
Abstract - Data miners have often to deal with data sets 
of limited size due to economic, timing and other 
constraints. Usually their task is two-fold: to induce the 
most accurate model from a given dataset and to estimate 
the model's accuracy on future (unseen) examples. Cross-
validation is the most common approach to estimating the 
true accuracy of a given model and it is based on splitting 
the available sample between a training set and a 
validation set.  The practical experience shows that any 
cross-validation method suffers from either an optimistic 
or a pessimistic bias in some domains.  In this paper, we 
present a series of large-scale experiments on artificial and 
real-world datasets, where we study the relationship 
between the model's true accuracy and its cross-validation 
estimator.  Two stable classification algorithms (ID3 and 
info-fuzzy network) are used for inducing each model.  
The results of our experiments have a striking 
resemblance to the well-known Heisenberg Uncertainty 
Principle: the more accurate is a model induced from a 
small amount of real-world data, the less reliable are the 
values of simultaneously measured cross-validation 
estimates.  We suggest calling this phenomenon "the 
uncertainty principle of cross-validation".   
 

Index Terms— Cross-Validation, Accuracy Estimation, 
Model Selection, Classification, Info-Fuzzy Networks. 
 

I. INTRODUCTION 
Though data mining is traditionally associated with 
extracting knowledge from large amounts of data [7], 
the real-world data miners have often to deal with much 
smaller data sets than they would prefer to have. This 
situation may arise, for instance, in the health care 
sector, where a hospital may be able to provide only a 
limited number of patient records, or in analysis of a 
new manufacturing process, where each record contains 
the results of a costly engineering experiment. In this 
paper, we mainly focus on classification problems of 
data mining. Given the set of available data and a 
classification algorithm of his/her choice, the data miner 
faces a two-fold task: to induce the most accurate model 
from a given dataset and to estimate the true model's 
accuracy on future (unseen) examples. For many users, 
the second task is no less important than the first one, 
since they would like to choose the most accurate 
model  
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 of known accuracy from a given set of alternative 
models.Obviously, this choice has to be made under 
financial, timing, and other constraints that limit the 
amount of available data. 

The problem of selecting the most accurate classifier 
among several classifiers is known as the problem of 
model selection [10].  There are multiple ways to form a 
set of alternative models such as varying the complexity 
of a given hypothesis [8] or running different induction 
algorithms against the same data set [10].   The goal of 
the corresponding model selection techniques is finding 
the best complexity level or choosing the most accurate 
inducer. The inducer selection problem has been treated 
extensively in machine learning and data mining 
literature and we leave it beyond the scope of this paper. 
Our assumption is that as defined in [6] the best 
induction algorithm(s) have been chosen at the pre-DM 
stage of the knowledge discovery process based on 
performance statistics, user preferences, software costs, 
and other criteria. For the sake of simplicity, we also 
assume that the user cannot explicitly control the 
complexity of the induced model like in the case of [8].  
Thus, our model selection problem is reduced to the 
following definition: using the selected induction 
algorithm with a pre-specified set of parameters, induce 
the most accurate model from a given dataset. 

As indicated in the beginning of this section, the 
above problem of model selection is tightly coupled 
with the problem of accuracy estimation: we want to 
find the most accurate model, but we also want to know 
how accurate it is.  This excludes the option of taking 
the entire available sample as the training set, since the 
apparent (re-substitution) accuracy is well known to be 
an overoptimistic estimator [7]. Having virtually 
unlimited CPU power, we can obtain an interval 
estimator of the classifier’s accuracy by some method of 
k-fold cross-validation and then induce a single model 
from the entire sample.  However cross-validation 
estimators (especially, the leave-one-out method) are 
known to suffer from high variance, resulting in 
relatively wide confidence intervals, and, as shown by 
Kohavi in [10], that variance can be partially reduced 
only at the cost of increasing the bias between the 
estimated and the true accuracy.  Consequently, it may 
be reasonable to use the cross-validation procedure for 
separating the good inducers from the poor ones, but the 
same procedure is hardly helpful for comparing 
classification models of similar accuracy. 

To induce both a classification model and an 
estimator of its true accuracy from the same data 
sample, we can apply a two-fold cross validation also 
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called the holdout method [7].  In this method, the 
sample is randomly partitioned into a training set that is 
used to induce the model and a test set where we 
evaluate the model’s accuracy. The underlying 
assumption is that the induction algorithm is 
semantically stable, i.e. the classifiers produced by 
different random partitions of the dataset are expected 
to make the same predictions for the same instances. 
Typically, 33% or 50% of the data are held out for 
testing the model, though no theoretical justification for 
these or other splits are known [2]. When we are 
interested in the mean accuracy of a given inducer 
rather than in the true accuracy of a specific model, this 
procedure can be repeated multiple times. This is called 
holdout with random subsampling. Since the 
classification performance of a typical inducer is a non-
decreasing function of the number of training instances, 
the two-fold CV estimator, like its multi-fold 
counterparts, tend to be highly pessimistic [7].  
Techniques for reaching a better balance between an 
optimistic and a pessimistic estimator include stratified 
cross validation [3] and the family of bootstrap methods 
[4] [5].  However, Kohavi has shown in [10] that none 
of these techniques, combined with a varying number of 
cross-validation folds, is guaranteed to provide unbiased 
estimations for any domain.  

