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Abstract.  
 
Machine learning techniques are widely used in many fields. One of the applications of 

machine learning in the field of the information security is classification of a computer 
behavior into malicious and benign. Anti viruses consisting on signature-based methods are 
helpless against new (unknown) computer worms. This paper focuses on the feasibility of 
accurately detecting unknown worm activity in individual computers while minimizing the 
required set of features collected from the monitored computer. A comprehensive 
experiment for testing the feasibility of detecting unknown computer worms, employing 
several computer configurations, background applications, and user activity, was 
performed. During the experiments 323 computer features were monitored by an 
agent that was developed. Four feature selection methods were used to reduce the 
amount of features and four learning algorithms were applied on the resulting feature 
subsets. The evaluation results suggests that using classification algorithms applied on 
only 20 features the mean detection accuracy exceeded 90%, and for specific 
unknown worms accuracy reached above 99%, while maintaining a low level of false 
positive rate. 
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1   Introduction 

Malicious code (malcode) detection, transmitted over computer networks has been 
researched intensively in recent years (Kabiri and Ghorbani, 2005). One type of 
abundant malcode is worms, which proactively propagate across networks while 
exploiting vulnerabilities in operating systems and programs. Other types of malcode 
include computer viruses, Trojan horses, spyware, and adware. In this study we focus 
on worms, though we plan to extend the proposed approach to other types of malcode. 

Nowadays, excellent technology (i.e., antivirus software packages) exists for 
detecting and eliminating known malicious code. Typically, antivirus software 
packages inspect each file that enters the system, looking for known signs (signatures) 
which uniquely identify an instance of known malcode. Nevertheless, antivirus 
technology is based on prior explicit knowledge of malcode signatures and cannot be 
used for detecting unknown malcode. Following the appearance of a new worm, a 



patch is provided by the operating system provider (if needed) and the antivirus 
vendors update their signatures-base accordingly. This solution is not perfect since 
worms propagate very rapidly and by the time the local antivirus software tools have 
been updated, very expensive damage has already been inflicted by the worm 
(Fosnock, 2005). 

Intrusion detection, commonly at the network level, called network based intrusion 
detection (NIDS), was researched substantially (Kabiri and Ghorbani, 2005). 
However, NIDS are limited in their detection capabilities (like any detection system). 
In order to detect malcodes which slipped through the NIDS at the network level, 
detection operations are performed locally at the host level. Detection systems at the 
host level, called Host-based Intrusion Detection (HIDS), are currently very limited in 
their ability to detect unknown malcode. 

Recent studies have proposed methods for detecting unknown malcode using 
Machine Learning techniques. Given a training set of malicious and benign 
executables binary code, a classifier is trained to identify and classify unknown 
malicious executables as being malicious (Schultz  et al., 2001; Abou-Assaleh et al., 
2004; Kolter and Maloof, 2006, Caia et al., 2007). 

Existing methods rely on the analysis of the binary for the detection of unknown 
malcode. Some less typical worms are left undetectable. Therefore an additional 
detection layer at runtime is required. The proposed approach assumes that the 
malicious actions are reflected in the general behavior of the host. Thus, by 
monitoring the host, one can inexplicitly identify malcodes. This property can be used 
as an additional protection layer.  

In this study, we focus on detecting the presence of a worm based on the 
computer's (host) behavior. Our suggested approach can be classified under HIDS. 
The main contribution of our approach is that the knowledge is acquired 
automatically using inductive learning, given a dataset of known worms (avoids the 
need for manual acquisition of knowledge). While the new approach does not prevent 
infection, it enables a fast detection of an infection which may result in an alert, which 
can be further reasoned by the system administrator. Further reasoning based on the 
network-topology can be performed by a network and system administration function, 
and relevant decisions and policies, such as disconnecting a single computer or a 
cluster, can be applied. 

Generally speaking, malcode within the same category (e.g., worms, Trojans, 
spyware, adware) share similar characteristics and behavior patterns. These patterns 
are reflected by the infected computer's behavior. Thus, we hypothesize that it is 
feasible to learn the computer behavior in the presence of a certain type of malcode, 
which can be measured through the collection of various parameters along time (CPU, 
Memory, etc.). In the proposed approach, a classifier is trained with computer 
measurements from infected and not infected computers. Based on the generalization 
capability of the learning algorithm, we argue that a classifier can further detect 
previously unknown worm activity. Nevertheless, this approach may be affected by 
the variance in computer and application configurations as well as user activity 
(running and using various applications) on each computer. In this study, we 
investigate whether an unknown worm activity can be detected, at a high level of 
accuracy, given the variation in hardware and software environmental conditions on 
individual computers, while minimizing the set of monitored features. 



In this paper we introduce three main contributions: We show that current machine 
learning techniques are capable to detect and classify worms solely by monitoring the 
host activity. Using feature selection techniques we show that a relatively small set of 
features are sufficient for solving the problem without sacrifice accuracy. We present 
empirical results from an extensive study of various machine configurations 
suggesting that the proposed methods achieve high detection rates on previously 
unseen worms. 

The rest of the paper is structured as follows: in section 2, a survey of the relevant 
background for this study is presented. The methods used in this study are described 
in section 3, followed by the description of the experiments design in section 4. In 
section 5 we present the evaluation results and conclude with summary and 
conclusions in section 6. 

2   Background and Related Work 

2.1   Malicious Code and Worms 

The term 'malicious code' (malcode) refers to a piece of code, not necessarily an 
executable file, intended to harm, whether generally or in particular, a specific owner 
(host). The approach suggested in this study aims at detecting any malcode activity, 
whether known or unknown. However, since our preliminary research is on worms, 
we will focus on them in this section. 

Kienzle and Elder (2003) define a worm by several aspects through which it can be 
distinguished from other types of malcode: 1) Malicious code – worms are considered 
malicious in nature; 2) network propagation or human intervention – a commonly 
agreed-upon aspect, that is, worms propagate actively over a network, while other 
types of malicious codes, such as viruses, commonly require human activity to 
propagate; 3) standalone or file infecting – while viruses infect a file (its host), a 
worm does not require a host file, and sometimes does not even require an executable 
file, residing entirely in the memory, as did the Code Red (Moore et al., 2002) worm. 
Different purposes and motivations stand behind worm developers (Weaver et al., 
2003) including: Experimental curiosity (ILoveYou worm,; CERT, 2000); pride and 
power leading programmers to show off their knowledge and skill through the harm 
caused by the worm; commercial advantage, extortion and criminal gain, random and 
political protest, and terrorism and cyber warfare. The existence of all these types of 
motivation indicates that computer worms are here to stay as a network vehicle 
serving different purposes and implemented in different ways. To address the 
challenge posed by worms effectively, meaningful experience and knowledge should 
be extracted by analyzing known worms. Today, given the known worms, we have a 
great opportunity to learn from these examples in order to generalize. We argue that 
supervised learning methods can be very useful in learning and generalizing from 
previously encountered worms, in order to classify unknown worms effectively. 



2.2   Detecting Malicious Code Using Supervised Learning Techniques 

Supervised and unsupervised learning has already been used for detecting and 
protecting against malicious codes. A recent survey on intrusion detection systems 
(Kabiri and Ghorbani, 2005, Rokach and Elovici, 2007) summarizes recently 
proposed applications for recognizing malcodes in single computers and in computer 
networks. Lee et al. (1999). proposed a framework consisting of set of algorithms for 
the extraction of anomalies of user normal behavior for use in anomaly detection , in 
which a normal behavior is learned and any abnormal activity is considered as 
intrusive. The authors suggest several techniques, such as classification, meta-
learning, association rules, and frequent episodes, to extract knowledge for 
implementation in intrusion detection systems, evaluating their approach on the 
DARPA98 (Lippmann et al., 1998) benchmark. 

