
1

Decision-Tree Instance-Space Decomposition with Grouped Gain-

Ratio

Shahar Cohen1, Lior Rokach2, Oded Maimon1
1Department of Industrial Engineering, Tel-Aviv University

2Department of Information Systems Engineering, Ben-Gurion University of the
Negev

SHAHARCO@POST.TAU.AC.IL, LIORRK@BGU.AC.IL, MAIMON@ENG.TAU.AC.IL

Abstract

This paper examines a decision-tree framework for instance-space decomposition.

According to the framework, the original instance-space is hierarchically partitioned into

multiple subspaces and a distinct classifier is assigned to each subspace. Subsequently, an

unlabeled, previously-unseen instance is classified by employing the classifier that was

assigned to the subspace to which the instance belongs. After describing the framework,

the paper suggests a novel splitting-rule for the framework and presents an experimental

study, which was conducted, to compare various implementations of the framework. The

study indicates that using the novel splitting-rule, previously presented implementations

of the framework, can be improved in terms of accuracy and computation time.

Keywords: Classification, Multiple-Classifier Systems, Instance-Space

Decomposition, Decision-Trees

1 INTRODUCTION

Classification is an important task in data mining and machine learning. Given a set of

training instances, the classification objective is to induce a classifier, that is, a

function that assigns instances to classes based on the realization of some explaining

attributes. The classification performance is typically measured in terms of accuracy.

Seeking to increase the classification performance, numerous authors have tackled the

classification task with multi-classifier methods. Sharkey ([34]) distinguished between

two basic multi-classifier methodologies: decomposition and ensemble.

2

Ensemble methods ([1], [2], [7], [9], [11], [14]) combine multiple classifiers in

order to obtain a more accurate and reliable result than when using just a single

classifier. In ensemble methods, each classifier is typically trained on data, selected or

sampled, from a single, common dataset. Since the training sets are taken from a

common dataset, each classifier can entirely solve the original problem.

In the decomposition methodology ([21]), on the other hand, the single

classifiers cannot provide a solution to the original problem and the classification

requires the combination of all the classifiers. From a different perspective,

decomposition can be seen as a methodology that breaks down a classification

problem into multiple sub-problems, solves each sub-problem with a unique classifier,

and then combines the sub-solutions. In contrast to the ensemble methodology, the

sub-classifiers solve the sub-problems rather than the original problem. Combining

the multiple classifiers is central in both methodologies and an issue that several

authors have addressed ([13], [16], [22], [23], [38]). Decomposition methods can be

utilized for solving multi-class problems with binary classifiers ([10], [20], [33]).

Combining multiple binary classifiers, rather than using a single (multi-class)

classifier can reduce the overall computational complexity and allow the

incorporation of methods that are inherently binary (e.g., support vector machines).

Instance-Space Decomposition (ISD) is a specific approach to decomposition.

In ISD, the instance space of the original problem is partitioned into several

subspaces. A distinct classifier is assigned to each subspace. Subsequently, an

unlabeled, previously unseen instance is classified by employing the classifier that

was assigned to the subspace to which the instance belongs.

Kusiak ([19]) proposed three ISD strategies (although he did not use the term

ISD): object-content decomposition, decision-value decomposition and feature-value

decomposition. In these strategies, the partition is not induced automatically. Instead,

the analyst must determine the partition prior to the training phase. Brodley ([4])

proposed the model class selection (MCS) system. MCS fits different classifiers to

different subspaces of the instance space, by employing one of three classification

methods (a decision-tree, a discriminant function or an instance-based method). In

3

order to select the classification method, MCS uses the characteristics of the

underlined training-set, and a collection of expert rules. Brodley's expert-rules were

based on empirical comparisons of the methods' performance (i.e., on prior

knowledge). In the neural-networks community, Nowlan and Hinton ([26]) examined

the mixture of experts (ME) approach, which partitions the instance space into several

subspaces and assigns different experts (classifiers) to the different subspaces. The

subspaces, in ME, have soft boundaries (i.e., they are allowed to overlap). A gating

network then combines the experts' outputs and produces a composite decision.

Jordan and Jacobs ([17]) extended ME by considering hierarchical partitions. ME

variations have been developed for solving specific-domain problems, such as speech

recognition ([12], [28]), time-series analysis ([36]), predicting the survival of AIDS

patients ([27]) and handwriting recognition ([30]).

Decision-tree methods ([3], [29]) are frequently employed in classification

problems. In an approach, which we term decision-tree ISD, the partition of the

instance-space is attained by a decision-tree. Along with the decision-tree, a decision-

tree ISD method employs another classification method, which classifies the tree's

leaves (the tree's leaves represent the different subspaces). Namely, decision-tree ISD

methods produce decision-trees, in which the leaves are assigned with classifiers

rather than with simple class-labels. When a non-decision-tree method produces the

leaves' classifiers, the composite classifier is sometimes termed a decision-tree hybrid

classifier. The term decision-tree hybrid classifier is, however, used also in a broader

context, such as in the case where a sub-classification method makes the decisions

regarding the growth of the tree and its pruning ([31]). There are two basic techniques

for implementing decision-tree ISD. The first technique is to use some decision-tree

method to create the tree and then, in a post-growing phase, to attach classifiers to the

tree's leaves. The second technique is to consider the classifiers as part of the tree-

growing procedure. Potentially, the latter technique can achieve more accurate

composite classifiers. On the other hand, it usually requires more computationally-

intensive procedures.

4

Carvalho and Freitas ([5]) proposed a hybrid decision-tree\genetic-algorithm

classifier, which tackles decision-tree ISD with the first technique. Their method

grows a decision-tree and assigns some of the leaves with class labels and the others

with genetic-algorithm classifiers. The leaves that are assigned with the classifiers are

the ones that have a small number of corresponding instances. A previously unseen

instance is subsequently either directly assigned with a class label or is sub-classified

by a genetic-algorithm classifier (depending on the leaf to which the instance is

sorted). Zhou and Chen ([40]) suggested a method, called hybrid decision-tree (HDT).

HDT uses the binary information gain-ratio criterion, to grow a binary decision-tree,

in an instance-space that is defined by the nominal explaining-attributes only. A feed-

forward neural network, subsequently classifies the leaves, whose diversity exceeds a

pre-defined threshold. The network uses the ordinal explaining-attributes only.

In this paper, we focus on the second decision-tree ISD technique, which

considers the classifiers as part of the decision-tree’s growth. Employing this

technique, Kohavi ([18]) proposed NBTree, a method which produces a decision-

tree\naive-Bayes hybrid classifier. In order to decide when to stop the recursive

partition of the instance-space (i.e., stop growing the tree), NBTree compares two

alternatives: partitioning the instance-space further on (i.e., continue splitting the tree)

versus stopping the partition and producing a single naive-Bayes classifier. The two

alternatives are compared in terms of their error estimations, which are calculated by a

cross-validation procedure. Naive-Bayes classification, by itself, is very efficient in

terms of its processing time. However, using cross-validation significantly increases

the overall computational complexity. Although Kohavi has used naive-Bayes, to

produce the classifiers, other classification methods are also applicable. However, due

to the cross-validation estimations, NBTree becomes computationally expensive for

methods that are more time-consuming than naive-Bayes (e.g., neural networks).

Although different researchers have targeted decision-tree ISD, there is still no

algorithmic framework that is common to all the decision-tree ISD methods. An

algorithmic framework helps the analyst to focus on the specific characteristics that

differentiate one method from another and to compare different methods. This paper

5

describes a simple framework for decision-tree ISD, termed decision-tree framework

for instance-space decomposition (DFID). The framework hierarchically partitions the

instance-space using a top-down (pruning-free) decision-tree procedure. Various

implementations of DFID use different stopping-rules, split-validation examinations

and splitting-rules. Our work aims to improve the quality of currently available

decision-tree ISD methods. We suggest a novel DFID method that can reduce the

processing time while keeping the composite classifier accurate. The new method is

termed contrasted populations miner (CPOM). CPOM uses a novel splitting-rule,

termed grouped gain-ratio. Grouped gain-ratio combines the well-accepted gain-ratio

criterion with a heuristic grouping procedure. An experimental study shows that the

proposed method outperforms previous decision-tree ISD methods (NBTree and

HDT).

The rest of this paper is organized as follows: Section 2 formally defines the

objective of ISD. Section 3 describes the DFID algorithmic framework. Section 4

proposes the novel splitting-rule and describes the CPOM algorithm. Section 5

describes the experimental study and discusses the study's results. Finally, Section 6

concludes the work and suggests issues for future research.

