
Detection of Unknown Computer Worms based on
Behavioral Classification of the Host

Robert Moskovitch, Yuval Elovici, Lior Rokach

Deutsche Telekom Laboratories at Ben-Gurion University

Ben Gurion University, Be’er Sheva, 84105, Israel
{robertmo, elovici, liorrk}@bgu.ac.il

Abstract.

Machine learning techniques are widely used in many fields. One of the applications of

machine learning in the field of the information security is classification of a computer
behavior into malicious and benign. Anti viruses consisting on signature-based methods are
helpless against new (unknown) computer worms. This paper focuses on the feasibility of
accurately detecting unknown worm activity in individual computers while minimizing the
required set of features collected from the monitored computer. A comprehensive
experiment for testing the feasibility of detecting unknown computer worms, employing
several computer configurations, background applications, and user activity, was
performed. During the experiments 323 computer features were monitored by an
agent that was developed. Four feature selection methods were used to reduce the
amount of features and four learning algorithms were applied on the resulting feature
subsets. The evaluation results suggests that using classification algorithms applied on
only 20 features the mean detection accuracy exceeded 90%, and for specific
unknown worms accuracy reached above 99%, while maintaining a low level of false
positive rate.

Keywords: Classification Algorithms, Decision Tree, Bayesian Networks, Feature
selection; Artificial Neural Networks; Naıve Bayes classifier; Malicious Code,
Worms detection

1 Introduction

Malicious code (malcode) detection, transmitted over computer networks has been
researched intensively in recent years (Kabiri and Ghorbani, 2005). One type of
abundant malcode is worms, which proactively propagate across networks while
exploiting vulnerabilities in operating systems and programs. Other types of malcode
include computer viruses, Trojan horses, spyware, and adware. In this study we focus
on worms, though we plan to extend the proposed approach to other types of malcode.

Nowadays, excellent technology (i.e., antivirus software packages) exists for
detecting and eliminating known malicious code. Typically, antivirus software
packages inspect each file that enters the system, looking for known signs (signatures)
which uniquely identify an instance of known malcode. Nevertheless, antivirus
technology is based on prior explicit knowledge of malcode signatures and cannot be
used for detecting unknown malcode. Following the appearance of a new worm, a

patch is provided by the operating system provider (if needed) and the antivirus
vendors update their signatures-base accordingly. This solution is not perfect since
worms propagate very rapidly and by the time the local antivirus software tools have
been updated, very expensive damage has already been inflicted by the worm
(Fosnock, 2005).

Intrusion detection, commonly at the network level, called network based intrusion
detection (NIDS), was researched substantially (Kabiri and Ghorbani, 2005).
However, NIDS are limited in their detection capabilities (like any detection system).
In order to detect malcodes which slipped through the NIDS at the network level,
detection operations are performed locally at the host level. Detection systems at the
host level, called Host-based Intrusion Detection (HIDS), are currently very limited in
their ability to detect unknown malcode.

Recent studies have proposed methods for detecting unknown malcode using
Machine Learning techniques. Given a training set of malicious and benign
executables binary code, a classifier is trained to identify and classify unknown
malicious executables as being malicious (Schultz et al., 2001; Abou-Assaleh et al.,
2004; Kolter and Maloof, 2006, Caia et al., 2007).

Existing methods rely on the analysis of the binary for the detection of unknown
malcode. Some less typical worms are left undetectable. Therefore an additional
detection layer at runtime is required. The proposed approach assumes that the
malicious actions are reflected in the general behavior of the host. Thus, by
monitoring the host, one can inexplicitly identify malcodes. This property can be used
as an additional protection layer.

In this study, we focus on detecting the presence of a worm based on the
computer's (host) behavior. Our suggested approach can be classified under HIDS.
The main contribution of our approach is that the knowledge is acquired
automatically using inductive learning, given a dataset of known worms (avoids the
need for manual acquisition of knowledge). While the new approach does not prevent
infection, it enables a fast detection of an infection which may result in an alert, which
can be further reasoned by the system administrator. Further reasoning based on the
network-topology can be performed by a network and system administration function,
and relevant decisions and policies, such as disconnecting a single computer or a
cluster, can be applied.

Generally speaking, malcode within the same category (e.g., worms, Trojans,
spyware, adware) share similar characteristics and behavior patterns. These patterns
are reflected by the infected computer's behavior. Thus, we hypothesize that it is
feasible to learn the computer behavior in the presence of a certain type of malcode,
which can be measured through the collection of various parameters along time (CPU,
Memory, etc.). In the proposed approach, a classifier is trained with computer
measurements from infected and not infected computers. Based on the generalization
capability of the learning algorithm, we argue that a classifier can further detect
previously unknown worm activity. Nevertheless, this approach may be affected by
the variance in computer and application configurations as well as user activity
(running and using various applications) on each computer. In this study, we
investigate whether an unknown worm activity can be detected, at a high level of
accuracy, given the variation in hardware and software environmental conditions on
individual computers, while minimizing the set of monitored features.

In this paper we introduce three main contributions: We show that current machine
learning techniques are capable to detect and classify worms solely by monitoring the
host activity. Using feature selection techniques we show that a relatively small set of
features are sufficient for solving the problem without sacrifice accuracy. We present
empirical results from an extensive study of various machine configurations
suggesting that the proposed methods achieve high detection rates on previously
unseen worms.

The rest of the paper is structured as follows: in section 2, a survey of the relevant
background for this study is presented. The methods used in this study are described
in section 3, followed by the description of the experiments design in section 4. In
section 5 we present the evaluation results and conclude with summary and
conclusions in section 6.

2 Background and Related Work

2.1 Malicious Code and Worms

The term 'malicious code' (malcode) refers to a piece of code, not necessarily an
executable file, intended to harm, whether generally or in particular, a specific owner
(host). The approach suggested in this study aims at detecting any malcode activity,
whether known or unknown. However, since our preliminary research is on worms,
we will focus on them in this section.

Kienzle and Elder (2003) define a worm by several aspects through which it can be
distinguished from other types of malcode: 1) Malicious code – worms are considered
malicious in nature; 2) network propagation or human intervention – a commonly
agreed-upon aspect, that is, worms propagate actively over a network, while other
types of malicious codes, such as viruses, commonly require human activity to
propagate; 3) standalone or file infecting – while viruses infect a file (its host), a
worm does not require a host file, and sometimes does not even require an executable
file, residing entirely in the memory, as did the Code Red (Moore et al., 2002) worm.
Different purposes and motivations stand behind worm developers (Weaver et al.,
2003) including: Experimental curiosity (ILoveYou worm,; CERT, 2000); pride and
power leading programmers to show off their knowledge and skill through the harm
caused by the worm; commercial advantage, extortion and criminal gain, random and
political protest, and terrorism and cyber warfare. The existence of all these types of
motivation indicates that computer worms are here to stay as a network vehicle
serving different purposes and implemented in different ways. To address the
challenge posed by worms effectively, meaningful experience and knowledge should
be extracted by analyzing known worms. Today, given the known worms, we have a
great opportunity to learn from these examples in order to generalize. We argue that
supervised learning methods can be very useful in learning and generalizing from
previously encountered worms, in order to classify unknown worms effectively.

2.2 Detecting Malicious Code Using Supervised Learning Techniques

Supervised and unsupervised learning has already been used for detecting and
protecting against malicious codes. A recent survey on intrusion detection systems
(Kabiri and Ghorbani, 2005, Rokach and Elovici, 2007) summarizes recently
proposed applications for recognizing malcodes in single computers and in computer
networks. Lee et al. (1999). proposed a framework consisting of set of algorithms for
the extraction of anomalies of user normal behavior for use in anomaly detection , in
which a normal behavior is learned and any abnormal activity is considered as
intrusive. The authors suggest several techniques, such as classification, meta-
learning, association rules, and frequent episodes, to extract knowledge for
implementation in intrusion detection systems, evaluating their approach on the
DARPA98 (Lippmann et al., 1998) benchmark.