 
A Naïve Bayesian classifier was suggested in (Kabiri and Ghorbani, 2005), 

referring to its implementation within the ADAM system, developed by Barbara et al. 
(2001), which had three main parts: (a) a network data monitor listening to TCP/IP 
protocol; (b) a learning engine which enables acquisition of the association rules from 
the network data; and (c) a classification module which classifies the nature of the 
traffic in two possible classes, normal and abnormal, which can later be linked to 
specific attacks. Other soft computing algorithms were proposed for detecting 
malicious code: Artificial Neural Networks (ANN) (Zanero and Savaresi, 2004; 
Kayacik  et al., 2003; Lei and Ghorbani; 2004). Self Organizing Maps (SOM) (Hu 
and Heywood, 2003) and fuzzy logic (Dickerson and Dickerson, 2000; Bridges and 
Vaughn Rayford, 2000; Botha and von Solms, 2003). 

 

3   Methods 

The goal of this study was to assess the feasibility of detecting unknown malicious 
code, in particular computer worms, based on the computer's behavior 
(measurements), using machine learning techniques, and the potential accuracy of 
such methods. In order to create the datasets we built an isolated local network of 
computers, simulating a real Internet network which allows worms to propagate. This 
setup enabled us to inject worms into a controlled environment, while monitoring the 
computer behavior. The monitoring is performed by an agent, developed specifically 
for this purpose, that measures various parameters and save their values in log files.  

In this study we examine whether a classifier, trained on data collected from a 
computer having a certain hardware configuration and certain specific background 
activity, is capable to correctly classify the behavior of a computer having other 
configurations? In order to answer this question we designed several experiments. We 
created eight datasets having different configurations, different background 
applications, and different user activities. Another goal was to select the minimal 
subset of features which are required to correctly classify new cases. Reducing the 
number of features used in the model, implies that less monitoring efforts are needed 



when the proposed approach is served as the basis for an operational system. Finally, 
we applied four classification algorithms on the given datasets in a varied series of 
experiments, starting with detecting known worms in different environments and later 
detecting completely new, previously unseen worms. 

Figure 1 specifies the process that was used in order to perform this study. The 
upper part refers to the training phase. We collected a set of worms and used them to 
infect the hosts in the controlled environment. Then an agent, which was installed on 
each host, recorded the behavior of the host. Based on collected dataset, we trained 
the classifiers. The bottom part in Figure 1 refers to the test phase. In this phase we 
examine if the induced classifier can be used to identify the existence of unknown 
worm. 

 

 
Figure 1: Outline of the Train phase and the Test Phase 

 

3.1   Dataset Creation 

Since there is no benchmark dataset which could be used for this study, we created 
our own dataset. A network with various computers (configurations) was deployed, 
enabling us to inject worms, and monitor the computer behavior and log the 
measurements. 

Environment Description 

The lab network consisted of seven computers, which contained heterogenic 
hardware, and a server computer simulating the internet. We used the windows 



performance counters1, which enable monitoring system features that appear in these 
main categories (including the number of features in parenthesis): Internet Control 
Message Protocol (27), Internet Protocol (17), Memory (29), Network Interface (17), 
Physical Disk (21), Process (27), Processor (15), System (17), Transport Control 
Protocol (9), Thread (12), and User Datagram Protocol (5). In addition we used 
VTrace (Lorch and Smith, 2000), a software tool which can be installed on a PC 
running Windows for monitoring purposes. VTrace collects traces of the file system, 
the network, the disk drive, processes, threads, interprocess communication, waitable 
objects, cursor changes, windows, and the keyboard. The data from the windows 
performance counter were configured to measure the features every second and store 
them in a log file as vectors. VTrace stored time-stamped events, which were 
aggregated into the same fixed intervals, and merged with the windows performance 
log files. These eventually included a vector of 323 features for every second. 

Injected Worms 

While selecting worms from the wild, our goal was to choose worms that differ in 
their behavior, from among the available worms. Some of the worms have a heavy 
payload of Trojans to install in parallel to the distribution process upon the network; 
others focus only on distribution. Another aspect is that they have different strategies 
for IP scanning which results in varying communication behavior, CPU consumption, 
and network usage. While all the worms are different, we wanted to find common 
characteristics by the presence of which it would be possible to detect an unknown 
worm. We briefly describe here the main characteristics, relevant to this study, of 
each worm included in this study. The information is based on the virus libraries on 
the web234. We briefly describe the five worms we used: 

(1) W32.Dabber.A scans IP addresses randomly. It uses the W32.Sasser.D worm to 
propagate and opens the FTP server to upload itself to the victim computer. 
Registering itself enables its execution on the next user login (human based 
activation). It drops a backdoor, which listens on a predefined port. This worm is 
distinguished by its use of an external worm in order to propagate. 

(2) W32.Deborm.Y is a self-carried worm, which prefers local IP addresses. It 
registers itself as an MS Windows service and is executed upon user login (human 
based activation). This worm contains three Trojans as a payload: Backdoor.Sdbot, 
Backdoor.Litmus, and Trojan.KillAV, and executes them all. We chose this worm 
because of its heavy payload. 

(3) W32.Korgo.X is a self carrying worm which uses a totally random method for 
IP addresses scanning. It is self-activated and tries to inject itself as a function to MS 
Internet Explorer as a new thread. It contains a payload code which enables it to 
connect to predefined websites in order to receive orders or download newer worm 
versions. 

                                                           
1http://msdn.microsoft.com/library/default.asp?url=/library/en-us/counter/counters2_lbfc.asp 
2 Symantec – www.symantec.com 
3 Kasparsky www.viruslist.com 
4Macfee http://vil.nai.com  



(4) W32.Sasser.D uses a preference for local addresses optimization while 
scanning the network. About half the time it scans local addresses, and the other half 
random addresses. In particular it opens 128 threads for scanning the network, which 
requires a heavy CPU consumption, as well as significant network traffic. It is a self-
carried worm and uses a shell to connect to the infected computer’s FTP server and to 
upload itself. 

(5) W32.Slackor.A, a self-carried worm, exploits MS Windows sharing 
vulnerability to propagate. The worm registers itself to be executed upon user login. It 
contains a Trojan payload and opens an IRC server on the infected computer in order 
to receive orders. 

All the worms perform port scanning and possess different characteristics. Further 
information about these worms can be found on the web567. 

Dataset Description 

In order to examine the influence of a computer hardware configuration, 
background running applications, and user activity, we considered three major 
aspects: computer hardware configuration, constant background application 
consuming extreme computational resources, and user activity, being binary 
variables. (1) Computer hardware configuration: Both computers ran on Windows 
XP, which considered the most widely used operating system, having two hardware 
configuration types: an "old," having Pentium 3 800Mhz CPU, bus speed 133Mhz 
and memory 512 Mb, and a "new," having Pentium 4 3Ghz CPU, bus speed 800Mhz 
and memory 1 Gb. (2) Background application activity: We ran an application 
affecting mainly the following features: Processor object, Processor Time (usage of 
100%); Page Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer, Avg Disk 
Bytes/Write, and Disk Writes/sec. (3) User activity: several applications, including 
browsing, downloading and streaming operations through Internet Explorer, Word, 
Excel, chat through MSN messenger, and Windows Media Player, were executed to 
imitate user activity in a scheduled order. Appendix A specifies the set of features that 
was examined in this research. 