2 THE OBJECTIVE OF ISD

We begin this section by presenting our main notations. Consider the training set

S={<x1,y1>,<x2,y2>,…,<xn,yn>}, where the jth instance (for some j∈{1,…,n}) consists

of xj, a vector of the concrete values of the k explaining attributes, A1, A2,…, Ak, and

yj, the instance's class relation (label). There are M possible classes, which are denoted

by c1, c2,…, cM. We are only considering discrete explaining attributes, and we denote

the possible d(i) values that the attribute Ai can receive by ai,1, ai,2,…,ai,d(i). The set of

these possible values is called the domain of Ai, and is denoted by dom(Ai). The

instance-space, denoted by X, is defined by X=dom(A1)×dom(A2)×…×dom(Ak).

Classification methods are trained to produce classifiers, based on a training set. Let I

be a classification method, and H=I(S) the classifier (hypothesis) that was produced

by training I based on S. Given an instance x∈X, the classifier returns a class relation

6

H(x)∈{ c1, c2,…, cM}. Many classification methods produce classifiers that return a

vector of M probability estimations, describing the likelihood that the classifier

associates with the M possible class relations. However, we assume that all the

classifiers return a crisp class-relation. Crisp classification can be potentially gained

through maximization over the probability estimations.

An instance-space partition breaks down X into multiple (mutually-exclusive

and collectively-exhaustive) subspaces X1, X2,…, XL. This definition of instance-space

partition does not impose any restrictions on its structure. This paper, however,

focuses on hierarchical partitions that can be represented by a univariate decision-tree.

An ISD method receives S and I; finds an instance-space partition; and returns a

composite classifier, that is, a classifier that classifies instances from Xl (for some

l∈{1,2,…,L}) according to the classifier I(Sl), where Sl is the subset of the training

instances from S that belong to Xl. The objective of ISD is to find an optimal instance-

space partition. Three optimality criteria are considered in this work: generalized

accuracy (which is estimated by the proportion of test instances that are classified

correctly by the composite classifier); time-complexity; and comprehensibility (which

is measured by the number of leaves in the composite classifier).

3 DFID: A DECISION-TREE FRAMEWORK FOR ISD

Implementations of the new decision-tree framework for instance-space

decomposition (DFID) consist of a decision-tree (as a wrapper) and another embedded

classification method (this method can, in principle, also be a decision-tree). The

embedded classification method generates the multiple classifiers for the tree's leaves.

The DFID sequence is illustrated by the pseudo code in Figure 1. DFID's inputs are:

training instances; a list of attributes (which will be examined as candidates for

splitting the decision-tree); a classification method; and optionally (depending on the

specific implementation), some additional parameters.

The procedure begins by creating the decision-tree's root node. The root

represents the entire instance-space X. When constructed, each node is attached with a

7

rule, which defines the subspace of X that the node represents. The DFID framework

considers rules that can be expressed in a conjunctive normal form. A rule may be, for

example: "(A1=3 ∨ A1=4) ∧ A2=1". DFID then checks whether there should be a split

from the root node (i.e., whether X should be partitioned). This check, which is done

using some stopping-rules, is represented, in Figure 1, by the general function

check_stopping_rule. The function receives some inputs (depending on the

specific implementation) and returns a Boolean value that indicates whether the

stopping-rules are met. If the stopping-rules are met, then I is trained using all of the

training instances, the classifier that results, is attached to the root node, and the

procedure terminates. If however, the stopping-rules are not met, then DFID searches

for a split, according to some splitting-rule, represented, in Figure 1, by the general

function split. Splits in DFID are based on the values of a certain candidate

attribute. We assume that there exists at least a single attribute that can create a split

(or otherwise the stopping-rules would have indicated that there should be no more

splits).

The function split receives a training set, a set of candidate attributes and

optionally some additional inputs, and returns the attribute, on which values the split

is based, and a set of descendents nodes. Recall that upon its creation, each node is

attached with a rule, which defines the subspace of X that the node represents. The

rules for the descendent nodes are conjunctions of the root's rule and restrictions on

the values of the selected attribute. The split that was found may be then subjected to

a validation examination, represented, in Figure 1, by the general function

validate. If a split is found to be invalid, then DFID will search for another split

(another attribute). If there are no more candidate attributes, I will be trained using all

the training instances, and the classifier that results will be attached to the root node.

As soon as a valid split is found, the descendent nodes that were created by the split

are recursively considered for further splits. Further splits are achieved by the

recurrence of DFID. In the recurrence, only a subset of the training instances is

relevant (the instances that are actually sorted to the certain descendent node). In

addition, the attribute, which defined the current split, is removed from the list of

8

candidate attributes. The descendents are finally linked to their parent (the root).

Different DFID implementations may differ in all or some of the procedures that

implement the three main framework's components – stopping-rules (the function

check_stopping_rule), splitting-rules (the function split) and split

validation examinations (the function validate).

3.1 STOPPING-RULES

Stopping-rules are checked by the general function check_stopping_rule

(Figure 1). However, it should be noticed that a negative answer by this function is

not the only condition that stops the DFID recurrence; another, and even more natural,

condition, is the lack of any valid split.

NBTree ([18]) uses a simple stopping-rule, according to which no splits are

considered, when there are 30 instances or less in the examined node. Splitting a node

with only few training instances will hardly affect the final accuracy and will lead, on

the other hand, to a complex and less comprehensible decision-tree (and hence a

complex and less comprehensible composite classifier). Moreover, since the

classifiers are required to generalize from the instances in their subspaces, they must

be trained on samples of sufficient size. Kohavi's stopping-rule can be revised to a

rule that never considers further splits in nodes that correspond to β|S| instances or

less, where 0<β<1 is a proportion and |S| is the number of instances in original

training set, S. When using this stopping rule (either in Kohavi's way or in the revised

version), a threshold parameter must be provided to DFID as well as to the function

check_stopping_rule. Another heuristic stopping-rule is never to consider

splitting a node, if a single classifier can accurately describe the node's subspace (i.e.,

if a single classifier which was trained by all of the training instances, and using the

classification method appear to be accurate). Practically, this rule can be checked by

comparing an accuracy estimation of the classifier to a pre-defined threshold (thus

using this rule requires an additional parameter). The motivation for this stopping-rule

is that if a single classifier is good enough, why replace it with a more complex tree

9

that also has less generalization capabilities. Finally, as mentioned above, another

(inherent) stopping-rule of DFID is the lack of even a single candidate attribute.

3.2 SPLITTING-RULES

The core question of DFID is how to split nodes. The answer to this question lies in

the general function split (Figure 1). It should be noted that any splitting-rule that

is used to grow a pure decision-tree, is also suitable in DFID. In Section 4 we propose

a novel splitting rule, which combines the well-known gain-ratio splitting rule with a

grouping heuristic.

Kohavi ([18]) has suggested a new splitting-rule, which is to select the attribute

with the highest value of a measure, which he referred to as the "utility". Kohavi

defined the utility as the 5-fold cross-validation accuracy estimation, of using a naive-

Bayes method for classifying the subspaces, which will be generated by the

considered split.

3.3 SPLIT VALIDATION EXAMINATIONS

Since splitting-rules, are heuristic, it may be beneficial to regard the splits they

produce as recommendations that should be validated. Kohavi ([18]) validated a split

by estimating the reduction in error, which is gained by the split, and comparing it to a

predefined threshold of 5% (i.e., if it is estimated that the split will reduce the overall

error rate by only 5% or less, the split is regarded as invalid). In an NBTree, it is

enough to examine only the first proposed split in order to conclude that there are no

valid splits, if the one examined is invalid. This follows since in an NBTree, the

attribute according to which the split is done, is the one that maximizes the utility

measure, which is strictly increasing with the reduction in error. If a split, in

accordance to the selected attribute cannot reduce the accuracy by more than 5%, then

no other split can.

This work suggests a new split validation procedure. More details are provided

in Section 4, but in very general terms, a split according to the values of a certain

10

attribute is regarded as invalid, if the subspaces that result from this split are similar

enough to be grouped together.

DFID (S,A,I)

Get

 S – a training set

 A – a set of candidate input attributes

I – a classification method

Return

 A classifier

Create a tree with a root node;

IF check_stopping_rule(S,A,I)check_stopping_rule(S,A,I)check_stopping_rule(S,A,I)check_stopping_rule(S,A,I)

Attach the classifier I(S,A) to the root;

ELSE

A*�A;

valid�FALSE

WHILE A*≠∅ and NOT(valid)

(split_att,nodes)�split(S,A*)split(S,A*)split(S,A*)split(S,A*);

IF validate(nodes,split_att,S)validate(nodes,split_att,S)validate(nodes,split_att,S)validate(nodes,split_att,S)

valid�TRUE;

A�A \ split_att;

FOR each node ∈ nodes

node_instances�the instances that belong to node;

attach the classifier DFID(node_instances,A,I) to

node;

link node to root;

END FOR

ELSE

A*�A* \ split_att;

END IF

END WHILE

IF NOT (valid)

Attach the classifier I(S,A) to the root;

END IF

END IF

RETURN tree;

Figure 1: DFID outline. A DFID implementation recursively partitions the instance space of
the training set, according to the values of the candidate attributes. As the recursive partition
ends, classifiers are attached to the leaves, by employing the embedded classification method.

