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Abstract.

Machine learning techniques are widely used in mielgs. One of the applications of
machine learning in the field of th@formation securityis classification of a computer
behavior into malicious and benign. Anti virusesqigisting on signature-based methods are
helpless against new (unknown) computer worms. Plaiger focuses on the feasibility of
accurately detecting unknown worm activity in indival computers while minimizing the
required set of features collected from the moeilorcomputer. A comprehensive
experiment for testing the feasibility detecting unknown computer worprgmploying
several computer configurations, background apgtina, and user activity, was
performed. During the experiments 323 computerufest were monitored by an
agent that was developed. Four feature selectioinade were used to reduce the
amount of features and four learning algorithmseaagoplied on the resulting feature
subsets. The evaluation results suggests that akisgification algorithms applied on
only 20 features the mean detection accuracy erceé%, and for specific
unknown worms accuracy reached above 99%, whiletaiaing a low level of false
positive rate.

Keywords: Classification Algorithms, Decision Tree, Bayesidetworks, Feature
selection; Artificial Neural Networks; Naive Bayedassifier; Malicious Code,
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1 Introduction

Malicious code (malcode) detection, transmittedragmputer networks has been
researched intensively in recent years (Kabiri &@fibrbani, 2005). One type of
abundant malcode iworms which proactively propagate across networks while
exploiting vulnerabilities in operating systems gdgrams. Other types of malcode
include computeviruses Trojan horses, spywarandadware In this study we focus
on worms, though we plan to extend the proposedoagh to other types of malcode.

Nowadays, excellent technology (i.e., antivirustwafe packages) exists for
detecting and eliminatindknown malicious code. Typicallyantivirus software
packagesnspect each file that enters the system, loofdndgnown signs (signatures)
which uniquely identify an instance of known maleod\Nevertheless, antivirus
technology is based on prior explicit knowledgeraflcode signatures and cannot be
used for detecting unknown malcode. Following tppemarance of a neworm, a



patch is provided by the operating system provifemeeded) and the antivirus
vendors update their signatures-base accordindlis $olution is not perfect since
worms propagate very rapidly and by the time tlmll@ntivirus software tools have
been updated, very expensive damage has already ibflieted by the worm
(Fosnock, 2005).

Intrusion detection, commonly at the network lewallednetwork based intrusion
detection (NIDS), was researched substantially (Kabiri and Ghdrb&@005).
However,NIDS are limited in their detection capabilities (likay detection system).
In order to detect malcodes which slipped throughNIDS at the network level,
detection operations are performed locally at tbst level. Detection systems at the
host level, calledHost-based Intrusion DetectidilIDS), are currently very limited in
their ability to detect unknown malcode.

Recent studies have proposed methods for detectikgpown malcode using
Machine Learning techniques. Given a training sétnwlicious and benign
executables binary code, a classifier is traineddentify and classify unknown
malicious executables as being malicious (Scheitzal., 2001; Abou-Assaleh et al.,
2004; Kolter and Maloof, 2006, Caia et al., 2007).

Existing methods rely on the analysis of the binfarythe detection of unknown
malcode. Some less typical worms are left unddéetarherefore an additional
detection layer at runtime is required. The prodosg@proach assumes that the
malicious actions are reflected in the general biehaof the host. Thus, by
monitoring the host, one can inexplicitly identifyalcodes. This property can be used
as an additional protection layer.

In this study, we focus on detecting the presentea avorm based on the
computer's (host) behavior. Our suggested approanhbe classified unde#iDS.
The main contribution of our approach is that theowledge is acquired
automatically using inductive learning, given aadat of known worms (avoids the
need formanualacquisition of knowledge). While the new approdoles not prevent
infection, it enables a fast detection of an infacwwhich may result in an alert, which
can be further reasoned by the system administrBtother reasoning based on the
network-topology can be performed by a network sygtem administration function,
and relevant decisions and policies, such as dismimg a single computer or a
cluster, can be applied.

Generally speaking, malcode within the same catederg., worms, Trojans,
spyware, adwaneshare similar characteristics and behavior padtefhese patterns
are reflected by the infected computer's behavitwus, we hypothesize that it is
feasible to learn the computer behavior in the gares of a certain type of malcode,
which can be measured through the collection abuarparameters along time (CPU,
Memory, etc.). In the proposed approach, a classif trained with computer
measurements from infected and not infected compuBased on the generalization
capability of the learning algorithm, we argue tlaatlassifier can further detect
previously unknown worm activity. Nevertheless sthpproach may be affected by
the variance in computer and application configaret as well as user activity
(running and using various applications) on eacimpaer. In this study, we
investigate whether an unknown worm activity candegected, at a high level of
accuracy, given the variation in hardware and saftwenvironmental conditions on
individual computers, while minimizing the set obnitored features.



In this paper we introduce three main contributioie show that current machine
learning techniques are capable to detect andifglagsrms solely by monitoring the
host activity. Using feature selection techniquessivow that a relatively small set of
features are sufficient for solving the problemheifit sacrifice accuracy. We present
empirical results from an extensive study of vasiomachine configurations
suggesting that the proposed methods achieve higiactibn rates on previously
unseen worms.

The rest of the paper is structured as followsdation 2, a survey of the relevant
background for this study is presented. The methsesl in this study are described
in section 3, followed by the description of theperments design in section 4. In
section 5 we present the evaluation results andcleda with summary and
conclusions in section 6.

2 Background and Related Work

2.1 Malicious Code and Worms

The term 'malicious code' (malcode) refers to @eief code, not necessarily an
executable file, intended to harm, whether genellin particular, a specific owner
(host). The approach suggested in this study atnaet@cting any malcode activity,
whether known or unknown. However, since our priglary research is on worms,
we will focus on them in this section.

Kienzle and Elder (2003) definenaorm by several aspects through which it can be
distinguished from other types of malcodeMjglicious code- worms are considered
malicious in nature; 2hetwork propagation or human interventiena commonly
agreed-upon aspect, that is, worms propagate jctoxer a network, while other
types of malicious codes, such as viruses, commoetpire human activity to
propagate; 3ktandalone or file infecting- while viruses infect a file (its host), a
worm does not require a host file, and sometimes dmt even require an executable
file, residing entirely in the memory, as did tiede ReqMoore et al., 2002) worm.
Different purposes and motivations stand behindnwalevelopers (Weaver et al.,
2003) including:Experimental curiosityILoveYouworm,; CERT, 2000)pride and
powerleading programmers to show off their knowledgd akill through the harm
caused by the worntommercial advantagextortionandcriminal gain randomand
political protest andterrorism andcyber warfare The existence of all these types of
motivation indicates that computer worms are herestay as a network vehicle
serving different purposes and implemented in difié ways. To address the
challenge posed by worms effectively, meaningfylexience and knowledge should
be extracted by analyzing known worms. Today, gitrenknown worms, we have a
great opportunity to learn from these examplesrideoto generalize. We argue that
supervised learning methods can be very usefue@mning and generalizing from
previously encountered worms, in order to classifinown worms effectively.



2.2 Detecting Malicious Code Using Supervised Le@ng Techniques

Supervised and unsupervised learning has already beed for detecting and
protecting against malicious codes. A recent suryeyintrusion detection systems
(Kabiri and Ghorbani, 2005, Rokach and Elovici, 2ZP0summarizes recently
proposed applications for recognizing malcodesrigle computers and in computer
networks. Lee et al. (1999). proposed a frameworisisting of set of algorithms for
the extraction of anomalies of user normal behafdouse in anomaly detection , in
which a normal behavior is learned and any abnoraddivity is considered as
intrusive. The authors suggest several technigsesh as classification, meta-
learning, association rules, and frequent episodes,extract knowledge for
implementation in intrusion detection systems, eatihg their approach on the
DARPA98 (Lippmann et al., 1998) benchmark.

