subspaces and assigns different experts (classifiers) to the different subspaces. The 

subspaces, in ME, have soft boundaries (i.e., they are allowed to overlap). A gating 

network then combines the experts' outputs and produces a composite decision. 

Jordan and Jacobs ( [17]) extended ME by considering hierarchical partitions. ME 

variations have been developed for solving specific-domain problems, such as speech 

recognition ( [12],  [28]), time-series analysis ( [36]), predicting the survival of AIDS 

patients ( [27]) and handwriting recognition ( [30]). 

Decision-tree methods ( [3],  [29]) are frequently employed in classification 

problems. In an approach, which we term decision-tree ISD, the partition of the 

instance-space is attained by a decision-tree. Along with the decision-tree, a decision-

tree ISD method employs another classification method, which classifies the tree's 

leaves (the tree's leaves represent the different subspaces). Namely, decision-tree ISD 

methods produce decision-trees, in which the leaves are assigned with classifiers 

rather than with simple class-labels. When a non-decision-tree method produces the 

leaves' classifiers, the composite classifier is sometimes termed a decision-tree hybrid 

classifier. The term decision-tree hybrid classifier is, however, used also in a broader 

context, such as in the case where a sub-classification method makes the decisions 

regarding the growth of the tree and its pruning ( [31]). There are two basic techniques 

for implementing decision-tree ISD. The first technique is to use some decision-tree 

method to create the tree and then, in a post-growing phase, to attach classifiers to the 

tree's leaves. The second technique is to consider the classifiers as part of the tree-

growing procedure. Potentially, the latter technique can achieve more accurate 

composite classifiers. On the other hand, it usually requires more computationally-

intensive procedures. 
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Carvalho and Freitas ( [5]) proposed a hybrid decision-tree\genetic-algorithm 

classifier, which tackles decision-tree ISD with the first technique. Their method 

grows a decision-tree and assigns some of the leaves with class labels and the others 

with genetic-algorithm classifiers. The leaves that are assigned with the classifiers are 

the ones that have a small number of corresponding instances. A previously unseen 

instance is subsequently either directly assigned with a class label or is sub-classified 

by a genetic-algorithm classifier (depending on the leaf to which the instance is 

sorted). Zhou and Chen ( [40]) suggested a method, called hybrid decision-tree (HDT). 

HDT uses the binary information gain-ratio criterion, to grow a binary decision-tree, 

in an instance-space that is defined by the nominal explaining-attributes only. A feed-

forward neural network, subsequently classifies the leaves, whose diversity exceeds a 

pre-defined threshold.  The network uses the ordinal explaining-attributes only.    

In this paper, we focus on the second decision-tree ISD technique, which 

considers the classifiers as part of the decision-tree’s growth. Employing this 

technique, Kohavi ( [18]) proposed NBTree, a method which produces a decision-

tree\naive-Bayes hybrid classifier. In order to decide when to stop the recursive 

partition of the instance-space (i.e., stop growing the tree), NBTree compares two 

alternatives: partitioning the instance-space further on (i.e., continue splitting the tree) 

versus stopping the partition and producing a single naive-Bayes classifier. The two 

alternatives are compared in terms of their error estimations, which are calculated by a 

cross-validation procedure. Naive-Bayes classification, by itself, is very efficient in 

terms of its processing time. However, using cross-validation significantly increases 

the overall computational complexity. Although Kohavi has used naive-Bayes, to 

produce the classifiers, other classification methods are also applicable. However, due 

to the cross-validation estimations, NBTree becomes computationally expensive for 

methods that are more time-consuming than naive-Bayes (e.g., neural networks). 

Although different researchers have targeted decision-tree ISD, there is still no 

algorithmic framework that is common to all the decision-tree ISD methods. An 

algorithmic framework helps the analyst to focus on the specific characteristics that 

differentiate one method from another and to compare different methods. This paper 
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describes a simple framework for decision-tree ISD, termed decision-tree framework 

for instance-space decomposition (DFID). The framework hierarchically partitions the 

instance-space using a top-down (pruning-free) decision-tree procedure. Various 

implementations of DFID use different stopping-rules, split-validation examinations 

and splitting-rules. Our work aims to improve the quality of currently available 

decision-tree ISD methods. We suggest a novel DFID method that can reduce the 

processing time while keeping the composite classifier accurate. The new method is 

termed contrasted populations miner (CPOM). CPOM uses a novel splitting-rule, 

termed grouped gain-ratio. Grouped gain-ratio combines the well-accepted gain-ratio 

criterion with a heuristic grouping procedure. An experimental study shows that the 

proposed method outperforms previous decision-tree ISD methods (NBTree and 

HDT). 

The rest of this paper is organized as follows: Section 2 formally defines the 

objective of ISD. Section 3 describes the DFID algorithmic framework. Section 4 

proposes the novel splitting-rule and describes the CPOM algorithm. Section 5 

describes the experimental study and discusses the study's results. Finally, Section 6 

concludes the work and suggests issues for future research. 

 

2  THE OBJECTIVE OF ISD 

We begin this section by presenting our main notations. Consider the training set 

S={<x1,y1>,<x2,y2>,…,<xn,yn>}, where the jth instance (for some j∈{1,…,n}) consists 

of xj, a vector of the concrete values of the k explaining attributes, A1, A2,…, Ak, and 

yj, the instance's class relation (label). There are M possible classes, which are denoted 

by c1, c2,…, cM. We are only considering discrete explaining attributes, and we denote 

the possible d(i) values that the attribute Ai can receive by ai,1, ai,2,…,ai,d(i). The set of 

these possible values is called the domain of Ai, and is denoted by dom(Ai). The 

instance-space, denoted by X, is defined by X=dom(A1)×dom(A2)×…×dom(Ak). 

Classification methods are trained to produce classifiers, based on a training set. Let I 

be a classification method, and H=I(S) the classifier (hypothesis) that was produced 

by training I based on S. Given an instance x∈X, the classifier returns a class relation 
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H(x)∈{ c1, c2,…, cM}. Many classification methods produce classifiers that return a 

vector of M probability estimations, describing the likelihood that the classifier 

associates with the M possible class relations. However, we assume that all the 

classifiers return a crisp class-relation. Crisp classification can be potentially gained 

through maximization over the probability estimations.  

An instance-space partition breaks down X into multiple (mutually-exclusive 

and collectively-exhaustive) subspaces X1, X2,…, XL. This definition of instance-space 

partition does not impose any restrictions on its structure. This paper, however, 

focuses on hierarchical partitions that can be represented by a univariate decision-tree. 

An ISD method receives S and I; finds an instance-space partition; and returns a 

composite classifier, that is, a classifier that classifies instances from Xl (for some 

l∈{1,2,…,L}) according to the classifier I(Sl), where Sl is the subset of the training 

instances from S that belong to Xl. The objective of ISD is to find an optimal instance-

space partition. Three optimality criteria are considered in this work: generalized 

accuracy (which is estimated by the proportion of test instances that are classified 

correctly by the composite classifier); time-complexity; and comprehensibility (which 

is measured by the number of leaves in the composite classifier).  

 

3 DFID: A DECISION-TREE FRAMEWORK FOR ISD 

Implementations of the new decision-tree framework for instance-space 

decomposition (DFID) consist of a decision-tree (as a wrapper) and another embedded 

classification method (this method can, in principle, also be a decision-tree). The 

embedded classification method generates the multiple classifiers for the tree's leaves. 

The DFID sequence is illustrated by the pseudo code in Figure 1. DFID's inputs are: 

training instances; a list of attributes (which will be examined as candidates for 

splitting the decision-tree); a classification method; and optionally (depending on the 

specific implementation), some additional parameters. 

