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Abstract 
 
When data collection is costly and/or takes a 

significant amount of time, an early prediction of the 
classifier performance is extremely important for the 
design of the data mining process. Power law has been 
shown in the past to be a good predictor of decision-
tree error rates as a function of the sample size. In this 
paper, we show that the optimal training set size for a 
given dataset can be computed from a learning curve 
characterized by a power law.  Such a curve can be 
approximated using a small subset of potentially 
available data and then used to estimate the expected 
trade-off between the error rate and the amount of 
additional observations.  The proposed approach to 
projected optimization of classifier utility is 
demonstrated and evaluated on several benchmark 
datasets. 

 
1. Introduction 

 
In real-world data mining projects, the amount of 

available data that can be used for inducing a data 
mining model is often restricted by economic, timing, 
and other constraints.  Examples of such constraints 
include a limited number of medical records that can 
be provided by a hospital over time, high costs of 
manufacturing records representing results of an 
engineering experiment, low frequency of obtaining 
new seasonal records in an agricultural database, etc.  
All these situations require a careful consideration of 
the added value of new examples (e.g., in terms of the 
improved predictive accuracy) vs. the costs and/or the 
times involved in acquiring those examples. 

According to [13], the ultimate goal of utility-based 
data mining is to maximize the utility of the entire data 
mining process by taking into account all utility 
considerations.  In the case of a classification task, this 
means considering the trade-off between an increase in 
predictive accuracy and the cost of acquiring new data. 
As shown in [13], for each data set and learner there is 
an optimal training set size that maximizes the overall 
utility of the classifier.  Given a ratio between the data 
acquisition cost and the error cost, a nearly optimal 

sample size can be found iteratively by one of 
progressive sampling schemes presented in [13].  A 
clear disadvantage of the progressive sampling 
approach, beyond the potential overhead associated 
with each sampling increment, is its inability to 
estimate in advance such parameters as the minimal 
achievable error rate subject to the budgeting 
constraints, the number of examples required to reach a 
particular error rate, or the optimal training set size that 
is expected to maximize the overall utility. 

Frey and Fisher [2] have conducted an extensive set 
of experiments showing that the power law is the best 
fit for modeling the error rates of the C4.5 decision-
tree algorithm [10]. The percentage of explained 
variation (r2) of the power law was compared to r2 of 
linear, logarithmic, and exponential functions across 14 
benchmark datasets of relatively small size (having less 
than 1,000 instances on average). The power law has 
produced the highest value of r2 in 12 datasets out of 
14 resulting in the best models predicting diminishing 
returns in the error rate for increasing the amount of 
training data.  In their further experiments, the authors 
of [2] have also shown that a power law model derived 
from a small portion of data (15%) can be used to 
reliably estimate the error rate for decision trees 
learned on the remaining amount of data as a function 
of the training set size.   

A more recent study by Singh [12] argues that the 
power law is only second best to the logarithmic 
regression for a variety of classification algorithms, 
namely ID3, k-Nearest Neighbors, Support Vector 
Machines, and Artificial Neural Networks. His results 
are based on four datasets from the UCI Repository [9] 
with the number of instances varying between 101 and 
1,728. The C4.5 decision-tree algorithm used by Frey 
and Fisher in [2] was not included in Singh’s 
experiments. 

This paper is organized as follows. In Section 2 we 
present the calculation of the optimal training set size 
for a given dataset based on the total utility measure of 
[13] and a learning curve characterized by a power 
law.  The proposed optimization methodology is 
applicable to any classification algorithm and sampling 
technique provided that the classifier performance can 
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be accurately approximated by this type of a learning 
curve.  Section 3 evaluates the proposed approach to 
projected optimization of classifier utility on six 
benchmark datasets using an oblivious decision tree 
algorithm (Information Network [6]), which is shown 
to fit the power law better than other performance 
models (linear, logarithmic, and exponential).  The 
paper is concluded by Section 4, which summarizes the 
results and outlines directions for future research. 