11

4 THE CPOM ALGORITHM

This section presents a new DFID implementation, termed contrasted population

miner (CPOM), which splits nodes according to a novel splitting-rule, termed grouped

gain-ratio. Generally speaking, this splitting-rule is based on the gain-ratio criterion

([29]), followed by a grouping heuristic. The gain-ratio criterion selects a single

attribute from the set of candidate attributes, and the grouping heuristic thereafter

groups together subspaces, which correspond to different values of the selected

attribute.

4.1 CPOM OUTLINE

CPOM uses two stopping-rules. First, the algorithm compares the number of training

instances to a pre-defined ratio of the number of instances in the original training-set.

If the subset is too small, CPOM stops (since it is undesirable to learn from a too

small training subset). Secondly, CPOM compares the accuracy estimation of a single

classifier to a pre-defined threshold. It stops if the accuracy estimation exceeds the

threshold (if a single classifier is accurate enough, there is no point in splitting further

on). Therefore, in addition to the inputs in Figure 1, CPOM must receive two

parameters: β, the minimal ratio of the training instances and acc, the maximal

accuracy estimation, that will still result in split considerations.

CPOM's split validation procedure is directly based on grouped gain-ratio. The

novel rule is described in detail, in the following subsection; however, in general

terms, the rule returns the splitting attribute and a set of descendent nodes. The nodes

represent subspaces of X that are believed to be different. If the procedure returns just

a single descendent node, the split it has generated is regarded as invalid.

4.2 THE GROUPED GAIN-RATIO SPLITTING-RULE

Grouped gain-ratio is based on the gain-ratio criterion ([29]), followed by a grouping

heuristic. The gain-ratio criterion selects a single attribute from a set of candidate

attributes. The instance-subspace, whose partition we are now considering, may, in

12

principle, be partitioned so that each new sub-subspace will correspond to a unique

value of the selected attribute. Group gain-ratio avoids this alternative, through

heuristically grouping sub-subspaces together. By grouping sub-subspaces together,

grouped gain-ratio increases the generalization capabilities, as there are more

instances in a group of sub-subspaces than there are in the individual sub-subspaces.

Before introducing the grouping heuristic, we provide some intuition. During

each split, we are considering a node of the decision-tree, which represents an

instance-subspace, and have an associated subset of the original training set. For

expository reasons we will focus on the split from the tree's root (that is, we assume

that we are searching for a split that will partition the entire instance-space X into

several subspaces). The following intuition can be applied to the non-root nodes of the

tree as well. Let us further assume that there will be a single split at most (i.e., we

either split the root node and attach classifiers to its descendants, or we attach a single

classifier directly to the root). If we decide to split, it means that there are several

subspaces of X that will be assigned with different classifiers. The only reason for us

to prefer this alternative is if we believe that the entire set, S, cannot be accurately

described by the single classifier I(S), and we think that it is better to train I

separately, on the training subsets that correspond to the subspaces of X. Clearly, if we

separately train I on each subset and obtain the same exact classifier from each subset,

then there is no point in the split, since using this single classifier for the entire

instance-space is as accurate as using the multiple classifiers; it is also much simpler

and understandable, and it can generalize better. The other direction of this argument

is slightly less straightforward. If the classifiers that were trained over the training

subsets are very different from one another, then none of them can classify X as one,

and we may believe that the split is beneficial. Based on this observation, the grouped

gain-ratio splitting-rule groups together subspaces that have similar classifiers.

The intuition regarding the classifier comparisons raises questions of what is

similar, what is different and how to compare classifiers? Although there may be

multiple classifiers, all of which must be simultaneously compared to each other, we

begin answering these questions with the simpler case of exactly two classifiers, using

13

a comparison heuristic, which we refer to as cross-inspection (see Figure 2). Cross-

inspection is based on two mutually-exclusive training subsets and a classification

method as inputs. The comparison begins by randomly partitioning each subset into a

training sub-subset and a test sub-subset. Then, two classifiers are produced, by

training the input method, once over each training sub-subset. After producing the two

classifiers, the cross-inspection heuristic calculates the error rates of each classifier

over each of the test sub-subsets. If the error rate of the first classifier over the first

test sub-subset is significantly (with confidence level alpha) different from the error

of the first classifier over the second test sub-subset, or vice versa, then the two

classifiers are regarded as different. As Dietterich suggests ([6]), the errors are

compared by testing the hypothesis that the errors are generated by the same binomial

random variable. The confidence level of alpha=0.01 was used throughout this

paper.

The cross-inspection heuristic compares only two distinct classifiers. However,

in the DFID framework more than two classifiers must be compared at a time (if the

attribute, which was selected by the gain-ratio criterion, has more than two possible

values). For example, if it is believed that graduate students from different schools

behave differently, one may consider splitting according to the school's name. The

attribute 'school' can receive multiple values, all of which will have to be compared

simultaneously. A successful split will group similar schools together, while different

schools will be in different groups. Since an exhaustive search, over all the possible

groupings, is unacceptable in terms of complexity, grouped gain-ratio (see Figure 3)

uses a greedy grouping heuristic, which is based on cross-inspection. The procedure

begins by using cross-inspection, to compare all the distinct pairs of classifiers (if

there are q classifiers, there are q(q-1)/2 comparisons). For each instance-subspace,

the procedure computes the number of instances that belong to subspaces that are

similar to it (by definition the similarity by cross-inspection is defined with regard to

classifiers rather than subspaces; each subspace, however, is described by a classifier).

The classifier that represents the subspace with the largest such number is regarded as

the classifier that covers the maximal number of instances. The subspaces of all the

14

instances which are covered by this classifier are grouped together, and the procedure

iterates. The greedy aspect in grouped gain-ratio is similar to the considerations that

Harries and Horn presented ([15]). The heuristic does not explicitly guarantee that any

two classifiers in a group are equivalent, but equivalence is assumed to be a transitive

relation. The greedy grouping procedure is a simple clustering method and other

clustering methods, like graph coloring ([41]) may also be suitable here. Alternatively

one could use the Warshall algorithm ([35]) for finding the transitive closure of the

comparison matrix, which can be used for calculating supj. However, this form of

calculation will not be convenient in this case because it will tend to group too much

as it is illustrated in the following example.

We demonstrate grouped gain-ratio with a simple example. Assume that we are

considering a split from the root node, and that the gain-ratio criterion has selected the

attribute A1, which has six possible values. The training set S is consequently

partitioned into six mutually-exclusive subsets, and the embedded classification

method is trained six times, once over each subset. The six classifiers that result are

then compared in pairs, and each pair is marked as either similar or different. Let the

result of this comparison be as described by Figure 4 (A) (notice that each classifier is

by definition equivalent to itself), and assume that the six subsets, corresponding to

a1,1 through a1,6, have 100, 120, 150, 90, 80 and 200 instances respectively. The

classifier, which was trained on the first subset, therefore covers 100+150+200=450

instances. In the same way, the remaining classifiers cover 320, 450, 170, 170 and 570

instances respectively. Therefore, the instance-subspace, which is associated with the

classifier that covers the maximal number of instances, is the subspace in which

A1=a1,6. Grouped gain-ratio will group this subspace with the subspaces in which

A1=OR(a1,1, a1,2, a1,3). Since the two subspaces that remain can be seen to have

equivalent classifiers, there will be another group, and the split will be as in Figure 5.

Notice that the subspaces in which A1=a1,2 and A1=a1,3 were grouped together

although their corresponding classifiers were marked as non-equivalent. In this

example, using the transitive closure will leads to the same results. However, If the

comparison matrix looked like in Figure 4 (B) (notice that the only difference between

15

the two matrices is in the cell a1,3-a1,6) then the six classifiers would have covered

450, 320, 150, 170, 170 and 420 instances respectively. Consequently, there would

have been three subgroups: {a1,1; a1,3; a1,6} , { a1,2} and {a1,4; a1,5}. Notice however,

that the transitive closure, if used, would leads to the same results that were obtained

in the case of Figure 4 (A).

cross_inspection (S1,S2,I,alpha)

Get

 S1,S2 – mutually-exclusive training sets

I – a classification method

alpha – a confidence level

Return

 a Boolean value reflecting equivalence

S11 � a random sample from S1;

S12 � S1 \ S11;

S21 � a random sample from S2;

S22 � S2 \ S21;

H1 � I(S11);

H2 � I(S21);

FOR i,j∈{1,2}

εi,j � accuracy estimation of Hi over Sj,2;

END FOR

IF ε1,2 is different from ε1,1 with a confidence level alpha,

or ε2,1 is different from ε2,2 with confidence level alpha
return FALSE;

ELSE

return TRUE;

END IF

Figure 2: The cross-inspection procedure outline. The procedure compares the accuracy
estimations of two distinct classifiers, searching for statistical significance.