A Naive Bayesian classifier was suggested in (Kabird Ghorbani, 2005),
referring to its implementation within the ADAM ggsn, developed by Barbara et al.
(2001), which had three main parts: (a) a netwatadnonitor listening to TCP/IP
protocol; (b) a learning engine which enables asitian of the association rules from
the network data; and (c) a classification moduléctv classifies the nature of the
traffic in two possible classes, normal and abndrwhich can later be linked to
specific attacks. Other soft computing algorithmerev proposed for detecting
malicious code: Artificial Neural Networks (ANN) &hero and Savaresi, 2004;
Kayacik et al., 2003; Lei and Ghorbani; 2004).f &&ganizing Maps (SOM) (Hu
and Heywood, 2003) and fuzzy logic (Dickerson aridkBrson, 2000; Bridges and
Vaughn Rayford, 2000; Botha and von Solms, 2003).

3 Methods

The goal of this study was to assess the feasilofidetectingunknownmalicious
code, in particular computer worms, based on thenptger's behavior
(measurements), using machine learning technicames,the potential accuracy of
such methods. In order to create the datasets vieaonuisolated local network of
computers, simulating a real Internet network whaibws worms to propagate. This
setup enabled us to inject worms into a controfledironment, while monitoring the
computer behavior. The monitoring is performed hyagent, developed specifically
for this purpose, that measures various paramatetsave their values in log files.

In this study we examine whether a classifier,ndi on data collected from a
computer having a certain hardware configuratiod aertain specific background
activity, is capable to correctly classify the béba of a computer having other
configurations? In order to answer this questiondesigned several experiments. We
created eight datasets having different configorej different background
applications, and different user activities. Anotlgpal was to select the minimal
subset of features which are required to corredtgsify new cases. Reducing the
number of features used in the model, implies g monitoring efforts are needed



when the proposed approach is served as the lmasas foperational system. Finally,
we applied four classification algorithms on theeyi datasets in a varied series of
experiments, starting with detecting known wormslifferent environments and later
detecting completely new, previously unseen worms.

Figure 1 specifies the process that was used iardal perform this study. The
upper part refers to the training phase. We catbét set of worms and used them to
infect the hosts in the controlled environment. Tha agent, which was installed on
each host, recorded the behavior of the host. Basecbllected dataset, we trained
the classifiers. The bottom part in Figure 1 retershe test phase. In this phase we
examine if the induced classifier can be used émtifly the existence of unknown
worm.
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Figure 1: Outline of the Train phase and the Test Rase

3.1 Dataset Creation

Since there is no benchmark dataset which couldasked for this study, we created
our own dataset. A network with various computasnfigurations) was deployed,
enabling us to inject worms, and monitor the corapubehavior and log the
measurements.

Environment Description

The lab network consisted of seven computers, whiohtained heterogenic
hardware, and a server computer simulating therriate We used thevindows



performancecounters, which enable monitoring system features that appethese
main categories (including the number of featureparenthesis)internet Control
Message Protocq|27), Internet Protocol(17), Memory(29), Network Interfac€17),
Physical Disk(21), Process(27), Processor(15), System(17), Transport Control
Protocol (9), Thread (12), and User Datagram Protocq5). In addition we used
VTrace (Lorch and Smith, 2000), a software tool which daninstalled on a PC
running Windows for monitoring purposegTracecollects traces of thiile system,
the network, the disk drive, processes, threadsrpnocess communication, waitable
objects, cursor changes, windows, and the keyboah& data from thevindows
performance countewere configured to measure the features everynseand store
them in a log file as vectors/Trace stored time-stamped events, which were
aggregated into the same fixed intervals, and ndevgéh thewindows performance
log files. These eventually included a vector o8 32atures for every second.

Injected Worms

While selecting worms from the wild, our goal waschoose worms that differ in
their behavior, from among the available worms. 8arhthe worms have a heavy
payload of Trojans to install in parallel to thestdbution process upon the network;
others focus only on distribution. Another aspedthiat they have different strategies
for IP scanning which results in varying communmatehavior, CPU consumption,
and network usage. While all the worms are differeve wanted to find common
characteristics by the presence of which it wowdplossible to detect an unknown
worm. We briefly describe here the main charadiess relevant to this study, of
each worm included in this study. The informatisrbased on the virus libraries on
the wel3®4. We briefly describe the five worms we used:

(1) W32.Dabber.A scans IP addresses randomly. It uses the W32r9asgerm to
propagate and opens the FTP server to upload itselthe victim computer.
Registering itself enables its execution on thetneger login (human based
activation). It drops a backdoor, which listens ampredefined port. This worm is
distinguished by its use of an external worm ineortd propagate.

(2) W32.Deborm.Y is a self-carried worm, which prefers local IP adhes. It
registers itself as an MS Windows service and ecated upon user login (human
based activation). This worm contains three Trojassa payload: Backdoor.Sdbot,
Backdoor.Litmus, and Trojan.KillAV, and execute®ih all. We chose this worm
because of its heavy payload.

(3) W32.Korgo.X is a self carrying worm which uses a totally randmethod for
IP addresses scanning. It is self-activated aed to inject itself as a function to MS
Internet Explorer as a new thread. It contains Woaal code which enables it to
connect to predefined websites in order to receiekers or download newer worm
versions.

Ihttp://msdn.microsoft.com/library/default.asp?ulibrary/en-us/counter/counters2_Ibfc.asp
2 Symantec — www.symantec.com

3 Kasparsky www.viruslist.com

“Macfee http://vil.nai.com



(4) W32.Sasser.D uses a preference for local addresses optimizatibile
scanning the network. About half the time it sckotal addresses, and the other half
random addresses. In particular it opens 128 thré@dscanning the network, which
requires a heavy CPU consumption, as well as sogmf network traffic. It is a self-
carried worm and uses a shell to connect to thectafl computer’'s FTP server and to
upload itself.

(5) W32.Sackor.A, a self-carried worm, exploits MS Windows sharing
vulnerability to propagate. The worm registerslitsebe executed upon user login. It
contains a Trojan payload and opens an IRC servéheinfected computer in order
to receive orders.

All the worms perform port scanning and possedemift characteristics. Further
information about these worms can be found on bl

Dataset Description

In order to examine the influence of a computerdihare configuration,
background running applications, and user activite considered three major
aspects: computer hardware configurationconstant background application
consuming extreme computational resources, aisdr activity being binary
variables.(1) Computer hardware configuratioflBoth computers ran okVindows
XP, which considered the most widely used operatiysiesn, having two hardware
configuration types: anold," having Pentium 3 800Mhz CPU, bus speed 133Mhz
and memory 512 Mb, and aéw" having Pentium 4 3Ghz CPU, bus speed 800Mhz
and memory 1 Gb(2) Background application activitytWWe ran an application
affecting mainly the following feature®rocessor obje¢tProcessor Timgusage of
100%); Page Faults/secPhysical Disk objec¢tAvg Disk Bytes/TransfeiAvg Disk
Bytes/Write and Disk Writes/sec(3) User activity several applications, including
browsing, downloading and streaming operationsutjinolnternet Explorer, Word,
Excel, chat through MSN messenger, and Windows Me&dyer, were executed to
imitate user activity in a scheduled order. Appanilispecifies the set of features that
was examined in this research.

