
Ensemble Methods for Improving the Performance of
Neighborhood-based Collaborative Filtering

Alon Schclar
Deutsche Telekom

Laboratories at Ben-Gurion
University,

Department of Information
Systems Engineering,

Ben-Gurion University of the
Negev

Beer-Sheva, 84105, Israel
schclar@bgu.ac.il

Alexander Tsikinovsky
Deutsche Telekom

Laboratories at Ben-Gurion
University,

Ben-Gurion University of the
Negev

Beer-Sheva, 84105, Israel
tsikinov@gmail.com

Lior Rokach
Department of Information

Systems Engineering,
Ben-Gurion University of the

Negev
Beer-Sheva, 84105, Israel

liorrk@bgu.ac.il

Amnon Meisels
Department of Computer Science,
Ben-Gurion University of the Negev

Beer-Sheva, 84105, Israel
am@cs.bgu.ac.il

Liat Antwarg
Deutsche Telekom

Laboratories at Ben-Gurion
University,

Department of Information
Systems Engineering,

Ben-Gurion University of the
Negev

Beer-Sheva, 84105, Israel
liatant@gmail.com

ABSTRACT
Recommender systems provide consumers with ratings of
items. These ratings are based on a set of ratings that were
obtained from a wide scope of users. Predicting the ratings
can be formulated as a regression problem. Ensemble regres-
sion methods are effective tools that improve the results of
simple regression algorithms by iteratively applying the sim-
ple algorithm to a diverse set of inputs. The present paper
describes a simple and effective ensemble regressor for the
prediction of missing ratings in recommender systems. The
ensemble method is an adaptation of the AdaBoost regres-
sion algorithm for recommendation tasks. In all iterations,
interpolation weights for all nearest neighbors are simulta-
neously derived by minimizing the root mean squared er-
ror. From iteration to iteration instances that are hard to
predict are reinforced by manipulating their weights in the
goal function that needs to be minimized. The experimen-
tal evaluation demonstrates that the ensemble methodology
significantly improves the predictive performance of single
neighborhood-based collaborative filtering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 23–25, 2009, New York, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5/09/10 ...$10.00.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Ensemble Methods, Collaborative Filtering, Neighborhood
based Collaborative Filtering

1. INTRODUCTION
In recent years we witness an ever growing increase in

the utilization of recommender systems in various retailing
settings since these systems prove to be an effective mar-
keting tool which increases sales. Recommender systems
are an integral part of many online stores such as Ama-
zon.com, Buy.com, etc. One of the most famous examples
of a recommender system is Netflix [1]. This system contains
movie ratings for over 17, 000 movies provided by more than
480, 000 users. A contest whose purpose is to improve the re-
sults of the current Netflix recommender system is currently
taking place.

The present paper focuses on collaborative filtering (CF)
techniques in which customers grade the products they pur-
chased. Given the supplied ratings, the system recommends
other products that might be of interest to the users. At
the core of the technique lies a prediction algorithm whose
purpose is to approximate for every user the ratings of items
they have not rated. These predictions are based on items
that the user has rated and ratings provided by other users.
According to the predicted ratings, the system recommends

items which might interest the users. Usually, the system
will recommend the items with the highest predicted ratings.

A predominant approach to collaborative filtering is neigh-
borhood based (kNN - k -nearest neighbors). A user-item-
preference rating is interpolated from ratings of similar items
and/or users. While past kNN methods relate items (or
users) by an arbitrary similarity function, modern kNN meth-
ods discover the interpolation weights by using a global op-
timization of a cost function pertaining to all weights simul-
taneously [6].

The main idea of the ensemble methodology is to combine
a set of models, each of which solves the same original task,
in order to obtain a better composite global model, with
more accurate and reliable estimates or decisions than those
produced by using a single model [7]. Ensemble classifiers
can be classified into two types: homogeneous and heteroge-
nous. Homogeneous ensembles utilize different versions of
the same core model while the heterogenous approach com-
bines models of different types. In the homogeneous ap-
proach, it is important to choose a simple and basic (weak)
model (for example, in case of classification, one should use
an inducer that is just a little better than the random one)
in order to obtain an effective ensemble. Choosing a strong
model will produce very little improvement since it does not
provide enough diversity - one of the key principles of the
ensemble methodology.