16

grouped_gain_ratio (S,A,I,root,alpha)

Get

 S – a training set

A – a set of candidate input attributes

I – a classification method

root – the node from which the split is considered

alpha – confidence level

Return

 split_att – the attribute that splits the current node

nodes – the set of nodes that results from the split

Ai � the attribute from A with the maximal gain-ratio;

S1,S2,…,Sd(i) � a partition of S, according to values of Ai;

FOR all j and k in {1,2,…,d(i)} so that j≤k

Ej,k � cross_inspection(Sj,Sk,I,alpha);

Ek,j � Ej,k;

END FOR

FOR all j ∈ {1,2,…,d(i)}

supj � the number of instances in the subsets Sk for which

Ej,k=TRUE;

END FOR

L � a list of the subsets indices sorted descending by supj;

nodes � an empty set of nodes

WHILE L is not empty

create a new node;

Attach the rule which is a conjecture of the root's rule

 and a disjoint of the values that correspond to Sj the

 first member of L and the members Sk for which Ej,k=TRUE;

Remove from L any member that is described by the new node;

Add node to nodes;

END WHILE

RETURN (Ai,nodes)

Figure 3: The grouped gain-ratio procedure outline. The procedure groups together similar
values of a candidate attribute. Similarity is based on the cross-inspection heuristic.

17

(A) (B)

Figure 4: An illustration of the pair-wise comparison results. √ represents equivalence and X
represents non-equivalence.

740 instances

570 instances 170 instances

A1=a1,1 or A1=a1,2 or

A1=a1,3 or A1=a1,6
A1=a1,4 or A1=a1,5

Figure 5: The split that results from grouped gain-ratio.

5 EXPERIMENTAL STUDY

A comparative experimental-study was carried out, using mainly benchmark data sets

(three synthetic datasets were handcrafted for the experiments in Section 5.10). The

primary objective of the study was to evaluate the potentials of the DFID framework,

and especially of the CPOM algorithm. The following subsections describe the

experimental set-up and discuss the obtained results.

18

5.1 THE EMBEDDED CLASSIFICATION-METHODS

The experimental study compared the performance of CPOM, when using the

following embedded classification methods: naive Bayes, backpropagation (to train

artificial neural networks) and C4.5. The naive Bayes method was chosen in order to

compare CPOM with NBTree, and backpropagation was chosen in order to compare

CPOM with the HDT algorithm. The C4.5 method was chosen because it is

considered to be a state-of-the-art decision-tree algorithm, and is widely used in many

other comparative studies.

All the experiments were made with the WEKA environment ([37]). The

experiments with C4.5 took place using J48, the Java version of C4.5. We have used

the NBTree implementation, which is included in WEKA for simulating Kohavi's

original work. We also implemented HDT in WEKA. The original implementation of

HDT has utilized a specific multi-layer, feed-forward neural-network named FANNC

([38]). However, in our implementation, we employed backpropagation, that is

already available in the WEKA environment, and which is more widely-used in the

literature. CPOM was, of course, also implemented in WEKA. In all the CPOM

executions, 95% was chosen as the maximal accuracy estimation that would still be

considered for further splits and the minimal training-subset size was chosen to be

one-fifth of the initial training-set size.

5.2 THE BENCHMARK DATASETS

All the compared methods were trained over 20 datasets, which were manually

selected from the UCI Machine Learning Repository ([24]). Although this

repository’s limitations for comparing algorithms are known ([32]), it is still

considered to be objective since the published results can be validated. The selected

datasets vary across several dimensions: the number of classes, the number of

instances, the number of explaining attributes and the type of attributes. Table 1

describes the datasets' characteristics.

19

Table 1: The datasets' characteristics

Dataset
No. of

Attributes
No. of

Instances
No. of Classes

% of Numeric
Attributes

Audiology 70 200 23 0
Australian 15 690 2 40

Breast Cancer 10 699 2 100
Car 7 1,728 4 0

Hayes-Roth 5 132 3 0
Iris 5 150 3 100

Labor 17 57 2 50
Led-17 25 220 10 0
Letter 17 15,000 26 100

Monk-1 7 124 2 0
Monk-2 7 169 2 0
Monk-3 7 122 2 0

Mushroom 22 8,124 2 0
Nurse 9 12,960 5 0
Sonar 61 208 2 100

Soybean 36 683 19 0
Tic-Tac-Toe 10 958 2 0

Vote 17 435 2 0
Wine 14 178 3 100
Zoo 17 101 7 12

The datasets went through a simple preprocessing stage. In this stage, missing

values were replaced by a distinctive value, and numeric attributes were made discrete

by dividing their original range into ten equal-sized intervals (or one per observed

value, whichever was least). Accuracy results could have been improved by using a

more robust way for treating the missing values (see for example [29]).

5.3 THE EVALUATION CRITERIA

The following list describes the evaluation criteria that were measured in each

execution of each of the evaluated methods.

i. The Generalized Accuracy

The generalized accuracy is the probability that an unlabeled, previously-unseen

instance will be classified correctly, by the output (possibly composite) classifier. In

order to estimate this probability, a 10-fold cross-validation procedure has been

20

implemented. In 10-fold cross-validation, the dataset is randomly partitioned into 10

disjoint, equal-sized subsets. Each subset is used once as a test set and nine times as

part of the training set. The partition (i.e., the same folds) was used in all of the

methods. Furthermore, a single-tailed paired t-test, with a confidence level of 95%,

was used in order to verify the statistical significance of the differences between the

accuracy estimations, of the examined methods.

ii. The Number of Leaves in the Composite Decision-Tree

The complication of the output-classifier was measured in terms of the total number

of leaves in the composite decision-tree. The lower this number, the simpler and

potentially more comprehensible and general is the composite classifier.

iii. The Overall Number of Sub-Classifiers that were Induced

This criterion indicates the number of times, in which the embedded classification

methods was trained, in order to produce the composite classifier. This criterion may

have a dramatic effect on the computational complexity. This effect is especially

important when the computational complexity of the embedded method is more than

linear (such as in the case of C4.5 or backpropagation).

iv. Execution Time

The execution time is the actual time (in seconds), required for producing the

composite classifier. We conducted all of our experiments on the following hardware

configuration: A desktop computer with an Intel Pentium 4-2.8GHz, Windows XP

operating system, and 1GB of physical memory.

5.4 CPOM WITH NAIVE BAYES: RESULTS AND DISCUSSION

Table 2-A compares the performance of CPOM, with naive Bayes as the embedded

classification method (CPOM-NB) to NBTree and simple naive Bayes. The results

indicate that the average accuracy of CPOM-NB (86.74%) is higher, by about 3%,

than the average accuracy of NBTree (83.75%), and by about 4% than the average

accuracy of simple naive Bayes (82.99%). Examining the statistical significance of

21

the results indicates that CPOM-NB is significantly more accurate than NBTree in

eight datasets, while NBTree shows significantly higher accuracy in only three

datasets. The "+" superscripts, next to some of the accuracy measures, in Table 2-A,

indicate that the accuracy of CPOM-NB was significantly higher (with a confidence

level of 5%) than the accuracy of the method under which the "+" is superscripted.

The "–" superscripts, similarly, indicate that the accuracy of CPOM-NB was

significantly lower.

Table 2-A also presents the number of leaf nodes in the composite classifier,

and the number of (inner) classifiers that were needed, as part of the construction of

this composite classifier. It should be recalled that the number of leaves is a way of

assessing the classifier's comprehensibility, and the number of inner-classifiers is a

way of assessing the computational complexity. The table indicates that CPOM-NB

required only 10% of the leaves and 2% of the inner classifiers, compared to NBTree.

The reduced number of inner-classifiers is partly due to the more compact trees that

CPOM-NB builds, but it is also (and probably mainly) due to the splitting rule that

NBTree uses. In order to select the attribute with the highest utility, NBTree estimates

the accuracies of all the possible splits, where each such split is evaluated using a 5-

fold cross-validation procedure. The number of inner-classifiers that are needed for

this splitting-rule becomes a significant burden when the number of attributes and

overall splits increases. CPOM, on the other hand, does not use cross-validation but

builds inner-classifier only for the attributes that are selected by gain-ratio splitting

criterion. The last observation is also supported by the actual execution time of the

two algorithms. The execution of CPOM-NB took, on average, only 13% of the time

that NBTree required.