A Naïve Bayesian classifier was suggested in (Kabiri and Ghorbani, 2005),

referring to its implementation within the ADAM system, developed by Barbara et al.
(2001), which had three main parts: (a) a network data monitor listening to TCP/IP
protocol; (b) a learning engine which enables acquisition of the association rules from
the network data; and (c) a classification module which classifies the nature of the
traffic in two possible classes, normal and abnormal, which can later be linked to
specific attacks. Other soft computing algorithms were proposed for detecting
malicious code: Artificial Neural Networks (ANN) (Zanero and Savaresi, 2004;
Kayacik et al., 2003; Lei and Ghorbani; 2004). Self Organizing Maps (SOM) (Hu
and Heywood, 2003) and fuzzy logic (Dickerson and Dickerson, 2000; Bridges and
Vaughn Rayford, 2000; Botha and von Solms, 2003).

3 Methods

The goal of this study was to assess the feasibility of detecting unknown malicious
code, in particular computer worms, based on the computer's behavior
(measurements), using machine learning techniques, and the potential accuracy of
such methods. In order to create the datasets we built an isolated local network of
computers, simulating a real Internet network which allows worms to propagate. This
setup enabled us to inject worms into a controlled environment, while monitoring the
computer behavior. The monitoring is performed by an agent, developed specifically
for this purpose, that measures various parameters and save their values in log files.

In this study we examine whether a classifier, trained on data collected from a
computer having a certain hardware configuration and certain specific background
activity, is capable to correctly classify the behavior of a computer having other
configurations? In order to answer this question we designed several experiments. We
created eight datasets having different configurations, different background
applications, and different user activities. Another goal was to select the minimal
subset of features which are required to correctly classify new cases. Reducing the
number of features used in the model, implies that less monitoring efforts are needed

when the proposed approach is served as the basis for an operational system. Finally,
we applied four classification algorithms on the given datasets in a varied series of
experiments, starting with detecting known worms in different environments and later
detecting completely new, previously unseen worms.

Figure 1 specifies the process that was used in order to perform this study. The
upper part refers to the training phase. We collected a set of worms and used them to
infect the hosts in the controlled environment. Then an agent, which was installed on
each host, recorded the behavior of the host. Based on collected dataset, we trained
the classifiers. The bottom part in Figure 1 refers to the test phase. In this phase we
examine if the induced classifier can be used to identify the existence of unknown
worm.

Figure 1: Outline of the Train phase and the Test Phase

3.1 Dataset Creation

Since there is no benchmark dataset which could be used for this study, we created
our own dataset. A network with various computers (configurations) was deployed,
enabling us to inject worms, and monitor the computer behavior and log the
measurements.

Environment Description

The lab network consisted of seven computers, which contained heterogenic
hardware, and a server computer simulating the internet. We used the windows

performance counters1, which enable monitoring system features that appear in these
main categories (including the number of features in parenthesis): Internet Control
Message Protocol (27), Internet Protocol (17), Memory (29), Network Interface (17),
Physical Disk (21), Process (27), Processor (15), System (17), Transport Control
Protocol (9), Thread (12), and User Datagram Protocol (5). In addition we used
VTrace (Lorch and Smith, 2000), a software tool which can be installed on a PC
running Windows for monitoring purposes. VTrace collects traces of the file system,
the network, the disk drive, processes, threads, interprocess communication, waitable
objects, cursor changes, windows, and the keyboard. The data from the windows
performance counter were configured to measure the features every second and store
them in a log file as vectors. VTrace stored time-stamped events, which were
aggregated into the same fixed intervals, and merged with the windows performance
log files. These eventually included a vector of 323 features for every second.

Injected Worms

While selecting worms from the wild, our goal was to choose worms that differ in
their behavior, from among the available worms. Some of the worms have a heavy
payload of Trojans to install in parallel to the distribution process upon the network;
others focus only on distribution. Another aspect is that they have different strategies
for IP scanning which results in varying communication behavior, CPU consumption,
and network usage. While all the worms are different, we wanted to find common
characteristics by the presence of which it would be possible to detect an unknown
worm. We briefly describe here the main characteristics, relevant to this study, of
each worm included in this study. The information is based on the virus libraries on
the web234. We briefly describe the five worms we used:

(1) W32.Dabber.A scans IP addresses randomly. It uses the W32.Sasser.D worm to
propagate and opens the FTP server to upload itself to the victim computer.
Registering itself enables its execution on the next user login (human based
activation). It drops a backdoor, which listens on a predefined port. This worm is
distinguished by its use of an external worm in order to propagate.

(2) W32.Deborm.Y is a self-carried worm, which prefers local IP addresses. It
registers itself as an MS Windows service and is executed upon user login (human
based activation). This worm contains three Trojans as a payload: Backdoor.Sdbot,
Backdoor.Litmus, and Trojan.KillAV, and executes them all. We chose this worm
because of its heavy payload.

(3) W32.Korgo.X is a self carrying worm which uses a totally random method for
IP addresses scanning. It is self-activated and tries to inject itself as a function to MS
Internet Explorer as a new thread. It contains a payload code which enables it to
connect to predefined websites in order to receive orders or download newer worm
versions.

1http://msdn.microsoft.com/library/default.asp?url=/library/en-us/counter/counters2_lbfc.asp
2 Symantec – www.symantec.com
3 Kasparsky www.viruslist.com
4Macfee http://vil.nai.com

(4) W32.Sasser.D uses a preference for local addresses optimization while
scanning the network. About half the time it scans local addresses, and the other half
random addresses. In particular it opens 128 threads for scanning the network, which
requires a heavy CPU consumption, as well as significant network traffic. It is a self-
carried worm and uses a shell to connect to the infected computer’s FTP server and to
upload itself.

(5) W32.Slackor.A, a self-carried worm, exploits MS Windows sharing
vulnerability to propagate. The worm registers itself to be executed upon user login. It
contains a Trojan payload and opens an IRC server on the infected computer in order
to receive orders.

All the worms perform port scanning and possess different characteristics. Further
information about these worms can be found on the web567.

Dataset Description

In order to examine the influence of a computer hardware configuration,
background running applications, and user activity, we considered three major
aspects: computer hardware configuration, constant background application
consuming extreme computational resources, and user activity, being binary
variables. (1) Computer hardware configuration: Both computers ran on Windows
XP, which considered the most widely used operating system, having two hardware
configuration types: an "old," having Pentium 3 800Mhz CPU, bus speed 133Mhz
and memory 512 Mb, and a "new," having Pentium 4 3Ghz CPU, bus speed 800Mhz
and memory 1 Gb. (2) Background application activity: We ran an application
affecting mainly the following features: Processor object, Processor Time (usage of
100%); Page Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer, Avg Disk
Bytes/Write, and Disk Writes/sec. (3) User activity: several applications, including
browsing, downloading and streaming operations through Internet Explorer, Word,
Excel, chat through MSN messenger, and Windows Media Player, were executed to
imitate user activity in a scheduled order. Appendix A specifies the set of features that
was examined in this research.

We created eight datasets (see table I). Each dataset contained monitored samples
of each one of the five injected worms separately, and samples of a normal computer
behavior, without any injected worm. Each worm was monitored for a period of 20
minutes. We collected the values of the features every second. Thus, each record,
containing a vector of measurements and a label, presented an activity along a second
labeled by a specific worm, or a none activity label. Each dataset contained a few
thousand (labeled) samples of each worm or clean computer. We therefore had three
binary aspects, which resulted in eight possible combinations, shown in Table 1,
representing a variety of dynamic computer configurations and usage patterns. Each
dataset contained monitored samples for each of the five worms injected separately,

5 Symantec – www.symantec.com
6 Kasparsky www.viruslist.com
7Macfee http://vil.nai.com

and samples of a normal computer behavior without any injected worm. Each sample
(record) was labeled with the relevant worm (class), or 'none' for clean samples.

Table 1. The three aspects resulting in eight datasets, representing a variety of
situations of a monitored computer.

Computer
Background

Application
User

Activity
Dataset

Name
Old No No O
Old No Yes Ou
Old Yes No Oa
Old Yes Yes Oau
New No No N
New No Yes Nu
New Yes No Na
New Yes Yes Nau

3.2 Feature Selection Methods

In many applications, the large number of features in many domains presents a
huge challenge. Typically, some of the features do not contribute to the accuracy of
the classification task and may even hamper it. Feature selection is the process of
identifying relevant features in the dataset and discarding everything else as irrelevant
and redundant. Since feature selection reduces the dimensionality of the data, it
enables the classification algorithms to operate more effectively and rapidly. In some
cases, classification performance can be improved; in other instances, the obtained
classifier is more compact and can be easily interpreted. In host-based detection
applications there is an additional motivation. Ideally, we would like to minimize the
self-consumption of computer resources required for the monitoring operations
(measurements), i.e. minimizing the collection of the features.