Kearns [9] has made an attempt to find the optimal 
value of the training-test split rather than using the 
standard 2:1 ratio.  He has developed an analytical 
expression for calculating the optimal value of the test 
data fraction as a function of the sample size and the 
target concept complexity.  Since in a real-world 
problem the complexity of the underlying concept may 
be unknown in advance, Kearns has performed a series 
of controlled experiments with data produced by 
noiseless models of known complexity. The case studies 
were characterized by the power law behavior of the 
learning curve.  His main conclusion is that as long as 
the complexity is small compared to the sample size, the 
generalization performance of two-fold cross validation 
is rather insensitive to the choice of the split ratio.  The 
second conclusion implies that choosing the same 
fraction of testing records (about 0.5) will nearly 
minimize the cross validation error bound for a wide 
range of target functions.  The results of [9] provide no 
clue as to the value, or even the existence of an optimal 
split ratio for real-world data governed by noisy 
concepts and for inducers that may deviate from the 
power law behavior.   

This paper is organized as follows.  Section II covers 
a series of large-scale experiments on artificial and real-
world datasets, where we study the relationship between 
the model's true accuracy and its cross-validation 
estimator as a function of the training/test split ratio. In 
Section III, we try to draw a parallel between our 
observations and the well-known Heisenberg 
Uncertainty Principle of Quantum Mechanics. 

Implications for the practical process of knowledge 
discovery and open research topics are suggested in 
Section IV. 

II. EMPIRICAL RESULTS: ACCURACY AS A 
MOVING TARGET 

A. Experimental Settings 
As indicated in Section I above, this paper considers 
only the task of selecting a single most accurate model 
of known accuracy rather than selecting the most 
accurate inducer for a given dataset.  Consequently, all 
our experiments will focus on the performance of a two-
fold (rather than 5 or 10-fold) cross-validation as a 
function of the training-test ratio.  A necessary 
condition for k-fold cross-validation to be an accurate 
estimator of predictive accuracy is semantic stability of 
the induction algorithm. This implies that if an 
algorithm is stable for a given dataset, the variance of 
the cross-validation estimates should be nearly 
independent of the number of folds [10].  For our large-
scale experiments, we have chosen ID3 [15], which is a 
common and relatively stable decision-tree algorithm 
and the Info-Fuzzy Network (IFN) classifier, which was 
shown in [13] to produce more compact and stable 
decision-tree models than other decision-tree algorithms 
(including C4.5), while preserving nearly the same level 
of predictive accuracy.  Info-fuzzy network is an 
oblivious read-once decision graph built by a top-down 
information-theoretic algorithm, which uses the 
likelihood-ratio test as a pre-pruning criterion.  More 
details on IFN can be found in [12] and [14]. 

We have used the same data sets from a wide variety 
of real-world domains that were used in Kohavi’s cross-
validation experiments [10]. All data sets including the 
no information set of artificially generated random data 
were downloaded from the MLC++ web site [11]. Most 
of them originate from the UCI Machine Learning 
Repository [1]. We have also added a perfect 
information dataset, which includes 3,000 records of 
non-random noiseless data having the same values of 
input attributes as Kohavi’s “no information” set.  The 
underlying model we used to determine the values of 
the target attribute in the perfect information dataset is 
shown in Fig. 1. As one can see, only three features (out 
of 20 available inputs) are relevant for predicting the 
target value, while the probability of class = 0, under 
the assumption that all input attributes are random, is 
0.625.  
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Fig. 1 Perfect Information Dataset 
 

The datasets were evaluated with a sample size 
around the point where the learning curves of both 
algorithms flattened out.  The learning curves of ID3 

and IFN algorithms are shown for all datasets in the 
case study in Fig. 2 and Fig. 3 respectively as a function 
of the fraction of the initial dataset that was used for 
training the algorithm (0% - 50%). The predictive 
accuracy was measured on the remaining test instances.  
The value of Training Set Size = 0% refers to the 
accuracy of the default (majority) rule on the entire 
dataset.  Most datasets (including the perfect 
information dataset) seem to reach nearly the maximum 
accuracy level for only 5% of the available data. 