We created eight datasets (see table I). Each dataset contained monitored samples 
of each one of the five injected worms separately, and samples of a normal computer 
behavior, without any injected worm. Each worm was monitored for a period of 20 
minutes. We collected the values of the features every second. Thus, each record, 
containing a vector of measurements and a label, presented an activity along a second 
labeled by a specific worm, or a none activity label. Each dataset contained a few 
thousand (labeled) samples of each worm or clean computer. We therefore had three 
binary aspects, which resulted in eight possible combinations, shown in Table 1, 
representing a variety of dynamic computer configurations and usage patterns. Each 
dataset contained monitored samples for each of the five worms injected separately, 

                                                           
5 Symantec – www.symantec.com 
6 Kasparsky www.viruslist.com 
7Macfee http://vil.nai.com  



and samples of a normal computer behavior without any injected worm. Each sample 
(record) was labeled with the relevant worm (class), or 'none' for clean samples. 

 
Table 1. The three aspects resulting in eight datasets, representing a variety of 
situations of a monitored computer. 

Computer 
Background 

Application 
User 

Activity 
Dataset 

Name 
Old No No O 
Old No Yes Ou 
Old Yes No Oa 
Old Yes Yes Oau 
New No No N 
New No Yes Nu 
New Yes No Na 
New Yes Yes Nau 

 

3.2   Feature Selection Methods 

In many applications, the large number of features in many domains presents a 
huge challenge. Typically, some of the features do not contribute to the accuracy of 
the classification task and may even hamper it. Feature selection is the process of 
identifying relevant features in the dataset and discarding everything else as irrelevant 
and redundant. Since feature selection reduces the dimensionality of the data, it 
enables the classification algorithms to operate more effectively and rapidly. In some 
cases, classification performance can be improved; in other instances, the obtained 
classifier is more compact and can be easily interpreted. In host-based detection 
applications there is an additional motivation. Ideally, we would like to minimize the 
self-consumption of computer resources required for the monitoring operations 
(measurements), i.e. minimizing the collection of the features. 

 In order to compare the performance of the various classification algorithms, we 
used the filters approach, which is applied on the dataset and is independent of any 
classification algorithm, in which a measure is calculated to quantify the correlation 
of each feature with the class (the presence or absence of worm activity). Each feature 
receives a rank which represents its expected contribution in the classification task. 

3.2.1   Feature Selection Methods. 

We used three feature-selection methods, which resulted in a list of ranked features 
for each feature-selection method and an ensemble incorporating all three of them. 
We used Chi-Square (CS), Gain Ratio (GR) and ReliefF implemented in the WEKA 
environment (Witten and Frank, 2005) and their ensemble. 

 



Chi-Square 

Chi-Square measures the lack of independence between a feature f and a class ci 
(such as W32.Dabber.A) and can be compared to the chi-square distribution with one 
degree of freedom to judge extremeness. Equation 1 shows how the chi-square 
measure is defined and computed, where N is the total number of documents and f 

refers to the resence of the feature (and f its absence), and ci refers to its membership 
in ci. 
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Gain Ratio 

Gain Ratio was originally presented by Quinlan in the context of Decision Trees 
(Mitchell, 1997), which was designed to overcome a bias in the Information Gain 
(IG) measure, and which measures the expected reduction of entropy caused by 
partitioning the examples according to a chosen feature. Given entropy E(S) as a 
measure of the impurity in a collection of items, it is possible to quantify the 
effectiveness of a feature in classifying the training data. Equation 3 presents the 
formula of the entropy of a set of items S, based on C subsets of S (for example, 
classes of the items), presented by Sc. Information Gain measures the expected 
reduction of entropy caused by portioning the examples according to attribute A, in 
which V is the set of possible values of A, as shown in Equation 2. These equations 
refer to discrete values; however, it is possible to extend them to continuous values 
attribute. 
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The IG measure favors features having a high variety of values over those with 
only a few. GR overcomes this problem by considering how the feature splits the data 
(Equations 4 and 5). Si are d subsets of examples resulting from portioning S by the d-
valued feature A. 

 
),(

),(
),(

ASSI

ASIG
ASGR =           (4) 

||

||
log

||

||
),(

1
2 S

S

S

S
ASSI i

d

i

i∑
=

⋅−=  .    (5) 



Relief 

ReslifF (Pearl, 1986) estimates the quality of the features according to how well 
their values distinguish between instances that are near each other. Given a randomly 
selected instance x, from a dataset s with k features, Relief searches the dataset for its 
two nearest neighbors from the same class, called nearest hit H, and from a different 
class, called nearest miss M. The quality estimation W[Ai] is stored in a vector of the 
features Ai, based on the values of a difference function diff() given x, H and M as 
shown in Equation 6. 
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Features Ensembles 

Instead of selecting features based on of the feature selection mathods, one can use 
the ensemble strategy (see for instance Rokach et al., 2007) which combines the 
features subsets that are obtained from several features selection methods. 
Specifically, we combine several methods by averaging the features ranks as shown in 
Equation 7: 

k
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where fi is a feature, filter is one of the k filtering (feature selection) methods. 
Specifically in our case k=3. 

 

3.2.2   Consolidating Features from Different Environments: Averaged vs. 
Unified Consolidation. 

Often when applying a feature selection method, such as the filters approach, the 
method is applied on the entire dataset aiming to rank the features based on their 
measured correlation to the class. However, unlike in the common datasets, our 
dataset consisted of eight datasets coming from different environments, as explained 
earlier (see Table 1). Since some features might be more important in specific 
environments and less in others it is not clear how this has to be considered. In this 
study we propose two approaches to considering and integrating the aspects of the 
datasets. In the first approach, termed unified dataset, we unified all the eight datasets 
into a single dataset and applied the filter on the unified dataset.  

 
Alternatively, we examined the approach termed averaged in which we applied the 

filter on each one of the eight datasets and computed the average rank for each 



feature. Note that for averaging the features ranks obtained from the different 
environments, we used Equation 7 again. 

 
Figure 2 illustrates both approaches, in which the top refers to the unified 

approach, where the feature selection (FS) is applied on the unified dataset 'all ' and 
the averaged approach, at the bottom, in which the feature selection is applied on each 
dataset and averaged into a rank list. 

 
 
 

  
Figure 2 – Unified versus the averaged 
approach for environment features 
consolidation. 

Figure 3 - The creation of 33 features 
sets. 

 
After applying both approaches we extracted the top ranked features. We took the 

highest ranked (top) features 5, 10, 20 and 30 from the output of each feature 
selection method. Finally, we had four features sets (Top 5, 10, 20, 30) for each of the 
four filters (fs1, fs2, fs3, ensemble), for each feature consolidation (unified, 
averaged). On top of that we also examined the full features set (with no feature 
selection). This totally results with 33 features sets (4×4×2+1) as shown in Figure 3. 

 

3.3   Classification algorithms 

One of the goals of this study was to pinpoint the classification algorithm that 
provides the highest level of detection accuracy. We employed four commonly used 
Machine Learning algorithms: Decision Trees, Naïve Bayes, Bayesian Networks and 
Artificial Neural Networks, in a supervised learning approach, in which the 
classification algorithm learns from a provided training set, containing labeled 
examples. 



While the focus of this paper is not on classification algorithm techniques, but on 
their application in the task of detecting worm activity, we briefly describe the 
classification algorithms we used in this study. 

 

Decision Trees 

Decision tree learners (Quinlan, 1993) are a well-established family of learning 
algorithms. Classifiers are represented as trees whose internal nodes are tests on 
individual features, and leaves are classification decisions. Typically, a greedy top-
down search method is used to find a small decision tree that correctly classifies the 
training data. The decision tree is induced from the dataset by splitting the variables 
based on the expected information gain. Modern implementations include pruning, 
which avoids over-fitting. In this study we evaluated J48, the WEKA version of the 
commonly used C4.5 algorithm (Quinlan, 1993). An important characteristic of 
Decision Trees is the explicit form of their knowledge which can be represented as a 
set of if-then rules. This set of rules can be then easily embedded in any existing IDS. 

