
A Compact Representation of Spatio-Temporal Data

Sigal Elnekave, Mark Last
 Ben-Gurion University

elnekave@bgu.ac.il, mlast@bgu.ac.il

 Oded Maimon
Tel-Aviv University

 maimon@eng.tau.ac.il

Abstract

As technology advances we encounter more

available data on moving objects, which can be mined
to our benefit. In order to efficiently mine this large
amount of data we propose an enhanced segmentation
algorithm for representing a periodic spatio-temporal
trajectory, as a compact set of minimal bounding boxes
(MBBs). We also introduce a new, "data-amount-
based" similarity measure between mobile trajectories
which is compared empirically to an existing similarity
measure by clustering spatio-temporal data and
evaluating the quality of clusters and the execution
times. Finally, we evaluate the values of segmentation
thresholds used by the proposed segmentation
algorithm through studying the tradeoff between
running times and clustering validity as the
segmentation resolution increases.

1. Introduction

With technological progress, more data is available
on the location of moving objects at different times,
either via GPS technologies, mobile computer logs, or
wireless communication devices. This creates an
appropriate basis for developing efficient new methods
for mining moving objects.

Spatio-temporal data can be used for many different
purposes. The discovery of patterns in spatio-temporal
data, for example, can greatly influence such fields as
animal migration analysis, weather forecasting, and
mobile marketing. Clustering spatio-temporal data can
also help in social network analysis, which is used in
tasks like shared data allocation, targeted advertising,
and personalization of contents and services.

In this work we build a compact representation of a
trajectory by pre-processing a spatio-temporal data
stream. Then we define a new data-amount-based
similarity measure between trajectories for discovering
similar trajectories according to proximity in time and
space. This measure will allow the discovery of groups
that have similar spatio-temporal behavior. Finally we

evaluate the proposed algorithm by conducting
experiments on a synthetic data stream. We cluster
trajectories built by the proposed algorithm, using our
suggested data-amount-based similarity measure
compared to minimal distances similarity measure. We
also examine different segmentation thresholds and
analyze the tradeoff between running times and
clustering validity obtained with different segmentation
resolutions.

2. Related Work

Representing spatio-temporal data in a concise
manner can be done by converting it into a trajectory
form. In Hwang et al. [4] a trajectory is a function that
maps time to locations. To represent object movement,
a trajectory is decomposed into a set of linear
functions, one for each disjoint time interval. The
derivative of each linear function yields the direction
and the speed in the associated time interval. A
trajectory is a disjunction of all its linear pieces. For
example, a trajectory of the user moving on a 2-D
space may consist of the following two linear pieces:
[(x=t-3)Λ(y=t+3) Λ(0<t<2)]U[(x=6) Λ(y=-t)Λ(3<t<5)]

In Pfoser [6], a linear interpolation is used. The
sampled positions then become the endpoints of line
segments of polylines and the movement of an object
is represented by an entire polyline in 3D space. A
trajectory T is a sequence
<(x1,y1,t1),(x2,y2,t2),…,(xk,yk,tk)>. Objects are assumed
to move straight between the observed points with a
constant speed. The linear interpolation seems to yield
a good tradeoff between flexibility and simplicity.

Anagnostopoulos et al. [1] summarize spatio-
temporal data. They propose a distance-based
segmentation criterion in an attempt to create minimal
bounding rectangles (MBRs) that bound close data
points into rectangular intervals in such a way that the
original pairwise distances between all trajectories are
preserved as much as possible. A variance-based
hybrid variation is presented as a compromise between
running time and approximation quality.

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.79

601

Several similarity measures are used in the
literature. Anagnostopoulos et al. [1] define the
distance between two trajectory segmentations at time t
as the distance between the rectangles at time t, and the
distance between two segmentations is the sum of the
distances between them at every time instant. The
distance between the trajectory MBRs is a lower bound
of the original distance between the raw data, which is
an essential property for guaranteeing correctness of
results for most mining tasks.

In D'Auria, et al. [2] the similarity of trajectories
along time is computed by analyzing the way the
distance between the trajectories varies. More
precisely, for each time instant they compare the
positions of moving objects at that moment, thus
aggregating the set of distance values. The distance
between trajectories is computed as the average
distance between moving objects.

In Li, et al.[5] the similarity of objects within a
moving micro cluster is measured by distance on
profiles of objects. Similar objects are expected to have
similar initial locations and velocities.

In this work we improve the summarization of
spatio-temporal data in a manner that will better fit real
time data streams and will also provide tools for
improving the efficiency of measuring similarities
between trajectories.

3. Specific Methods

3.1. Representing trajectories

A spatio-temporal trajectory is a series of data-
points traversed by a given moving object during a
specific period of time (e.g., one day). Since we
assume that a moving object behaves according to
some periodic spatio-temporal pattern, we have to
determine the duration of the spatio-temporal sequence
(trajectory). Thus, in the experimental part of this
paper, we assume that a moving object repeats its
trajectories on a daily basis, meaning that each
trajectory describes an object movement during one
day. In a general case, each object should be examined
for its periodic behavior in order to determine the
duration of its single trajectory. The training data
window is the period which is used to learn the object's
periodic behavior based on its recorded trajectories
(e.g., daily trajectories recorded during one month).