 In order to compare the performance of the various classification algorithms, we
used the filters approach, which is applied on the dataset and is independent of any
classification algorithm, in which a measure is calculated to quantify the correlation
of each feature with the class (the presence or absence of worm activity). Each feature
receives a rank which represents its expected contribution in the classification task.

3.2.1 Feature Selection Methods.

We used three feature-selection methods, which resulted in a list of ranked features
for each feature-selection method and an ensemble incorporating all three of them.
We used Chi-Square (CS), Gain Ratio (GR) and ReliefF implemented in the WEKA
environment (Witten and Frank, 2005) and their ensemble.

Chi-Square

Chi-Square measures the lack of independence between a feature f and a class ci
(such as W32.Dabber.A) and can be compared to the chi-square distribution with one
degree of freedom to judge extremeness. Equation 1 shows how the chi-square
measure is defined and computed, where N is the total number of documents and f

refers to the resence of the feature (and f its absence), and ci refers to its membership
in ci.

)()()()(

)],(),(),(),([
),(

2
2

ii

iiiii
i cPcPfPfP

cfPcfPcfPcfPN
cf

−
=χ

 . (1)

Gain Ratio

Gain Ratio was originally presented by Quinlan in the context of Decision Trees
(Mitchell, 1997), which was designed to overcome a bias in the Information Gain
(IG) measure, and which measures the expected reduction of entropy caused by
partitioning the examples according to a chosen feature. Given entropy E(S) as a
measure of the impurity in a collection of items, it is possible to quantify the
effectiveness of a feature in classifying the training data. Equation 3 presents the
formula of the entropy of a set of items S, based on C subsets of S (for example,
classes of the items), presented by Sc. Information Gain measures the expected
reduction of entropy caused by portioning the examples according to attribute A, in
which V is the set of possible values of A, as shown in Equation 2. These equations
refer to discrete values; however, it is possible to extend them to continuous values
attribute.

)(
||

||
)(),(

)(
v

AVv

v SE
S

S
SEASIG ∑

∈

⋅−= (2)

||

||
log

||

||
)(2 S

S

S

S
SE c

Cc

c∑
∈

⋅−= . (3)

The IG measure favors features having a high variety of values over those with
only a few. GR overcomes this problem by considering how the feature splits the data
(Equations 4 and 5). Si are d subsets of examples resulting from portioning S by the d-
valued feature A.

),(

),(
),(

ASSI

ASIG
ASGR = (4)

||

||
log

||

||
),(

1
2 S

S

S

S
ASSI i

d

i

i∑
=

⋅−= . (5)

Relief

ReslifF (Pearl, 1986) estimates the quality of the features according to how well
their values distinguish between instances that are near each other. Given a randomly
selected instance x, from a dataset s with k features, Relief searches the dataset for its
two nearest neighbors from the same class, called nearest hit H, and from a different
class, called nearest miss M. The quality estimation W[Ai] is stored in a vector of the
features Ai, based on the values of a difference function diff() given x, H and M as
shown in Equation 6.









≠
=

−
=

, & nominal is A if 1

 , & nominal is A if 0

numeric, is A if ||

),,(

21i

21i

i21

21

ii

ii

ii

iii

xx

xx

xx

xxAdiff (6)

Features Ensembles

Instead of selecting features based on of the feature selection mathods, one can use
the ensemble strategy (see for instance Rokach et al., 2007) which combines the
features subsets that are obtained from several features selection methods.
Specifically, we combine several methods by averaging the features ranks as shown in
Equation 7:

k

firank
fiRank

k

j

j)(
)(1∑ == . (7)

where fi is a feature, filter is one of the k filtering (feature selection) methods.
Specifically in our case k=3.

3.2.2 Consolidating Features from Different Environments: Averaged vs.
Unified Consolidation.

Often when applying a feature selection method, such as the filters approach, the
method is applied on the entire dataset aiming to rank the features based on their
measured correlation to the class. However, unlike in the common datasets, our
dataset consisted of eight datasets coming from different environments, as explained
earlier (see Table 1). Since some features might be more important in specific
environments and less in others it is not clear how this has to be considered. In this
study we propose two approaches to considering and integrating the aspects of the
datasets. In the first approach, termed unified dataset, we unified all the eight datasets
into a single dataset and applied the filter on the unified dataset.

Alternatively, we examined the approach termed averaged in which we applied the

filter on each one of the eight datasets and computed the average rank for each

feature. Note that for averaging the features ranks obtained from the different
environments, we used Equation 7 again.

Figure 2 illustrates both approaches, in which the top refers to the unified

approach, where the feature selection (FS) is applied on the unified dataset 'all ' and
the averaged approach, at the bottom, in which the feature selection is applied on each
dataset and averaged into a rank list.

Figure 2 – Unified versus the averaged
approach for environment features
consolidation.

Figure 3 - The creation of 33 features
sets.

After applying both approaches we extracted the top ranked features. We took the

highest ranked (top) features 5, 10, 20 and 30 from the output of each feature
selection method. Finally, we had four features sets (Top 5, 10, 20, 30) for each of the
four filters (fs1, fs2, fs3, ensemble), for each feature consolidation (unified,
averaged). On top of that we also examined the full features set (with no feature
selection). This totally results with 33 features sets (4×4×2+1) as shown in Figure 3.

3.3 Classification algorithms

One of the goals of this study was to pinpoint the classification algorithm that
provides the highest level of detection accuracy. We employed four commonly used
Machine Learning algorithms: Decision Trees, Naïve Bayes, Bayesian Networks and
Artificial Neural Networks, in a supervised learning approach, in which the
classification algorithm learns from a provided training set, containing labeled
examples.

While the focus of this paper is not on classification algorithm techniques, but on
their application in the task of detecting worm activity, we briefly describe the
classification algorithms we used in this study.

Decision Trees

Decision tree learners (Quinlan, 1993) are a well-established family of learning
algorithms. Classifiers are represented as trees whose internal nodes are tests on
individual features, and leaves are classification decisions. Typically, a greedy top-
down search method is used to find a small decision tree that correctly classifies the
training data. The decision tree is induced from the dataset by splitting the variables
based on the expected information gain. Modern implementations include pruning,
which avoids over-fitting. In this study we evaluated J48, the WEKA version of the
commonly used C4.5 algorithm (Quinlan, 1993). An important characteristic of
Decision Trees is the explicit form of their knowledge which can be represented as a
set of if-then rules. This set of rules can be then easily embedded in any existing IDS.

Naïve Bayes

The Naïve Bayes classifier is based on the Bayes theorem, which in the context of
classification states that the posterior probability of a class is proportional to its prior
probability as well as to the conditional likelihood of the features, given this class. If
no independent assumptions are made, a Bayesian algorithm must estimate
conditional probabilities for an exponential number of feature combinations. Naive
Bayes simplifies this process by making the assumption that features are conditionally
independent given the class, and requires that only a linear number of parameters be
estimated. The prior probability of each class and the probability of each feature,
given each class, is easily estimated from the training data and used to determine the
posterior probability of each class, given a set of features. Naive Bayes has been
shown empirically to produce good classification accuracy across a variety of
problem domains. In this study, we evaluated Naive Bayes, the standard version that
comes with WEKA.

Bayesian Networks

Bayesian networks are a form of the probabilistic graphical model (Pearl, 1986).
Specifically, a Bayesian network is a directed acyclic graph of nodes with variables
and arcs representing dependence among the variables. Like Naïve Bayes, Bayesian
networks are based on the Bayes Theorem; however, unlike Naïve Bayes they do not
assume that the variables are independent. Actually Bayesian Networks are known for
their ability to represent conditional probabilities, which are the relations between
variables. A Bayesian network can thus be considered a mechanism for automatically
constructing extensions of Bayes Theorem to more complex problems. Bayesian

networks were used for modeling knowledge and implemented successfully in
different domains. We evaluated the Bayesian Network standard version which comes
with WEKA.