Naïve Bayes 

The Naïve Bayes classifier is based on the Bayes theorem, which in the context of 
classification states that the posterior probability of a class is proportional to its prior 
probability as well as to the conditional likelihood of the features, given this class. If 
no independent assumptions are made, a Bayesian algorithm must estimate 
conditional probabilities for an exponential number of feature combinations. Naive 
Bayes simplifies this process by making the assumption that features are conditionally 
independent given the class, and requires that only a linear number of parameters be 
estimated. The prior probability of each class and the probability of each feature, 
given each class, is easily estimated from the training data and used to determine the 
posterior probability of each class, given a set of features. Naive Bayes has been 
shown empirically to produce good classification accuracy across a variety of 
problem domains. In this study, we evaluated Naive Bayes, the standard version that 
comes with WEKA. 

Bayesian Networks 

Bayesian networks are a form of the probabilistic graphical model (Pearl, 1986). 
Specifically, a Bayesian network is a directed acyclic graph of nodes with variables 
and arcs representing dependence among the variables. Like Naïve Bayes, Bayesian 
networks are based on the Bayes Theorem; however, unlike Naïve Bayes they do not 
assume that the variables are independent. Actually Bayesian Networks are known for 
their ability to represent conditional probabilities, which are the relations between 
variables. A Bayesian network can thus be considered a mechanism for automatically 
constructing extensions of Bayes Theorem to more complex problems. Bayesian 



networks were used for modeling knowledge and implemented successfully in 
different domains. We evaluated the Bayesian Network standard version which comes 
with WEKA. 

Artificial Neural Networks 

An Artificial Neural Network (ANN) (Bishop, 1995) is an information processing 
paradigm that is inspired by the way biological nervous systems (i.e., the brain) are 
modeled with regard to information processing. The key element of this paradigm is 
the structure of the information processing system. It is a network composed of a 
large number of highly interconnected processing elements, called neurons, working 
together in order to approximate a specific function. An ANN is configured for a 
specific application, such as pattern recognition or data classification, through a 
learning process during which the weights of the inputs in each neuron are updated. 
The weights are updated by a training algorithm, such as back-propagation, according 
to the examples the network receives, in order to reduce the value of error function. 
The power and usefulness of ANN have been demonstrated in numerous applications 
including speech synthesis, medicine, finance, and many other pattern recognition 
problems. For some application domains, neural models show more promise in 
achieving human-like performance than do more traditional artificial intelligence 
techniques. All ANN manipulations in this study have been performed within a 
MATLAB(r) environment using Neural Network Toolbox (Demuth and Beale,  
1998). 

4   Experimental Design 

Our main goal in this study was to investigate whether the approach presented 
here, in which unknown malicious code is detected, based on the computer behavior 
(measurements), is feasible and enables a high level of accuracy when applied to a 
variety of computers. We defined four research questions accordingly: 

Q1: In the detection of known malicious code, based on a computer's 
measurements, using machine learning techniques, what is the achievable level of 
accuracy? 

Q2: Is it possible to reduce the amount of features to below 30, while maintaining a 
high level of accuracy (compared to the full set of features). Which feature 
consolidation approach (unified versus averaged) and feature selection method is 
superior? 

Q3: Will the computer configuration and the computer background activity, from 
which the training sets were taken, have a significant influence on the detection 
accuracy? 

Q4: Is the detection of unknown worms possible, based on a training set of known 
worms? 

In addition to these research questions, we wanted to identify the best classification 
algorithms and the best combination of top ranked features and classification 



algorithm. We start with the definition of the evaluation measures and continue with 
the experiments we designed for this study. 

 

4.1 Evaluation Measures 

For evaluation purposes, we measured the True Positive Rate (TPR) measure, 
which is the number of positive instances classified correctly, as shown in Equation 8, 
False Positive Rate (FPR), which is the number of negative instances misclassified 
(Equation 8), and the Total Accuracy, which measures the number of absolutely 
correctly classified instances, either positive or negative, divided by the entire number 
of instances shown in Equation 9. Additionally, we calculated the ROC curves, but 
we don’t present them because of lack of room. 
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We also measured a confusion matrix, which depicts the number of instances from 
each class which were classified in each one of the classes (ideally all the instances 
would be in their actual class). 

 
In the first part of the study, we wanted to identify the best feature consolidation 

approach (unified or averaged) and feature selection method, the best classification 
algorithm and the minimal features required to maintain a high level of accuracy. In 
the second part we wanted to measure the capability of classifying unknown worms 
based on a training set of known worms. In order to answer these questions we 
designed two experimental plans, based on 33 datasets, as will be described later. 
After evaluating all the classification algorithms on the 33 datasets, we selected the 
best feature selection and the top features to evaluate the unknown worms detection. 

4.2 Experiment I 

To determine the best combination of feature selection method, number of features, 
and classification algorithm, we performed a wide set of experiments, in which we 
evaluated all the combinations of feature selection method, classification algorithm, 
and number of top features. 

In this experiment, called e1, we trained each classifier on a single dataset i and 
tested on each one (j) of the eight datasets. Thus, we had a set of eight iterations in 
which a dataset was used for training, and eight corresponding evaluations which 
were done on each one of the datasets, resulting in 64 evaluation runs. When i = j , we 
used 10 fold cross validation,, in which the dataset is randomly partitioned into ten 
partitions and repeatedly the classifier is trained on nine partitions and tested on the 
tenth. Each evaluation run (out of the 64) was repeated for each one of the 
combinations of feature selection method, classification algorithm, and number of top 



features. Thus, each evaluation run was repeated for the 33 features set described 
earlier in Figure 3 (in each repetition different features are extracted from the 
datasets). Note that the task was to classify specifically the exact worm out of the five 
or a none (worm) activity, and not to generate a general binary classification of 
“worm” or a “none” activity, which was our final goal in the context of an unknown 
worm detection. Such conditions, while being more challenging, were expected to 
bring more insights. 

4.3 Experiment II 

To estimate the potential of the suggested approach in classifying an unknown 
worm activity, which was the main objective of this study, we designed an additional 
experiment, called e2, in which we trained classifiers based on part of the (five) 
worms and the none activity, and tested on the excluded worms (from the training set) 
and the none activity, in order to measure the capability to detect an unknown worm 
and the none activity accurately. 

In this experiment the training set consisted of 5-k worms and the testing set 
contained the k excluded worms, while the none activity appeared in both datasets. 
This process repeated for all the possible combinations of the k worms (k = 1 to 4). In 
each combination a classifier was trained on the training set and tested on all the 
remaining seven datasets. The test set included only the excluded worms and not the 
worms presented in the training set since we wanted to measure specifically the 
detection rate of the unknown. Note that in these experiments, unlike in e1, there were 
two classes: (generally) worm, for any type of worm, and none activity. This 
experiment was evaluated on each classification algorithm, using the outperforming 
top selected features found in e1. 

5   Results 

Experiment I 

Our objective in e1 was to determine the best: feature selection approach, feature 
selection method, number of top features, and classification algorithms. We ran 132 
(four classification algorithms applied to 33 features sets) evaluations (each comprises 
64 runs), summing up to 8448 evaluation runs. 

Figure 4 shows the mean accuracy (of all the classification algorithms) achieved 
for each environments features consolidation (unified or averaged), each feature 
selection method, top 5, 10, 20, 30 features and for the full set of features as a 
baseline. While the feature selection method and number of top features aren’t 
relevant for the FULL features set curve (blue lines in Figure 4) we presented the 
curve for comparison purposes. In general, all the feature subsets having less than 30 
features achieved a mean performance quite similar to the full set of features 
(including 323 features). The unified consolidation approach outperforms the 



averaged consolidation approach for most of the cases, especially when the Gain 
Ratio feature selection method is used. Additionally, unlike the averaged 
consolidation approach, which in most of the cases is below the full set performance, 
the unified consolidation approach for most of the cases is above it. Additionally, the 
Top20 features delivered the best in most of the cases. 