The procedure begins by creating the decision-tree's root node. The root 

represents the entire instance-space X. When constructed, each node is attached with a 
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rule, which defines the subspace of X that the node represents. The DFID framework 

considers rules that can be expressed in a conjunctive normal form. A rule may be, for 

example: "(A1=3 ∨ A1=4) ∧ A2=1". DFID then checks whether there should be a split 

from the root node (i.e., whether X should be partitioned). This check, which is done 

using some stopping-rules, is represented, in Figure 1, by the general function 

check_stopping_rule. The function receives some inputs (depending on the 

specific implementation) and returns a Boolean value that indicates whether the 

stopping-rules are met. If the stopping-rules are met, then I is trained using all of the 

training instances, the classifier that results, is attached to the root node, and the 

procedure terminates. If however, the stopping-rules are not met, then DFID searches 

for a split, according to some splitting-rule, represented, in Figure 1, by the general 

function split. Splits in DFID are based on the values of a certain candidate 

attribute. We assume that there exists at least a single attribute that can create a split 

(or otherwise the stopping-rules would have indicated that there should be no more 

splits).  

The function split receives a training set, a set of candidate attributes and 

optionally some additional inputs, and returns the attribute, on which values the split 

is based, and a set of descendents nodes. Recall that upon its creation, each node is 

attached with a rule, which defines the subspace of X that the node represents. The 

rules for the descendent nodes are conjunctions of the root's rule and restrictions on 

the values of the selected attribute. The split that was found may be then subjected to 

a validation examination, represented, in Figure 1, by the general function 

validate. If a split is found to be invalid, then DFID will search for another split 

(another attribute). If there are no more candidate attributes, I will be trained using all 

the training instances, and the classifier that results will be attached to the root node. 

As soon as a valid split is found, the descendent nodes that were created by the split 

are recursively considered for further splits. Further splits are achieved by the 

recurrence of DFID. In the recurrence, only a subset of the training instances is 

relevant (the instances that are actually sorted to the certain descendent node). In 

addition, the attribute, which defined the current split, is removed from the list of 
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candidate attributes. The descendents are finally linked to their parent (the root). 

Different DFID implementations may differ in all or some of the procedures that 

implement the three main framework's components – stopping-rules (the function 

check_stopping_rule), splitting-rules (the function split) and split 

validation examinations (the function validate).  

 

3.1 STOPPING-RULES 

Stopping-rules are checked by the general function check_stopping_rule         

(Figure 1). However, it should be noticed that a negative answer by this function is 

not the only condition that stops the DFID recurrence; another, and even more natural, 

condition, is the lack of any valid split.  

NBTree ( [18]) uses a simple stopping-rule, according to which no splits are 

considered, when there are 30 instances or less in the examined node. Splitting a node 

with only few training instances will hardly affect the final accuracy and will lead, on 

the other hand, to a complex and less comprehensible decision-tree (and hence a 

complex and less comprehensible composite classifier). Moreover, since the 

classifiers are required to generalize from the instances in their subspaces, they must 

be trained on samples of sufficient size. Kohavi's stopping-rule can be revised to a 

rule that never considers further splits in nodes that correspond to β|S| instances or 

less, where 0<β<1 is a proportion and |S| is the number of instances in original 

training set, S. When using this stopping rule (either in Kohavi's way or in the revised 

version), a threshold parameter must be provided to DFID as well as to the function 

check_stopping_rule. Another heuristic stopping-rule is never to consider 

splitting a node, if a single classifier can accurately describe the node's subspace (i.e., 

if a single classifier which was trained by all of the training instances, and using the 

classification method appear to be accurate). Practically, this rule can be checked by 

comparing an accuracy estimation of the classifier to a pre-defined threshold (thus 

using this rule requires an additional parameter). The motivation for this stopping-rule 

is that if a single classifier is good enough, why replace it with a more complex tree 
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that also has less generalization capabilities. Finally, as mentioned above, another 

(inherent) stopping-rule of DFID is the lack of even a single candidate attribute.  

 

3.2 SPLITTING-RULES 

The core question of DFID is how to split nodes. The answer to this question lies in 

the general function split (Figure 1). It should be noted that any splitting-rule that 

is used to grow a pure decision-tree, is also suitable in DFID. In Section 4 we propose 

a novel splitting rule, which combines the well-known gain-ratio splitting rule with a 

grouping heuristic. 

Kohavi ( [18]) has suggested a new splitting-rule, which is to select the attribute 

with the highest value of a measure, which he referred to as the "utility". Kohavi 

defined the utility as the 5-fold cross-validation accuracy estimation, of using a naive-

Bayes method for classifying the subspaces, which will be generated by the 

considered split.  

 

3.3 SPLIT VALIDATION EXAMINATIONS 

Since splitting-rules, are heuristic, it may be beneficial to regard the splits they 

produce as recommendations that should be validated. Kohavi ( [18]) validated a split 

by estimating the reduction in error, which is gained by the split, and comparing it to a 

predefined threshold of 5% (i.e., if it is estimated that the split will reduce the overall 

error rate by only 5% or less, the split is regarded as invalid). In an NBTree, it is 

enough to examine only the first proposed split in order to conclude that there are no 

valid splits, if the one examined is invalid. This follows since in an NBTree, the 

attribute according to which the split is done, is the one that maximizes the utility 

measure, which is strictly increasing with the reduction in error. If a split, in 

accordance to the selected attribute cannot reduce the accuracy by more than 5%, then 

no other split can. 

This work suggests a new split validation procedure. More details are provided 

in Section 4, but in very general terms, a split according to the values of a certain 
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attribute is regarded as invalid, if the subspaces that result from this split are similar 

enough to be grouped together. 

 
DFID (S,A,I) 

Get 

   S – a training set 

   A – a set of candidate input attributes 

I – a classification method 

Return 

   A classifier 

 

Create a tree with a root node; 

IF check_stopping_rule(S,A,I)check_stopping_rule(S,A,I)check_stopping_rule(S,A,I)check_stopping_rule(S,A,I) 

Attach the classifier I(S,A) to the root; 

ELSE 

A*�A; 

valid�FALSE 

WHILE A*≠∅ and NOT(valid) 

(split_att,nodes)�split(S,A*)split(S,A*)split(S,A*)split(S,A*); 

IF validate(nodes,split_att,S)validate(nodes,split_att,S)validate(nodes,split_att,S)validate(nodes,split_att,S) 

valid�TRUE; 

A�A \ split_att; 

FOR each node ∈ nodes 

node_instances�the instances that belong to node; 

attach the classifier DFID(node_instances,A,I) to 

node; 

link node to root; 

END FOR 

ELSE 

A*�A* \ split_att; 

END IF 

END WHILE 

IF NOT (valid) 

Attach the classifier I(S,A) to the root; 

END IF 

END IF  

RETURN tree; 

Figure 1: DFID outline. A DFID implementation recursively partitions the instance space of 
the training set, according to the values of the candidate attributes. As the recursive partition 
ends, classifiers are attached to the leaves, by employing the embedded classification method.    
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4 THE CPOM ALGORITHM 

This section presents a new DFID implementation, termed contrasted population 

miner (CPOM), which splits nodes according to a novel splitting-rule, termed grouped 

gain-ratio. Generally speaking, this splitting-rule is based on the gain-ratio criterion 

( [29]), followed by a grouping heuristic. The gain-ratio criterion selects a single 

attribute from the set of candidate attributes, and the grouping heuristic thereafter 

groups together subspaces, which correspond to different values of the selected 

attribute. 

 

4.1 CPOM OUTLINE  

CPOM uses two stopping-rules. First, the algorithm compares the number of training 

instances to a pre-defined ratio of the number of instances in the original training-set. 