The “true” accuracy of each inducer for a given 
partition of every dataset was estimated using 100 runs 
of the holdout method.  In Table 1, we show the sample 
percentage and the estimated accuracy of each 
classifier. 
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Fig. 2 ID3 Learning Curves 
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Fig. 3 IFN Learning Curves 
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TABLE 1 

 EXPECTED ACCURACY ESTIMATES FOR ID3 AND IFN  

   ID3  IFN  

Dataset 
Number of 
Attributes Total Size 

Sample 
Percentage C.I. 

Sample 
Percentage C.I. 

Breast Cancer 10 699 5% 91.2+-0.55 5% 90.46+-0.5 
Chess 36 3196 5% 93.9+-0.46 5% 93.26+-0.53 
Hypothyroid 25 3163 5% 97.2+-0.32 5% 97.2+-0.13 
Mushroom 22 8124 5% 99.5+-0.13 5% 99.33+-0.07 
Soybean large 35 683 30% 93.9+-0.46 50% 71.24+-1.19 
Vehicle 18 846 20% 71.1+-0.88 10% 56.82+-1.01 
Rand 20 3000 5% 49.8+-0.97 5% 49.91+-0.09 
Perfect 20 3000 5% 100+-0 5% 100+-0 

 
 
In our experiments with all datasets, we have varied the 

test fraction of the selected sample size between 10% and 
90%, while using the instances not included in the sample 
for estimating the true accuracy of the induced model. 
This was repeated 100 times for each value of the test 
fraction. The quality of cross-validation results was 
measured using the following criteria: average true 
accuracy (the average accuracy of 100 models measured 
on the same validation instances not included in the 
sample) and correlation coefficient between the cross-
validation estimate and the true accuracy of each model 
(measured over 100 value-pairs of estimated and true 
accuracy). The latter criterion is particularly important for 
evaluating reliability of cross-validation estimates, since 
to choose the best model, we are interested in predicting 
the true accuracy of each alternative model based on its 
cross-validation estimate (see Section I above). 

A. Analysis of Results 
Figs. 4 – 11 present the trade-off between the true error 
and the correlation coefficient for each real-world and 
artificial data set in our study.  Ideally, we would like to 
find on each plot a point, which is relatively close to 
(0.00, 1.00), where the error rate is zero and the 
correlation coefficient is one.  Unfortunately, this occurs 
only in the Perfect dataset (Fig. 11) which contains 
noiseless data. In all other datasets, except Rand and 
Hypothyroid where the error rate is nearly constant, any 
significant improvement in correlation can be reached 
only at the cost of increased error rate. We suggest to call 
this empirical phenomenon the Uncertainty Principle of 
Cross-Validation:   The more accurate is a model induced 
from a small amount of real-world data, the less reliable 
are the values of simultaneously measured cross-
validation estimates. 

Though this uncertainty phenomenon deserves a careful 
study, we may try to suggest here a partial explanation as 
follows.  More accurate models induced from larger 

training sets are more complex, which implies that they 
are more sensitive to small changes in the training data. 
Such changes may lead to either generation of occasional 
spurious patterns or, simultaneously a loss of some valid 
patterns that present in the data.  Each change like this 
may affect the model's structure and its predictive 
accuracy. On the other hand, when the training set is 
small, the induced model will be simpler and more stable.  
Now we proceed with drawing some basic parallels 
between the Uncertainty Principle of Cross-Validation 
and the Heisenberg Uncertainty Principle of Quantum 
Mechanics.  
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Fig. 4 Breast Dataset: Accuracy vs. Correlation 

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5
Av. True Error

|C
or

r C
oe

f|

ID3 IFN  
Fig. 5 Chess Dataset: Accuracy vs. Correlation 
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Fig. 6 Hypothyroid Dataset: Accuracy vs. Correlation 
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Fig. 7 Mushroom Dataset: Accuracy vs. Correlation 
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Fig. 8 Soybean Dataset: Accuracy vs. Correlation 
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Fig. 9 Vehicle Dataset: Accuracy vs. Correlation 
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Fig. 10 Rand Dataset: Accuracy vs. Correlation 
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III. A BRIEF DISCUSSION OF THE UNCERTAINTY 
PRINCIPLE 

The Heisenberg Uncertainty Principle [16] says that we 
cannot know the exact values of two physical quantities 
that describe an atomic system. Examples include 
simultaneous measurement of the position and momentum 
of a particle or of energy and time.  A common 
interpretation of this principle is as follows: we cannot 
determine the exact value of one quantity without losing 
all information on the other quantity. In the intermediate 
cases, there is a known relationship (based on the Planck's 
constant) between the uncertainties of the two 
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simultaneously measured values. As indicated above, all 
this is true only for systems of atomic order. 

Though the exact nature of cross-validation uncertainty 
may be quite different from the laws of Quantum 
Mechanics, we would like to point out some obvious 
similarities of these two phenomena: 

The Uncertainty Principle of Cross-Validation applies 
only to samples of small ("atomic") size.  Having an 
unlimited amount of data, we should have no difficulty 
with inducing an accurate model of known accuracy. 