We created eight datasets (see table ). Eachedatastained monitored samples
of each one of the five injected worms separataty samples of aormal computer
behavior, without any injected worm. Each worm wasnitored for a period of 20
minutes. We collected the values of the featuremryegecond. Thus, each record,
containing a vector of measurements and a labesgnted an activity along a second
labeled by a specifievorm or anoneactivity label. Each dataset contained a few
thousand (labeled) samples of each worm or cleampoter. We therefore had three
binary aspects, which resulted in eight possiblemoations, shown in Table 1,
representing a variety of dynamic computer configjons and usage patterns. Each
dataset contained monitored samples for each ofitkenvorms injected separately,

5 Symantec — www.symantec.com
6 Kasparsky www.viruslist.com
"Macfee http://vil.nai.com



and samples of a normal computer behavior withaytigjected worm. Each sample
(record) was labeled with the relevant worm (class)none' for clean samples.

Table 1. The three aspects resulting in eight datass, representing a variety of
situations of a monitored computer.

Computer Bgckground L_Js_er Dataset
Application Activity | Name

Old No No (@]

Old No Yes Ou

Old Yes No Oa

Old Yes Yes Oau

New No No N

New No Yes Nu

New Yes No Na

New Yes Yes Nau

3.2 Feature Selection Methods

In many applications, the large number of featiresnany domains presents a
huge challenge. Typically, some of the featuresadbcontribute to the accuracy of
the classification task and may even hamper ittUfeaselection is the process of
identifying relevant features in the dataset arsgaliding everything else as irrelevant
and redundant. Since feature selection reduceditnensionality of the data, it
enables the classification algorithms to operateenadfectively and rapidly. In some
cases, classification performance can be improwredther instances, the obtained
classifier is more compact and can be easily inédeo. Inhost-based detection
applications there is an additional motivation.ditie we would like to minimize the
self-consumption of computer resources required tf@ monitoring operations
(measurements), i.e. minimizing the collectiontef features.

In order to compare the performance of the varidassification algorithms, we
used thefilters approach, which is applied on the dataset anddspendent of any
classification algorithm, in which a measure iscaldted to quantify the correlation
of each feature with the class (the presence @maesof worm activity). Each feature
receives a rank which represents its expectedibatitin in the classification task.

3.2.1 Feature Selection Methods.

We used three feature-selection methods, whicHteskin a list of ranked features
for each feature-selection method and an ensembtergorating all three of them.
We used Chi-Square (CS), Gain Ratio (GR) and Religiplemented in the WEKA
environment (Witten and Frank, 2005) and their enide.



Chi-Square

Chi-Squaremeasures the lack of independence between a ddfatund a class;
(such as W32.Dabber.A) and can be compared tohikeqaare distribution with one
degree of freedom to judge extremeness. Equatiwhdws how the chi-square
measure is defined and computed, where N is tla motmber of documents arid

refers to the resence of the feature (afnds absence), ang refers to its membership

in G.

N[P(f,c)P(f,5)-P(f,)P(f,c)I°
P(f)P(f)P(c)P()

Xi(f.c)=
(1)

Gain Ratio

Gain Ratiowas originally presented by Quinlan in the contefikDecision Trees
(Mitchell, 1997), which was designed to overcombias in thelnformation Gain
(IG) measure, and which measures the expected redusti@mtropy caused by
partitioning the examples according to a chosetufea Given entropye(S) as a
measure of the impurity in a collection of items,id possible to quantify the
effectiveness of a feature in classifying the traindata. Equation 3 presents the
formula of the entropy of a set of iteris based orC subsets ofS (for example,
classes of the items), presented By Information Gain measures the expected
reduction of entropy caused by portioning the eXempaccording to attributd, in
which V is the set of possible values &f as shown in Equation 2. These equations
refer to discrete values; however, it is possiblextend them to continuous values
attribute.

IG(S A=ES)- 3 || IE(s) @
VIV (A)
E(S):Z-@D]Og @ ) ©)

2
o |S| | S|
The IG measure favors features having a high varietyadfies over those with
only a few.GR overcomes this problem by considering how theufeasplits the data
(Equations 4 and 5§ ared subsets of examples resulting from portiorigy thed-
valuedfeatureA.

IG(S, A)
CREA=51s A SI(S, A *)
SI(S, A)=- ZISI |S‘| (5)

ISl S|



Relief

ReslifF (Pearl, 1986) estimates the quality of the featwaecording to how well
their values distinguish between instances thanheeg each other. Given a randomly
selected instance from a dataset with k features, Relief searches the dataset for its
two nearest neighbors from the same class, cadadest hitH, and from a different
class, called nearest mikt The quality estimatioM[Ai] is stored in a vector of the
featuresAi, based on the values of a difference functiiff() given x, H and Mas
shown in Equation .6

[ X=X if A, isnumeric,
diff (A, X;, %, )= 0 if A, isnominal& x,=x,,, (6)
1 if A, isnominal& x;#X,,

Features Ensembles

Instead of selecting features based on of the featelection mathods, one can use
the ensemble strategy (see for instance Rokach.,eR@D7) which combines the
features subsets that are obtained from severaluré=a selection methods.
Specifically, we combine several methods by avergghe features ranks as shown in
Equation 7:

k I
> rank! (fi)
j=1
- )
k
where fi is a feature filter is one of thek filtering (feature selection) methods.
Specifically in our case k=3.

Ranl( fi) =

3.2.2 Consolidating Features from Different Envionments: Averaged vs.
Unified Consolidation.

Often when applying a feature selection methodh aag the filters approach, the
method is applied on the entire dataset aimingatik rthe features based on their
measured correlation to the class. However, unitkkehe common datasets, our
dataset consisted of eight datasets coming froferdifit environments, as explained
earlier (see Table 1). Since some features mightmioee important in specific
environments and less in others it is not clear flo& has to be considered. In this
study we propose two approaches to consideringimtedrating the aspects of the
datasets. In the first approach, ternomified dataset, we unified all the eight datasets
into a single dataset and applied the filter onuhidéied dataset.

Alternatively, we examined the approach termgdragedn which we applied the
filter on each one of the eight datasets and coewptihe average rank for each



feature. Note that for averaging the features raoktained from the different
environments, we used Equation 7 again.

Figure 2 illustrates both approaches, in which tbp refers to the unified
approach, where the feature selection (FS) is egppin the unified datasetll' and
the averaged approach, at the bottom, in whictightire selection is applied on each
dataset and averaged into a rank list.

R R
Full Attribute Average of D ol
all X ’ E (Original) FS(datasets) | O FS(all dataset)
O
/
— a. unified VA RN
\\\ D y N
\tse/\fsz/ \fs5 \fsr/ \fsz/ \fss/
\VAVAV \/ \/ \/

dsy :>:>B\
=8=lp

Full subset Averaged filtered subsets All filtered subsets

(1 subset) (4 types) (4 types)

ass| = (®) = E// AN /N

Top Top Top Top
5 10 20 30 5 10 20 30

b. averaged

1 subset 16 subsets 16 subsets

Figure 2 — Unified versus the averageBigure 3 - The creation of 33 features
approach for environment featuresets.
consolidation.

After applying both approaches we extracted therémked features. We took the
highest ranked (top) features 5, 10, 20 and 30 fther output of each feature
selection method. Finally, we had four features §€bp 5, 10, 20, 30) for each of the
four filters (fsl, fs2, fs3, ensemble), for eachatfee consolidation (unified,
averaged). On top of that we also examined fthlefeatures set (with no feature
selection). This totally results with 33 featuressg4x4x2+1) as shown in Figure 3.

3.3 Classification algorithms

One of the goals of this study was to pinpoint thessification algorithm that
provides the highest level of detection accuracg. &hployed four commonly used
Machine Learning algorithm®ecision TreesNaive BayesBayesian Networkand
Artificial Neural Networks in a supervised learningapproach, in which the
classification algorithm learns from a providediniag set, containing labeled
examples.