We conclude that CPOM outperforms NBTree in all the important criteria:

accuracy, model complexity (as measured by number of leaves) and execution time.

The high number of inner-classifiers that NBTree produces implies that this method

may be impractical, when employed with more computational-intensive embedded

methods, such as neural networks. On the other hand, as subsequent sections

demonstrate, CPOM, can be used with other embedded methods.

22

The results also indicate that there was not a single dataset on which simple

naive Bayes was significantly more accurate than CPOM-NB. On the other hand,

CPOM-NB was significantly more accurate than naive Bayes in nine of the datasets.

In terms of the training time, naive Bayes is, clearly, faster than CPOM-NB.

However, we believe that the speed of CPOM is acceptable.

Table 2-B provides the root mean square error (RMSE) of the compared

methods. For every dataset, we provide both the RMSE of the training set and the

RMSE, which is based on 10-folds cross validation. The results indicate that on

average CPOM-NB obtains the best RMSE values (with a mean of 0.213685)

followed by NBTree (with a mean of 0.228955) and naive Bayes (with a mean of

0.25192). As expected in most of the cases the RMSE of the training set is smaller

than the RMSE calculated over the 10 folds cross validation. Nevertheless it can be

seen that the lowest difference between these two values is obtained for the naive

Bayes algorithm with a mean of 0.03187. The largest difference is obtained for the

NBTree algorithm with a mean of 0.08986. The mean difference obtained for the

CPOM-NB is 0.05561. These results can be explained by the complexity of the

classifier (that can be measured by the number of leaves presented in Table 2-A). As

the number of leaves increases, so does the RMSE difference.

23

Table 2-A: Comparison of CPOM-NB to NBTree and naive Bayes

NBTree CPOM-NB Naive Bayes

Dataset
Accuracy

leaves

inner-
classifiers

Execution time
(in sec.)

Accuracy

leaves
inner-

classifiers

Execution
time (in

sec.)
Accuracy

Execution time
(in sec.)

Audiology 72.5±3.16 27 7210 27.94 72± 5.84 14 247 1.92 +65.5±7.39 0.01
Australian 84.78±2.64 24 5620 4.72 87.24±3.96 6 606 0.49 84.93±2.7 0.01

Breast Cancer 96.56±1.46 28 2250 0.83 97.42±1.16 1 92 0.05 97.42±1.16 0.01
Car +85.30±0.92 1 105 0.3 93.92±0.74 8 90 0.13 +85.30±0.92 0.01

Hayes-Roth +67.42±7.11 10 225 0.32 77.27±8.56 4 54 0.06 81.06±9.61 0.01
Iris 94±5.17 4 220 0.14 96± 6 2 8 0.05 95.33±5.05 0.02

Labor +
87.71±4.73 3 510 0.44 94.73±4.61 2 32 0.01 92.98±4.52 0.01

Led-17 58.63±4.16 6 1815 4.27 60.90±5.12 8 28 0.22 63.18±8.7 0.01
Letter -81.13±0.82 916 52180 234.61 77.70±0.64 25 892 32.34 +73.29±1 0.13

Monk-1 +91.12±4.16 5 340 0.2 97.58±3.97 7 72 0.02 +73.39±6.7 0.01
Monk-2 58.58±2.21 6 420 0.34 59.53±5.43 4 57 0.03 +56.21±6.1 0.01
Monk-3 92.62±3.61 1 30 0.06 92.62±3.61 1 6 0.02 92.62±3.61 0.01

Mushroom -99.95±0.07 18 12420 9.02 99.37±0.17 10 262 1.12 +95.48±0.9 0.08
Nurse -95.92±0.96 139 45500 10.11 94.21±0.54 15 77 0.83 +90.26±0.49 0.05
Sonar +62.98±7.68 19 9000 17.95 76.44±7.62 2 772 4.21 75.48±7.3 0.02

Soybean +91.51±1.27 34 9500 55.61 93.41±1.49 18 122 0.24 91.95±1.99 0.02
Tic-Tac-Toe 75.67±5.82 51 2135 2.64 76.51±1.87 7 18 0.08 +69.27±3.2 0.01

Vote 94.06±3.24 35 4080 1.17 96.2 ±3.31 2 8 0.11 +90.34±3.44 0.01
Wine +93.44±5.69 10 1950 2.72 96.62±3.35 1 368 0.01 96.62±3.35 0.01
Zoo +91.08±6.25 8 540 0.42 95.04±5.05 5 36 0.03 +89.11±7 0.01

24

Table 2-B: Comparison of the RMSE of CPOM-NB, NBTree and naive Bayes

NBTree CPOM-NB Naive Bayes

Dataset RMSE
(Training

Set)

RMSE (10
Fold CV)

RMSE
(Training

Set)

RMSE (10
Fold CV)

RMSE
(Training

Set)

RMSE (10
Fold CV)

Audiology 0.1088 0.1447 0.1173 0.1359 0.1209 0.148
Australian 0.2065 0.348 0.2866 0.3271 0.3261 0.3363

Breast Cancer 0.1557 0.1704 0.1557 0.1593 0.1557 0.1593
Car 0.2218 0.2263 0.115 0.1577 0.2218 0.2263

Hayes-Roth 0.3114 0.3762 0.3021 0.3624 0.3066 0.3541
Iris 0.1251 0.1621 0.1268 0.1482 0.1495 0.155

Labor 0.0751 0.2961 0.1041 0.251 0.1532 0.2637
Led-17 0.1188 0.2413 0.1499 0.2294 0.1718 0.226
Letter 0.0674 0.1058 0.0881 0.126 0.1166 0.121

Monk-1 0.1447 0.2952 0.1399 0.2761 0.3836 0.4089
Monk-2 0.3368 0.5052 0.3905 0.4895 0.4711 0.5048
Monk-3 0.2644 0.2891 0.2644 0.2851 0.2644 0.2851

Mushroom 0.0106 0.006 0.0111 0.015 0.181 0.1853
Nurse 0.0893 0.1 0.117 0.1364 0.1762 0.1767
Sonar 0.0712 0.4655 0.2092 0.4361 0.2733 0.4425

Soybean 0.0543 0.0885 0.0641 0.0707 0.0765 0.0817
Tic-Tac-Toe 0.173 0.3152 0.2413 0.3073 0.423 0.4298

Vote 0.1552 0.183 0.1496 0.1669 0.2924 0.2992
Wine 0.0822 0.1643 0.0895 0.1326 0.0895 0.1326
Zoo 0.0478 0.0962 0.0393 0.061 0.0478 0.1021

5.5 CPOM WITH NEURAL NETWORKS: RESULTS AND DISCUSSION

Table 3 compares the performance of CPOM, with backpropagation as the embedded

method (CPOM-NN) to the performance of HDT and simple backpropagation.

Backpropagation was trained on 500 epochs and the number of hidden units that was

used in each dataset is described in Table 3. The results indicate that the average

accuracy of CPOM-NN is higher by about 1% (92.76%) than the average accuracy of

HDT (91.69%) and by about 2% from the average accuracy of a single neural network

(90.63%). Although the mean differences are relatively moderate, some of the per-

dataset differences are statistically significant. Specifically, CPOM-NN is

significantly more accurate than HDT in five datasets, and significantly more accurate

than a single neural network in eight datasets. On the other hand, HDT and a single

neural network were not found to be significantly more accurate than CPOM-NN in

any of the datasets.

The improved accuracy of CPOM-NN required an execution time that is, on

average, 14 times greater than the execution time of simple backpropagation. When

compared with the execution time of HDT, it can be seen that, on average, CPOM-NN

25

required an execution time that is four times greater than that of HDT. Notice that in

HDT the leaf-classifiers are trained in a post-growing phase (see the discussion on the

two decision-tree ISD techniques in Section 1). Still, there are four datasets, in which

HDT required more time than CPOM-NN.

Table 3 also presents the number of leaf nodes in the composite classifier and

the number of inner-classifiers that were needed, by the two methods. CPOM-NN

requires more than two times of inner-classifiers, than HDT requires. It should be

noted, again, that in HDT, the leaf-classifiers are trained only after the final tree

structure is decided upon. Moreover, not all leaves in HDT have a classifier (it

depends on the leaf-node's diversity). Thus the increased number of inner-classifiers

that CPOM-NN requires is not surprising. On the other hand, the table indicates that

CPOM-NN tends to build trees with fewer leaves. It can be seen that HDT on average

results in five times more leaves than CPOM-NN. Namely, CPOM-NN creates more

compact and comprehensible composite classifiers.