If the subset is too small, CPOM stops (since it is undesirable to learn from a too 

small training subset). Secondly, CPOM compares the accuracy estimation of a single 

classifier to a pre-defined threshold. It stops if the accuracy estimation exceeds the 

threshold (if a single classifier is accurate enough, there is no point in splitting further 

on). Therefore, in addition to the inputs in Figure 1, CPOM must receive two 

parameters: β, the minimal ratio of the training instances and acc, the maximal 

accuracy estimation, that will still result in split considerations.  

CPOM's split validation procedure is directly based on grouped gain-ratio. The 

novel rule is described in detail, in the following subsection; however, in general 

terms, the rule returns the splitting attribute and a set of descendent nodes. The nodes 

represent subspaces of X that are believed to be different. If the procedure returns just 

a single descendent node, the split it has generated is regarded as invalid.  

 

4.2 THE GROUPED GAIN-RATIO SPLITTING-RULE     

Grouped gain-ratio is based on the gain-ratio criterion ( [29]), followed by a grouping 

heuristic. The gain-ratio criterion selects a single attribute from a set of candidate 

attributes. The instance-subspace, whose partition we are now considering, may, in 
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principle, be partitioned so that each new sub-subspace will correspond to a unique 

value of the selected attribute. Group gain-ratio avoids this alternative, through 

heuristically grouping sub-subspaces together. By grouping sub-subspaces together, 

grouped gain-ratio increases the generalization capabilities, as there are more 

instances in a group of sub-subspaces than there are in the individual sub-subspaces. 

Before introducing the grouping heuristic, we provide some intuition. During 

each split, we are considering a node of the decision-tree, which represents an 

instance-subspace, and have an associated subset of the original training set. For 

expository reasons we will focus on the split from the tree's root (that is, we assume 

that we are searching for a split that will partition the entire instance-space X into 

several subspaces). The following intuition can be applied to the non-root nodes of the 

tree as well. Let us further assume that there will be a single split at most (i.e., we 

either split the root node and attach classifiers to its descendants, or we attach a single 

classifier directly to the root). If we decide to split, it means that there are several 

subspaces of X that will be assigned with different classifiers. The only reason for us 

to prefer this alternative is if we believe that the entire set, S, cannot be accurately 

described by the single classifier I(S), and we think that it is better to train I 

separately, on the training subsets that correspond to the subspaces of X. Clearly, if we 

separately train I on each subset and obtain the same exact classifier from each subset, 

then there is no point in the split, since using this single classifier for the entire 

instance-space is as accurate as using the multiple classifiers; it is also much simpler 

and understandable, and it can generalize better. The other direction of this argument 

is slightly less straightforward. If the classifiers that were trained over the training 

subsets are very different from one another, then none of them can classify X as one, 

and we may believe that the split is beneficial. Based on this observation, the grouped 

gain-ratio splitting-rule groups together subspaces that have similar classifiers.  

The intuition regarding the classifier comparisons raises questions of what is 

similar, what is different and how to compare classifiers? Although there may be 

multiple classifiers, all of which must be simultaneously compared to each other, we 

begin answering these questions with the simpler case of exactly two classifiers, using 



13 

a comparison heuristic, which we refer to as cross-inspection (see Figure 2). Cross-

inspection is based on two mutually-exclusive training subsets and a classification 

method as inputs. The comparison begins by randomly partitioning each subset into a 

training sub-subset and a test sub-subset. Then, two classifiers are produced, by 

training the input method, once over each training sub-subset. After producing the two 

classifiers, the cross-inspection heuristic calculates the error rates of each classifier 

over each of the test sub-subsets. If the error rate of the first classifier over the first 

test sub-subset is significantly (with confidence level alpha) different from the error 

of the first classifier over the second test sub-subset, or vice versa, then the two 

classifiers are regarded as different. As Dietterich suggests ( [6]), the errors are 

compared by testing the hypothesis that the errors are generated by the same binomial 

random variable. The confidence level of alpha=0.01 was used throughout this 

paper.   

The cross-inspection heuristic compares only two distinct classifiers. However, 

in the DFID framework more than two classifiers must be compared at a time (if the 

attribute, which was selected by the gain-ratio criterion, has more than two possible 

values). For example, if it is believed that graduate students from different schools 

behave differently, one may consider splitting according to the school's name. The 

attribute 'school' can receive multiple values, all of which will have to be compared 

simultaneously. A successful split will group similar schools together, while different 

schools will be in different groups. Since an exhaustive search, over all the possible 

groupings, is unacceptable in terms of complexity, grouped gain-ratio (see Figure 3) 

uses a greedy grouping heuristic, which is based on cross-inspection. The procedure 

begins by using cross-inspection, to compare all the distinct pairs of classifiers (if 

there are q classifiers, there are q(q-1)/2 comparisons). For each instance-subspace, 

the procedure computes the number of instances that belong to subspaces that are 

similar to it (by definition the similarity by cross-inspection is defined with regard to 

classifiers rather than subspaces; each subspace, however, is described by a classifier). 

The classifier that represents the subspace with the largest such number is regarded as 

the classifier that covers the maximal number of instances. The subspaces of all the 
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instances which are covered by this classifier are grouped together, and the procedure 

iterates. The greedy aspect in grouped gain-ratio is similar to the considerations that 

Harries and Horn presented ( [15]). The heuristic does not explicitly guarantee that any 

two classifiers in a group are equivalent, but equivalence is assumed to be a transitive 

relation. The greedy grouping procedure is a simple clustering method and other 

clustering methods, like graph coloring ( [41]) may also be suitable here. Alternatively 

one could use the Warshall algorithm ( [35]) for finding the transitive closure of the 

comparison matrix, which can be used for calculating supj. However, this form of 

calculation will not be convenient in this case because it will tend to group too much 

as it is illustrated in the following example. 

We demonstrate grouped gain-ratio with a simple example. Assume that we are 

considering a split from the root node, and that the gain-ratio criterion has selected the 

attribute A1, which has six possible values. The training set S is consequently 

partitioned into six mutually-exclusive subsets, and the embedded classification 

method is trained six times, once over each subset. The six classifiers that result are 

then compared in pairs, and each pair is marked as either similar or different. Let the 

result of this comparison be as described by Figure 4 (A) (notice that each classifier is 

by definition equivalent to itself), and assume that the six subsets, corresponding to 

a1,1 through a1,6, have 100, 120, 150, 90, 80 and 200 instances respectively. The 

classifier, which was trained on the first subset, therefore covers 100+150+200=450 

instances. In the same way, the remaining classifiers cover 320, 450, 170, 170 and 570 

instances respectively. Therefore, the instance-subspace, which is associated with the 

classifier that covers the maximal number of instances, is the subspace in which 

A1=a1,6. Grouped gain-ratio will group this subspace with the subspaces in which 

A1=OR(a1,1, a1,2, a1,3). Since the two subspaces that remain can be seen to have 

equivalent classifiers, there will be another group, and the split will be as in Figure 5. 