While the focus of this paper is not olassification algorithntechniques, but on
their application in the task of detecting wormidtt, we briefly describe the
classification algorithms we used in this study.

Decision Trees

Decision tree learners (Quinlan, 1993) are a wathgished family of learning
algorithms. Classifiers are represented as treessavlinternal nodes are tests on
individual features, and leaves are classificatieaisions. Typically, a greedy top-
down search method is used to find a small decisim that correctly classifies the
training data. The decision tree is induced from dlataset by splitting the variables
based on thexpected information gairModern implementations include pruning,
which avoids over-fitting. In this study we evale@dtl48, the WEKA version of the
commonly used C4.5 algorithm (Quinlan, 1993). Anpamant characteristic of
Decision Trees is the explicit form of their knoddg which can be represented as a
set of if-then rules. This set of rules can be thasily embedded in any existing IDS.

Naive Bayes

The Naive Bayes classifier is based onBlages theorepwhich in the context of
classification states that the posterior probabdtt a class is proportional to its prior
probability as well as to the conditional likelilbof the features, given this class. If
no independent assumptions are made, a Bayesiaoritlalg must estimate
conditional probabilities for an exponential numiérfeature combinations. Naive
Bayes simplifies this process by making the assiomphat features areonditionally
independengiven the class, and requires that only a lineentver of parameters be
estimated. The prior probability of each class #mel probability of each feature,
given each class, is easily estimated from thaitrgidata and used to determine the
posterior probability of each class, given a sefedtures. Naive Bayes has been
shown empirically to produce good classificationci@acy across a variety of
problem domains. In this study, we evaluated N&wages, the standard version that
comes with WEKA.

Bayesian Networks

Bayesian networks are a form of the probabilistaphical model (Pearl, 1986).
Specifically, a Bayesian network is a directed &cygraph of nodes with variables
and arcs representing dependence among the varidlike Naive Bayes, Bayesian
networks are based on the Bayes Theorem; howenigke Naive Bayes they do not
assume that the variables are independent. ActBayesian Networks are known for
their ability to represent conditional probabiligjewhich are the relations between
variables. A Bayesian network can thus be consitlarmechanism for automatically
constructing extensions of Bayes Theorem to momapbex problems. Bayesian



networks were used for modeling knowledge and impleted successfully in
different domains. We evaluated the Bayesian Netwtandard version which comes
with WEKA.

Artificial Neural Networks

An Artificial Neural Network (ANN) (Bishop, 1995%ian information processing
paradigm that is inspired by the way biologicalveeis systems (i.e., the brain) are
modeled with regard to information processing. kKbg element of this paradigm is
the structure of the information processing systdénis a network composed of a
large number of highly interconnected processimgneints, called neurons, working
together in order to approximate a specific funttidn ANN is configured for a
specific application, such as pattern recognitiondata classification, through a
learning processluring which the weights of the inputs in eachroauare updated.
The weights are updated byraining algorithm such as back-propagation, according
to the examples the network receives, in ordeetiuce the value adrror function
The power and usefulness of ANN have been demdedtia numerous applications
including speech synthesis, medicine, finance, suashy other pattern recognition
problems. For some application domains, neural tsodaow more promise in
achieving human-like performance than do more ti@uil artificial intelligence
techniques. All ANN manipulations in this study kabeen performed within a
MATLAB(r) environment using Neural Network ToolbotDemuth and Beale,
1998).

4 Experimental Design

Our main goal in this study was to investigate \Wbetthe approach presented
here, in whichunknownmalicious code is detected, based on the comateavior
(measurements), is feasible and enables a high ¢é\eccuracy when applied to a
variety of computers. We defined four research tjoies accordingly:

Qi In the detection ofknown malicious code, based on a computer's
measurements, using machine learning techniqueat ishthe achievable level of
accuracy?

Qq: Is it possible to reduce the amount of featurdselow 30, while maintaining a
high level of accuracy (compared to the full set features). Which feature
consolidation approach (unified versus averaged) f@ature selection method is
superior?

Qs Will the computer configuratiorand thecomputer background activitfrom
which the training sets were taken, have a siggnificinfluence on the detection
accuracy?

Q4 Is the detection afinknownworms possible, based on a training set of known
worms?

In addition to these research questions, we want@kentify the best classification
algorithms and the best combination of top rankedtures and classification



algorithm. We start with the definition of the evaluation m@&s and continue with
the experiments we designed for this study.

4.1 Evaluation Measures

For evaluation purposes, we measured Thge Positive Rate (TPRheasure,
which is the number gfositiveinstances classified correctly, as shown in Equas;,
False Positive Rate (FPRhich is the number afiegativeinstances misclassified
(Equation 8), and th&otal Accuracy which measures the number of absolutely
correctly classified instances, either positivanegative, divided by the entire number
of instances shown in Equation 9. Additionally, ealculated the ROC curves, but
we don’t present them because of lack of room.

=—|TP| ; FP Rz—I FP| (8)
|[TP[+|FN | |FP|+|TN|
+
Total Accuracy= [TPI+|TN| (9)

|TP|+|FP|+|TN|+|FN|’

We also measuredanfusion matrixwhich depicts the number of instances from
each class which were classified in each one otlhgses (ideally all the instances
would be in their actual class).

In the first part of the study, we wanted to idBnthe best feature consolidation
approach (unified or averaged) and feature selectiethod, the best classification
algorithm and the minimal features required to n@ma high level of accuracy. In
the second part we wanted to measure the capabilityassifying unknown worms
based on a training set of known worms. In ordemamswer these questions we
designed two experimental plans, based38rdatasets, as will be described later.
After evaluating all the classification algorithroe the 33 datasets, we selected the
best feature selection and the top features taiat@the unknown worms detection.

4.2 Experiment |

To determine the best combination of feature sielechethod, number of features,
and classification algorithm, we performed a wid¢ &f experiments, in which we
evaluated all the combinations of feature selectimthod, classification algorithm,
and number of top features.

In this experiment, calledl, we trained each classifier on a single datasetd
tested on each ong) (©f the eightdatasets. Thus, we had a set of eight iterations in
which a dataset was used for training, and eightesponding evaluations which
were done on each one of the datasets, resulti6g evaluation runs. Whers j, we
used10 fold cross validation in which the dataset is randomly partitioned iten
partitions and repeatedly the classifier is trainadnine partitions and tested on the
tenth. Each evaluation run (out of the 64) was a& for each one of the
combinations of feature selection method, clas#ifin algorithm, and number of top



features. Thus, each evaluation run was repeatethé 33 features set described
earlier in Figure 3 (in each repetition differerdafures are extracted from the
datasets). Note that the task was to classify fpalty the exact worm out of the five

or a none (worm) activity, and not to generate aegal binary classification of

“worm” or a “none” activity, which was our final gbin the context of an unknown

worm detection. Such conditions, while being mohallenging, were expected to
bring more insights.

4.3 Experiment Il

To estimate the potential of the suggested appréaatiassifying anunknown
worm activity, which was the main objective of thisaguwe designed an additional
experiment, callek2, in which we trained classifiers based part of the (five)
wormsand thenoneactivity, and tested on thlexcluded wormgfrom the training set)
and thenoneactivity, in order to measure the capability tded¢ anunknown worm
and thenoneactivity accurately.