 
2. Optimizing the Training Set Size 

 
Weiss and Tian [13] have defined the total utility of 

the classification process as a sum of the two terms: 
Data Cost and Error Cost.  Based on the common 
model assessment approach (see [4]), the authors of 
[13] assume the data to be divided into three parts: the 
training set of n examples used to induce the model, 
the test set used to estimate the model accuracy, and 
the score set S of future examples to be classified by 
the model.  The Error Cost in [13] is proportional to 
the number of errors made when classifying the score 
data set S.  Without loss of generality, a fixed size of S 
(e.g., 100) can be assumed. The Data Cost is just the 
cost of data acquisition. Two unit costs involved 
include Ctr for acquiring each new training example 
and Cerr for each misclassified example from the score 
set.  The error rate measured on the test set is denoted 
by err. Consequently the total cost of a classifier can 
be calculated by the following expression: 

 
Total Cost = n·Ctr + err·|S|·Cerr (1) 

 
If the error rate is characterized by the power law, it 

can be projected using the following equation (based 
on [2]): 

 
err = a·n-b

  (2) 
 

where a and b are two non-negative coefficients, 
which can be easily calculated from the available 
training data by applying the linear regression model to 
the logarithmic transformations of n and err. This 
approach can be verified by taking a log or a ln of both 
sides in Eq. (2): 

 
log err  = log a – b·logn (3) 

 
Substituting the power function (2) into Eq. (1) 

results in the following expression for the Total Cost as 
a function of the training set size n: 

 
Total Cost (n) = n·Ctr + |S|·Cerr ·an-b (4) 

 

Due to the fact that the Data Cost in Eq. (4) is a 
non-decreasing function of n while the Error Cost, 
based on the power law, is a non-increasing function of 
n, an optimal trade-off between these two costs should 
exist.  To find the optimal training set size n* that 
minimizes the above cost function we need to compute 
the first derivative of Total Cost (n) and then set it to 
zero: 

 
(n·Ctr + |S|·Cerr ·a·n-b)′ = 0  (5) 

 
Ctr - |S|·Cerr ·a·b·n-b-1 = 0  (6) 
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Since the optimal training set size in Equation (7) 

depends only on the ratio of the costs, we can follow 
another simplification of [13] by assuming Ctr to be 
equal to 1.  Consequently we obtain the following 
expression for n*: 

 

( ) berr baCSn +⋅⋅⋅= 1
1

||*   (8) 
 

 It can be easily shown that n* is the global 
minimum of Total Cost (n).  Since a and b can take 
only non-negative values, the expression n-b-1, or 
1/nb+1, is a monotone non-increasing function of n and, 
consequently, the first derivative of Total Cost (see Eq. 
6) is a monotone non-decreasing function of n.  This 
implies that Total Cost (n) is a convex function and 
thus, according to [1], the point n*, where Total 
Cost′(n) = 0 is a global minimum.  

To make the Equation (8) useful for estimating the 
optimal amount of training examples required for 
inducing a classification model from a real-world 
dataset, the following conditions should hold: 
1) The learning curve of the classification algorithm 

fits the power law. 
2) A small portion of the available data is sufficient 

for a reliable projection of the learning curve on 
examples to be collected in the future. 

The usefulness of the optimal training set size 
calculated by Equation (8) can also be evaluated 
directly by comparing the actual minimal cost (found 
by progressive sampling) to the cost associated with 
n*. In the next section, we apply the proposed 
methodology to several benchmark datasets using one 
of decision-tree classifiers. 
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3. Empirical Results 
 

3.1. Design of Experiments 
 
Decision trees are considered one of the most 

popular classification methods [3].  Since the learning 
curves of C4.5 and ID3 algorithms have been studied 
elsewhere (see [2] and [12] respectively), this paper 
focuses on a different decision-tree algorithm called 
Information Network (IN), which was shown in [6] to 
produce more compact and stable decision-tree models 
than C4.5, while preserving nearly the same level of 
predictive accuracy.  Information network is an 
oblivious read-once decision graph built by a top-down 
information-theoretic algorithm, which uses the 
likelihood-ratio test as a pre-pruning criterion.  More 
details on IN can be found in [6] and [7]. 

Similarly to [13], each dataset was randomly 
partitioned into approximately 25% of test examples 
and approximately 75% of examples potentially 
available for training. The actual percentage of training 
examples (out of the examples remained for training) 
was varied between 1% and 99% in increments of 1% 
at a time.  To increase the statistical significance of our 
results, the error rate of each percentage is based on 
averages over 50 random partitions of the training set.  
The equation of the learning curve used to find the 
optimal amount of training examples was computed 
from the first 15 points (i.e., only 15% of the training 
data).  The same amount of data was used in [2] to 
build projected learning curves. The projected 
optimum was evaluated on the remaining 84 points.  

We have used the entire training sets to compare the 
percentage of explained variation (r2) of the power law 
to r2 of linear, logarithmic, and exponential functions 
shown by equations (9-11) respectively, where n stands 
for the amount of training data and a, b are the specific 
parameters of each function: 

 
err = an + b  (9) 

 
err = alogn + b  (10) 

 
err = abn  (11) 

 
Though previous studies have already demonstrated 

the non-linear behavior of most learning curves, we use 
the linear fit as a baseline in this paper. 