Notice that the subspaces in which A1=a1,2 and A1=a1,3 were grouped together 

although their corresponding classifiers were marked as non-equivalent. In this 

example, using the transitive closure will leads to the same results. However, If the 

comparison matrix looked like in Figure 4 (B) (notice that the only difference between 
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the two matrices is in the cell a1,3-a1,6) then the six classifiers would have covered 

450, 320, 150, 170, 170 and 420 instances respectively. Consequently, there would 

have been three subgroups: {a1,1; a1,3; a1,6} , { a1,2} and {a1,4; a1,5}. Notice however, 

that the transitive closure, if used, would leads to the same results that were obtained 

in the case of Figure 4 (A). 

 
cross_inspection (S1,S2,I,alpha) 

Get 

   S1,S2 – mutually-exclusive training sets  

I – a classification method 

alpha – a confidence level 

Return 

   a Boolean value reflecting equivalence 

 

S11 � a random sample from S1; 

S12 � S1 \ S11; 

S21 � a random sample from S2; 

S22 � S2 \ S21;   

H1 � I(S11); 

H2 � I(S21); 

FOR i,j∈{1,2} 

εi,j � accuracy estimation of Hi over Sj,2; 

END FOR 

IF ε1,2 is different from ε1,1 with a confidence level alpha,                            

or ε2,1 is different from ε2,2 with confidence level alpha  
return FALSE; 

ELSE 

return TRUE; 

END IF 

Figure 2: The cross-inspection procedure outline. The procedure compares the accuracy 
estimations of two distinct classifiers, searching for statistical significance.  
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grouped_gain_ratio (S,A,I,root,alpha) 

Get 

   S – a training set 

A – a set of candidate input attributes 

I – a classification method 

root – the node from which the split is considered 

alpha – confidence level 

Return 

   split_att – the attribute that splits the current node 

nodes – the set of nodes that results from the split 

 

Ai � the attribute from A with the maximal gain-ratio; 

S1,S2,…,Sd(i) � a partition of S, according to values of Ai; 

FOR all j and k in {1,2,…,d(i)} so that j≤k 

Ej,k � cross_inspection(Sj,Sk,I,alpha); 

Ek,j � Ej,k; 

END FOR 

FOR all j ∈ {1,2,…,d(i)} 

supj � the number of instances in the subsets Sk for which 

Ej,k=TRUE; 

END FOR   

L � a list of the subsets indices sorted descending by supj; 

nodes � an empty set of nodes 

WHILE L is not empty 

create a new node; 

Attach the rule which is a conjecture of the root's rule 

   and a disjoint of the values that correspond to Sj the 

   first member of L and the members Sk for which Ej,k=TRUE; 

Remove from L any member that is described by the new node; 

Add node to nodes; 

END WHILE 

RETURN (Ai,nodes) 

Figure 3: The grouped gain-ratio procedure outline. The procedure groups together similar 
values of a candidate attribute. Similarity is based on the cross-inspection heuristic.  
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(A) (B) 

Figure 4:  An illustration of the pair-wise comparison results. √ represents equivalence and X 
represents non-equivalence. 

 

740 instances

570 instances 170 instances

A1=a1,1 or A1=a1,2 or 

A1=a1,3 or A1=a1,6
A1=a1,4 or A1=a1,5

 

Figure 5:  The split that results from grouped gain-ratio. 

 

 

5 EXPERIMENTAL STUDY 

A comparative experimental-study was carried out, using mainly benchmark data sets 

(three synthetic datasets were handcrafted for the experiments in Section 5.10). The 

primary objective of the study was to evaluate the potentials of the DFID framework, 

and especially of the CPOM algorithm. The following subsections describe the 

experimental set-up and discuss the obtained results. 
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5.1 THE EMBEDDED CLASSIFICATION-METHODS  

The experimental study compared the performance of CPOM, when using the 

following embedded classification methods: naive Bayes, backpropagation (to train 

artificial neural networks) and C4.5. The naive Bayes method was chosen in order to 

compare CPOM with NBTree, and backpropagation was chosen in order to compare 

CPOM with the HDT algorithm. The C4.5 method was chosen because it is 

considered to be a state-of-the-art decision-tree algorithm, and is widely used in many 

other comparative studies. 

All the experiments were made with the WEKA environment ( [37]). The 

experiments with C4.5 took place using J48, the Java version of C4.5. We have used 

the NBTree implementation, which is included in WEKA for simulating Kohavi's 

original work. We also implemented HDT in WEKA. The original implementation of 

HDT has utilized a specific multi-layer, feed-forward neural-network named FANNC 

( [38]). However, in our implementation, we employed backpropagation, that is 

already available in the WEKA environment, and which is more widely-used in the 

literature. CPOM was, of course, also implemented in WEKA. In all the CPOM 

executions, 95% was chosen as the maximal accuracy estimation that would still be 

considered for further splits and the minimal training-subset size was chosen to be 

one-fifth of the initial training-set size.   

 

5.2 THE BENCHMARK DATASETS 

All the compared methods were trained over 20 datasets, which were manually 

selected from the UCI Machine Learning Repository ( [24]). Although this 

repository’s limitations for comparing algorithms are known ( [32]), it is still 

considered to be objective since the published results can be validated. The selected 

datasets vary across several dimensions: the number of classes, the number of 

instances, the number of explaining attributes and the type of attributes. Table 1 

describes the datasets' characteristics.  
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Table 1: The datasets' characteristics 

Dataset 
No. of 

Attributes 
No. of 

Instances 
No. of Classes 

% of Numeric 
Attributes 

Audiology 70 200 23 0 
Australian 15 690 2 40 

Breast Cancer 10 699 2 100 
Car 7 1,728 4 0 

Hayes-Roth 5 132 3 0 
Iris 5 150 3 100 

Labor 17 57 2 50 
Led-17 25 220 10 0 
Letter 17 15,000 26 100 

Monk-1 7 124 2 0 
Monk-2 7 169 2 0 
Monk-3 7 122 2 0 

Mushroom 22 8,124 2 0 
Nurse 9 12,960 5 0 
Sonar 61 208 2 100 

Soybean 36 683 19 0 
Tic-Tac-Toe 10 958 2 0 

Vote 17 435 2 0 
Wine 14 178 3 100 
Zoo 17 101 7 12 

 

The datasets went through a simple preprocessing stage. In this stage, missing 

values were replaced by a distinctive value, and numeric attributes were made discrete 

by dividing their original range into ten equal-sized intervals (or one per observed 

value, whichever was least). Accuracy results could have been improved by using a 

more robust way for treating the missing values (see for example  [29]). 

 
5.3 THE EVALUATION CRITERIA 

The following list describes the evaluation criteria that were measured in each 

execution of each of the evaluated methods.  

i. The Generalized Accuracy 

The generalized accuracy is the probability that an unlabeled, previously-unseen 

instance will be classified correctly, by the output (possibly composite) classifier. In 

order to estimate this probability, a 10-fold cross-validation procedure has been 
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implemented. In 10-fold cross-validation, the dataset is randomly partitioned into 10 

disjoint, equal-sized subsets. Each subset is used once as a test set and nine times as 

part of the training set. The partition (i.e., the same folds) was used in all of the 

methods. Furthermore, a single-tailed paired t-test, with a confidence level of 95%, 

was used in order to verify the statistical significance of the differences between the 

accuracy estimations, of the examined methods. 

ii.  The Number of Leaves in the Composite Decision-Tree 

The complication of the output-classifier was measured in terms of the total number 

of leaves in the composite decision-tree. The lower this number, the simpler and 

potentially more comprehensible and general is the composite classifier. 

iii.   The Overall Number of Sub-Classifiers that were Induced 

This criterion indicates the number of times, in which the embedded classification 

methods was trained, in order to produce the composite classifier. This criterion may 

have a dramatic effect on the computational complexity. This effect is especially 

important when the computational complexity of the embedded method is more than 

linear (such as in the case of C4.5 or backpropagation). 

iv. Execution Time 

The execution time is the actual time (in seconds), required for producing the 

composite classifier. We conducted all of our experiments on the following hardware 

configuration: A desktop computer with an Intel Pentium 4-2.8GHz, Windows XP 

operating system, and 1GB of physical memory. 

 

5.4 CPOM WITH NAIVE BAYES: RESULTS AND DISCUSSION 

Table 2-A compares the performance of CPOM, with naive Bayes as the embedded 

classification method (CPOM-NB) to NBTree and simple naive Bayes. The results 

indicate that the average accuracy of CPOM-NB (86.74%) is higher, by about 3%, 

than the average accuracy of NBTree (83.75%), and by about 4% than the average 

accuracy of simple naive Bayes (82.99%).  Examining the statistical significance of 
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the results indicates that CPOM-NB is significantly more accurate than NBTree in 

eight datasets, while NBTree shows significantly higher accuracy in only three 

datasets. The "+" superscripts, next to some of the accuracy measures, in Table 2-A, 

indicate that the accuracy of CPOM-NB was significantly higher (with a confidence 

level of 5%) than the accuracy of the method under which the "+" is superscripted. 