Artificial Neural Networks

An Artificial Neural Network (ANN) (Bishop, 1995) is an information processing
paradigm that is inspired by the way biological nervous systems (i.e., the brain) are
modeled with regard to information processing. The key element of this paradigm is
the structure of the information processing system. It is a network composed of a
large number of highly interconnected processing elements, called neurons, working
together in order to approximate a specific function. An ANN is configured for a
specific application, such as pattern recognition or data classification, through a
learning process during which the weights of the inputs in each neuron are updated.
The weights are updated by a training algorithm, such as back-propagation, according
to the examples the network receives, in order to reduce the value of error function.
The power and usefulness of ANN have been demonstrated in numerous applications
including speech synthesis, medicine, finance, and many other pattern recognition
problems. For some application domains, neural models show more promise in
achieving human-like performance than do more traditional artificial intelligence
techniques. All ANN manipulations in this study have been performed within a
MATLAB(r) environment using Neural Network Toolbox (Demuth and Beale,
1998).

4 Experimental Design

Our main goal in this study was to investigate whether the approach presented
here, in which unknown malicious code is detected, based on the computer behavior
(measurements), is feasible and enables a high level of accuracy when applied to a
variety of computers. We defined four research questions accordingly:

Q1: In the detection of known malicious code, based on a computer's
measurements, using machine learning techniques, what is the achievable level of
accuracy?

Q2: Is it possible to reduce the amount of features to below 30, while maintaining a
high level of accuracy (compared to the full set of features). Which feature
consolidation approach (unified versus averaged) and feature selection method is
superior?

Q3: Will the computer configuration and the computer background activity, from
which the training sets were taken, have a significant influence on the detection
accuracy?

Q4: Is the detection of unknown worms possible, based on a training set of known
worms?

In addition to these research questions, we wanted to identify the best classification
algorithms and the best combination of top ranked features and classification

algorithm. We start with the definition of the evaluation measures and continue with
the experiments we designed for this study.

4.1 Evaluation Measures

For evaluation purposes, we measured the True Positive Rate (TPR) measure,
which is the number of positive instances classified correctly, as shown in Equation 8,
False Positive Rate (FPR), which is the number of negative instances misclassified
(Equation 8), and the Total Accuracy, which measures the number of absolutely
correctly classified instances, either positive or negative, divided by the entire number
of instances shown in Equation 9. Additionally, we calculated the ROC curves, but
we don’t present them because of lack of room.

||||

||

FNTP

TP
TPR

+
= ;

||||

||

TNFP

FP
RFP

+
= (8)

||||||||

||||

FNTNFPTP

TNTP
AccuracyTotal

+++
+= . (9)

We also measured a confusion matrix, which depicts the number of instances from
each class which were classified in each one of the classes (ideally all the instances
would be in their actual class).

In the first part of the study, we wanted to identify the best feature consolidation

approach (unified or averaged) and feature selection method, the best classification
algorithm and the minimal features required to maintain a high level of accuracy. In
the second part we wanted to measure the capability of classifying unknown worms
based on a training set of known worms. In order to answer these questions we
designed two experimental plans, based on 33 datasets, as will be described later.
After evaluating all the classification algorithms on the 33 datasets, we selected the
best feature selection and the top features to evaluate the unknown worms detection.

4.2 Experiment I

To determine the best combination of feature selection method, number of features,
and classification algorithm, we performed a wide set of experiments, in which we
evaluated all the combinations of feature selection method, classification algorithm,
and number of top features.

In this experiment, called e1, we trained each classifier on a single dataset i and
tested on each one (j) of the eight datasets. Thus, we had a set of eight iterations in
which a dataset was used for training, and eight corresponding evaluations which
were done on each one of the datasets, resulting in 64 evaluation runs. When i = j , we
used 10 fold cross validation,, in which the dataset is randomly partitioned into ten
partitions and repeatedly the classifier is trained on nine partitions and tested on the
tenth. Each evaluation run (out of the 64) was repeated for each one of the
combinations of feature selection method, classification algorithm, and number of top

features. Thus, each evaluation run was repeated for the 33 features set described
earlier in Figure 3 (in each repetition different features are extracted from the
datasets). Note that the task was to classify specifically the exact worm out of the five
or a none (worm) activity, and not to generate a general binary classification of
“worm” or a “none” activity, which was our final goal in the context of an unknown
worm detection. Such conditions, while being more challenging, were expected to
bring more insights.

4.3 Experiment II

To estimate the potential of the suggested approach in classifying an unknown
worm activity, which was the main objective of this study, we designed an additional
experiment, called e2, in which we trained classifiers based on part of the (five)
worms and the none activity, and tested on the excluded worms (from the training set)
and the none activity, in order to measure the capability to detect an unknown worm
and the none activity accurately.

In this experiment the training set consisted of 5-k worms and the testing set
contained the k excluded worms, while the none activity appeared in both datasets.
This process repeated for all the possible combinations of the k worms (k = 1 to 4). In
each combination a classifier was trained on the training set and tested on all the
remaining seven datasets. The test set included only the excluded worms and not the
worms presented in the training set since we wanted to measure specifically the
detection rate of the unknown. Note that in these experiments, unlike in e1, there were
two classes: (generally) worm, for any type of worm, and none activity. This
experiment was evaluated on each classification algorithm, using the outperforming
top selected features found in e1.

5 Results

Experiment I

Our objective in e1 was to determine the best: feature selection approach, feature
selection method, number of top features, and classification algorithms. We ran 132
(four classification algorithms applied to 33 features sets) evaluations (each comprises
64 runs), summing up to 8448 evaluation runs.

Figure 4 shows the mean accuracy (of all the classification algorithms) achieved
for each environments features consolidation (unified or averaged), each feature
selection method, top 5, 10, 20, 30 features and for the full set of features as a
baseline. While the feature selection method and number of top features aren’t
relevant for the FULL features set curve (blue lines in Figure 4) we presented the
curve for comparison purposes. In general, all the feature subsets having less than 30
features achieved a mean performance quite similar to the full set of features
(including 323 features). The unified consolidation approach outperforms the

averaged consolidation approach for most of the cases, especially when the Gain
Ratio feature selection method is used. Additionally, unlike the averaged
consolidation approach, which in most of the cases is below the full set performance,
the unified consolidation approach for most of the cases is above it. Additionally, the
Top20 features delivered the best in most of the cases.

Based on the mean accuracy of the four classification algorithms GainRatio feature
selection method outperformed the other feature selection methods for most of the top
number of features, while the ensemble feature selection method outperformed for
Top5. Unlike the independent measures, in which there was a monotonic growth
when features were added, in the ensemble a monotonic slight decrease was observed
as more features were used. The Top20 features outperformed in general (by
averaging) and when using GainRatio feature selection method in particular.

Figure 5 shows the same results, but presents the mean accuracy of the
classification algorithms for several numbers of top features. Bayesian Networks
outperforms for any number of top features, and on average the 20 top features Top20
outperformed the other number of top features.

For example, Top5 features for GainRatio feature selection method included: in the
category of ICMP: (1) Sent_Echo_sec – the rate of ICMP Echo messages sent; (2)
Messages Sent/sec – the rate, in incidents per second, at which the server attempted to
send. The rate includes those messages sent in error; (3) Messages/sec – the total rate,
in incidents per second, at which ICMP messages were sent and received by the target
entity. The rate includes messages received or sent in error. In the category of TCP:
(4) Connections Passive – the number of times TCP connections made a direct
transition to the SYN-RCVD state from the LISTEN state; (5) Connection Failures –
the number of times TCP connections made a direct transition to the CLOSED state
from the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP
connections made a direct transition to the LISTEN state from the SYN-RCVD state.
The list of the top twenty ranked features is presented in the Appendix B.

Based on the results achieved in e1, in which the unified consolidation approach,
Top20 features, GainRatio feature selection method, outperformed on average, we
used only this features subset in the second part of the evaluation (e2).

Figure 4 – The mean accuracy for various feature selection methods and the
number of top features

Figure 5 – The mean accuracy for various classification algorithms and number
of top features

In Q3 we wanted to estimate the performance sensitivity of the suggested approach

given several training sets sampled from a variety of computers, represented by the
eight datasets. Thus, we tested whether the accuracy obtained by training a classifier
on a training set sampled from a given computer will vary significantly when
evaluated on a variety of test sets. To perform this test we designed two experiments
(e11,e12).