In this experiment the training set consisted5ef worms and the testing set
contained th&k excluded worms, while theone activity appeared in both datasets.
This process repeated for all the possible comipingatof thek worms k =1 to 4). In
each combination a classifier was trained on théitrg set and tested on all the
remaining seven datasets. The test set inclotddthe excluded worms and not the
worms presented in the training set since we wamtedneasure specifically the
detection rate of the unknown. Note that in thegeeements, unlike i1, there were
two classes: (generallyyvorm, for any type of worm and none activity. This
experiment was evaluated on each classificatioordlgn, using the outperforming
top selected features foundet

5 Results

Experiment |

Our objective inel was to determine the best: feature selection a@gprdfeature
selection method, number of top features, and ifileestion algorithms. We ran 132
(four classification algorithms applied to 33 faatisets) evaluations (each comprises
64 runs), summing up to 8448 evaluation runs.

Figure 4 shows the mean accuracy (of all the diaatbn algorithms) achieved
for each environments features consolidation (edifor averaged), each feature
selection method, top 5, 10, 20, 30 features amdtHe full set of features as a
baseline. While the feature selection method anchbmr of top features aren’t
relevant for the FULL features set curve (blue dirie Figure 4) we presented the
curve for comparison purposes. In general, alfféadure subsets having less than 30
features achieved a mean performance quite sindlathe full set of features
(including 323 features). Theaunified consolidation approach outperforms the



averagedconsolidation approach for most of the cases, @albe when the Gain
Ratio feature selection method is used. Additignalunlike the averaged
consolidation approach, which in most of the casdmlow the full set performance,
the unified consolidation approach for most of thses is above it. Additionally, the
Top20features delivered the best in most of the cases.

Based on the mean accuracy of the four classificatlgorithms GainRatio feature
selection method outperformed the other featurec§ieh methods for most of the top
number of features, while the ensemble featurecSefe method outperformed for
Top5 Unlike the independent measures, in which theas & monotonic growth
when features were added, in the ensemble a manatlight decrease was observed
as more features were used. Thep20 features outperformed in general (by
averaging) and when using GainRatio feature selectiethod in particular.

Figure 5 shows the same results, but presents thannaccuracy of the
classification algorithms for several numbers op teatures.Bayesian Networks
outperforms for any number of top features, andarage the 20 top featurésp20
outperformed the other number of top features.

For exampleTop5features folGainRatiofeature selection method included: in the
category oflCMP: (1) Sent_Echo_see the rate of ICMP Echo messages sent; (2)
Messages Sent/sedhe rate, in incidents per second, at whichstrger attempted to
send. The rate includes those messages sent in @rbdessages/sec the total rate,
in incidents per second, at which ICMP messages waent and received by the target
entity. The rate includes messages received orisegrror. In the category GfCP:

(4) Connections Passive the number of times TCP connections made a tdirec
transition to the SYN-RCVD state from the LISTEMtst (5)Connection Failures-

the number of times TCP connections made a diraosition to the CLOSED state
from the SYN-SENT state or the SYN-RCVD state, glus number of times TCP
connections made a direct transition to the LISTHEMe from the SYN-RCVD state.
The list of the top twenty ranked features is pnéset in the Appendix B.

Based on the results achievedeih in which the unified consolidation approach,
Top20 features,GainRatio feature selection method, outperformed on average,
used only this features subset in the second pérecevaluationg?).
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In Q; we wanted to estimate the performance sensitifith® suggested approach
given several training sets sampled from a vardtgomputers, represented by the
eight datasets. Thus, we tested whether the agcotatained by training a classifier
on a training set sampled from a given computel wdry significantly when
evaluated on a variety of test sets. To perform thst we designed two experiments
(el,elk).

Table 2 presents the mean accuracy and the res@itamdard deviation in each
experiment, including 128 evaluation runs. In tinst fmain column the results efl;



are presented in two columns, when the datdsetas used as a training set (left
column), and when used as test sets (right columr®.results oé1; whendi was the
training set were not homogenous. The resuleslofvhendi was the testset were not
homogenous too, though we found that the trainingdatasets created in the 'old'
computer was significantly betten € 0.01). Inel, in which all datasets except di
were training set and di was the testset, the teswdre statistically significant.(=
0.05) homogenous. Note thal; andel, experiments are based on all the learning
algorithms, and not specifically on each algoritfithe classification accuracy @i,
outperformed the accuracy ®l;, since the training sets iel, included several
datasets.

Table 2. The results achieved iel; and el,.

Experiment| el el
Training: all
Dataset di Training: di | Testset: di datasets except di
Testset: di
o 0.68+0.23 | 0.73+£0.23| 0.78+0.22
ou 0.76 £0.22 | 0.73+0.22 0.82+0.18
oa 0.73+0.21 | 0.73+£0.23 0.81+0.18
oau 0.77+0.21| 0.72+0.21 0.81+0.19
n 0.61+0.24 | 0.64+0.22 0.71+0.20
nu 0.76 £0.21 | 0.72+0.22 0.82+0.22
na 0.70+0.21 | 0.73+0.24| 0.86+0.17
nau 0.73+0.22| 0.71+0.23 0.79+0.20
Average 0.72+0.22 | 0.72+0.22 0.80+0.19
Experiment I

In Q;we wanted to estimate the possibility of classifyan unknown worm when
training on data collected from a single compuiterthis set of experiments we used
only the Top20 features, which outperformed &l The training set included four
worms out of the five and the none activity samphlesd the test set included the
excluded worm and the none activity samples. Thiegss was done for each worm
repeating in five iterations. Note that in thespariments, unlike i®1, in which each
worm class was defined separately, there were tasses: (generally)vorm and
noneactivity.

Table 3 presents the resultsef On average th®ecision Treesand Bayesian
Networksoutperformed the others classification algorithifise table shows also the
true positive(TP) andfalse positive(FP). Decision Treesand Bayesian Networks
achieved high level of accuracy and maintainediafdse positiverate.

Table 3 - The results o®2. There is a difference in the detection accuracyf@ach
classifier for each type of worm. On average, Ded Trees outperformed the
other classifiers, while maintaining a low false psitive rate.



ANN 20 BN 20 DT 20 NB 20

Worm Acc TP FP Acc TP FP Acc TP FP Acc¢ TP FP
1 0.985| 0.985 0.014 0.554 0.557 0.443 0.936 0j93D630 | 0.497 0.500 0.499
2 0.494| 0.499 0.500 0.992 0.992 0.007 0.999 0)999005| 0.997| 0.997 0.002
3 0.952| 0.952 0.04Y 0.992 0.993 0.007 0.680 0)678216| 0.844f 0.843 0.156
4 0.994| 0.994 0.005 0.998 0.998 0.002 0.968 0j968320 | 0.998/ 0.998 0.00p
5 0.636| 0.637 0.362 0.990 0.991 0.008 0.999 0/999005| 0.975 0.974 0.026
Average| 0.81| 0.81| 0.19] 0.91 091 009 092 0pP2 80.00.86 | 0.86| 0.14
StdDev | 0.05 | 0.05| 0.05 0.04 0.04 004 0.02 0.p2 0.020.05 | 0.05| 0.05

Figure 6 presents the resultsa® in which a monotonic increase in the accuracy is

shown, as more worms are included in the trainieg Blote that the number of
worms in thex axis refers to the number of worms excluded frbenttaining set, and
were included in the test set. In general #RNN outperformed all the other
algorithms, while thé8N kept on showing very good results. Note that ngstin the
seven datasets separately decreased the mean cgcslightly. In addition, when
only one worm was excluded, in specific worms whiemed 99% accuracy and a
very low false positive rate of 0.005.
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Accuracy
o
=)

o
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Figure 5. The performance monotonically increasessafewer worms are excluded
from the training set