The "–" superscripts, similarly, indicate that the accuracy of CPOM-NB was 

significantly lower. 

Table 2-A also presents the number of leaf nodes in the composite classifier, 

and the number of (inner) classifiers that were needed, as part of the construction of 

this composite classifier. It should be recalled that the number of leaves is a way of 

assessing the classifier's comprehensibility, and the number of inner-classifiers is a 

way of assessing the computational complexity. The table indicates that CPOM-NB 

required only 10% of the leaves and 2% of the inner classifiers, compared to NBTree. 

The reduced number of inner-classifiers is partly due to the more compact trees that 

CPOM-NB builds, but it is also (and probably mainly) due to the splitting rule that 

NBTree uses. In order to select the attribute with the highest utility, NBTree estimates 

the accuracies of all the possible splits, where each such split is evaluated using a 5-

fold cross-validation procedure. The number of inner-classifiers that are needed for 

this splitting-rule becomes a significant burden when the number of attributes and 

overall splits increases. CPOM, on the other hand, does not use cross-validation but 

builds inner-classifier only for the attributes that are selected by gain-ratio splitting 

criterion. The last observation is also supported by the actual execution time of the 

two algorithms. The execution of CPOM-NB took, on average, only 13% of the time 

that NBTree required.  

We conclude that CPOM outperforms NBTree in all the important criteria: 

accuracy, model complexity (as measured by number of leaves) and execution time. 

The high number of inner-classifiers that NBTree produces implies that this method 

may be impractical, when employed with more computational-intensive embedded 

methods, such as neural networks. On the other hand, as subsequent sections 

demonstrate, CPOM, can be used with other embedded methods.  
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The results also indicate that there was not a single dataset on which simple 

naive Bayes was significantly more accurate than CPOM-NB. On the other hand, 

CPOM-NB was significantly more accurate than naive Bayes in nine of the datasets. 

In terms of the training time, naive Bayes is, clearly, faster than CPOM-NB. 

However, we believe that the speed of CPOM is acceptable. 

Table 2-B provides the root mean square error (RMSE) of the compared 

methods. For every dataset, we provide both the RMSE of the training set and the 

RMSE, which is based on 10-folds cross validation. The results indicate that on 

average CPOM-NB obtains the best RMSE values (with a mean of 0.213685) 

followed by NBTree (with a mean of 0.228955) and naive Bayes (with a mean of 

0.25192). As expected in most of the cases the RMSE of the training set is smaller 

than the RMSE calculated over the 10 folds cross validation. Nevertheless it can be 

seen that the lowest difference between these two values is obtained for the naive 

Bayes algorithm with a mean of 0.03187. The largest difference is obtained for the 

NBTree algorithm with a mean of 0.08986. The mean difference obtained for the 

CPOM-NB is 0.05561. These results can be explained by the complexity of the 

classifier (that can be measured by the number of leaves presented in Table 2-A). As 

the number of leaves increases, so does the RMSE difference.  
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Table 2-A: Comparison of CPOM-NB to NBTree and naive Bayes 

NBTree CPOM-NB Naive Bayes 

Dataset 
Accuracy 

# 
leaves 

# inner-
classifiers 

Execution time 
(in sec.) 

Accuracy 
# 

leaves 
# inner-

classifiers 

Execution 
time (in 

sec.) 
Accuracy 

Execution time 
(in sec.) 

Audiology 72.5±3.16 27 7210 27.94 72±  5.84  14 247 1.92 +65.5±7.39 0.01 
Australian 84.78±2.64 24 5620 4.72 87.24±3.96 6 606 0.49 84.93±2.7 0.01 

Breast Cancer 96.56±1.46 28 2250 0.83 97.42±1.16 1 92 0.05 97.42±1.16 0.01 
Car +85.30±0.92 1 105 0.3 93.92±0.74 8 90 0.13 +85.30±0.92 0.01 

Hayes-Roth +67.42±7.11 10 225 0.32 77.27±8.56 4 54 0.06 81.06±9.61 0.01 
Iris 94±5.17 4 220 0.14 96±  6  2 8 0.05 95.33±5.05 0.02 

Labor +
87.71±4.73 3 510 0.44 94.73±4.61 2 32 0.01 92.98±4.52 0.01 

Led-17 58.63±4.16 6 1815 4.27 60.90±5.12 8 28 0.22 63.18±8.7 0.01 
Letter -81.13±0.82 916 52180 234.61 77.70±0.64 25 892 32.34 +73.29±1 0.13 

Monk-1 +91.12±4.16 5 340 0.2 97.58±3.97 7 72 0.02 +73.39±6.7 0.01 
Monk-2 58.58±2.21 6 420 0.34 59.53±5.43 4 57 0.03 +56.21±6.1 0.01 
Monk-3 92.62±3.61 1 30 0.06 92.62±3.61 1 6 0.02 92.62±3.61 0.01 

Mushroom -99.95±0.07 18 12420 9.02 99.37±0.17 10 262 1.12 +95.48±0.9 0.08 
Nurse -95.92±0.96 139 45500 10.11 94.21±0.54 15 77 0.83 +90.26±0.49 0.05 
Sonar +62.98±7.68 19 9000 17.95 76.44±7.62 2 772 4.21 75.48±7.3 0.02 

Soybean +91.51±1.27 34 9500 55.61 93.41±1.49 18 122 0.24 91.95±1.99 0.02 
Tic-Tac-Toe 75.67±5.82 51 2135 2.64 76.51±1.87 7 18 0.08 +69.27±3.2 0.01 

Vote 94.06±3.24 35 4080 1.17 96.2 ±3.31 2 8 0.11 +90.34±3.44 0.01 
Wine +93.44±5.69 10 1950 2.72 96.62±3.35 1 368 0.01 96.62±3.35 0.01 
Zoo +91.08±6.25 8 540 0.42 95.04±5.05 5 36 0.03 +89.11±7 0.01 
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Table 2-B: Comparison of the RMSE of CPOM-NB, NBTree and naive Bayes 

NBTree CPOM-NB Naive Bayes 

Dataset RMSE 
(Training 

Set) 

RMSE (10 
Fold CV) 

RMSE 
(Training 

Set) 

RMSE (10 
Fold CV) 

RMSE 
(Training 

Set) 

RMSE (10 
Fold CV) 

Audiology 0.1088 0.1447 0.1173 0.1359 0.1209 0.148 
Australian 0.2065 0.348 0.2866 0.3271 0.3261 0.3363 

Breast Cancer 0.1557 0.1704 0.1557 0.1593 0.1557 0.1593 
Car 0.2218 0.2263 0.115 0.1577 0.2218 0.2263 

Hayes-Roth 0.3114 0.3762 0.3021 0.3624 0.3066 0.3541 
Iris 0.1251 0.1621 0.1268 0.1482 0.1495 0.155 

Labor 0.0751 0.2961 0.1041 0.251 0.1532 0.2637 
Led-17 0.1188 0.2413 0.1499 0.2294 0.1718 0.226 
Letter 0.0674 0.1058 0.0881 0.126 0.1166 0.121 

Monk-1 0.1447 0.2952 0.1399 0.2761 0.3836 0.4089 
Monk-2 0.3368 0.5052 0.3905 0.4895 0.4711 0.5048 
Monk-3 0.2644 0.2891 0.2644 0.2851 0.2644 0.2851 

Mushroom 0.0106 0.006 0.0111 0.015 0.181 0.1853 
Nurse 0.0893 0.1 0.117 0.1364 0.1762 0.1767 
Sonar 0.0712 0.4655 0.2092 0.4361 0.2733 0.4425 

Soybean 0.0543 0.0885 0.0641 0.0707 0.0765 0.0817 
Tic-Tac-Toe 0.173 0.3152 0.2413 0.3073 0.423 0.4298 

Vote 0.1552 0.183 0.1496 0.1669 0.2924 0.2992 
Wine 0.0822 0.1643 0.0895 0.1326 0.0895 0.1326 
Zoo 0.0478 0.0962 0.0393 0.061 0.0478 0.1021 

 

5.5 CPOM WITH NEURAL NETWORKS: RESULTS AND DISCUSSION 

Table 3 compares the performance of CPOM, with backpropagation as the embedded 

method (CPOM-NN) to the performance of HDT and simple backpropagation. 