Table 2 presents the mean accuracy and the resulting standard deviation in each
experiment, including 128 evaluation runs. In the first main column the results of e11

are presented in two columns, when the dataset di was used as a training set (left
column), and when used as test sets (right column). The results of e11 when di was the
training set were not homogenous. The results of e11 when di was the testset were not
homogenous too, though we found that the training on datasets created in the 'old'
computer was significantly better (α = 0.01). In e12, in which all datasets except di
were training set and di was the testset, the results were statistically significant (α =
0.05) homogenous. Note that e11 and e12 experiments are based on all the learning
algorithms, and not specifically on each algorithm. The classification accuracy in e12
outperformed the accuracy in e11, since the training sets in e12 included several
datasets.

Table 2. The results achieved in e11 and e12.
Experiment e11 e12

Dataset di Training: di Testset: di
Training: all
datasets except di
Testset: di

o 0.68 ± 0.23 0.73 ± 0.23 0.78 ± 0.22
ou 0.76 ± 0.22 0.73 ± 0.22 0.82 ± 0.18
oa 0.73 ± 0.21 0.73 ± 0.23 0.81 ± 0.18
oau 0.77 ± 0.21 0.72 ± 0.21 0.81 ± 0.19
n 0.61 ± 0.24 0.64 ± 0.22 0.71 ± 0.20
nu 0.76 ± 0.21 0.72 ± 0.22 0.82 ± 0.22
na 0.70 ± 0.21 0.73 ± 0.24 0.86 ± 0.17
nau 0.73 ± 0.22 0.71 ± 0.23 0.79 ± 0.20
Average 0.72 ± 0.22 0.72 ± 0.22 0.80 ± 0.19

Experiment II

In Q4 we wanted to estimate the possibility of classifying an unknown worm when
training on data collected from a single computer. In this set of experiments we used
only the Top20 features, which outperformed in e1. The training set included four
worms out of the five and the none activity samples, and the test set included the
excluded worm and the none activity samples. This process was done for each worm
repeating in five iterations. Note that in these experiments, unlike in e1, in which each
worm class was defined separately, there were two classes: (generally) worm and
none activity.

Table 3 presents the results of e2. On average the Decision Trees and Bayesian
Networks outperformed the others classification algorithms. The table shows also the
true positive (TP) and false positive (FP). Decision Trees and Bayesian Networks
achieved high level of accuracy and maintained a low false positive rate.

Table 3 - The results of e2. There is a difference in the detection accuracy of each
classifier for each type of worm. On average, Decision Trees outperformed the
other classifiers, while maintaining a low false positive rate.

 ANN 20 BN 20 DT 20 NB 20
Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP
1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499
2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002
3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156
4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002
5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026
Average 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14
StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05

Figure 6 presents the results of e2, in which a monotonic increase in the accuracy is

shown, as more worms are included in the training set. Note that the number of
worms in the x axis refers to the number of worms excluded from the training set, and
were included in the test set. In general the ANN outperformed all the other
algorithms, while the BN kept on showing very good results. Note that testing on the
seven datasets separately decreased the mean accuracy slightly. In addition, when
only one worm was excluded, in specific worms we achieved 99% accuracy and a
very low false positive rate of 0.005.

Figure 5. The performance monotonically increases as fewer worms are excluded
from the training set

6. Discussion and Conclusions

In this paper we explored the feasibility of detecting unknown worm activity in individual
computers, at a high level of accuracy, given the variation in hardware and software
environmental conditions, while minimizing the set of features collected from the monitored

computer. Four research questions were investigated, referring to the feasibility of the
approach, the best settings, and the level of achieved accuracy, for which a dataset
was created and several corresponding experiments were designed. In the first
experiment we showed that the detection of known worms is feasible at a very high
level of accuracy To reduce the computational resources in the classification task we
wanted to reduce the number of features. Two consolidation approaches to integrating
the eight datasets for the task of features selection were proposed: unified, in which
all the datasets were unified into a single dataset, and averaged, in which we first
applied the feature selection method on each dataset and averaged the ranked features
into a single rank. Our results showed that the mean performance of the unified
approach outperformed the averaged approach. Based on the evaluation results, in
general Bayesian Networks outperformed the other algorithms; and using the Top 20
ranked features from the GainRatio was the best. The reduction in the amount of
features and the improvement in accuracy compared well to the baseline of above 300
features in the full set, since it reduces the computer's resources consumption needed
for monitoring its behavior. We investigated the influence of the variance in the
training phase and detection phase on the configuration of a computer and its
programs, to determine whether this method can be generalized. We found that
training on seven unified datasets was significantly homogenous (α=0.01) based on a
homogeneity test, unlike training on a single dataset (as in e11). This is a very
encouraging result, since we assume that, when applying such an approach in the real
world, a training set that consists of samples from several types of computer activity
in several environments is a reasonable requirement.

To examine the possibility of classifying unknown worms, unlike in previous
experiments, two classes were defined in the dataset, a worm type consisting of the
worms' samples and ‘none’ type. The training sets had four worms and the ‘none’
activity and the test set consisted only of the excluded worm and the none-activity.
We found that the level of detection accuracy for each worm varies from algorithm to
algorithm. Finally, in e2 above 85% accuracy was achieved in general; Decision
Trees achieved 92%, while specific algorithms exceeded the 95% level of accuracy
for specific worms. We noticed that the detection of each worm varied within each
algorithm, while being different among algorithms, and thus we suggest using an
ensemble of classifiers to achieve a higher level of accuracy for instances of all
potential worm classes. In general Bayesian Networks resulted constantly in very
good results, which might be explained by the consideration of the dependency within
features, unlike other classifiers. Later we reduced the amount of worms in the
training set and increased the amount of unknown worms in the test set. We found an
increase in accuracy as more worms were presented in the training set.

The limitations of this study are the number of worms and the variety of computer
configurations. Note that the worms were selected to provide a reasonable variety and
the computers which were used were dramatically different. However, this was
enough to achieve statistically significant results.

To conclude, we have shown that it is possible to detect previously un-encountered
computer worms using our novel approach, which is based on monitoring the
computer "behavior" (features). In order to attain a high level of accuracy in different
types of computers, which is an essential requirement in real life, the training set

should include samples taken from several computers types (i.e., different
configurations).

Acknowledgments. This work was supported by Deutsche Telekom Co. We

would like to thank the undergraduate students Shai and Ido and Clint Feher who
contributed in the preparations of the dataset.

References

1. Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004). N-
gram Based Detection of New Malicious Code, Proceedings of the 28th
Annual International Computer Software and Applications Conference
(COMPSAC'04)

2. Barbara, D., Wu, N., Jajodia, S. (2001). Detecting Novel Network
Intrusions using Bayes Estimators, in Proceedings of the First SIAM
International Conference on Data Mining (SDM 2001), Chicago, USA

3. Bishop, C. (1995). Neural Networks for Pattern Recognition. Clarendon
Press, Oxford.

4. Botha, M. and von Solms, R. (2003). Utilising Fuzzy Logic and Trend
Analysis for Effective Intrusion Detection,” Computers & Security, vol.
22, no. 5, pp. 423–434, 2003.

5. Bridges, S.M. and Vaughn Rayford, M. (2000). Fuzzy Data Mining and
Genetic Algorithms Applied to Intrusion Detection, in Proceedings of the
Twenty-third National Information Systems Security Conference.
National Institute of Standards and Technology, Oct. 2000.

6. Caia D. M., Gokhaleb M., Theilerc J., Comparison of feature selection
and classification algorithms in identifying malicious executables,
Computational Statistics & Data Analysis 51 (2007) 3156 – 3172.

7. CERT. CERT Advisory CA-2000-04, Love Letter Worm,
http://www.cert.org/advisories/ca-2000-04.html

8. Demuth, H. and Beale, M. (1998). Neural Network Toolbox for Use with
Matlab. The Mathworks Inc., Natick, MA.

9. Dickerson, J.E. and Dickerson, J.A. (2000). Fuzzy Network Profiling for
Intrusion Detection,” in Proceedings of NAFIPS 19th International
Conference of the North American Fuzzy Information Processing Society,
pp. 301–306, Atlanta, USA, July 2000.