6. Discussion and Conclusions

In this paper we explored the feasibility of deifgtunknown worm activity in individual
computers, at a high level of accuracy, given tleiation in hardware and software
environmental conditions, while minimizing the sdtfeatures collected from the monitored



computer.Four research questions were investigated, refetarthe feasibility of the
approach, the best settings, and the level of @eti@ccuracy, for which a dataset
was created and several corresponding experimeste wesigned. In the first
experiment we showed that the detectiorkméwnworms is feasible at a very high
level of accuracy To reduce the computational wesss in the classification task we
wanted to reduce the number of features. Two cate@n approaches to integrating
the eight datasets for the task of features seleatiere proposed: unified, in which
all the datasets were unified into a single dafemed averaged, in which we first
applied the feature selection method on each daaaskeaveraged the ranked features
into a single rank. Our results showed that the mpearformance of the unified
approach outperformed the averaged approach. BasaHe evaluation results, in
generalBayesian Networkeutperformed the other algorithms; and usingThp 20
ranked features from th@ainRatio was the best. The reduction in the amount of
features and the improvement in accuracy compamdidtevthe baseline of above 300
features in the full set, since it reduces the aaters resources consumption needed
for monitoring its behavior. We investigated thdliance of the variance in the
training phase and detection phase on the configareof a computer and its
programs, to determine whether this method can dmemlized. We found that
training on seven unified datasets was signifigghtimogenouse£0.01) based on a
homogeneity test, unlike training on a single detta@&s inel)). This is a very
encouraging result, since we assume that, wheryiagpuch an approach in the real
world, a training set that consists of samples famweral types of computer activity
in several environments is a reasonable requirement

To examine the possibility of classifyingnknownworms, unlike in previous
experiments, two classes were defined in the dataseorm type consisting of the
worms' samples and ‘none’ type. The training setd four worms and the ‘none’
activity and the test set consisted only of thelwed worm and thenone-activity
We found that the level of detection accuracy fackeworm varies from algorithm to
algorithm. Finally, ine2 above 85% accuracy was achieved in general; Decisi
Trees achieved 92%, while specific algorithms esledethe 95% level of accuracy
for specific worms. We noticed that the detectiéreach worm varied within each
algorithm, while being different among algorithmand thus we suggest using an
ensemble of classifiers to achieve a higher ledeaaxruracy for instances of all
potential worm classes. In genelayesian Networksesulted constantly in very
good results, which might be explained by the atersition of the dependency within
features, unlike other classifiers. Later we redutiee amount of worms in the
training set and increased the amount of unknowrmasadn the test set. We found an
increase in accuracy as more worms were presemtibe itraining set.

The limitations of this study are the number of merand the variety of computer
configurations. Note that the worms were seleabeprtvide a reasonable variety and
the computers which were used were dramaticallferdint. However, this was
enough to achieve statistically significant results

To conclude, we have shown that it is possiblegiect previously un-encountered
computer worms using our novel approach, which @&eb on monitoring the
computer "behavior" (features). In order to attaihigh level of accuracy in different
types of computers, which is an essential requirgnie real life, the training set



should include samples taken from several computypmes (i.e., different
configurations).
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Appendix A - Operating System Measurements

The following table includes all features mapping the data set. For further
information about the objects and their meaninthewwindows counters tools, please
refer to http://msdn.microsoft.com/library/defaatip?url=/library/en-
us/counter/counters2_lIbfc.asp, for more informataout VTrace please refer to
http://msdn.microsoft.com/msdnmag/issues/1000/Vakac

ID Feature Name
1 _A _1ICMPMessages_sec__
2 A_1ICMPMessages_Received_sec
3 A_1ICMPMessages_Received_Errors
4 _A_1ICMPReceived_Dest__Unreachable_
5 _A_1ICMPReceived Time Exceeded
6 _A_1ICMPReceived Parameter_Problem
7 A _1ICMPReceived Source Quench
8 _A_1ICMPReceived_Redirect_sec_
9 _A_1ICMPReceived Echo_sec
10 _A_1lICMPReceived_Echo_Reply sec_
11 _A _1lICMPReceived_Timestamp_sec_
12 A_1ICMPReceived_Timestamp_Reply_sec
13 _A_1ICMPReceived_Address_Mask_
14 _A _1lICMPReceived_Address_Mask_Reply
15 _A _1ICMPMessages_Sent_sec_
16 _A_1ICMPMessages_Outbound Errors_
17 A_1ICMPSent_Destination_Unreachable
18 _A_1ICMPSent_Time_Exceeded
19 _A_1ICMPSent_Parameter_Problem
20 _A_1ICMPSent_Source_Quench_
21 A_1ICMPSent_Redirect_sec
22 A_1ICMPSent_Echo_sec
23 _A_1ICMPSent_Echo_Reply_sec_
24 _A _1lICMPSent_Timestamp_sec_
25 _A_1lICMPSent_Timestamp_Reply_sec_
26 A_1ICMPSent_Address_Mask
27 A_1ICMPSent_Address_Mask_Reply
28 _A_lIPDatagrams_sec_
29 _A_1IPDatagrams_Received_sec
30 _A_1IPDatagrams_Received Header Errors_




31 _A_1IPDatagrams_Received_Address_Errors_
32 A_1lPDatagrams_Forwarded_sec

33 A_1IPDatagrams_Received_Unknown_Protocol
34 _A_1IPDatagrams_Received_Discarded_

35 _A_1IPDatagrams_Received Delivered_sec
36 _A_lIPDatagrams_Sent_sec_

37 A_1IPDatagrams_Outbound_Discarded

38 A_1IPDatagrams_Outbound No_Route

39 _A_1IPFragments_Received_sec_

40 _A_1lIPFragments_Re_assembled_sec _

41 _A_1IPFragment_Re_assembly Failures_

42 A_1IPFragmented_Datagrams_sec

43 _A_1IPFragmentation_Failures_

44 _A 1lIPFragments_Created_sec _

45 _A _1MemoryPage Faults_sec

46 _A_1MemoryAvailable Bytes

47 A_1MemoryCommitted_Bytes

48 _A_1MemoryCommit_Limit_

49 _A _1MemoryWrite_Copies_sec_

50 _A_1MemoryTransition_Faults_sec

51 _A_1MemoryCache_ Faults_sec

52 A_1MemoryDemand_Zero_Faults_sec

53 _A_1MemoryPages_sec_

54 _A_1MemoryPages_Input_sec_

55 _A _1MemoryPage Reads_sec_

56 A_1MemoryPages_Output_sec

57 A_1MemoryPool_Paged_Bytes

58 _A_1MemoryPool_Nonpaged_Bytes_

59 _A _1MemoryPage Writes_sec_

60 _A_1MemoryPool_Paged_Allocs_

61 A_1MemoryPool_Nonpaged_Allocs

62 A_1MemoryFree_System Page_Table Entries
63 _A_1MemoryCache_Bytes

64 _A_1MemoryCache Bytes Peak

65 _A_1MemoryPool_Paged_Resident Bytes
66 A_1MemorySystem_Code_Total_Bytes

67 _A_1MemorySystem_Code_Resident_Bytes__
68 _A _1MemorySystem_Driver_Total_Bytes

69 _A_1MemorySystem_Driver _Resident Bytes
70 _A_1MemorySystem_Cache_Resident_Bytes
71 A_1Memory _Committed_Bytes In_Use