In our experiments, we have analyzed 6 datasets 
from the UCI Machine Learning Repository [9].  The 
datasets are described in Table 1.  Three datasets have 
between 600 and 900 records, while the other three 
contain several thousands of records.  We believe that 
such “medium-size” datasets are most appropriate for 

studying the learning curves of classification 
algorithms, since small datasets may not extend at all 
into the “plateau” region of the curve, where the 
optimal sample size is usually located, while in the 
large datasets a majority of records may be completely 
redundant due to their negligible contribution to a 
decrease in the error rate. 

 
Table 1. Datasets description 

 

Dataset 
Total 
Size 

Potentially 
Training 
Examples 

Test 
Examples 

Breast 
Cancer 699 523 176 
Chess 3196 2384 812 
Hypothyroid 3163 2379 784 
Mushroom 8124 6213 1911 
Soybean 
large 683 510 173 
Vehicle 846 623 223 

 
3.2 Modeling the Learning Curves 

 
The learning curves of the Information Network 

algorithm on the three largest datasets out of six are 
shown in Figures 1-3.  In general, all curves are 
characterized by diminishing returns in error rate for 
increasing the training set size.  However, there are 
some minor differences between the datasets, which 
are worth noting.  Thus, in the Hypothyroid curve, a 
long plateau of nearly a constant error rate is followed 
by an inflection point, which is very close to the 
maximum amount of available training records.  When 
the training set is slightly increased beyond this 
inflection point, an additional though small decrease in 
the error rate is observed.  Though the Hypothyroid 
dataset preserves the non-increasing behavior of the 
error rate as a function of n, the last few points of its 
learning curve may not fit the same function as the 
other points.  Another dataset (Chess) exhibits a slight 
increase of the error rate for the last few points, which 
appears to be a result of overfitting.  Obviously, 
extending the training set into this range should be 
counter-productive disregarding the value of the unit 
error cost All these small departures from the “ideal” 
diminishing returns behavior (e.g., shown by 
Mushroom dataset) are quite marginal and they do not 
affect the vast majority of points in each learning 
curve.   
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Figure 1. Learning curve for Chess dataset 

 
Hypothyroid
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Figure 2. Learning curve for Hypothyroid 
dataset 
 

Mushroom
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Figure 3. Learning curve for Mushroom 
dataset 
 

In Table 2, we compare the percentage of explained 
variation (r2) of the power law, linear, logarithmic, and 
exponential functions that are fit to the average error 
rates of the six datasets across the training set size 
varied from 1% to 99% of available examples. The 
largest values of r2 per each dataset are shown in bold. 
The power law is the best fit of the learning curve for 
five datasets out of six, with its r2 values ranging 
between 0.84 and 0.93.  The only exception is the 
Mushroom dataset, where the exponential fit is much 
better than the power law (r2 = 0.96 vs. 0.80).  It is 

worth noting that all correlation coefficients in Table 2, 
including the lowest ones representing the linear fit, 
were found statistically significant using the t-test 
based on [8]. 

 
Table 2. Function fits to the learning curves 
(r2) 

 
Dataset Power Linear Log Exp 
Breast 
Cancer 0.8419 0.3058 0.6529 0.5417 
Chess 0.8913 0.2118 0.5380 0.5424 
Hypo-
thyroid 0.9344 0.6204 0.8871 0.7866 
Mushroom 0.7974 0.5769 0.9191 0.9639 
Soybean 
large 0.9095 0.5723 0.8582 0.7175 
Vehicle 0.9280 0.5747 0.8895 0.6596 

 
3.3 Projected Optimization of the Training Set 
Size 

 
Our primary goal is to utilize the power law for 

projecting the optimal training set size for a given 
dataset from a small subset of potentially available 
data.  This goal is based on the following assumptions: 
• The learning curve induced from a subset of the 

data fits the error rate of the future data. 
• The actual utility curve of the entire dataset has a 

unique global optimum associated with the 
minimum cost of the classification process. 

• The actual cost of the optimal training set size n* 
projected by the power law (see Eq. 8) is not much 
higher than the minimum cost. 

We proceed with the experimental testing of the 
above assumptions on six benchmark datasets. 
 