Based on the mean accuracy of the four classification algorithms GainRatio feature 
selection method outperformed the other feature selection methods for most of the top 
number of features, while the ensemble feature selection method outperformed for 
Top5. Unlike the independent measures, in which there was a monotonic growth 
when features were added, in the ensemble a monotonic slight decrease was observed 
as more features were used. The Top20 features outperformed in general (by 
averaging) and when using GainRatio feature selection method in particular. 

Figure 5 shows the same results, but presents the mean accuracy of the 
classification algorithms for several numbers of top features. Bayesian Networks 
outperforms for any number of top features, and on average the 20 top features Top20 
outperformed the other number of top features. 

For example, Top5 features for GainRatio feature selection method included: in the 
category of ICMP: (1) Sent_Echo_sec – the rate of ICMP Echo messages sent; (2) 
Messages Sent/sec – the rate, in incidents per second, at which the server attempted to 
send. The rate includes those messages sent in error; (3) Messages/sec – the total rate, 
in incidents per second, at which ICMP messages were sent and received by the target 
entity. The rate includes messages received or sent in error. In the category of TCP: 
(4) Connections Passive – the number of times TCP connections made a direct 
transition to the SYN-RCVD state from the LISTEN state; (5) Connection Failures – 
the number of times TCP connections made a direct transition to the CLOSED state 
from the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP 
connections made a direct transition to the LISTEN state from the SYN-RCVD state. 
The list of the top twenty ranked features is presented in the Appendix B. 

Based on the results achieved in e1, in which the unified consolidation approach, 
Top20 features, GainRatio feature selection method, outperformed on average, we 
used only this features subset in the second part of the evaluation (e2). 

 



 
Figure 4 – The mean accuracy for various feature selection methods and the 
number of top features 

 

 
Figure 5 – The mean accuracy for various classification algorithms and number 
of top features 

 
In Q3 we wanted to estimate the performance sensitivity of the suggested approach 

given several training sets sampled from a variety of computers, represented by the 
eight datasets. Thus, we tested whether the accuracy obtained by training a classifier 
on a training set sampled from a given computer will vary significantly when 
evaluated on a variety of test sets. To perform this test we designed two experiments 
(e11,e12). 

Table 2 presents the mean accuracy and the resulting standard deviation in each 
experiment, including 128 evaluation runs. In the first main column the results of e11 



are presented in two columns, when the dataset di was used as a training set (left 
column), and when used as test sets (right column). The results of e11 when di was the 
training set were not homogenous. The results of e11 when di was the testset were not 
homogenous too, though we found that the training on datasets created in the 'old' 
computer was significantly better (α = 0.01). In e12, in which all datasets except di 
were training set and di was the testset, the results were statistically significant (α = 
0.05) homogenous. Note that e11 and e12 experiments are based on all the learning 
algorithms, and not specifically on each algorithm. The classification accuracy in e12 
outperformed the accuracy in e11, since the training sets in e12 included several 
datasets. 

Table 2. The results achieved in e11 and e12. 
Experiment e11 e12 

Dataset di Training: di Testset: di 
Training: all 
datasets except di 
Testset: di 

o 0.68 ± 0.23 0.73 ± 0.23 0.78 ± 0.22 
ou 0.76 ± 0.22 0.73 ± 0.22 0.82 ± 0.18 
oa 0.73 ± 0.21 0.73 ± 0.23 0.81 ± 0.18 
oau 0.77 ± 0.21 0.72 ± 0.21 0.81 ± 0.19 
n 0.61 ± 0.24 0.64 ± 0.22 0.71 ± 0.20 
nu 0.76 ± 0.21 0.72 ± 0.22 0.82 ± 0.22 
na 0.70 ± 0.21 0.73 ± 0.24 0.86 ± 0.17 
nau 0.73 ± 0.22 0.71 ± 0.23 0.79 ± 0.20 
Average 0.72 ± 0.22 0.72 ± 0.22 0.80 ± 0.19 

 

Experiment II 

In Q4 we wanted to estimate the possibility of classifying an unknown worm when 
training on data collected from a single computer. In this set of experiments we used 
only the Top20 features, which outperformed in e1. The training set included four 
worms out of the five and the none activity samples, and the test set included the 
excluded worm and the none activity samples. This process was done for each worm 
repeating in five iterations. Note that in these experiments, unlike in e1, in which each 
worm class was defined separately, there were two classes: (generally) worm and 
none activity. 

Table 3 presents the results of e2. On average the Decision Trees and Bayesian 
Networks outperformed the others classification algorithms. The table shows also the 
true positive (TP) and false positive (FP). Decision Trees and Bayesian Networks 
achieved high level of accuracy and maintained a low false positive rate. 
 
Table 3 - The results of e2. There is a difference in the detection accuracy of each 
classifier for each type of worm. On average, Decision Trees outperformed the 
other classifiers, while maintaining a low false positive rate. 
 



 ANN 20 BN 20 DT 20 NB 20 
Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP 
1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499 
2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002 
3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156 
4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002 
5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026 
Average 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14 
StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05 

 
Figure 6 presents the results of e2, in which a monotonic increase in the accuracy is 

shown, as more worms are included in the training set. Note that the number of 
worms in the x axis refers to the number of worms excluded from the training set, and 
were included in the test set. In general the ANN outperformed all the other 
algorithms, while the BN kept on showing very good results. Note that testing on the 
seven datasets separately decreased the mean accuracy slightly. In addition, when 
only one worm was excluded, in specific worms we achieved 99% accuracy and a 
very low false positive rate of 0.005. 

 

 
Figure 5. The performance monotonically increases as fewer worms are excluded 
from the training set  

 

6. Discussion and Conclusions 

In this paper we explored the feasibility of detecting unknown worm activity in individual 
computers, at a high level of accuracy, given the variation in hardware and software 
environmental conditions, while minimizing the set of features collected from the monitored 



computer. Four research questions were investigated, referring to the feasibility of the 
approach, the best settings, and the level of achieved accuracy, for which a dataset 
was created and several corresponding experiments were designed. In the first 
experiment we showed that the detection of known worms is feasible at a very high 
level of accuracy  To reduce the computational resources in the classification task we 
wanted to reduce the number of features. Two consolidation approaches to integrating 
the eight datasets for the task of features selection were proposed: unified, in which 
all the datasets were unified into a single dataset, and averaged, in which we first 
applied the feature selection method on each dataset and averaged the ranked features 
into a single rank. Our results showed that the mean performance of the unified 
approach outperformed the averaged approach. Based on the evaluation results, in 
general Bayesian Networks outperformed the other algorithms; and using the Top 20 
ranked features from the GainRatio was the best. The reduction in the amount of 
features and the improvement in accuracy compared well to the baseline of above 300 
features in the full set, since it reduces the computer's resources consumption needed 
for monitoring its behavior. We investigated the influence of the variance in the 
training phase and detection phase on the configuration of a computer and its 
programs, to determine whether this method can be generalized. We found that 
training on seven unified datasets was significantly homogenous (α=0.01) based on a 
homogeneity test, unlike training on a single dataset (as in e11). This is a very 
encouraging result, since we assume that, when applying such an approach in the real 
world, a training set that consists of samples from several types of computer activity 
in several environments is a reasonable requirement. 