Experimental results show that ensembles can produce
better results than any single model. Bell et al. [5], for in-
stance, used a combination of 107 different models in their
progress-prize winning solution to the Netflix challenge. In
order to fuse the results from the ensembles they used a lin-
ear regression approach. Different base algorithms for cre-
ating the models were employed. Their findings show that
it is better to use substantially different approaches than to
refine a particular method. In [3], a boosting algorithm that
is based on the AdaBoost algorithm, is proposed in order
to provide recommendations in the form of ranking. The al-
gorithm combines many weak rankings - each of them may
have only a weak correlation to the target ranking. The
output of ranking algorithms is a list of recommendations
that are sorted according to their relevance. This is differ-
ent from the output of our proposed algorithm in which the
rating of every item is approximated.

The present paper introduces a homogeneous ensemble
algorithm which is a modified version of the AdaBoost.RT
ensemble regressor [8]. As a homogeneous ensemble, it in-
corporates a simple and effective regression algorithm which
minimizes the prediction error by solving the gradient of an
error cost-function. The AdaBoost algorithm, along with
its different versions, is an effective ensemble method that is
used to improve the results of a given inducer or regressor
where the underlying principal is to reinforce instances that
are harder to predict (produce a relatively high prediction er-
ror). The amount of reinforcement is determined according
to a weight that is assigned to every instance and is itera-
tively updated. In each iteration, the regressor (or inducer)
is applied to the instances and the current weights. The
weights of the problematic instances are increased. Techni-
cally, the same effect is achieved by reducing the weights of
the instances that are easy to predict and normalizing all
the weights to sum up to 1. Initially, the same weight is
assigned to all instances.

The contribution of the proposed algorithm is two-fold:

first, it demonstrates how ensemble methods can be utilized
in order to improve the performance of a single CF method;
second, a novel adaptive data-driven instance-enforcement
criterion is introduced into the ensemble regressor.

The rest of the paper is organized as follows: A detailed
description of the proposed algorithm is given in Section 2.
In Section 3 we provide experimental results to demonstrate
the effectiveness of the proposed method. Conclusions are
in Section 4.

2. THE PROPOSED ALGORITHM
Formally, the ratings in a recommender system can be

represented as a set of m rating triplets (u, i, rui)k , k =
1, . . . , m where u ∈ U is a user, i ∈ I is an item and rui

is the rating that user u gave item i. We denote by |U |
the number users and by |I | the number of items. Usually,
m � |U | · |I | since the number of items, |I |, is very high
and users rate only the items they tried out. It is rare, if
impossible, to find even a small subset of users that tried
out all the items and also provided ratings for all of them.
To make things worse, even if a user tried out an item, he or
she might not provide their rating due to lack of motivation.
The prediction algorithm produces a set of predicted ratings
(u, i, rui)k , k = 1, . . . , |U | · |I |.

In each iteration of the proposed ensemble regression al-
gorithm, the missing ratings are approximated by solving a
minimization problem.

Let r̂ui be the approximation of the rating of the i-th item
by the u-th user. We set r̂ui to be

r̂ui = bui +
∑

v ∈ N (u)
i ∈ R (v)

wuv (rvi − bvi)

where u = 1, . . . , U ; i = 1, . . . , I and:

• wuv is a weight for the influence of the ratings of user
v on user u,

• bui is an initial approximation of the rating of item i
by user u (bvi is similarly defined),

• N (u) is a set of users that are similar to the user u,

• and R (v) is the list of items that user v rated.

N (u) defines a neighborhood for a user u. The neighbor-
hood includes the users whose ratings are similar to those
of user u. The similarity is determined according to the
Pearson correlation. Specifically, the users that are included
in N (u) are those who produce the top ranking (highest)
correlations.

The initial approximation bui is defined as

bui = μ + bu + bi

where μ is the average of all the provided ratings by all the
users, bu is the average of the provided ratings of user u
and bi is the average of all the provided rating of item i.
Formally, given the indicator function

1ui =

{
1 if rui exists
0 otherwise

these quantities are given by:

μ =

∑
u

∑
i rui · 1ui∑

u

∑
i 1ui

, u = 1, . . . , U ; i = 1, . . . , I

bu =

∑
i rui · 1ui∑

i 1ui
− μ, u = 1, . . . , U

and

bi =

∑
u (rui − (bu + μ)) · 1ui∑

u 1ui
, i = 1, . . . , I

We can now formalize the minimization problem. Define
the total error of the approximation by the function

E (W) =
∑

u

∑
i∈R(u)

γui (r̂ui − rui)
2

where γui is a weight that is assigned to every rating. These
weights are determined by the ensemble algorithm that is
described in Section 1.