The most accurate model can only be induced from all 
available data.  However, in this case we cannot estimate 
the true accuracy of the obtained model. 

In another extreme case, we may base our prediction on 
a prior belief rather than any training data. Estimation of 
such belief's accuracy on a validation set of maximum 
size would be highly reliable.  

As shown by the empirical results of Section II, there 
appears to be an inverse relationship between the true 
accuracy and the capability to estimate it reliably in most 
datasets.  Obviously, these results are not sufficient for 
finding the exact form of this relationship or for claiming 
that it can be found in any dataset. 

IV. CONCLUSIONS 
In this paper, we have explored on large-scale case studies 
the problems associated with reliable estimations of 
classifier accuracy using cross-validation techniques and 
finite-size data samples. The results of our experiments 
have a striking resemblance to the well-known 
Heisenberg Uncertainty Principle: the more accurate is a 
model induced from a small amount of real-world data, 
the less reliable are the values of simultaneously 
measured cross-validation estimates.  We suggest to call 
this phenomenon "the uncertainty principle of cross-
validation".  In our view, this important limitation of 
cross-validation techniques should be taken into 
consideration when planning the process of knowledge 
discovery in databases of limited size. 

More experimentation is needed to better understand 
the universal relationship (if it exists) between 
uncertainties associated with the cross-validation process.  
The effect of algorithms' stability on the reliability of 
cross-validation estimates should also be studied in more 
detail.  

REFERENCES 
[1] Blake, C.L. & Merz, C.J. UCI Repository of machine learning 

databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. 
Irvine, CA: University of California, Department of Information 
and Computer Science, 1998. 

[2] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, P.J. 
Classification and Regression Trees. Wadsworth, 1984. 

[3] Diamantidis N.A., Karlis D., and Giakoumakis, E.A. Unsupervised 
Stratification of Cross-Validation for Accuracy Estimation. 
Artificial Intelligence, 116 (2000), 1–16. 

[4] Efron, B. Estimating the Error Rate of a Prediction Rule: 
Improvement on Cross-Validation. Journal of the American 
Statistical Association, 78, 382 (Jun. 1983), 316-331. 

[5] Efron, B., and Tibshirani, R. Improvements on Cross-Validation: 
The .632+ Bootstrap Method. Journal of the American Statistical 
Association, 92, 438 (Jun. 1997), 548-560.  

[6] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. From Data 
Mining to Knowledge Discovery: An Overview. In Advances in 
Knowledge Discovery and Data Mining, Fayyad, U., Piatetsky-
Shapiro, G., Smyth, P., and Uthurusamy, R. eds., AAAI/MIT 
Press, 1996, 1-36. 

[7] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. 
Morgan Kaufmann, 2001. 

[8] Kearns, M., Mansour, Y., Ng, A. Y., and Ron, D. An Experimental 
and Theoretical Comparison of Model Selection Methods.  In 
Proceedings of the seventh workshop on Computational Learning 
Theory(COLT) , ACM Press, 1995, 21-30. 

[9] Kearns, M. J. A Bound on the Error of Cross Validation Using the 
Approximation and Estimation Rates, With Consequences for the 
Training-Test Split. Neural Computation, 9, 5 (July 1997), 1143 - 
1161. 

[10] Kohavi, R. A Study of Cross-Validation and Bootstrap for 
Accuracy Estimation and Model Selection. In Proceedings of the 
International Joint Conference on Artificial Intelligence (IJCAI) 
(Montréal, Québec, Canada, August 20-25, 1995). Morgan 
Kaufmann, 1995, 1137-1145. 

[11] Kohavi, R. MLC++: A Library of C++ Classes for Supervised 
Machine Learning. Silicon Graphics, Inc (2004). 
[http://www.sgi.com/tech/mlc/]. 

[12] Last M., and Maimon, O. A Compact and Accurate Model for 
Classification. IEEE Transactions on Knowledge and Data 
Engineering, 16, 2 (Feb. 2004), 203-215. 

[13] Last, M., Maimon, O., and Minkov, E. Improving Stability of 
Decision Trees. International Journal of Pattern Recognition and 
Artificial Intelligence, 16, 2 (2002), 145-159. 

[14] Maimon O., and Last, M. Knowledge Discovery and Data Mining 
– The Info-Fuzzy Network (IFN) Methodology. Kluwer Academic 
Publishers, Massive Computing, Boston, December 2000. 

[15] Quinlan, J.R. Induction of Decision Trees. Machine Learning,  1, 1 
(1986), 81-106.  

[16] Schiff, L.I. Quantum Mechanics. McGraw-Hill, New York, 1955 

1-4244-0133-X/06/$20.00 © 2006 IEEE 280