To examine the possibility of classifying unknown worms, unlike in previous 
experiments, two classes were defined in the dataset, a worm type consisting of the 
worms' samples and ‘none’ type. The training sets had four worms and the ‘none’ 
activity and the test set consisted only of the excluded worm and the none-activity. 
We found that the level of detection accuracy for each worm varies from algorithm to 
algorithm. Finally, in e2 above 85% accuracy was achieved in general; Decision 
Trees achieved 92%, while specific algorithms exceeded the 95% level of accuracy 
for specific worms. We noticed that the detection of each worm varied within each 
algorithm, while being different among algorithms, and thus we suggest using an 
ensemble of classifiers to achieve a higher level of accuracy for instances of all 
potential worm classes. In general Bayesian Networks resulted constantly in very 
good results, which might be explained by the consideration of the dependency within 
features, unlike other classifiers. Later we reduced the amount of worms in the 
training set and increased the amount of unknown worms in the test set. We found an 
increase in accuracy as more worms were presented in the training set. 

The limitations of this study are the number of worms and the variety of computer 
configurations. Note that the worms were selected to provide a reasonable variety and 
the computers which were used were dramatically different. However, this was 
enough to achieve statistically significant results. 

To conclude, we have shown that it is possible to detect previously un-encountered 
computer worms using our novel approach, which is based on monitoring the 
computer "behavior" (features). In order to attain a high level of accuracy in different 
types of computers, which is an essential requirement in real life, the training set 



should include samples taken from several computers types (i.e., different 
configurations). 
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Appendix A - Operating System Measurements 
The following table includes all features mapping in the data set. For further 
information about the objects and their meaning in the windows counters tools, please 
refer to http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp, for more information about VTrace please refer to 
http://msdn.microsoft.com/msdnmag/issues/1000/VTrace/. 

 