The approximation is obtained by the minimization of
E (W) which is found by solving ∇E (W) = 0. We assume
that wuv is not necessarily equal to wvu i.e. the ratings of
user u do not influence the rating of user v by the same
amount as the ratings of user v influence the rating of user
u. Accordingly, the gradient of E (W) is given by

∇E (wuv′) =
∑

i∈R

[
2γui

(
bui +

∑
v∈N(u) wuv (rvi − bvi)

−rui) · (rv′i − bv′i)] , v′ ∈ N (u)

where N (u) and R (u) were defined above. Thus, for every
similarity weight, we obtain a system of |N (u)| equations in
|N (u)| variables. Adding the constraint∑

v∈N(u)

wuv = 1

results in a system of N (u) + 1 linear equations in |N (u)|
variables.

Before solving any of the obtained systems of equations,
one must first incorporate the following adjustments:

1. In case rvi does not exist, it is set to be bvi. This
situation can occur although v ∈ N (u), since N (u) is
determined according to all items that were rated by
users u and v. Thus, v will still be included in N (u)
although there are items that were not rated by her
but were rated by u.

2. When users u and v have the same rating values and
the same free term values, the system of equations has
an infinite number of solution where the free variables
are a linear combination of the other variables. In this
case, one of the solutions is chosen.

3. When user u and v have the same rating values with
different free term values, there is no solution to the
system. In order to obtain a solution, one of the equa-
tions is chosen arbitrarily.

After the predictions are obtained, ratings that are above
and below the rating range are truncated to the maximal
and minimal ratings, respectively.

2.1 The ensemble regressor
The ratings obtained by the proposed algorithm are en-

hanced by using ensemble regression. Specifically, we use
a modified version of the AdaBoost.RT algorithm [8]. The
AdaBoost-based algorithms improve the results of a classi-
fier (or regressor) via an iterative process which reinforces

instances that are harder to predict (or approximate). The
AdaBoost.RT algorithm incorporates a relative-error param-
eter φ in the weight reinforcement criterion. Only instances
whose relative errors exceed φ are reinforced. Both φ and the
number of iterations are given as parameters. Our proposed
scheme differs from the AdaBoost.RT algorithm by the rein-
forcement criterion that it uses. Rather than using a relative
error φ, a deviation factor α is used. In each iteration we
calculate the mean and standard deviation of the prediction
errors. Only instances whose prediction errors exceed the
mean by a given factor α multiplied by the standard devia-
tion are reinforced. Although the algorithm still requires a
parameter, the advantage in employing this scheme is two-
fold: first, the reinforcement threshold is dynamic, adapting
itself at each iteration to the obtained errors; and second, the
reinforcement is determined according to the error statistics
rather than a predefined threshold.

Both our proposed method and the AdaBoost.RT algo-
rithm [8] use the same reinforcement factor for all the hard-
to-predict instances i.e., their weights are multiplied by the
same factor. This is contrary to the AdaBoost.R2 algo-
rithm [2] where the reinforced weight of each individual in-
stance is determined according to the magnitude of its cor-
responding prediction error. Technically, the reinforcement
effect is achieved by reducing the weight of instances that
are easy to approximate (achieve a low prediction error) and
normalization of the resulting weights so their sum will be
equal to 1.

The proposed ensemble algorithm is described in Algo-
rithm 1. The input to the algorithm is a set of m rating
triplets as defined above. The algorithm produces a set of
predicted ratings (u, i, rui)k , k = 1, . . . , |U | · |I | where |U | is
the number users and |I | is the number of items.

3. EXPERIMENTAL RESULTS
The proposed algorithm was tested on the MovieLens rat-

ing database. The database contains 3900 distinct movies
and 6040 users. The predictive model is induced for 100 ran-
domly selected users. The training set was constructed from
70% of the ratings of the selected users. The algorithm was
used to predict the remaining 30% ratings. For example, if a
user rated 20 movies, 14 of them were used for the training
and the other 6 were included in the test set. Although, the
predictive model refers to only 100 users, the users that were
included in N (v) were selected from the entire database.

The size of N (v) was set to 50. The effectiveness of each
iteration is measured according to the root mean square er-
ror (RMSE). Figure 1 shows the decrease in the RMSE with
each iteration demonstrating the improvement that is ob-
tained by using the proposed ensemble algorithm. In ten
iterations of the ensemble algorithm, the RMSE decreased
by 41.86% where the most dramatic improvement - 21.03%
- was achieved after the first iteration. We compared our
results to those obtained by the SVD++ [4] algorithm.