Backpropagation was trained on 500 epochs and the number of hidden units that was 

used in each dataset is described in Table 3. The results indicate that the average 

accuracy of CPOM-NN is higher by about 1% (92.76%) than the average accuracy of 

HDT (91.69%) and by about 2% from the average accuracy of a single neural network 

(90.63%). Although the mean differences are relatively moderate, some of the per-

dataset differences are statistically significant. Specifically, CPOM-NN is 

significantly more accurate than HDT in five datasets, and significantly more accurate 

than a single neural network in eight datasets. On the other hand, HDT and a single 

neural network were not found to be significantly more accurate than CPOM-NN in 

any of the datasets.   

The improved accuracy of CPOM-NN required an execution time that is, on 

average, 14 times greater than the execution time of simple backpropagation. When 

compared with the execution time of HDT, it can be seen that, on average, CPOM-NN 
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required an execution time that is four times greater than that of HDT. Notice that in 

HDT the leaf-classifiers are trained in a post-growing phase (see the discussion on the 

two decision-tree ISD techniques in Section 1). Still, there are four datasets, in which 

HDT required more time than CPOM-NN.  

Table 3 also presents the number of leaf nodes in the composite classifier and 

the number of inner-classifiers that were needed, by the two methods. CPOM-NN 

requires more than two times of inner-classifiers, than HDT requires. It should be 

noted, again, that in HDT, the leaf-classifiers are trained only after the final tree 

structure is decided upon. Moreover, not all leaves in HDT have a classifier (it 

depends on the leaf-node's diversity). Thus the increased number of inner-classifiers 

that CPOM-NN requires is not surprising. On the other hand, the table indicates that 

CPOM-NN tends to build trees with fewer leaves. It can be seen that HDT on average 

results in five times more leaves than CPOM-NN. Namely, CPOM-NN creates more 

compact and comprehensible composite classifiers. 

 

5.6 CPOM WITH DECISION-TREES: RESULTS AND DISCUSSION 

At first sight it seems pointless to use CPOM with C4.5 as the embedded method 

(CPOM-C4.5), since the result of this configuration is a pure decision-tree. 

Nonetheless, this section describes experiments with CPOM-C4.5, with a twofold 

motivation. First, CPOM-C4.5 can be seen as a kind of lookahead-based method for 

producing decision-trees. Lookahead-based algorithms attempt to predict the 

profitability of a split at some node by estimating the effect of this split on deeper 

decedents of the node ( [8],  [25]). By using CPOM-C4.5, one actually examines the 

effect of a certain split with the depth of at least two levels. The second motivation for 

using CPOM-C4.5 can be explained by the grouped gain-ratio splitting rule that 

suggests a new way to branch the tree. The combination of the new splitting rule 

together with C4.5's splitting-rule extends the tree's search-space.   
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Table 3: Comparison of CPOM-NN to HDT and backpropagation 

HDT  CPOM-NN Backpropagation 
Dataset 

Accuracy 
# 

leaves 
# inner-

classifiers 
Execution 

time (in sec.) 
Accuracy 

# 
leaves 

# inner-
classifiers 

Execution 
time (in sec.) 

# Hidden 
Units 

Accuracy 
Execution 

time (in sec.) 
Audiology 95.11±3.22 31 12 8911.62 96.01±2.78 6 74 9798.06 47

 +93±1.22 203.52 
Australian 85. 8±2.94 23 2 18.66 86.31±2.18 5 55 212.17 9 85.2±2.66 12.87 

Breast Cancer 95.6±1.31 55 48 4720 95.28±1.16 3 621 6409.38 6 95.70±1.28 446.66 
Car 99.25±0.44 131 35 966.05 99.25±0.44 4 18 562.14 6 99.65±0.35 91.92 

Hayes-Roth 81.94±8.3 19 6 22.15 81.81±9.06 3 34 29.66 4 81.0±8.18 4.08 
Iris +

93.98±4.72 4 1 5.91 96.1± 4.1 2 8 20.85 4 95.7±  3 .2 5.12 
Labor +

93.71±4.73 3 1 24.11 96.48±3.83 4 42 294.82 10
 +93.9± 3.1 22.18 

Led-17 55.71±1.77 35 35 152.08 56.71±1.17 8 102 432.59 18
 +50±0.96 20.63 

Letter +89.5±4.38 9562 281 3996.72 96.2±1.73 8 45 1281.11 22
 +82.51±1.43 32.18 

Monk-1 95.17±6.39 12 1 4.77 94.35±6.91 3 10 10.86 5 95.97±6.44 3.03 
Monk-2 +96.16±0.93 18 2 8.61 100±0 1 3 9.51 5 100±0 4 
Monk-3 92.62±3.61 9 0 0.61 91.95±9.28 3 8 10.38 5

 +89.34±6.19 2.97 
Mushroom 100±0 23 7 25432.21 100±0 6 32 98471.95 12 100±0 7858.17 

Nurse 99.32±0.37 355 66 41268.64 99.32±0.37 6 22 13268.64 7
 +98.76±0.42 949.64 

Sonar +84.24±5.72 42 26 644.8 87.1±4.16 4 67 1121.58 32
 +84.14±3.84 62.19 

Soybean 93.2±1.27 56 46 396.86 93.7±1.73 8 98 646.8 28 90.21±2.68 33.17 
Tic-Tac-Toe 95.67±4.95 95 24 755.11 96.87±4.22 7 18 717.94 6

 +92.11±5.17 61.45 
Vote 96.12±3.82 11 1 57.89 96.17±2.50 2 8 226.08 10 96±1.05 55.22 
Wine 95.66±2.11 37 6 981.76 96.62±3.35 3 62 6712.09 9 94.44±3.22 228.69 
Zoo 95.04±5.05 13 2 8.63 95.04±5.05 1 6 11.05 12 95.04±5.05 6.53 



27 

Table 4 compares the performance of CPOM-C4.5 with the performance of 

simple C4.5. The table indicates that, on average, CPOM-C4.5 is almost 2% (85.07%) 

more accurate than C4.5 (83.29%). It can be seen that in nine of the datasets the two 

methods have obtained the same accuracy results. In all of these datasets, CPOM has 

decided, in the light of the C4.5 inner-classifier's performance, not to split the 

instance-space. In three out of the remaining 11 datasets, CPOM-C4.5 was 

significantly more accurate than C4.5.  

 

Table 4: Comparison of CPOM-C4.5 to C4.5 

CPOM-C4.5 C4.5 
Dataset 

Accuracy 
# 

leaves 
# inner-

classifiers 
Execution 

time (in sec.) 
Accuracy 

Execution time 
(in sec.) 