5.6 CPOM WITH DECISION-TREES: RESULTS AND DISCUSSION

At first sight it seems pointless to use CPOM with C4.5 as the embedded method

(CPOM-C4.5), since the result of this configuration is a pure decision-tree.

Nonetheless, this section describes experiments with CPOM-C4.5, with a twofold

motivation. First, CPOM-C4.5 can be seen as a kind of lookahead-based method for

producing decision-trees. Lookahead-based algorithms attempt to predict the

profitability of a split at some node by estimating the effect of this split on deeper

decedents of the node ([8], [25]). By using CPOM-C4.5, one actually examines the

effect of a certain split with the depth of at least two levels. The second motivation for

using CPOM-C4.5 can be explained by the grouped gain-ratio splitting rule that

suggests a new way to branch the tree. The combination of the new splitting rule

together with C4.5's splitting-rule extends the tree's search-space.

26

Table 3: Comparison of CPOM-NN to HDT and backpropagation

HDT CPOM-NN Backpropagation
Dataset

Accuracy

leaves
inner-

classifiers
Execution

time (in sec.)
Accuracy

leaves

inner-
classifiers

Execution
time (in sec.)

Hidden
Units

Accuracy
Execution

time (in sec.)
Audiology 95.11±3.22 31 12 8911.62 96.01±2.78 6 74 9798.06 47

 +93±1.22 203.52
Australian 85. 8±2.94 23 2 18.66 86.31±2.18 5 55 212.17 9 85.2±2.66 12.87

Breast Cancer 95.6±1.31 55 48 4720 95.28±1.16 3 621 6409.38 6 95.70±1.28 446.66
Car 99.25±0.44 131 35 966.05 99.25±0.44 4 18 562.14 6 99.65±0.35 91.92

Hayes-Roth 81.94±8.3 19 6 22.15 81.81±9.06 3 34 29.66 4 81.0±8.18 4.08
Iris +

93.98±4.72 4 1 5.91 96.1± 4.1 2 8 20.85 4 95.7± 3 .2 5.12
Labor +

93.71±4.73 3 1 24.11 96.48±3.83 4 42 294.82 10
 +93.9± 3.1 22.18

Led-17 55.71±1.77 35 35 152.08 56.71±1.17 8 102 432.59 18
 +50±0.96 20.63

Letter +89.5±4.38 9562 281 3996.72 96.2±1.73 8 45 1281.11 22
 +82.51±1.43 32.18

Monk-1 95.17±6.39 12 1 4.77 94.35±6.91 3 10 10.86 5 95.97±6.44 3.03
Monk-2 +96.16±0.93 18 2 8.61 100±0 1 3 9.51 5 100±0 4
Monk-3 92.62±3.61 9 0 0.61 91.95±9.28 3 8 10.38 5

 +89.34±6.19 2.97
Mushroom 100±0 23 7 25432.21 100±0 6 32 98471.95 12 100±0 7858.17

Nurse 99.32±0.37 355 66 41268.64 99.32±0.37 6 22 13268.64 7
 +98.76±0.42 949.64

Sonar +84.24±5.72 42 26 644.8 87.1±4.16 4 67 1121.58 32
 +84.14±3.84 62.19

Soybean 93.2±1.27 56 46 396.86 93.7±1.73 8 98 646.8 28 90.21±2.68 33.17
Tic-Tac-Toe 95.67±4.95 95 24 755.11 96.87±4.22 7 18 717.94 6

 +92.11±5.17 61.45
Vote 96.12±3.82 11 1 57.89 96.17±2.50 2 8 226.08 10 96±1.05 55.22
Wine 95.66±2.11 37 6 981.76 96.62±3.35 3 62 6712.09 9 94.44±3.22 228.69
Zoo 95.04±5.05 13 2 8.63 95.04±5.05 1 6 11.05 12 95.04±5.05 6.53

27

Table 4 compares the performance of CPOM-C4.5 with the performance of

simple C4.5. The table indicates that, on average, CPOM-C4.5 is almost 2% (85.07%)

more accurate than C4.5 (83.29%). It can be seen that in nine of the datasets the two

methods have obtained the same accuracy results. In all of these datasets, CPOM has

decided, in the light of the C4.5 inner-classifier's performance, not to split the

instance-space. In three out of the remaining 11 datasets, CPOM-C4.5 was

significantly more accurate than C4.5.

Table 4: Comparison of CPOM-C4.5 to C4.5

CPOM-C4.5 C4.5
Dataset

Accuracy

leaves
inner-

classifiers
Execution

time (in sec.)
Accuracy

Execution time
(in sec.)

Audiology 74±5.54 10 226 1.11 76±7.87 0.06
Australian 85.36±2.26 4 582 0.67 86.81±2.37 0.02

Breast Cancer 94.42±2.62 3 482 0.5 93.41±2.86 0.02
Car 94.1±0.97 7 35 0.2 +91.78±1.93 0.03

Hayes-Roth 78.79±9.21 3 34 0.14 +68.18±7.41 0.01
Iris 95.33±5.97 1 12 0.11 95.33±5.97 0.02

Labor 73.68±12.3 1 5 0.09 73.68±12.3 0.02
Led-17 61.81±3.14 1 8 0.36 61.81±3.14 0.03
Letter 73.45±0.67 1 21 16.8 73.45±0.67 1.19

Monk-1 98.39±3.77 2 15 0.13 +75±7.82 0.01
Monk-2 63.91±8.86 2 11 0.19 61.54±7.82 0.01
Monk-3 92.62±5.82 2 11 0.14 93.44±5.34 0.01

Mushroom 100±0 1 5 0.28 100±0 0.13
Nurse 97.43±0.31 1 4 0.52 97.43±0.31 0.41
Sonar 70.67±6.82 8 3967 3.33 71.15±8.74 0.11

Soybean 91.51±1.68 1 7 0.41 91.51±1.68 0.13
Tic-Tac-Toe 87.79±2.07 2 8 0.13 86.01±1.71 0.03

Vote 96.21±2.45 1 12 0.09 96.21±2.45 0.01
Wine 79.78±3.25 2 769 0.47 80.89±2.70 0.02
Zoo 92.08±6.57 1 4 0.08 92.08±6.57 0.05

5.7 MEASURING THE EFFECT OF THE GROUPING HEURISTIC

This section focuses on the contribution of the grouped gain-ratio splitting-rule and

the grouping heuristic, in particular. For this purpose we compared the performance of

CPOM-NB with that of a method which is similar to CPOM-NB, except for its

splitting rule. This second method, henceforth termed CPOM-NB with no grouping,

uses the simple gain-ratio splitting-rule (instead of grouped gain-ratio).

Table 5 compares the performance of the two methods. The table indicates that

the grouping heuristic tends to improve the accuracy of the composite classifier

28

(86.74% versus 83.81%). As a matter of fact, in none of the datasets does the gain-

ratio rule significantly outperform grouped gain-ratio. Thus, it is probable to assume

that the grouping heuristic is a beneficial (i.e., subspaces that are described by similar

classifiers should be grouped together).

The grouping heuristic has also a positive effect on the number of leaves and on

the execution time. Grouping makes the hierarchical structure more compact. More

specifically, the average number of leaves with the grouped gain-ratio rule was 7.1,

where the average number of leaves with the simple gain-ratio rule was 9.85. This

observation can be explained by the fact that without the grouping, one branch is built

for each distinct value of the splitting attribute. On the other hand, when grouping is

employed then one branch in the tree may represent several values.