4. CONCLUSION AND FUTURE WORK
An ensemble regression algorithm for the approximation

of rating values in a k-NN recommender system was intro-
duced. The regression algorithm, which is at the heart of
every ensemble iteration, minimizes the root mean squared
prediction error by directly solving the gradient of a cost
function. This is achieved via overdetermined systems of lin-

Algorithm 1 Modified AdaBoost.RT ensemble regressor

Input.
1. A set of m rating triplets (u, i, rui)k , k = 1, . . . , m.
2. The rating prediction algorithm from the beginning of
Section 2.
3. Integer T specifying the number of iterations.
4. Error factor α (default α = 1).

Initialize.
1. Set iteration number t = 1.
2. Set a weight to every triplet according to a uniform dis-
tribution γt

k = 1/m.

Iterate. While t < T
1. Call the rating prediction algorithm to obtain the pre-
dicted ratings

{
r̂t

ui

}
.

2. Calculate the mean, ε̄t, and the standard deviation, σt,
of the errors

{∣∣r̂t
ui − rt

ui

∣∣}.
3. Calculate the error rate

νt =

⎛
⎝ ∑

(u,i)∈Q

γt
ui

⎞
⎠

2

where Q =
{
(u, i) :

∣∣r̂t
ui − rt

ui

∣∣ − ε̄t > α · σt
}
.

4. Set the weights of the instances for the next iteration
according to

γt+1
k =

γt
k

Nt
·
{

νt if k /∈ Q
1 otherwise

where Nt is a normalization factor whose value is chosen
such that

{
γt+1

k

}
form a distribution.

5. Set t = t + 1

Output.
• The final predicted rating

r̂k =

∑
t rt

k · log (1/νt)∑
t log (1/νt)

Root Mean Square Error

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

1 2 3 4 5 6 7 8 9 10

Iteration

Proposed
SVD++

Figure 1: A plot of the root mean square predic-
tion error as a function of the iteration number. An
improvement is clearly noticed. The total improve-
ment that is achieved by the ensemble algorithm is
41.86%.

ear equations. Occasionally, these systems cannot be solved
due to similar equations whose free terms differ. Currently,
this situation is resolved by arbitrarily choosing one of the
equations. In some cases, the linear system is underdeter-
mined. At present, the algorithm chooses one of the possible
solutions. An improvement to both of these situations is to
choose the solution which minimizes the RMSE. Further-
more, the method is going to be extended and tested on
larger datasets such as the Netflix [1] dataset.

The proposed scheme achieves good results which render
ensemble regressors that are based on a weak collaborative
filtering algorithm as a legitimate tool for recommender sys-
tems. However, further research should be done in order to
extend the proposed approach so that it achieves the results
obtained by stronger collaborative filtering algorithms such
as those based on SVD matrix-factorization.

Acknowledgements
The authors are grateful to Dr. Yehuda Koren for his in-
valuable guidelines in the implementation of his SVD++
algorithm.

5. REFERENCES
[1] Netflix, inc. ”netflix prize”, www.netflixprize.com.

[2] H. Drucker. Improving regressor using boosting. In
D. H. Fisher Jr., editor, Proceedings of the 14th
International Conference on Machine Learning, pages
107–115. Morgan Kaufmann, 1997.

[3] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram
Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research,
4:933–969, 2003.

[4] Yehuda Koren. Factorization meets the neighborhood:
a multifaceted collaborative filtering model. In KDD
’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 426–434, New York, NY, USA,
2008. ACM.

[5] Y. Koren R. M. Bell and C. Volinsky. The bellkor
solution to the netflix prize, 2007.

[6] Y. Koren R. M. Bell and C. Volinsky. Modeling
relationships at multiple scales to improve accuracy of
large recommender systems. In Proc. 13th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007.

[7] Lior Rokach. Taxonomy for characterizing ensemble
methods in classification tasks: A review and annotated
bibliography. Computational Statistics & Data
Analysis, In Press, Corrected Proof:–, 2009.

[8] D. P. Solomatine and D. L. Shrestha. Adaboost.rt: A
boosting algorithm for regression problems. In
Proceedings of the IEEE International Joint Conference
on Neural Networks, pages 1163–1168, 2004.