72 _A_1MemoryAvailable KBytes

73 A_1MemoryAvailable _MBytes

74 A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec
75 _A_1Network_InterfacTX Packet_Scheduler_Miniport_Packets_sec_
76 _A_1Network_Interfacket_Scheduler_Miniport_Packets Received_sec__
77 _A_1Network_Interfac_Packet Scheduler_Miniport_Packets_Sent_sec_
78 A_1Network_InterfacPacket_Scheduler_Miniport_Current_Bandwidth
79 A_1Network_Interfacacket Scheduler_Miniport_Bytes Received_sec
80 _A_1Network_Interfacduler_Miniport_Packets_Received_Unicast_sec_
81 _A_1Network_Interfacr_Miniport_Packets_Received_Non_Unicast_sec_
82 _A_1Network_Interfacheduler_Miniport Packets_Received_Discarded_
83 A_1Network_Interfac_Scheduler_Miniport Packets_Received_Errors
84 _A_1Network_InterfacScheduler_Miniport_Packets_Received_Unknown_
85 _A 1Network_Interfac___Packet Scheduler_Miniport_Bytes Sent_sec _
86 _A_1Network_InterfacScheduler_Miniport_Packets _Sent_Unicast_sec_
87 _A_1Network_Interfacduler_Miniport_Packets_Sent_Non_Unicast_sec_
88 A_1Network_Interfacheduler_Miniport_Packets _Outbound_Discarded
89 _A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors_
90 _A_1Network_Interfaccket_Scheduler_Miniport_Output_Queue_Length
91 _A 1Network_Interface_MS_TCP_Loopback_interface_Bytes Total_sec_
92 _A_1Network_Interface_ MS_TCP_Loopback_interface_Packets_sec_
93 A_1Network_InterfacTCP_Loopback_interface_Packets_Received_sec
94 _A_1Network_Interfac_ MS_TCP_Loopback_interface_Packets_Sent_sec_
95 _A_1Network_InterfacMS_TCP_Loopback_interface_Current_Bandwidth_
96 _A_1Network_InterfacS_TCP_Loopback_interface_Bytes_Received_sec_
97 A_1Network_Interfacback_interface _Packets_Received_Unicast_sec
98 A_1Network_Interfac_interface_Packets_Received_Non_Unicast_sec
99 _A_1Network_Interfacopback_interface_Packets_Received_Discarded_
100 _A 1Network_Interfac_Loopback_interface_Packets Received_Errors_
101 _A_1Network_InterfacLoopback_interface_Packets_Received_Unknown_
102 A_1Network_Interface_ MS_TCP_Loopback_interface_Bytes Sent_sec
103 A_1Network_InterfacLoopback_interface_Packets_Sent_Unicast_sec
104 _A_1Network_Interfacback_interface_Packets_Sent_Non_Unicast_sec_
105 _A 1Network_Interfacopback_interface Packets Outbound_Discarded_
106 _A_1Network_Interfac_Loopback_interface_Packets_Outbound Errors_
107 A_1Network_Interfac_TCP_Loopback_interface_Output_Queue_Length
108 _A_1PhysicalDisk__Total___ Disk_Read_Time_

109 _A_1PhysicalDisk _Total  Disk Time

110 _A_1PhysicalDisk _Total  Disk Write Time

111 _A_1PhysicalDisk__Total _Idle Time_

112 A_1PhysicalDisk__Total_Avg__Disk Bytes Read




113 _A_1PhysicalDisk__Total Avg Disk Bytes Transfer
114 A_1PhysicalDisk__Total_Avg__Disk_Bytes Write
115 A_1PhysicalDisk__Total_Avg__Disk_Queue_Length
116 _A_1PhysicalDisk__Total_Avg__Disk_Read Queue_Length_
117 _A_1PhysicalDisk__Total Avg Disk sec Read
118 _A_1PhysicalDisk__Total Avg_Disk sec Transfer
119 A_1PhysicalDisk__Total_Avg__Disk_sec_Write
120 A_1PhysicalDisk__Total_Avg__Disk_Write_Queue_Length
121 _A_1PhysicalDisk__Total_Current_Disk_Queue_Length_
122 _A_1PhysicalDisk__Total Disk Bytes sec

123 _A_1PhysicalDisk__Total_Disk_Read_Bytes_sec_
124 A_1PhysicalDisk__Total_Disk_Reads_sec

125 _A_1PhysicalDisk__Total_Disk_Transfers_sec_

126 _A_1PhysicalDisk__Total Disk Write Bytes sec
127 _A_1PhysicalDisk __Total Disk Writes_sec_

128 _A _1PhysicalDisk__Total_Split_10_Sec_

129 A _1Process__Total___ Privileged_Time

130 _A_1Process__Total __ Processor_Time_

131 _A _1Process_Total User Time

132 _A _1Process__Total Creating Process ID_

133 _A 1Process__Total_Elapsed_Time_

134 A_1Process__Total_Handle Count

135 _A_1Process__Total_ID_Process_

136 _A 1Process__Total_IO_Data_Bytes_sec_

137 _A 1Process__Total_IO_Data_Operations_sec__
138 A _1Process__Total IO _Other_Bytes_sec

139 A_1Process__Total_IO_Other_Operations_sec

140 _A_1Process__Total 10_Read_Bytes sec_

141 _A 1Process__Total_IO_Read_Operations_sec_
142 _A 1Process__Total_IO_Write_Bytes_sec_

143 A_1Process__Total_IO_Write_Operations_sec

144 A_1Process__Total _Page Faults_sec

145 _A_1Process__Total Page File Bytes_

146 _A_1Process__Total Page File Bytes Peak

147 _A 1Process__Total_Pool_Nonpaged_Bytes_

148 A_1Process__Total_Pool_Paged Bytes

149 _A_1Process__Total_Priority Base_

150 _A_1Process__Total Private Bytes

151 A _1Process__Total Thread Count_

152 _A_1Process__Total Virtual Bytes

153 A_1Process__Total_Virtual_Bytes Peak




154 _A_1Process__Total Working_Set

155 A_1Process__Total_Working_Set_Peak
156 A_1Processor__Total___ C1 Time

157 _A_1Processor__Total__ C2_Time_

158 _A_1Processor__Total C3 Time_

159 _ A 1Processor__Total DPC_Time

160 A_1Processor__Total___Idle_Time

161 A_1Processor__Total___Interrupt_Time
162 _A_1Processor__Total___ Privileged_Time_
163 _A_1Processor__Total _ Processor_Time
164 _ A 1Processor__Total  User Time

165 A_1Processor__Total_C1_Transitions_sec
166 _A_1Processor__Total_C2_Transitions_sec_
167 _A_1Processor__Total C3 Transitions_sec
168 _A_1Processor __Total DPC_Rate

169 _A_1Processor__Total DPCs_Queued_sec
170 A_1Processor__Total_Interrupts_sec

171 _A_1SystemFile_Read_Operations_sec_
172 _A _1SystemFile_Write_Operations_sec__
173 _A _1SystemFile_Control_Operations_sec_
174 _A_1SystemFile_Read Bytes _sec_

175 A_1SystemFile_Write_Bytes_sec

176 _A_1SystemFile_Control_Bytes_sec_

177 _A_1SystemContext_Switches_sec_

178 _A_1SystemSystem_Calls_sec_

179 A_1SystemFile_Data_Operations_sec
180 A_1SystemSystem_Up_Time

181 _A_1SystemProcessor_Queue_Length_
182 _A_1SystemProcesses_

183 _A_1SystemThreads_

184 A_1SystemAlignment_Fixups_sec

185 A_1SystemException_Dispatches_sec
186 _A_1SystemFloating_ Emulations_sec_
187 _A 1System__Registry_Quota_In_Use
188 _A _1TCPSegments_sec_