10. Fosnock, C. (2005). Computer Worms: Past, Present and Future. East
Carolina University

11. Hu, P. Z. and Heywood, M.I. (2003). Predicting Intrusions with Local
Linear model, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1780–1785. IEEE, IEEE, July 2003.

12. Kabiri, P., Ghorbani, A.A. (2005). Research on Intrusion Detection and
Response: A Survey. International Journal of Network Security, vol. 1(2),
pp. 84-102.

13. Kayacik, H.G., Zincir-Heywood, A.N., and Heywood, M.I. (2003) On the
Capability of a Som Based Intrusion Detection System, in Proceedings of
the International Joint Conference on Neural Networks, vol. 3, pp. 1808–
1813. IEEE, IEEE, July 2003.

14. Kienzle, D.M. and Elder, M.C. (2003). Recent Worms: a Survey and
Trends. In Proceedings of the 2003 ACM Workshop on Rapid Malcode,
pages 1--10. ACM Press, October 27, 2003.

15. Kolter, J.Z. and Maloof, M.A. (2006). Learning to Detect and Classify
Malicious Executables in the Wild, Journal of Machine Learning
Research, 7, 2721-2744.

16. Lee, W., Stolfo, S.J. and Mok, K.W. (1999). A Data Mining Framework
for Building Intrusion Detection Models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May 1999

17. Lei, J. Z. and Ghorbani, A. (2004). Network Intrusion Detection Using an
Improved Competitive Learning Neural Network,” in Proceedings of the
Second Annual Conference on Communication Networks and Services
Research (CNSR04), pp. 190–197. IEEE-Computer Society, IEEE, May
2004.

18. Lippmann, R.P., Graf, I., Wyschogrod, D., Webster, S.E., Weber, D.J.,
and Gorton, S. (1998). The 1998 DARPA/AFRL Off-Line Intrusion
Detection Evaluation, First International Workshop on Recent Advances
in Intrusion Detection (RAID), Louvain-la-Neuve, Belgium, 1998.

19. Lorch, J. and Smith, A. J. (2000) The VTrace Tool: Building a System
Tracer for Windows NT and Windows 2000. MSDN Magazine,
15(10):86–102, October 2000.

20. Mitchell T. (1997). Machine Learning, McGraw-Hill.
21. Moore, D., Shannon, C., and Brown, J. (2002). Code Red: a Case Study

on the Spread and Victims of an Internet Worm, Proceedings of the
Internet Measurement Workshop 2002, Marseille, France, November
2002.

22. Not USED: Domingos, P., and Pazzani, M. (1997). On the Optimality of
Simple Bayesian Classifier under Zero-one Loss, Machine Learning,
29:103-130.

23. Not Used: Kohavi, R., (1995). A Study of Cross-Validation and Bootstrap
for Accuracy Estimation and Model Selection, International Joint
Conference in Artificial Intelligence, 1137-1145.

24. Pearl J., (1986). Fusion, Propagation, and Structuring in Belief Networks.
Artificial Intelligence 29(3):241–288.

25. Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

26. Rokach L., Chizi B., Maimon O,, A Methodology for Improving the
Performance of Non-ranker Feature Selection Filters, International
Journal of Pattern Recognition and Artificial Intelligence , 21, 5, 1-22,
(2007).

27. Rokach L., Elovici Y., Data Mining for Intrusion Detection,
Encyclopaedia of Cyber terrorism and Cyber Warfare, (Editors: Lech J.
Janczewski and Andrew M. Colarik), Idea Group Reference, Winter 2007.

28. Schultz, M., Eskin, E., Zadok, E., and Stolfo, S. (2001). Data Mining
Methods for Detection of New Malicious Executables, Proceedings of the
IEEE Symposium on Security and Privacy, 2001, pp. 178--184.

29. Weaver, N. Paxson, V. Staniford, and S. Cunningham, R. (2003). A
Taxonomy of Computer Worms, Proceedings of the 2003 ACM workshop
on Rapid Malcode, Washington, DC, October 2003, pages 11-18

30. Witten, I.H. and Frank E., (2005). Data Mining: Practical Machine
Learning Tools and Techniques, 2nd Edition, Morgan Kaufmann, San
Francisco, 2005.

31. Zanero. S. and Savaresi, S.M. (2004) Unsupervised Learning Techniques
for an Intrusion Detection System,” in Proceedings of the 2004 ACM
Symposium on Applied Computing, pp. 412–419, Nicosia, Cyprus, Mar.
2004. ACM Press.

Appendix A - Operating System Measurements
The following table includes all features mapping in the data set. For further
information about the objects and their meaning in the windows counters tools, please
refer to http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp, for more information about VTrace please refer to
http://msdn.microsoft.com/msdnmag/issues/1000/VTrace/.