Table 5: The Effect of grouping heuristic on the CPOM's performance

CPOM-NB - no Grouping CPOM-NB

Dataset
Accuracy

leaves

inner-
classifiers

Execution
time (in

sec.)
Accuracy

leaves

inner-
classifiers

Execution
time (in

sec.)
Audiology 71.80±4.84 28 129 0.78 72± 5.84 14 247 1.92
Australian 84.32±2.92 8 712 0.52 87.24±3.96 6 606 0.49

Breast
Cancer

+93.84±1.86 10 2250 0.83 97.42±1.16 1 92 0.05

Car +89.64±0.96 7 102 0.17 93.92±0.74 8 90 0.13
Hayes-
Roth

+64.39±9.43 13 96 0.15 77.27±8.56 4 54 0.06

Iris 96±6 2 8 0.05 96± 6 2 8 0.05
Labor 94.73±4.61 2 32 0.01 94.73±4.61 2 32 0.01
Led-17 61.81±7.22 8 32 0.25 60.90±5.12 8 28 0.22
Letter 77.70±0.64 25 892 32.34 77.70±0.64 25 892 32.34

Monk-1 +70.16±8.49 9 564 0.09 97.58±3.97 7 72 0.02
Monk-2 61.53±4.35 8 126 0.08 59.53±5.43 4 57 0.03
Monk-3 92.97±3.57 1 6 0.02 92.62±3.61 1 6 0.02

Mushroom 99.28±0.23 12 326 1.56 99.37±0.17 10 262 1.12
Nurse +92.80±0.36 9 36 0.75 94.21±0.54 15 77 0.83
Sonar +70.19±9.09 28 328 12.62 76.44±7.62 2 772 4.21

Soybean 93.99±1.03 7 167 0.31 93.41±1.49 18 122 0.24
Tic-Tac-

Toe 78.70±1.43 7 45 0.25 76.51±1.87 7 18 0.08

Vote +91.03±3.32 7 12 0.13 96.2 ±3.31 2 8 0.11
Wine 96.01±4.24 1 368 0.05 96.62±3.35 1 368 0.01
Zoo 95.04±5.05 5 36 0.03 95.04±5.05 5 36 0.03

29

5.8 MEASURING THE EFFECT OF THE NUMBER OF INTERVALS

Recall that the numeric attributes, in all previous experiments, were made discrete by

dividing their original range into ten equal-sized intervals. The selection of the value

ten was arbitrary. In this section we examine the effect of the number of equal-sized

intervals on the performance of the CPOM-NB. Table 6 presents the performance

obtained, when using two intervals and five intervals, in all datasets that include

numeric attributes. The results indicate that the differences between 5 and 10 intervals

are usually negligible. Still, in the Wine dataset, the 10 intervals alternative has led to

a significantly better accuracy (based on a single-tailed paired t-test, with a confidence

level of 95%). The difference in accuracy is more remarkable when the 10-intervals

discretization is compared to binary discretization: in three datasets (Iris, Sonar and

Wine) the binary discretization have led to loss of information. This indicates that

converting numeric attributes to binary intervals might be too rough.

It should be noticed that while the 10-interval discretization increases the search

space, there is minimal affect on the final classifier complexity (measured by the

number of leaves). This supports the observation that CPOM with grouping usually

creates compact trees.

Table 6: Comparison of the accuracy measures, when using 10-interval discretization, 5-interval
discretization and binary discretization

Two Intervals Five Intervals Ten Intervals
Dataset

Accuracy # leaves Accuracy # leaves Accuracy # leaves

Australian 88.68±3.51 3 86.80±3.12 2 87.24±3.96 6
Breast Cancer 96.56±1.72 6 97.27±1.91 13 97.42±1.16 1

Iris +
76.53± 4.7 1 94.65± 5.72 2 96± 6 2

Labor 94.65±3.95 2 95.12±5.03 3 94.73±4.61 2
Letter 78.75±0.82 1 76.74±0.66 10 77.70±0.64 25
Sonar +

69.44±7.53 1 76.21±6.34 2 76.44±7.62 2
Wine +

89.27±5.12 1 +93.79±2.91 1 96.62±3.35 1
Zoo 95.04±5.05 5 95.04±5.05 5 95.04±5.05 5

5.9 THE PERFORMANCE ACROSS VARIOUS METHODS: RESULTS

AND DISCUSSION

When comparing the number of leaves, the various CPOM implementations obtained,

it can be seen that the simpler the embedded classification method, the greater the

number of leaves. More specifically, with naive Bayes, the average number of leaves

30

is 7.1, while with backpropagation this average drops to 4.3. Moreover, the simpler

the embedded method, the greater the potential contribution of CPOM to the overall

accuracy (in naive Bayes, CPOM improved the accuracy by about 4%, but in

backpropagation it improved the accuracy by only about 2%). In general, therefore,

one should consider using CPOM, when the base classification method is relatively

weak.

Moreover, we have examined the correlations between the accuracy-gain of

using the various decision-tree ISD methods. The accuracy gain of a certain decision-

tree ISD method, with respect to a certain dataset, is defined by dividing the accuracy

estimation of the method over the dataset, by the accuracy estimation of the embedded

method alone over the same dataset. Table 6 presents the correlation coefficients

between the accuracy-gains. A high correlation (a value near 1.0) between two

methods indicates that the two methods are consistent over the datasets. The table

provides some interesting insights: the neural network-based methods are strongly

correlated with one another and the naive Bayes methods are strongly correlated with

one another. This may suggest that the effectiveness of decision-tree ISD methods

depends more on the base inducer algorithm than on the dataset characteristics

(although the correlation between CPOM-C4.5 and CPOM-NB cannot be neglected).

Table 6: Performance correlation coefficients across decision-tree ISD methods. The
performance is measured in terms of the accuracy-gain

 NBTree CPOM-NB HDT CPOM-NN
CPOM-

C4.5
NBTree 1.00

CPOM-NB 0.82 1.00
HDT -0.03 -0.23 1.00

CPOM-NN -0.05 -0.24 0.90 1.00
CPOM-C4.5 0.34 0.66 -0.20 -0.27 1.00

5.10 THE CAPABILITY OF CPOM TO DIFFERENTIATE BETWEEN

POPULATIONS

This section demonstrates an interesting ability of the CPOM algorithm: identifying

different populations within the underlined datasets. For the purpose of this

subsection, three synthetic datasets were created. In the first dataset we have merged

the three Monk datasets into a single dataset, and added an additional attribute

(denoted by a7) which indicates on the original Monk dataset (i.e., an instance in

31

which a7=i belongs to the dataset monk-i, for i=1,2,3). The Monk datasets are suitable

to this experiment because they all have the same input attributes, but the target

attribute represents a completely different function. The selection of the new a7

attribute in the root of the decision-tree is the indication for the correct instance-space

decomposition. The second syntactic dataset (denoted as Art1) consists of 10 Boolean

input attributes a1-a10, and a Boolean target attribute. The target attribute was set

according to:

If a1=0, Y=(a2∧a3∧a4) ∨ (a5∧a6∧a7) ∨ a10

Else (If a1=1), Y=(¬a2∧a3∧a8) ∨ (¬a5∧a6∧a9) ∨ (¬a10).

The attributes a2 – a10 were drawn from a uniform distribution. The dataset consists of

400 records, while in exactly 200 (randomly selected) instances, a1 was set to 0, and

in the remaining instances a1=1. The third dataset (denoted as Art2) consists of 1000

records, and 10 input attributes. Nine of the input attributes were Boolean (a2–a10),

and the remaining attribute (a1) had 4 possible values. The target attribute was set

according to:

If a1=1, Y=(a2∨a3) ∧ (a4∨a5) ∧ a10,

If a1=2, Y=(¬a2∨a3) ∧ (a6∨a7) ∧ (¬a10),

If a1=3, Y=(a6∨¬a8) ∧ (¬a6∨a7) ∧ a4.

If a1=4, Y=(¬a6∨a8) ∧ (¬a9∨a10) ∧ a4.

Table 7 presents the accuracy estimations of CPOM, with the three embedded

classification methods, over the three synthetic datasets. Each accuracy measure is

compared to the accuracy which was obtained by executing the embedded method

alone (without wrapping it by CPOM.) The table presents some interesting insights. It

can be seen that the CPOM has improved the accuracy, relative to the embedded

method, in all the datasets. In the C4.5 and naive Bayes implementations, this

improvement is statistically significant in all the datasets. Moreover, when analyzing

the tree structures that the CPOM implementations obtained, it was seen that CPOM

tended to succeed in selecting the differentiating attribute at the root node. For

example, in the case of the "Monk-All" dataset, the attribute a7 has been selected at

the root node in 26 of the 30 executions (10 folds times 3 embedded methods). All the

four executions, in which the attribute a7 has not been selected at the root node,

occurred when the embedded method was backpropagation. It may be interesting to

note that in the single decision-tree that was obtained by the simple C4.5 algorithm,

32

the attribute a7 was selected at the root node in only three of the ten executions. This

observation probably explains why C4.5 has not succeeded in obtaining accuracy

measures comparable to those of CPOM-C4.5.

Table 7: The CPOM performance on the datasets with the contrast populations

Datasets Classification Method
Monk-All Art1 Art2

Simple NB +67.08 ±3.59 +58.81±0.02 +70.67±0.03 Naive Bayes
CPOM-NB 77.58±4.23 88.72±0.01 79.53±0.04
Simple Backprop. 96.93 ±1.91 +92.38±0.08 94.11±0.05 Neural Network
CPOM-NN 97.10±1.92 97.35±0.02 94.23±0.04
Simple C4.5 +80.47 ±2.56 +81.51±0.06 +91.24±0.05 Decision-tree
CPOM-C4.5 85.35±2.89 96.92±0.01 94.26±0.04

6 CONCLUSION

This paper introduced a decision-tree framework for instance-space decomposition

(DFID) – an automatic, general, decision-tree based framework for instance-space

decomposition and contrasted populations miner (CPOM) – an implementation of the

DFID framework that uses a new splitting rule, termed grouped gain-ratio. DFID

recursively partitions the underlined instance-space according to the values of the

explained attributes until some pre-determined stopping rules are met. Subsequently,

for each subspace that was formed by the partition, a unique classifier is attached

using an embedded classification method. The CPOM algorithm implements the

DFID framework by incorporating a new splitting rule, termed grouped gain-ratio. In

the grouped gain-ratio, an attribute is first selected according to the gain-ratio

criterion. Thereafter, a greedy grouping heuristic groups-together similar subspaces

that correspond to different values of the selected attribute.