189 A_1TCPConnections_Established

190 _A_1TCPConnections_Active_

191 _A_1TCPConnections_Passive

192 _A_1TCPConnection_Failures_

193 _A_1TCPConnections_Reset

194 A_1TCPSegments_Received_sec




195 _A _1TCPSegments_Sent_sec
196 A_1TCPSegments_Retransmitted_sec
197 A 1Thread Total _Total _ Privileged_Time
198 _A_1Thread_ Total__Total___Processor_Time_
199 _A 1Thread Total Total User Time
200 A 1Thread_ Total Total Context Switches sec_
201 A 1Thread Total Total Elapsed_Time
202 A 1Thread__Total__Total_ID_Process
203 _A_1Thread_ Total Total_ID_Thread_
204 _A 1Thread__Total__Total_Priority Base
205 _A 1Thread__Total _Total_Priority Current_
206 A 1Thread__Total__Total_Start_Address
207 _A_1Thread_ Total Total_Thread_State
208 _A 1Thread Total Total Thread Wait Reason
209 _A _1UDPDatagrams_sec__
210 _A_1UDPDatagrams_Received_sec
211 A_l1UDPDatagrams_No_Port_sec
212 _A_1UDPDatagrams_Received_Errors_
213 _A _1UDPDatagrams_Sent_sec__
VTRACE features
214 Process_create
215 Process_destroy
216 Thread_create
217 Thread destroy
218 Thread_switch
219 Process_set priority
220 Thread_set_priority
221 Message get nf call
222 Message get f call
223 Message get return
224 Message peek r nf call
225 Message peek r f call
226 Message peek nr_nf call
227 Message peek nr f call
228 Message peek return
229 Message_dispatch_call
230 Message dispatch_return
231 Message trans_accel call
232 Message trans_accel ret
233 Message _translate call




234 Message_translate_return

235 Message trans _mdi call
236 Message trans_mdi_return
237 Message set timer

238 Message cancel timer

239 Message wait_call

240 Message wait_return

241 Message get input_state
242 Message get queue_status

243 Key press

244 Cursor_load

245 Cursor set

246 Window_create

247 Dialog create

248 File_complete operation

249 File_open

250 File read

251 File write

252 File close

253 File_query info

254 File set info

255 File directory control
256 File_name

257 File information

258 File_open_query close
259 File_rename

260 File delete

261 File flush

262 File lock

263 File unlock

264 File set position

265 File link

266 File_complete mdl op

267 File fcb_information

268 Message post_window

269 Message post thread

270 Message send

271 Netobj _complete_op

272 Netobj_open

273 Netobj close

274 Netobj connect




275 Netobj_disconnect

276 Netobj send

277 Netobj send datagram
278 Netobj_receive

279 Netobj_receive_datagram
280 Netobj_listen

281 Netobj accept

282 Netobj associate address
283 Netobj disassociate addr
284 Netobj_notify _connect
285 Netobj_notify disconnect
286 Netobj notify receive
287 Netobj_notify rcv_dgram
288 Netobj_notify rcv_exped
289 VTrace_action

290 Device hook

291 VTrace_version

292 Local_time

293 VTrace set mask

294 Beat

295 Device unhook

296 High timestamp

297 Ignore_activity

298 Set_cpu_speed

299 User_changed

300 Waitobj_signal

301 Waitobj set timer

302 Waitobj_cancel_timer
303 Waitobj wait_call

304 Waitobj_wait_return

305 Waitobj wait_gen_call
306 Waitobj wait_gen return
307 Msg  waitobj wait_call
308 Msg __ waitobj_wait_ret
309 Rawdisk_read

310 Rawdisk_write

311 Rawdisk _complete op
312 Section_create

313 Section_open

314 Section_map_view

315 Section_unmap_view




316 Section_get mdl|
317 Testing

318 Flush_icache

319 Flush_write buffer
320 Terminate process
321 Terminate_thread
322 Write_request data

323

Write VM




Appendix B — Top Twenty Features Selected by Eachelature Selection Method

All (V_All)

ChiSgr

ReliefF

A_1MemoryCache_Bytes Peak

A_lICMPReceived_Dest__Unreachable

_A_1Process__Total_Virtual_Bytes_Peak_

_A_1ICMPSent_Destination_Unreachable_

A_1MemoryFree_System_Page Table_Entries

A_1SystemFile_Control_Bytes_sec

A_1Process__Total_Virtual_Bytes

A_1Process__Total_IO_Other_Bytes_sec

_A 1Process__Total_Pool_Nonpaged_Bytes_

_A_1ICMPMessages_Outbound_Errors_

_A_1MemoryPool_Nonpaged_Bytes _

_A_1MemorySystem_Code_Total_Bytes__

_A 1Process__Total_Thread_Count_

Netobj_disconnect

A_1SystemThreads

A _1lICMPSent_Echo_sec

_A 1Process__Total_Pool_Paged_Bytes_

_A_lICMPMessages_Sent_sec_

_A _1TCPConnections_Active

_A 1Process__Total Handle_Count_

_A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_

_A_1lICMPMessages_sec_

_A 1TCPConnection_Failures_

_A 1Processor__Total __ Processor_Time_

A_1MemoryPool_Nonpaged_Allocs

A_1SystemException_Dispatches_sec

_A 1Process__Total_Handle_Count_

_A_1TCPConnections_Reset_

_A_1Network_InterfacTX Packet_Scheduler_Miniport_Packets_sec_

_A 1Processor__Total __ Idle_Time_

_A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec_

_A 1Processor__Total _ User Time_

_A_1Process__Total_Page_File_Bytes Peak_

_A 1Process__ Total_ User_Time_

A_1lIPDatagrams_sec

A 1Thread__Total _Total User_Time

_A_1SystemFile_Control_Bytes_sec_

_A_1Processor__Total_Interrupts_sec_

A _1Process Total 10 Other Bytes sec

A 1Memory Committed Bytes In_Use

GainRatio

Ensemble

_A 1ICMPSent_Echo_sec_

_A _1ICMPSent_Echo_sec_

_A_1lICMPMessages_Sent_sec_

_A_1lICMPMessages_Sent_sec_

_A_1lICMPMessages_sec_

_A_1Process__Total_IO_Other_Bytes_sec_

A_1TCPConnections_Passive

A_1SystemFile_Control_Bytes_sec

Netobj_disconnect

A_1lICMPMessages_sec

_A_1TCPConnection_Failures_

_A_1MemoryCache_Bytes_Peak_

_A _1TCPConnections_Active_

_A_1TCPConnection_Failures_

_A_1TCPSegments_Retransmitted_sec_

_A_1TCPConnections_Active_

Write_request_data

A_1MemoryFree_System_Page Table_Entries

_A_1MemoryFree_System_Page_Table_Entries_

_A_1Process__Total_Virtual_Bytes_Peak_

_A_1ICMPReceived_Echo_Reply _sec_

_A_1TCPConnections_Passive_

_A_1ICMPMessages_Received_sec_

_A 1Process__Total Handle_Count_

_A 1ICMPReceived_Echo_sec_

_A_1MemoryPool_Nonpaged_Bytes

A_1ICMPSent_Echo_Reply_sec

A_1lICMPReceived_Dest__Unreachable

_A_1UDPDatagrams_No_Port_sec_

_A_1Process__Total_Thread_Count_

_A 1Process__Total_Thread_Count_

_A_1SystemThreads_




_A_1SystemThreads_ _A_1MemoryPool_Nonpaged_Allocs_

A_1Network_Interfac____Packet _Scheduler_Miniport_Bytes_Sent_sec A _1Process__Total_Pool_Nonpaged_Bytes

A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors Netobj_disconnect

~ A 1Network InterfacTX Packet_Scheduler_Miniport Packets sec_ | A 1Process__Total Virtual Bytes