ID Feature Name

1 _A_1ICMPMessages_sec_

2 _A_1ICMPMessages_Received_sec_

3 _A_1ICMPMessages_Received_Errors_

4 _A_1ICMPReceived_Dest__Unreachable_

5 _A_1ICMPReceived_Time_Exceeded_

6 _A_1ICMPReceived_Parameter_Problem_

7 _A_1ICMPReceived_Source_Quench_

8 _A_1ICMPReceived_Redirect_sec_

9 _A_1ICMPReceived_Echo_sec_

10 _A_1ICMPReceived_Echo_Reply_sec_

11 _A_1ICMPReceived_Timestamp_sec_

12 _A_1ICMPReceived_Timestamp_Reply_sec_

13 _A_1ICMPReceived_Address_Mask_

14 _A_1ICMPReceived_Address_Mask_Reply_

15 _A_1ICMPMessages_Sent_sec_

16 _A_1ICMPMessages_Outbound_Errors_

17 _A_1ICMPSent_Destination_Unreachable_

18 _A_1ICMPSent_Time_Exceeded_

19 _A_1ICMPSent_Parameter_Problem_

20 _A_1ICMPSent_Source_Quench_

21 _A_1ICMPSent_Redirect_sec_

22 _A_1ICMPSent_Echo_sec_

23 _A_1ICMPSent_Echo_Reply_sec_

24 _A_1ICMPSent_Timestamp_sec_

25 _A_1ICMPSent_Timestamp_Reply_sec_

26 _A_1ICMPSent_Address_Mask_

27 _A_1ICMPSent_Address_Mask_Reply_

28 _A_1IPDatagrams_sec_

29 _A_1IPDatagrams_Received_sec_

30 _A_1IPDatagrams_Received_Header_Errors_

31 _A_1IPDatagrams_Received_Address_Errors_

32 _A_1IPDatagrams_Forwarded_sec_

33 _A_1IPDatagrams_Received_Unknown_Protocol_

34 _A_1IPDatagrams_Received_Discarded_

35 _A_1IPDatagrams_Received_Delivered_sec_

36 _A_1IPDatagrams_Sent_sec_

37 _A_1IPDatagrams_Outbound_Discarded_

38 _A_1IPDatagrams_Outbound_No_Route_

39 _A_1IPFragments_Received_sec_

40 _A_1IPFragments_Re_assembled_sec_

41 _A_1IPFragment_Re_assembly_Failures_

42 _A_1IPFragmented_Datagrams_sec_

43 _A_1IPFragmentation_Failures_

44 _A_1IPFragments_Created_sec_

45 _A_1MemoryPage_Faults_sec_

46 _A_1MemoryAvailable_Bytes_

47 _A_1MemoryCommitted_Bytes_

48 _A_1MemoryCommit_Limit_

49 _A_1MemoryWrite_Copies_sec_

50 _A_1MemoryTransition_Faults_sec_

51 _A_1MemoryCache_Faults_sec_

52 _A_1MemoryDemand_Zero_Faults_sec_

53 _A_1MemoryPages_sec_

54 _A_1MemoryPages_Input_sec_

55 _A_1MemoryPage_Reads_sec_

56 _A_1MemoryPages_Output_sec_

57 _A_1MemoryPool_Paged_Bytes_

58 _A_1MemoryPool_Nonpaged_Bytes_

59 _A_1MemoryPage_Writes_sec_

60 _A_1MemoryPool_Paged_Allocs_

61 _A_1MemoryPool_Nonpaged_Allocs_

62 _A_1MemoryFree_System_Page_Table_Entries_

63 _A_1MemoryCache_Bytes_

64 _A_1MemoryCache_Bytes_Peak_

65 _A_1MemoryPool_Paged_Resident_Bytes_

66 _A_1MemorySystem_Code_Total_Bytes_

67 _A_1MemorySystem_Code_Resident_Bytes_

68 _A_1MemorySystem_Driver_Total_Bytes_

69 _A_1MemorySystem_Driver_Resident_Bytes_

70 _A_1MemorySystem_Cache_Resident_Bytes_

71 _A_1Memory__Committed_Bytes_In_Use_

72 _A_1MemoryAvailable_KBytes_

73 _A_1MemoryAvailable_MBytes_

74 _A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec_

75 _A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_

76 _A_1Network_Interfacket_Scheduler_Miniport_Packets_Received_sec_

77 _A_1Network_Interfac_Packet_Scheduler_Miniport_Packets_Sent_sec_

78 _A_1Network_InterfacPacket_Scheduler_Miniport_Current_Bandwidth_

79 _A_1Network_Interfacacket_Scheduler_Miniport_Bytes_Received_sec_

80 _A_1Network_Interfacduler_Miniport_Packets_Received_Unicast_sec_

81 _A_1Network_Interfacr_Miniport_Packets_Received_Non_Unicast_sec_

82 _A_1Network_Interfacheduler_Miniport_Packets_Received_Discarded_

83 _A_1Network_Interfac_Scheduler_Miniport_Packets_Received_Errors_

84 _A_1Network_InterfacScheduler_Miniport_Packets_Received_Unknown_

85 _A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_

86 _A_1Network_InterfacScheduler_Miniport_Packets_Sent_Unicast_sec_

87 _A_1Network_Interfacduler_Miniport_Packets_Sent_Non_Unicast_sec_

88 _A_1Network_Interfacheduler_Miniport_Packets_Outbound_Discarded_

89 _A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors_

90 _A_1Network_Interfaccket_Scheduler_Miniport_Output_Queue_Length_

91 _A_1Network_Interface_MS_TCP_Loopback_interface_Bytes_Total_sec_

92 _A_1Network_Interface_MS_TCP_Loopback_interface_Packets_sec_

93 _A_1Network_InterfacTCP_Loopback_interface_Packets_Received_sec_

94 _A_1Network_Interfac_MS_TCP_Loopback_interface_Packets_Sent_sec_

95 _A_1Network_InterfacMS_TCP_Loopback_interface_Current_Bandwidth_

96 _A_1Network_InterfacS_TCP_Loopback_interface_Bytes_Received_sec_

97 _A_1Network_Interfacback_interface_Packets_Received_Unicast_sec_

98 _A_1Network_Interfac_interface_Packets_Received_Non_Unicast_sec_

99 _A_1Network_Interfacopback_interface_Packets_Received_Discarded_

100 _A_1Network_Interfac_Loopback_interface_Packets_Received_Errors_

101 _A_1Network_InterfacLoopback_interface_Packets_Received_Unknown_

102 _A_1Network_Interface_MS_TCP_Loopback_interface_Bytes_Sent_sec_

103 _A_1Network_InterfacLoopback_interface_Packets_Sent_Unicast_sec_

104 _A_1Network_Interfacback_interface_Packets_Sent_Non_Unicast_sec_

105 _A_1Network_Interfacopback_interface_Packets_Outbound_Discarded_

106 _A_1Network_Interfac_Loopback_interface_Packets_Outbound_Errors_

107 _A_1Network_Interfac_TCP_Loopback_interface_Output_Queue_Length_

108 _A_1PhysicalDisk__Total___Disk_Read_Time_

109 _A_1PhysicalDisk__Total___Disk_Time_

110 _A_1PhysicalDisk__Total___Disk_Write_Time_

111 _A_1PhysicalDisk__Total___Idle_Time_

112 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Read_

113 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Transfer_

114 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Write_

115 _A_1PhysicalDisk__Total_Avg__Disk_Queue_Length_

116 _A_1PhysicalDisk__Total_Avg__Disk_Read_Queue_Length_

117 _A_1PhysicalDisk__Total_Avg__Disk_sec_Read_

118 _A_1PhysicalDisk__Total_Avg__Disk_sec_Transfer_

119 _A_1PhysicalDisk__Total_Avg__Disk_sec_Write_

120 _A_1PhysicalDisk__Total_Avg__Disk_Write_Queue_Length_

121 _A_1PhysicalDisk__Total_Current_Disk_Queue_Length_

122 _A_1PhysicalDisk__Total_Disk_Bytes_sec_

123 _A_1PhysicalDisk__Total_Disk_Read_Bytes_sec_

124 _A_1PhysicalDisk__Total_Disk_Reads_sec_

125 _A_1PhysicalDisk__Total_Disk_Transfers_sec_

126 _A_1PhysicalDisk__Total_Disk_Write_Bytes_sec_

127 _A_1PhysicalDisk__Total_Disk_Writes_sec_

128 _A_1PhysicalDisk__Total_Split_IO_Sec_

129 _A_1Process__Total___Privileged_Time_

130 _A_1Process__Total___Processor_Time_

131 _A_1Process__Total___User_Time_

132 _A_1Process__Total_Creating_Process_ID_

133 _A_1Process__Total_Elapsed_Time_

134 _A_1Process__Total_Handle_Count_

135 _A_1Process__Total_ID_Process_

136 _A_1Process__Total_IO_Data_Bytes_sec_

137 _A_1Process__Total_IO_Data_Operations_sec_

138 _A_1Process__Total_IO_Other_Bytes_sec_

139 _A_1Process__Total_IO_Other_Operations_sec_

140 _A_1Process__Total_IO_Read_Bytes_sec_

141 _A_1Process__Total_IO_Read_Operations_sec_

142 _A_1Process__Total_IO_Write_Bytes_sec_

143 _A_1Process__Total_IO_Write_Operations_sec_

144 _A_1Process__Total_Page_Faults_sec_

145 _A_1Process__Total_Page_File_Bytes_

146 _A_1Process__Total_Page_File_Bytes_Peak_

147 _A_1Process__Total_Pool_Nonpaged_Bytes_

148 _A_1Process__Total_Pool_Paged_Bytes_

149 _A_1Process__Total_Priority_Base_

150 _A_1Process__Total_Private_Bytes_

151 _A_1Process__Total_Thread_Count_

152 _A_1Process__Total_Virtual_Bytes_

153 _A_1Process__Total_Virtual_Bytes_Peak_

154 _A_1Process__Total_Working_Set_

155 _A_1Process__Total_Working_Set_Peak_

156 _A_1Processor__Total___C1_Time_

157 _A_1Processor__Total___C2_Time_

158 _A_1Processor__Total___C3_Time_

159 _A_1Processor__Total___DPC_Time_