ID Feature Name 

1 _A_1ICMPMessages_sec_ 

2 _A_1ICMPMessages_Received_sec_ 

3 _A_1ICMPMessages_Received_Errors_ 

4 _A_1ICMPReceived_Dest__Unreachable_ 

5 _A_1ICMPReceived_Time_Exceeded_ 

6 _A_1ICMPReceived_Parameter_Problem_ 

7 _A_1ICMPReceived_Source_Quench_ 

8 _A_1ICMPReceived_Redirect_sec_ 

9 _A_1ICMPReceived_Echo_sec_ 

10 _A_1ICMPReceived_Echo_Reply_sec_ 

11 _A_1ICMPReceived_Timestamp_sec_ 

12 _A_1ICMPReceived_Timestamp_Reply_sec_ 

13 _A_1ICMPReceived_Address_Mask_ 

14 _A_1ICMPReceived_Address_Mask_Reply_ 

15 _A_1ICMPMessages_Sent_sec_ 

16 _A_1ICMPMessages_Outbound_Errors_ 

17 _A_1ICMPSent_Destination_Unreachable_ 

18 _A_1ICMPSent_Time_Exceeded_ 

19 _A_1ICMPSent_Parameter_Problem_ 

20 _A_1ICMPSent_Source_Quench_ 

21 _A_1ICMPSent_Redirect_sec_ 

22 _A_1ICMPSent_Echo_sec_ 

23 _A_1ICMPSent_Echo_Reply_sec_ 

24 _A_1ICMPSent_Timestamp_sec_ 

25 _A_1ICMPSent_Timestamp_Reply_sec_ 

26 _A_1ICMPSent_Address_Mask_ 

27 _A_1ICMPSent_Address_Mask_Reply_ 

28 _A_1IPDatagrams_sec_ 

29 _A_1IPDatagrams_Received_sec_ 

30 _A_1IPDatagrams_Received_Header_Errors_ 



31 _A_1IPDatagrams_Received_Address_Errors_ 

32 _A_1IPDatagrams_Forwarded_sec_ 

33 _A_1IPDatagrams_Received_Unknown_Protocol_ 

34 _A_1IPDatagrams_Received_Discarded_ 

35 _A_1IPDatagrams_Received_Delivered_sec_ 

36 _A_1IPDatagrams_Sent_sec_ 

37 _A_1IPDatagrams_Outbound_Discarded_ 

38 _A_1IPDatagrams_Outbound_No_Route_ 

39 _A_1IPFragments_Received_sec_ 

40 _A_1IPFragments_Re_assembled_sec_ 

41 _A_1IPFragment_Re_assembly_Failures_ 

42 _A_1IPFragmented_Datagrams_sec_ 

43 _A_1IPFragmentation_Failures_ 

44 _A_1IPFragments_Created_sec_ 

45 _A_1MemoryPage_Faults_sec_ 

46 _A_1MemoryAvailable_Bytes_ 

47 _A_1MemoryCommitted_Bytes_ 

48 _A_1MemoryCommit_Limit_ 

49 _A_1MemoryWrite_Copies_sec_ 

50 _A_1MemoryTransition_Faults_sec_ 

51 _A_1MemoryCache_Faults_sec_ 

52 _A_1MemoryDemand_Zero_Faults_sec_ 

53 _A_1MemoryPages_sec_ 

54 _A_1MemoryPages_Input_sec_ 

55 _A_1MemoryPage_Reads_sec_ 

56 _A_1MemoryPages_Output_sec_ 

57 _A_1MemoryPool_Paged_Bytes_ 

58 _A_1MemoryPool_Nonpaged_Bytes_ 

59 _A_1MemoryPage_Writes_sec_ 

60 _A_1MemoryPool_Paged_Allocs_ 

61 _A_1MemoryPool_Nonpaged_Allocs_ 

62 _A_1MemoryFree_System_Page_Table_Entries_ 

63 _A_1MemoryCache_Bytes_ 

64 _A_1MemoryCache_Bytes_Peak_ 

65 _A_1MemoryPool_Paged_Resident_Bytes_ 

66 _A_1MemorySystem_Code_Total_Bytes_ 

67 _A_1MemorySystem_Code_Resident_Bytes_ 

68 _A_1MemorySystem_Driver_Total_Bytes_ 

69 _A_1MemorySystem_Driver_Resident_Bytes_ 

70 _A_1MemorySystem_Cache_Resident_Bytes_ 

71 _A_1Memory__Committed_Bytes_In_Use_ 



72 _A_1MemoryAvailable_KBytes_ 

73 _A_1MemoryAvailable_MBytes_ 

74 _A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec_ 

75 _A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_ 

76 _A_1Network_Interfacket_Scheduler_Miniport_Packets_Received_sec_ 

77 _A_1Network_Interfac_Packet_Scheduler_Miniport_Packets_Sent_sec_ 

78 _A_1Network_InterfacPacket_Scheduler_Miniport_Current_Bandwidth_ 

79 _A_1Network_Interfacacket_Scheduler_Miniport_Bytes_Received_sec_ 

80 _A_1Network_Interfacduler_Miniport_Packets_Received_Unicast_sec_ 

81 _A_1Network_Interfacr_Miniport_Packets_Received_Non_Unicast_sec_ 

82 _A_1Network_Interfacheduler_Miniport_Packets_Received_Discarded_ 

83 _A_1Network_Interfac_Scheduler_Miniport_Packets_Received_Errors_ 

84 _A_1Network_InterfacScheduler_Miniport_Packets_Received_Unknown_ 

85 _A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_ 

86 _A_1Network_InterfacScheduler_Miniport_Packets_Sent_Unicast_sec_ 

87 _A_1Network_Interfacduler_Miniport_Packets_Sent_Non_Unicast_sec_ 

88 _A_1Network_Interfacheduler_Miniport_Packets_Outbound_Discarded_ 

89 _A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors_ 

90 _A_1Network_Interfaccket_Scheduler_Miniport_Output_Queue_Length_ 

91 _A_1Network_Interface_MS_TCP_Loopback_interface_Bytes_Total_sec_ 

92 _A_1Network_Interface_MS_TCP_Loopback_interface_Packets_sec_ 

93 _A_1Network_InterfacTCP_Loopback_interface_Packets_Received_sec_ 

94 _A_1Network_Interfac_MS_TCP_Loopback_interface_Packets_Sent_sec_ 

95 _A_1Network_InterfacMS_TCP_Loopback_interface_Current_Bandwidth_ 

96 _A_1Network_InterfacS_TCP_Loopback_interface_Bytes_Received_sec_ 

97 _A_1Network_Interfacback_interface_Packets_Received_Unicast_sec_ 

98 _A_1Network_Interfac_interface_Packets_Received_Non_Unicast_sec_ 

99 _A_1Network_Interfacopback_interface_Packets_Received_Discarded_ 

100 _A_1Network_Interfac_Loopback_interface_Packets_Received_Errors_ 

101 _A_1Network_InterfacLoopback_interface_Packets_Received_Unknown_ 

102 _A_1Network_Interface_MS_TCP_Loopback_interface_Bytes_Sent_sec_ 

103 _A_1Network_InterfacLoopback_interface_Packets_Sent_Unicast_sec_ 

104 _A_1Network_Interfacback_interface_Packets_Sent_Non_Unicast_sec_ 

105 _A_1Network_Interfacopback_interface_Packets_Outbound_Discarded_ 

106 _A_1Network_Interfac_Loopback_interface_Packets_Outbound_Errors_ 

107 _A_1Network_Interfac_TCP_Loopback_interface_Output_Queue_Length_ 

108 _A_1PhysicalDisk__Total___Disk_Read_Time_ 

109 _A_1PhysicalDisk__Total___Disk_Time_ 

110 _A_1PhysicalDisk__Total___Disk_Write_Time_ 

111 _A_1PhysicalDisk__Total___Idle_Time_ 

112 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Read_ 



113 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Transfer_ 

114 _A_1PhysicalDisk__Total_Avg__Disk_Bytes_Write_ 

115 _A_1PhysicalDisk__Total_Avg__Disk_Queue_Length_ 

116 _A_1PhysicalDisk__Total_Avg__Disk_Read_Queue_Length_ 

117 _A_1PhysicalDisk__Total_Avg__Disk_sec_Read_ 

118 _A_1PhysicalDisk__Total_Avg__Disk_sec_Transfer_ 

119 _A_1PhysicalDisk__Total_Avg__Disk_sec_Write_ 

120 _A_1PhysicalDisk__Total_Avg__Disk_Write_Queue_Length_ 

121 _A_1PhysicalDisk__Total_Current_Disk_Queue_Length_ 

122 _A_1PhysicalDisk__Total_Disk_Bytes_sec_ 

123 _A_1PhysicalDisk__Total_Disk_Read_Bytes_sec_ 

124 _A_1PhysicalDisk__Total_Disk_Reads_sec_ 

125 _A_1PhysicalDisk__Total_Disk_Transfers_sec_ 

126 _A_1PhysicalDisk__Total_Disk_Write_Bytes_sec_ 

127 _A_1PhysicalDisk__Total_Disk_Writes_sec_ 

128 _A_1PhysicalDisk__Total_Split_IO_Sec_ 

129 _A_1Process__Total___Privileged_Time_ 

130 _A_1Process__Total___Processor_Time_ 

131 _A_1Process__Total___User_Time_ 

132 _A_1Process__Total_Creating_Process_ID_ 

133 _A_1Process__Total_Elapsed_Time_ 

134 _A_1Process__Total_Handle_Count_ 

135 _A_1Process__Total_ID_Process_ 

136 _A_1Process__Total_IO_Data_Bytes_sec_ 

137 _A_1Process__Total_IO_Data_Operations_sec_ 

138 _A_1Process__Total_IO_Other_Bytes_sec_ 

139 _A_1Process__Total_IO_Other_Operations_sec_ 

140 _A_1Process__Total_IO_Read_Bytes_sec_ 

141 _A_1Process__Total_IO_Read_Operations_sec_ 

142 _A_1Process__Total_IO_Write_Bytes_sec_ 

143 _A_1Process__Total_IO_Write_Operations_sec_ 

144 _A_1Process__Total_Page_Faults_sec_ 

145 _A_1Process__Total_Page_File_Bytes_ 

146 _A_1Process__Total_Page_File_Bytes_Peak_ 

147 _A_1Process__Total_Pool_Nonpaged_Bytes_ 

148 _A_1Process__Total_Pool_Paged_Bytes_ 

149 _A_1Process__Total_Priority_Base_ 

150 _A_1Process__Total_Private_Bytes_ 

151 _A_1Process__Total_Thread_Count_ 

152 _A_1Process__Total_Virtual_Bytes_ 

153 _A_1Process__Total_Virtual_Bytes_Peak_ 



154 _A_1Process__Total_Working_Set_ 

155 _A_1Process__Total_Working_Set_Peak_ 

156 _A_1Processor__Total___C1_Time_ 

157 _A_1Processor__Total___C2_Time_ 

158 _A_1Processor__Total___C3_Time_ 

159 _A_1Processor__Total___DPC_Time_ 

160 _A_1Processor__Total___Idle_Time_ 

161 _A_1Processor__Total___Interrupt_Time_ 

162 _A_1Processor__Total___Privileged_Time_ 

163 _A_1Processor__Total___Processor_Time_ 

164 _A_1Processor__Total___User_Time_ 

165 _A_1Processor__Total_C1_Transitions_sec_ 

166 _A_1Processor__Total_C2_Transitions_sec_ 

167 _A_1Processor__Total_C3_Transitions_sec_ 

168 _A_1Processor__Total_DPC_Rate_ 

169 _A_1Processor__Total_DPCs_Queued_sec_ 

170 _A_1Processor__Total_Interrupts_sec_ 

171 _A_1SystemFile_Read_Operations_sec_ 

172 _A_1SystemFile_Write_Operations_sec_ 

173 _A_1SystemFile_Control_Operations_sec_ 

174 _A_1SystemFile_Read_Bytes_sec_ 

175 _A_1SystemFile_Write_Bytes_sec_ 

176 _A_1SystemFile_Control_Bytes_sec_ 

177 _A_1SystemContext_Switches_sec_ 

178 _A_1SystemSystem_Calls_sec_ 

179 _A_1SystemFile_Data_Operations_sec_ 

180 _A_1SystemSystem_Up_Time_ 

181 _A_1SystemProcessor_Queue_Length_ 

182 _A_1SystemProcesses_ 

183 _A_1SystemThreads_ 

184 _A_1SystemAlignment_Fixups_sec_ 

185 _A_1SystemException_Dispatches_sec_ 

186 _A_1SystemFloating_Emulations_sec_ 

187 _A_1System__Registry_Quota_In_Use_ 

188 _A_1TCPSegments_sec_ 

189 _A_1TCPConnections_Established_ 

190 _A_1TCPConnections_Active_ 

191 _A_1TCPConnections_Passive_ 

192 _A_1TCPConnection_Failures_ 

193 _A_1TCPConnections_Reset_ 

194 _A_1TCPSegments_Received_sec_ 



195 _A_1TCPSegments_Sent_sec_ 

196 _A_1TCPSegments_Retransmitted_sec_ 

197 _A_1Thread__Total__Total___Privileged_Time_ 

198 _A_1Thread__Total__Total___Processor_Time_ 

199 _A_1Thread__Total__Total___User_Time_ 

200 _A_1Thread__Total__Total_Context_Switches_sec_ 

201 _A_1Thread__Total__Total_Elapsed_Time_ 

202 _A_1Thread__Total__Total_ID_Process_ 

203 _A_1Thread__Total__Total_ID_Thread_ 

204 _A_1Thread__Total__Total_Priority_Base_ 

205 _A_1Thread__Total__Total_Priority_Current_ 

206 _A_1Thread__Total__Total_Start_Address_ 

207 _A_1Thread__Total__Total_Thread_State_ 

208 _A_1Thread__Total__Total_Thread_Wait_Reason_ 

209 _A_1UDPDatagrams_sec_ 

210 _A_1UDPDatagrams_Received_sec_ 

211 _A_1UDPDatagrams_No_Port_sec_ 

212 _A_1UDPDatagrams_Received_Errors_ 

213 _A_1UDPDatagrams_Sent_sec_ 
 

VTRACE features 
214 Process_create 
215 Process_destroy 
216 Thread_create 
217 Thread_destroy 
218 Thread_switch 
219 Process_set_priority 
220 Thread_set_priority 
221 Message_get_nf_call 
222 Message_get_f_call 
223 Message_get_return 
224 Message_peek_r_nf_call 
225 Message_peek_r_f_call 
226 Message_peek_nr_nf_call 
227 Message_peek_nr_f_call 
228 Message_peek_return 
229 Message_dispatch_call 
230 Message_dispatch_return 
231 Message_trans_accel_call 
232 Message_trans_accel_ret 
233 Message_translate_call 