Audiology 74±5.54 10 226 1.11 76±7.87 0.06 
Australian 85.36±2.26 4 582 0.67 86.81±2.37 0.02 

Breast Cancer 94.42±2.62 3 482 0.5 93.41±2.86 0.02 
Car 94.1±0.97 7 35 0.2 +91.78±1.93 0.03 

Hayes-Roth 78.79±9.21 3 34 0.14 +68.18±7.41 0.01 
Iris 95.33±5.97 1 12 0.11 95.33±5.97 0.02 

Labor 73.68±12.3 1 5 0.09 73.68±12.3 0.02 
Led-17 61.81±3.14 1 8 0.36 61.81±3.14 0.03 
Letter 73.45±0.67 1 21 16.8 73.45±0.67 1.19 

Monk-1 98.39±3.77 2 15 0.13 +75±7.82 0.01 
Monk-2 63.91±8.86 2 11 0.19 61.54±7.82 0.01 
Monk-3 92.62±5.82 2 11 0.14 93.44±5.34 0.01 

Mushroom 100±0 1 5 0.28 100±0 0.13 
Nurse 97.43±0.31 1 4 0.52 97.43±0.31 0.41 
Sonar 70.67±6.82 8 3967 3.33 71.15±8.74 0.11 

Soybean 91.51±1.68 1 7 0.41 91.51±1.68 0.13 
Tic-Tac-Toe 87.79±2.07 2 8 0.13 86.01±1.71 0.03 

Vote 96.21±2.45 1 12 0.09 96.21±2.45 0.01 
Wine 79.78±3.25 2 769 0.47 80.89±2.70 0.02 
Zoo 92.08±6.57 1 4 0.08 92.08±6.57 0.05 

 

5.7 MEASURING THE EFFECT OF THE GROUPING HEURISTIC 

This section focuses on the contribution of the grouped gain-ratio splitting-rule and 

the grouping heuristic, in particular. For this purpose we compared the performance of 

CPOM-NB with that of a method which is similar to CPOM-NB, except for its 

splitting rule. This second method, henceforth termed CPOM-NB with no grouping, 

uses the simple gain-ratio splitting-rule (instead of grouped gain-ratio).  

Table 5 compares the performance of the two methods. The table indicates that 

the grouping heuristic tends to improve the accuracy of the composite classifier 
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(86.74% versus 83.81%). As a matter of fact, in none of the datasets does the gain-

ratio rule significantly outperform grouped gain-ratio. Thus, it is probable to assume 

that the grouping heuristic is a beneficial (i.e., subspaces that are described by similar 

classifiers should be grouped together). 

The grouping heuristic has also a positive effect on the number of leaves and on 

the execution time. Grouping makes the hierarchical structure more compact. More 

specifically, the average number of leaves with the grouped gain-ratio rule was 7.1, 

where the average number of leaves with the simple gain-ratio rule was 9.85. This 

observation can be explained by the fact that without the grouping, one branch is built 

for each distinct value of the splitting attribute. On the other hand, when grouping is 

employed then one branch in the tree may represent several values. 

 

Table 5: The Effect of grouping heuristic on the CPOM's performance 

CPOM-NB - no Grouping CPOM-NB 

Dataset 
Accuracy 

# 
leaves 

# inner-
classifiers 

Execution 
time (in 

sec.) 
Accuracy 

# 
leaves 

# inner-
classifiers 

Execution 
time (in 

sec.) 
Audiology 71.80±4.84 28 129 0.78 72±  5.84  14 247 1.92 
Australian 84.32±2.92 8 712 0.52 87.24±3.96 6 606 0.49 

Breast 
Cancer 

+93.84±1.86 10 2250 0.83 97.42±1.16 1 92 0.05 

Car +89.64±0.96 7 102 0.17 93.92±0.74 8 90 0.13 
Hayes-
Roth 

+64.39±9.43 13 96 0.15 77.27±8.56 4 54 0.06 

Iris 96±6 2 8 0.05 96±  6  2 8 0.05 
Labor 94.73±4.61 2 32 0.01 94.73±4.61 2 32 0.01 
Led-17 61.81±7.22 8 32 0.25 60.90±5.12 8 28 0.22 
Letter 77.70±0.64 25 892 32.34 77.70±0.64 25 892 32.34 

Monk-1 +70.16±8.49 9 564 0.09 97.58±3.97 7 72 0.02 
Monk-2 61.53±4.35 8 126 0.08 59.53±5.43 4 57 0.03 
Monk-3 92.97±3.57 1 6 0.02 92.62±3.61 1 6 0.02 

Mushroom 99.28±0.23 12 326 1.56 99.37±0.17 10 262 1.12 
Nurse +92.80±0.36 9 36 0.75 94.21±0.54 15 77 0.83 
Sonar +70.19±9.09 28 328 12.62 76.44±7.62 2 772 4.21 

Soybean 93.99±1.03 7 167 0.31 93.41±1.49 18 122 0.24 
Tic-Tac-

Toe 78.70±1.43 7 45 0.25 76.51±1.87 7 18 0.08 

Vote +91.03±3.32 7 12 0.13 96.2 ±3.31 2 8 0.11 
Wine 96.01±4.24 1 368 0.05 96.62±3.35 1 368 0.01 
Zoo 95.04±5.05 5 36 0.03 95.04±5.05 5 36 0.03 
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5.8 MEASURING THE EFFECT OF THE NUMBER OF INTERVALS 

Recall that the numeric attributes, in all previous experiments, were made discrete by 

dividing their original range into ten equal-sized intervals. The selection of the value 

ten was arbitrary. In this section we examine the effect of the number of equal-sized 

intervals on the performance of the CPOM-NB. Table 6 presents the performance 

obtained, when using two intervals and five intervals, in all datasets that include 

numeric attributes. The results indicate that the differences between 5 and 10 intervals 

are usually negligible. Still, in the Wine dataset, the 10 intervals alternative has led to 

a significantly better accuracy (based on a single-tailed paired t-test, with a confidence 

level of 95%). The difference in accuracy is more remarkable when the 10-intervals 

discretization is compared to binary discretization: in three datasets (Iris, Sonar and 

Wine) the binary discretization have led to loss of information. This indicates that 

converting numeric attributes to binary intervals might be too rough.  

It should be noticed that while the 10-interval discretization increases the search 

space, there is minimal affect on the final classifier complexity (measured by the 

number of leaves). This supports the observation that CPOM with grouping usually 

creates compact trees.  

 

Table 6: Comparison of the accuracy measures, when using 10-interval discretization, 5-interval 
discretization and binary discretization 

Two Intervals Five Intervals Ten Intervals 
Dataset 

Accuracy # leaves Accuracy # leaves Accuracy # leaves 

Australian 88.68±3.51 3 86.80±3.12 2 87.24±3.96 6 
Breast Cancer 96.56±1.72 6 97.27±1.91 13 97.42±1.16 1 

Iris +
76.53± 4.7 1 94.65± 5.72 2 96±  6  2 

Labor 94.65±3.95 2 95.12±5.03 3 94.73±4.61 2 
Letter 78.75±0.82 1 76.74±0.66 10 77.70±0.64 25 
Sonar +

69.44±7.53 1 76.21±6.34 2 76.44±7.62 2 
Wine +

89.27±5.12 1 +93.79±2.91 1 96.62±3.35 1 
Zoo 95.04±5.05 5 95.04±5.05 5 95.04±5.05 5 

 
5.9 THE PERFORMANCE ACROSS VARIOUS METHODS: RESULTS 

AND DISCUSSION 

When comparing the number of leaves, the various CPOM implementations obtained, 

it can be seen that the simpler the embedded classification method, the greater the 

number of leaves. More specifically, with naive Bayes, the average number of leaves 
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is 7.1, while with backpropagation this average drops to 4.3. Moreover, the simpler 

the embedded method, the greater the potential contribution of CPOM to the overall 

accuracy (in naive Bayes, CPOM improved the accuracy by about 4%, but in 

backpropagation it improved the accuracy by only about 2%). In general, therefore, 

one should consider using CPOM, when the base classification method is relatively 

weak.  