160 _A_1Processor__Total___Idle_Time_

161 _A_1Processor__Total___Interrupt_Time_

162 _A_1Processor__Total___Privileged_Time_

163 _A_1Processor__Total___Processor_Time_

164 _A_1Processor__Total___User_Time_

165 _A_1Processor__Total_C1_Transitions_sec_

166 _A_1Processor__Total_C2_Transitions_sec_

167 _A_1Processor__Total_C3_Transitions_sec_

168 _A_1Processor__Total_DPC_Rate_

169 _A_1Processor__Total_DPCs_Queued_sec_

170 _A_1Processor__Total_Interrupts_sec_

171 _A_1SystemFile_Read_Operations_sec_

172 _A_1SystemFile_Write_Operations_sec_

173 _A_1SystemFile_Control_Operations_sec_

174 _A_1SystemFile_Read_Bytes_sec_

175 _A_1SystemFile_Write_Bytes_sec_

176 _A_1SystemFile_Control_Bytes_sec_

177 _A_1SystemContext_Switches_sec_

178 _A_1SystemSystem_Calls_sec_

179 _A_1SystemFile_Data_Operations_sec_

180 _A_1SystemSystem_Up_Time_

181 _A_1SystemProcessor_Queue_Length_

182 _A_1SystemProcesses_

183 _A_1SystemThreads_

184 _A_1SystemAlignment_Fixups_sec_

185 _A_1SystemException_Dispatches_sec_

186 _A_1SystemFloating_Emulations_sec_

187 _A_1System__Registry_Quota_In_Use_

188 _A_1TCPSegments_sec_

189 _A_1TCPConnections_Established_

190 _A_1TCPConnections_Active_

191 _A_1TCPConnections_Passive_

192 _A_1TCPConnection_Failures_

193 _A_1TCPConnections_Reset_

194 _A_1TCPSegments_Received_sec_

195 _A_1TCPSegments_Sent_sec_

196 _A_1TCPSegments_Retransmitted_sec_

197 _A_1Thread__Total__Total___Privileged_Time_

198 _A_1Thread__Total__Total___Processor_Time_

199 _A_1Thread__Total__Total___User_Time_

200 _A_1Thread__Total__Total_Context_Switches_sec_

201 _A_1Thread__Total__Total_Elapsed_Time_

202 _A_1Thread__Total__Total_ID_Process_

203 _A_1Thread__Total__Total_ID_Thread_

204 _A_1Thread__Total__Total_Priority_Base_

205 _A_1Thread__Total__Total_Priority_Current_

206 _A_1Thread__Total__Total_Start_Address_

207 _A_1Thread__Total__Total_Thread_State_

208 _A_1Thread__Total__Total_Thread_Wait_Reason_

209 _A_1UDPDatagrams_sec_

210 _A_1UDPDatagrams_Received_sec_

211 _A_1UDPDatagrams_No_Port_sec_

212 _A_1UDPDatagrams_Received_Errors_

213 _A_1UDPDatagrams_Sent_sec_

VTRACE features
214 Process_create
215 Process_destroy
216 Thread_create
217 Thread_destroy
218 Thread_switch
219 Process_set_priority
220 Thread_set_priority
221 Message_get_nf_call
222 Message_get_f_call
223 Message_get_return
224 Message_peek_r_nf_call
225 Message_peek_r_f_call
226 Message_peek_nr_nf_call
227 Message_peek_nr_f_call
228 Message_peek_return
229 Message_dispatch_call
230 Message_dispatch_return
231 Message_trans_accel_call
232 Message_trans_accel_ret
233 Message_translate_call

234 Message_translate_return
235 Message_trans_mdi_call
236 Message_trans_mdi_return
237 Message_set_timer
238 Message_cancel_timer
239 Message_wait_call
240 Message_wait_return
241 Message_get_input_state
242 Message_get_queue_status
243 Key_press
244 Cursor_load
245 Cursor_set
246 Window_create
247 Dialog_create
248 File_complete_operation
249 File_open
250 File_read
251 File_write
252 File_close
253 File_query_info
254 File_set_info
255 File_directory_control
256 File_name
257 File_information
258 File_open_query_close
259 File_rename
260 File_delete
261 File_flush
262 File_lock
263 File_unlock
264 File_set_position
265 File_link
266 File_complete_mdl_op
267 File_fcb_information
268 Message_post_window
269 Message_post_thread
270 Message_send
271 Netobj_complete_op
272 Netobj_open
273 Netobj_close
274 Netobj_connect

275 Netobj_disconnect
276 Netobj_send
277 Netobj_send_datagram
278 Netobj_receive
279 Netobj_receive_datagram
280 Netobj_listen
281 Netobj_accept
282 Netobj_associate_address
283 Netobj_disassociate_addr
284 Netobj_notify_connect
285 Netobj_notify_disconnect
286 Netobj_notify_receive
287 Netobj_notify_rcv_dgram
288 Netobj_notify_rcv_exped
289 VTrace_action
290 Device_hook
291 VTrace_version
292 Local_time
293 VTrace_set_mask
294 Beat
295 Device_unhook
296 High_timestamp
297 Ignore_activity
298 Set_cpu_speed
299 User_changed
300 Waitobj_signal
301 Waitobj_set_timer
302 Waitobj_cancel_timer
303 Waitobj_wait_call
304 Waitobj_wait_return
305 Waitobj_wait_gen_call
306 Waitobj_wait_gen_return
307 Msg___waitobj_wait_call
308 Msg___waitobj_wait_ret
309 Rawdisk_read
310 Rawdisk_write
311 Rawdisk_complete_op
312 Section_create
313 Section_open
314 Section_map_view
315 Section_unmap_view

316 Section_get_mdl
317 Testing
318 Flush_icache
319 Flush_write_buffer
320 Terminate_process
321 Terminate_thread
322 Write_request_data
323 Write_VM

Appendix B – Top Twenty Features Selected by Each Feature Selection Method

All (V_All)
ChiSqr ReliefF

_A_1MemoryCache_Bytes_Peak_ _A_1ICMPReceived_Dest__Unreachable_

_A_1Process__Total_Virtual_Bytes_Peak_ _A_1ICMPSent_Destination_Unreachable_

_A_1MemoryFree_System_Page_Table_Entries_ _A_1SystemFile_Control_Bytes_sec_

_A_1Process__Total_Virtual_Bytes_ _A_1Process__Total_IO_Other_Bytes_sec_

_A_1Process__Total_Pool_Nonpaged_Bytes_ _A_1ICMPMessages_Outbound_Errors_

_A_1MemoryPool_Nonpaged_Bytes_ _A_1MemorySystem_Code_Total_Bytes_

_A_1Process__Total_Thread_Count_ Netobj_disconnect

_A_1SystemThreads_ _A_1ICMPSent_Echo_sec_

_A_1Process__Total_Pool_Paged_Bytes_ _A_1ICMPMessages_Sent_sec_

_A_1TCPConnections_Active_ _A_1Process__Total_Handle_Count_

_A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_ _A_1ICMPMessages_sec_

_A_1TCPConnection_Failures_ _A_1Processor__Total___Processor_Time_

_A_1MemoryPool_Nonpaged_Allocs_ _A_1SystemException_Dispatches_sec_

_A_1Process__Total_Handle_Count_ _A_1TCPConnections_Reset_

_A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_ _A_1Processor__Total___Idle_Time_

_A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec_ _A_1Processor__Total___User_Time_

_A_1Process__Total_Page_File_Bytes_Peak_ _A_1Process__Total___User_Time_

_A_1IPDatagrams_sec_ _A_1Thread__Total__Total___User_Time_

_A_1SystemFile_Control_Bytes_sec_ _A_1Processor__Total_Interrupts_sec_

_A_1Process__Total_IO_Other_Bytes_sec_ _A_1Memory__Committed_Bytes_In_Use_

GainRatio Ensemble
_A_1ICMPSent_Echo_sec_ _A_1ICMPSent_Echo_sec_

_A_1ICMPMessages_Sent_sec_ _A_1ICMPMessages_Sent_sec_

_A_1ICMPMessages_sec_ _A_1Process__Total_IO_Other_Bytes_sec_

_A_1TCPConnections_Passive_ _A_1SystemFile_Control_Bytes_sec_

Netobj_disconnect _A_1ICMPMessages_sec_

_A_1TCPConnection_Failures_ _A_1MemoryCache_Bytes_Peak_

_A_1TCPConnections_Active_ _A_1TCPConnection_Failures_

_A_1TCPSegments_Retransmitted_sec_ _A_1TCPConnections_Active_

Write_request_data _A_1MemoryFree_System_Page_Table_Entries_

_A_1MemoryFree_System_Page_Table_Entries_ _A_1Process__Total_Virtual_Bytes_Peak_

_A_1ICMPReceived_Echo_Reply_sec_ _A_1TCPConnections_Passive_

_A_1ICMPMessages_Received_sec_ _A_1Process__Total_Handle_Count_

_A_1ICMPReceived_Echo_sec_ _A_1MemoryPool_Nonpaged_Bytes_

_A_1ICMPSent_Echo_Reply_sec_ _A_1ICMPReceived_Dest__Unreachable_

_A_1UDPDatagrams_No_Port_sec_ _A_1Process__Total_Thread_Count_

_A_1Process__Total_Thread_Count_ _A_1SystemThreads_

_A_1SystemThreads_ _A_1MemoryPool_Nonpaged_Allocs_

_A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_ _A_1Process__Total_Pool_Nonpaged_Bytes_

_A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors_ Netobj_disconnect

_A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_ _A_1Process__Total_Virtual_Bytes_