234 Message_translate_return 
235 Message_trans_mdi_call 
236 Message_trans_mdi_return 
237 Message_set_timer 
238 Message_cancel_timer 
239 Message_wait_call 
240 Message_wait_return 
241 Message_get_input_state 
242 Message_get_queue_status 
243 Key_press 
244 Cursor_load 
245 Cursor_set 
246 Window_create 
247 Dialog_create 
248 File_complete_operation 
249 File_open 
250 File_read 
251 File_write 
252 File_close 
253 File_query_info 
254 File_set_info 
255 File_directory_control 
256 File_name 
257 File_information 
258 File_open_query_close 
259 File_rename 
260 File_delete 
261 File_flush 
262 File_lock 
263 File_unlock 
264 File_set_position 
265 File_link 
266 File_complete_mdl_op 
267 File_fcb_information 
268 Message_post_window 
269 Message_post_thread 
270 Message_send 
271 Netobj_complete_op 
272 Netobj_open 
273 Netobj_close 
274 Netobj_connect 



275 Netobj_disconnect 
276 Netobj_send 
277 Netobj_send_datagram 
278 Netobj_receive 
279 Netobj_receive_datagram 
280 Netobj_listen 
281 Netobj_accept 
282 Netobj_associate_address 
283 Netobj_disassociate_addr 
284 Netobj_notify_connect 
285 Netobj_notify_disconnect 
286 Netobj_notify_receive 
287 Netobj_notify_rcv_dgram 
288 Netobj_notify_rcv_exped 
289 VTrace_action 
290 Device_hook 
291 VTrace_version 
292 Local_time 
293 VTrace_set_mask 
294 Beat 
295 Device_unhook 
296 High_timestamp 
297 Ignore_activity 
298 Set_cpu_speed 
299 User_changed 
300 Waitobj_signal 
301 Waitobj_set_timer 
302 Waitobj_cancel_timer 
303 Waitobj_wait_call 
304 Waitobj_wait_return 
305 Waitobj_wait_gen_call 
306 Waitobj_wait_gen_return 
307 Msg___waitobj_wait_call 
308 Msg___waitobj_wait_ret 
309 Rawdisk_read 
310 Rawdisk_write 
311 Rawdisk_complete_op 
312 Section_create 
313 Section_open 
314 Section_map_view 
315 Section_unmap_view 



316 Section_get_mdl 
317 Testing 
318 Flush_icache 
319 Flush_write_buffer 
320 Terminate_process 
321 Terminate_thread 
322 Write_request_data 
323 Write_VM 

 



Appendix B – Top Twenty Features Selected by Each Feature Selection Method 
 

All (V_All) 
ChiSqr ReliefF 

_A_1MemoryCache_Bytes_Peak_ _A_1ICMPReceived_Dest__Unreachable_ 

_A_1Process__Total_Virtual_Bytes_Peak_ _A_1ICMPSent_Destination_Unreachable_ 

_A_1MemoryFree_System_Page_Table_Entries_ _A_1SystemFile_Control_Bytes_sec_ 

_A_1Process__Total_Virtual_Bytes_ _A_1Process__Total_IO_Other_Bytes_sec_ 

_A_1Process__Total_Pool_Nonpaged_Bytes_ _A_1ICMPMessages_Outbound_Errors_ 

_A_1MemoryPool_Nonpaged_Bytes_ _A_1MemorySystem_Code_Total_Bytes_ 

_A_1Process__Total_Thread_Count_ Netobj_disconnect 

_A_1SystemThreads_ _A_1ICMPSent_Echo_sec_ 

_A_1Process__Total_Pool_Paged_Bytes_ _A_1ICMPMessages_Sent_sec_ 

_A_1TCPConnections_Active_ _A_1Process__Total_Handle_Count_ 

_A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_ _A_1ICMPMessages_sec_ 

_A_1TCPConnection_Failures_ _A_1Processor__Total___Processor_Time_ 

_A_1MemoryPool_Nonpaged_Allocs_ _A_1SystemException_Dispatches_sec_ 

_A_1Process__Total_Handle_Count_ _A_1TCPConnections_Reset_ 

_A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_ _A_1Processor__Total___Idle_Time_ 

_A_1Network_Interfac__Packet_Scheduler_Miniport_Bytes_Total_sec_ _A_1Processor__Total___User_Time_ 

_A_1Process__Total_Page_File_Bytes_Peak_ _A_1Process__Total___User_Time_ 

_A_1IPDatagrams_sec_ _A_1Thread__Total__Total___User_Time_ 

_A_1SystemFile_Control_Bytes_sec_ _A_1Processor__Total_Interrupts_sec_ 

_A_1Process__Total_IO_Other_Bytes_sec_ _A_1Memory__Committed_Bytes_In_Use_ 

GainRatio Ensemble 
_A_1ICMPSent_Echo_sec_ _A_1ICMPSent_Echo_sec_ 

_A_1ICMPMessages_Sent_sec_ _A_1ICMPMessages_Sent_sec_ 

_A_1ICMPMessages_sec_ _A_1Process__Total_IO_Other_Bytes_sec_ 

_A_1TCPConnections_Passive_ _A_1SystemFile_Control_Bytes_sec_ 

Netobj_disconnect _A_1ICMPMessages_sec_ 

_A_1TCPConnection_Failures_ _A_1MemoryCache_Bytes_Peak_ 

_A_1TCPConnections_Active_ _A_1TCPConnection_Failures_ 

_A_1TCPSegments_Retransmitted_sec_ _A_1TCPConnections_Active_ 

Write_request_data _A_1MemoryFree_System_Page_Table_Entries_ 

_A_1MemoryFree_System_Page_Table_Entries_ _A_1Process__Total_Virtual_Bytes_Peak_ 

_A_1ICMPReceived_Echo_Reply_sec_ _A_1TCPConnections_Passive_ 

_A_1ICMPMessages_Received_sec_ _A_1Process__Total_Handle_Count_ 

_A_1ICMPReceived_Echo_sec_ _A_1MemoryPool_Nonpaged_Bytes_ 

_A_1ICMPSent_Echo_Reply_sec_ _A_1ICMPReceived_Dest__Unreachable_ 

_A_1UDPDatagrams_No_Port_sec_ _A_1Process__Total_Thread_Count_ 

_A_1Process__Total_Thread_Count_ _A_1SystemThreads_ 



_A_1SystemThreads_ _A_1MemoryPool_Nonpaged_Allocs_ 

_A_1Network_Interfac___Packet_Scheduler_Miniport_Bytes_Sent_sec_ _A_1Process__Total_Pool_Nonpaged_Bytes_ 

_A_1Network_Interfac_Scheduler_Miniport_Packets_Outbound_Errors_ Netobj_disconnect 

_A_1Network_InterfacTX____Packet_Scheduler_Miniport_Packets_sec_ _A_1Process__Total_Virtual_Bytes_ 

 
 