With datasets that were manually selected from the well-known UCI Machine

Learning repository, CPOM improved the obtained accuracy compared to the

examined embedded methods (naive Bayes, backpropagation and C4.5). CPOM has

been found to be more accurate than other decision-tree ISD methods. Moreover, the

grouping heuristic was shown to significantly improve the accuracy results, compared

to a variation of CPOM which does not group. Finally, using three synthetic datasets,

CPOM was able to distinguish between different populations in an underlined dataset.

33

As to future research, the CPOM algorithm can be extended in various ways. An

essential part of the algorithm lies in grouping together similar instance subspaces.

The grouping heuristic in this paper was based on the cross-inspection procedure (see

Figure 2). We suggest examining different heuristics, for determining what similarity

is. In addition, it is well-known that the accuracy of decision-trees can benefit from a

pruning capability. The fact that the proposed algorithm has no pruning capabilities is

considered to be a limitation. Thus the algorithm should be extended to include such a

capability. Moreover, due to the explosive increase of data volumes, incremental

(online) learning has become a very important capability in machine learning

methods, which are designed for solving real-world problems. Developing an

incremental version of CPOM is not necessarily simple, because it requires

incremental adaptation of the hierarchical structure as well as incremental adaptation

of the inner-classifiers. Additional issues to be further studied include examining how

the proposed algorithm can be implemented using other classification methods, such

as support vectors machines or Bayesian networks. Along with improving the

practical framework, a further theoretical investigation is required in order to better

understand under what circumstances the proposed approach is advantageous.

REFERENCES

[1] E. Bauer & R. Kohavi, An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants, Machine Learning 36 (1999) 105-

139.

[2] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.

[3] L. Breiman, J.H. Olshen & C.J. Stone, Classification and Regression Trees,

Chapman Hall, New York, 1984.

[4] C.E. Brodley, Recursive automatic bias selection for classifier construction,

Machine Learning 20 (1995) 63-94.

[5] D.R. Carvalho & A.A. Freitas, A hybrid decision-tree/genetic algorithm

method for data mining, Information Science 163 (2004) 13-35.

[6] T.G. Dietterich, Approximate statistical tests for comparing supervised

classification learning algorithms, Neural Computation 10 (1998) 1895-1923.

[7] T.G. Dietterich, An experimental comparison of three methods for

constructing ensembles of decision trees: bagging, boosting and

randomization, Machine Learning 40 (2000), 139-157.

34

[8] S. Esmeir & S. Markovitch, Lookahead-based algorithms for anytime

induction of decision trees. In Proceedings of the Twenty-First International

Conference on Machine Learning, pp. 257-264, Morgan Kaufmann, 2004.

[9] Y. Freund & R. Schapire, A short introduction to boosting, Journal of

Japanese Society for Artificial Intelligence 14 (1999), 771-780.

[10] J. Fürnkranz, Round robin rule learning, in: Proc. Of the 18th International

Conference on Machine Learning, Williamstown, MA, 2001, pp. 146-153.

[11] J. Fürnkranz, Round robin ensembles, Intelligent Data Analysis 7 (2003)

385-403.

[12] J.B. Hampshire & A. Waibel, The meta-pi network – building distributed

knowledge representation for robust multisourse pattern recognition, IEEE

Trans. on Pattern Analysis and Machine Intelligence 14 (1992) 751-769.

[13] J.V. Hansen, Combining predictors: comparison of five meta machine

learning methods, Information Science 119 (1999) 91-105.

[14] L. Hansen & P. Salamon, Neural network ensembles, IEEE Trans. on Pattern

Analysis and Machine Intelligence 12 (1990) 993-1001.

[15] M.B. Harries & K. Horn, Learning stable concepts in domains with hidden

changes in context, in M. Kubat and G. Widmer (Eds.), Learning in context-

sensitive domains (Workshop Notes), 13th International Conference on

Machine Learning, Bari, Itali, 1996 pp. 106-122.

[16] T. Horton & B. Lausen, Bundling classifiers by bagging trees,

Computational Statistics and Data Analysis 49 (2005) 1068-1078.

[17] M.I. Jordan & R.A. Jacobs, Hierarchical mixture of experts and the EM

algorithm, Neural Computation 6 (1994) 181-214.

[18] R. Kohavi, Scaling up the accuracy of naive-Bayes classifiers: a decision-

tree hybrid, in: Proc. Of the 2nd International Conference on Knowledge

Discovery and Data Mining, Portland, OR, 1996, pp. 202-207.

[19] A. Kusiak, Decomposition in data mining: an industrial case study, IEEE

Trans. on Electronics Packaging Manufacturing 23 (2000), 345-353.

[20] O. Lezoray & H. Cardot, Combining multiple pairwise neural networks

classifiers: a comparative study, in: International Workshop on Artificial

Neural Networks and Intelligent Information Processing, Barcelona, Spain

2005, pp. 52-61.

35

[21] O. Maimon & L. Rokach, Decomposition Methodology for Knowledge

Discovery and Data Mining: Theory and Applications, World Scientific, 2005.

[22] C.J. Mertz, Dynamical selection of learning algorithms, in: C. Fisher & H.

Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics,

Springer-Verlag, 1996, pp. 281-290.

[23] C.J. Mertz, Using correspondence analysis to combine classifiers, Machine

Learning 36 (1999) 33-58.

[24] C.J. Mertz & P.M. Murphy, UCI repository of machine learning databases,

Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.

[25] S. Murthy & S. Salzberg, Lookahead and pathology in decision tree

induction, in Proceedings of the 14th International Joint Conference on

Artificial Intelligence, pp. 1025-1031, Morgan Kaufmann, 1995.

[26] S.J. Nowlan & G.E. Hinton, Evaluation of adaptive mixtures of competing

experts, in: Advances of Neural Information Processing Systems 3, Denver

CO, 1990, pp. 774-780.

[27] L. Onho-Machado & M.A. Musen, neural networks for medical prognosis:

Quantifying the benefits of combining neural networks for survival prediction,

Connection Science 9 (1997) 71-86.

[28] F. Peng, R.A. Jacobs & M.A. Tanner, Bayesian inference in mixture-of-

experts and hierarchical mixture-of-experts models with an application to

speech recognition, Journal of the American Statistical Association 91 (1996)

953-960.

[29] J.R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann, San

Francisco, CA, 1993.

[30] A.F.R. Rahman & M.C. Fairhurst, A new hybrid approach in combining

multiple experts to recognize handwritten numerals, Pattern Recognition

Letters 18 (1997) 781-790.

[31] A. Sakar & R.J. Mammone, Growing and pruning neural tree networks,

IEEE Trans. on Computers 42 (1993) 291-299.

[32] S.L. Salzberg, On comparing classifiers: pitfalls to avoid and a

recommended approach. Data Mining and Knowledge Discovery, 1, 317-328,

1997.

36

[33] P. Savicky & J. Fürnkranz, Combining pairwise classifiers with stacking, in

Advances on Intelligent Data Analysis V, Berlin, Germany, 2003, pp. 219-

229.

[34] A.J.C. Sharkey, Multi-net systems, in: A.J.C. Sharkey (Ed.), Combining

Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, Springer-

Verlag, 1999, pp. 1-30.

[35] S. Warshall, A theorem on Boolean matrices, Journal of the ACM 9 (1962)

11–12.

[36] A.S. Weigend, M. Mangeas & A.N. Srivastava, Nonlinear gated experts for

time-series - discovering regimes and avoiding overfitting, International

Journal of Neural Systems 6 (1995) 373-399.

[37] I.H. Witten & E. Frank, Data Mining: Practical machine learning tools and

techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[38] D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241-259.

[39] Z. Zhou, S. Chen & Z. Chen, FANNC: A fast adaptive neural network

classifier, Knowledge and Information Systems 2 (2000) 115-129

[40] Z. Zhou & C. Chen, Hybrid decision tree, Knowledge-Based Systems 15

(2002) 515-528.

[41] B. Zupan, M. Bohanec, J. Demsar & I. Bratko, Feature transformation by

function decomposition, IEEE Intelligent Systems 13 (1998) 38-43.