Moreover, we have examined the correlations between the accuracy-gain of 

using the various decision-tree ISD methods. The accuracy gain of a certain decision- 

tree ISD method, with respect to a certain dataset, is defined by dividing the accuracy 

estimation of the method over the dataset, by the accuracy estimation of the embedded 

method alone over the same dataset. Table 6 presents the correlation coefficients 

between the accuracy-gains. A high correlation (a value near 1.0) between two 

methods indicates that the two methods are consistent over the datasets. The table 

provides some interesting insights: the neural network-based methods are strongly 

correlated with one another and the naive Bayes methods are strongly correlated with 

one another. This may suggest that the effectiveness of decision-tree ISD methods 

depends more on the base inducer algorithm than on the dataset characteristics 

(although the correlation between CPOM-C4.5 and CPOM-NB cannot be neglected).  

 

Table 6: Performance correlation coefficients across decision-tree ISD methods. The 
performance is measured in terms of the accuracy-gain 

 NBTree CPOM-NB HDT CPOM-NN 
CPOM-

C4.5 
NBTree 1.00     

CPOM-NB 0.82 1.00    
HDT -0.03 -0.23 1.00   

CPOM-NN -0.05 -0.24 0.90 1.00  
CPOM-C4.5 0.34 0.66 -0.20 -0.27 1.00 

 
 
5.10 THE CAPABILITY OF CPOM TO DIFFERENTIATE BETWEEN 

POPULATIONS  

This section demonstrates an interesting ability of the CPOM algorithm: identifying 

different populations within the underlined datasets. For the purpose of this 

subsection, three synthetic datasets were created. In the first dataset we have merged 

the three Monk datasets into a single dataset, and added an additional attribute 

(denoted by a7) which indicates on the original Monk dataset (i.e., an instance in 
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which a7=i belongs to the dataset monk-i, for i=1,2,3). The Monk datasets are suitable 

to this experiment because they all have the same input attributes, but the target 

attribute represents a completely different function. The selection of the new a7 

attribute in the root of the decision-tree is the indication for the correct instance-space 

decomposition. The second syntactic dataset (denoted as Art1) consists of 10 Boolean 

input attributes a1-a10, and a Boolean target attribute. The target attribute was set 

according to: 

If a1=0, Y=(a2∧a3∧a4) ∨ (a5∧a6∧a7) ∨ a10 

Else (If a1=1), Y=(¬a2∧a3∧a8) ∨ (¬a5∧a6∧a9) ∨ (¬a10). 

The attributes a2 – a10 were drawn from a uniform distribution. The dataset consists of 

400 records, while in exactly 200 (randomly selected) instances, a1 was set to 0, and 

in the remaining instances a1=1. The third dataset (denoted as Art2) consists of 1000 

records, and 10 input attributes. Nine of the input attributes were Boolean (a2–a10), 

and the remaining attribute (a1) had 4 possible values. The target attribute was set 

according to: 

If a1=1, Y=(a2∨a3) ∧ (a4∨a5) ∧ a10, 

If a1=2, Y=(¬a2∨a3) ∧ (a6∨a7) ∧ (¬a10), 

If a1=3, Y=(a6∨¬a8) ∧ (¬a6∨a7) ∧ a4. 

If a1=4, Y=(¬a6∨a8) ∧ (¬a9∨a10) ∧ a4. 
 

Table 7 presents the accuracy estimations of CPOM, with the three embedded 

classification methods, over the three synthetic datasets. Each accuracy measure is 

compared to the accuracy which was obtained by executing the embedded method 

alone (without wrapping it by CPOM.) The table presents some interesting insights. It 

can be seen that the CPOM has improved the accuracy, relative to the embedded 

method, in all the datasets. In the C4.5 and naive Bayes implementations, this 

improvement is statistically significant in all the datasets. Moreover, when analyzing 

the tree structures that the CPOM implementations obtained, it was seen that CPOM 

tended to succeed in selecting the differentiating attribute at the root node. For 

example, in the case of the "Monk-All" dataset, the attribute a7 has been selected at 

the root node in 26 of the 30 executions (10 folds times 3 embedded methods). All the 

four executions, in which the attribute a7 has not been selected at the root node, 

occurred when the embedded method was backpropagation.  It may be interesting to 

note that in the single decision-tree that was obtained by the simple C4.5 algorithm,  
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the attribute a7 was selected at the root node in only three of the ten executions. This 

observation probably explains why C4.5 has not succeeded in obtaining accuracy 

measures comparable to those of CPOM-C4.5.  

  

Table 7: The CPOM performance on the datasets with the contrast populations 

Datasets Classification Method 
Monk-All Art1 Art2 

Simple NB +67.08 ±3.59 +58.81±0.02 +70.67±0.03 Naive Bayes 
CPOM-NB 77.58±4.23 88.72±0.01 79.53±0.04 
Simple Backprop.  96.93 ±1.91 +92.38±0.08 94.11±0.05 Neural Network 
CPOM-NN 97.10±1.92 97.35±0.02 94.23±0.04 
Simple C4.5 +80.47 ±2.56 +81.51±0.06 +91.24±0.05 Decision-tree 
CPOM-C4.5 85.35±2.89 96.92±0.01 94.26±0.04 

 
 
6 CONCLUSION 

This paper introduced a decision-tree framework for instance-space decomposition 

(DFID) – an automatic, general, decision-tree based framework for instance-space 

decomposition and contrasted populations miner (CPOM) – an implementation of the 

DFID framework that uses a new splitting rule, termed grouped gain-ratio. DFID 

recursively partitions the underlined instance-space according to the values of the 

explained attributes until some pre-determined stopping rules are met. Subsequently, 

for each subspace that was formed by the partition, a unique classifier is attached 

using an embedded classification method. The CPOM algorithm implements the 

DFID framework by incorporating a new splitting rule, termed grouped gain-ratio. In 

the grouped gain-ratio, an attribute is first selected according to the gain-ratio 

criterion. Thereafter, a greedy grouping heuristic groups-together similar subspaces 

that correspond to different values of the selected attribute.   

With datasets that were manually selected from the well-known UCI Machine 

Learning repository, CPOM improved the obtained accuracy compared to the 

examined embedded methods (naive Bayes, backpropagation and C4.5). CPOM has 

been found to be more accurate than other decision-tree ISD methods. Moreover, the 

grouping heuristic was shown to significantly improve the accuracy results, compared 

to a variation of CPOM which does not group. Finally, using three synthetic datasets, 

CPOM was able to distinguish between different populations in an underlined dataset. 
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As to future research, the CPOM algorithm can be extended in various ways. An 

essential part of the algorithm lies in grouping together similar instance subspaces. 

The grouping heuristic in this paper was based on the cross-inspection procedure (see 

Figure 2). We suggest examining different heuristics, for determining what similarity 

is. In addition, it is well-known that the accuracy of decision-trees can benefit from a 

pruning capability. The fact that the proposed algorithm has no pruning capabilities is 

considered to be a limitation. Thus the algorithm should be extended to include such a 

capability. Moreover, due to the explosive increase of data volumes, incremental 

(online) learning has become a very important capability in machine learning 

methods, which are designed for solving real-world problems. Developing an 

incremental version of CPOM is not necessarily simple, because it requires 

incremental adaptation of the hierarchical structure as well as incremental adaptation 

of the inner-classifiers. Additional issues to be further studied include examining how 

the proposed algorithm can be implemented using other classification methods, such 

as support vectors machines or Bayesian networks. Along with improving the 

practical framework, a further theoretical investigation is required in order to better 

understand under what circumstances the proposed approach is advantageous. 
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