3.3.1 Fitting Projected Error Rates 

 
In our experiments, which are based on the 

experimental settings of [2], the power law curves were 
induced from the first 15% of the available data.  For 
each percentage between 1% and 15%, the entire set of 
available data was randomly partitioned 50 times and 
the 15 averages of 50 runs were used as the data points 
for finding the parameters of the regression equation.  
The resulting power law function was used to calculate 
the error rates for the remaining 84 points (varying 
between 16% and 99% of the available data).  
Following the experimental methodology of [2], the 
goodness of fit of the projected error rates was 
evaluated by two parameters: the value of the chi-
square test [8], which represents the probability that the 
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projected and the observed error rates are generated by 
the same distribution, and the mean value of the 
absolute differences between the observed and 
projected error rates.  These parameters are shown in 
Table 3, along with the r2 values of the 15-point 
regression and the induced power law equations. 

 
Table 3. Projected error rates fits to the 
learning curves 

 

Dataset R2 / Equation 

Chi-
square 
test 
value 

Aver. 
Abs. 
Diff. 

Breast 
Cancer 

0.8323 
err =0.523n-0.452 1.00 0.0148 

Chess 
0.9372 
err =3.445n-0.725 1.00 0.0156 

Hypo-
thyroid 

0.7498 
err =0.163n-0.357 1.00 0.0010 

Mushroom 
0.9471 
err =0.221n-0.567 1.00 0.0013 

Soybean 
large 

0.5236 
err =1.213n-0.209 1.00 0.1679 

Vehicle 
0.7353 
err =1.081n-0.187 1.00 0.0122 

 
The results in Table 3 show that the power law 

functions induced from 15% of the observed data do 
not differ significantly from the predicted 84% of the 
error rate data for all six datasets.  The average 
absolute differences between the observed and 
projected error rates are usually much lower than the 
minimal error rates achievable with the maximum 
amount of available data (see Figures 1-3). 

 
3.3.2 Utility Curves 

 
Using the learning curves of the six experimental 

datasets and Equation (1), we have computed the total 
classification cost vs. the training set size for nine 
different cost ratios between 1 and 50,000 (based on 
the ratios used in [13]). As indicated above, the cost 
ratio is equivalent to Cerr given that Ctr = 1.  The size of 
the score set |S| was fixed at 100 in all calculations. 
The plots of the normalized costs, obtained by dividing 
the total cost by the maximum total cost for a given 
cost ratio, are shown in Figures 4-6 for the three largest 
datasets.  While for Chess and Mushroom, the optimal 
training set size is lower than the maximum number of 
available training examples, in Hypothyroid, starting 
with Cerr = 5,000, the optimum strategy is to use all of 
the training data. 
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Figure 4. Normalized utility curves for Chess 
dataset 

 
Hypothyroid
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Figure 5. Normalized utility curves for 
Hypothyroid dataset 

 
Mushroom
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Figure 6. Normalized utility curves for 
Mushroom dataset 
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Table 4.  Average cost difference between 
projected and actual optima 
 

Dataset Average Cost Difference 
Breast Cancer 0.0% 
Chess 18.2% 
Hypothyroid 6.4% 
Mushroom 14.8% 
Soybean large 0.2% 
Vehicle 4.7% 
Overall 7.4% 

 
3.3.3 Projected Optimum 

 
For each cost ratio, we have calculated the optimal 

training set size n* using Eq. (8) and the power law 
functions obtained from 15% of data (see Table 3).  
The observed classification cost with n* records was 
compared to the minimum cost.  If the projected 
optimal size of the training set was less than 15% of all 
available data, the projected optimum was ignored, 
since in that case the exact optimum can be found 
without projection.  Also, whenever the projected 
optimal size exceeded the maximum amount of 
training data, the minimum cost was compared to the 
cost of using all available records.  Table 4 presents the 
average difference (in percent) between the costs of the 
projected optimum and the actual optimum over 
various cost ratios.  In two datasets (Breast and 
Soybean), the difference is almost zero, in two other 
datasets (Hypothyroid and Vehicle) the difference is 
less than 10%, and only in the remaining two (Chess 
and Mushroom) it exceeds 10%. Overall, we believe 
that these initial results demonstrate the usefulness of 
the power law for projecting the optimal amount of 
training records.  

 
4. Conclusions 

 
This paper presents a new methodology for 

projecting the optimal amount of training data for a 
given dataset using the power law function induced 
from a small subset of potentially available data. Such 
a method is beneficial whenever there is a known 
trade-off between the number of collected records and 
the accuracy of the resulting classification model.  The 
proposed methodology is successfully evaluated on 
several benchmark datasets using an oblivious 
decision-tree classifier and random sampling.  Future 
research may include extending this technique to 
additional classification algorithms, exploring the 

effect of the number of data points on the accuracy of 
the projected learning curve, and experimentation with 
real-world datasets, where actual cost data is readily 
available. Modeling learning curves obtained with non-
random sampling techniques, such as active sampling 
[11], is another important task.   
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