As a part of our suggested preprocessing technique
we represent a trajectory as a list of minimal bounding
boxes. A minimal bounding box (MBB) represents an
interval bounded by limits of time and location. By
using this structure we can summarize close data-
points into one MBB, such that instead of recording

these original data-points, we only need to record the
following six elements:

).,max(.
).,min(.

).,max(.
).,min(.
).,max(.

).,min(.

maxmax

minmin

maxmax

minmin

maxmax

minmin

tmimti
tmimti

ymimyi
ymimyi
xmimxi
xmimxi

∈∀=
∈∀=

∈∀=
∈∀=
∈∀=
∈∀=

(1)

Where i represents a MBB, m represents a member
in a box, x and y are spatial coordinates, and t is time.

We also add other properties to the standard MBB-
based representation that improve our ability to
perform operations on the summarized data, like
measuring similarity between trajectories:

i.p = aggragation(γ mЄi, m.state)(2)

where p stands for the value of a property variable in a
minimal bounding box i, m represents a member in a
box, and state is the data-point's property that is being
aggregated. In our algorithm, p represents the number
of data points (data#) that are summarized by a given
MBB:

i.data# = count(γ mЄi, 1)(3)

A periodic trajectory of an object is identified by an
object ID O and a date D and it can be stored as a list
of MBBs: {O1, D1, [t1,t2,x1,x2,y1,y2,N1],
[t3,t4,x3,x4,y3,y4,N2].., [tn-1,tn,xn-1,xn,yn-1,yn,Nn]} where t
represents time, x and y represent coordinates (1 for
minimal and 2 for maximal), and N represents the
amount of data points belonging to each MBB. Figure
1 demonstrates an object's trajectory and its MBB-
based representation for a given period.

Figure 1. Object's trajectory

Incoming data-points update the MBBs in the order

of their arrival times. Therefore, the minimal time
bound of the first MBB is the time of the earliest data-
point in the dataset and the maximal time bound of this
MBB is stretched until the time or the space distance
between the maximal and the minimal locations of this
MBB reaches some pre-defined segmentation
thresholds. When one of these thresholds is exceeded,
a new minimal bounding box is created with the time
of the subsequent data-point as its minimal time bound.
The larger the threshold is, the more summarized
trajectories we get, meaning that we increase the
efficiency of the next mining stages (shorter running

Y

X T(hours)

602

times for less transactions) but also decrease their
precision.

In [3], we have presented an enhanced algorithm for
representing an object trajectory as a set of MBBs from
a spatio-temporal dataset D covering object movement
during a pre-defined period (e.g., 24 hours). This
algorithm is described below:

The algorithm processes each data point in the data

stream and inserts a data point into an existing MBB as
long as its bounds are within the threshold defined as
algorithm parameters; otherwise it creates a new MBB.
The "lastMBB" function returns the MBB with the
maximal (latest) time bounds in the trajectory, the
"addMBB" function initializes a new MBB in the
trajectory with bounds and properties updated by the
first incoming data-point (in the first arrival, the
minimum and the maximum are equal to the data-point
values), and the "addPoint" function updates MBB
properties (bounds and data amount).

3.2. Defining the thresholds parameters

We will stretch the MBBs in each dimension by a

threshold that is set in advance. The larger the
threshold is, the more summarized trajectories we get,
meaning that we increase efficiency of the next mining
stages (shorter running times for less transactions) but
also decrease its validity. We will therefore analyze the
tradeoff between efficiency and validity for different
segmentation thresholds. We set the threshold in each
dimension according to the standard deviation and the
range of the data values in that dimension. We do so in
order to maintain the standard deviation inside the
MBBs, and also to maintain the relative size of a MBB
in proportion to the data range. As the data standard
deviation decreases we need to limit it with stricter
bounds. The thresholds for each dimension are set to:

bDDDstdevbound ⋅−⋅=))min()(max()((4)
where D are the data points of the corresponding

dimension, stdev retrieves the standard deviation of the

data-points, max returns the maximal value in that
dimension, min retrieves the minimal value, and b is a
user-defined parameter that we try to optimize in the
experimental section. The data parameters stdev, max,
and min are calculated from the entire dataset D before
the start of the segmentation procedure. We will
evaluate b values between 0.05 and 10 that cover
different segmentation options within the possible data
range.

3.3. Defining a similarity measure

We define similarity between two trajectories as the
sum of the similarities between the trajectories' MBBs,
divided by the amounts of MBBs in each of the
compared trajectories, where the two compared
trajectories are described as shown in Figure 2.

Figure 2. Similarity between two trajectories

In this paper, we will empirically compare two

similarity measures between two MBBs. The first
similarity measure is called "minimal distances" and it
was suggested in [1]. It defines the distance between
two segmentations at time t as the distance between the
rectangles at time t, the first segmentation is of
trajectory Ti and the other is of trajectory Tj. Formally:

),()),(),((min
)),((
)),((

ji

tTjsPxj
tTsPx

ji xxdtTsTsd
ii

∈
∈

= (5)

The distance between two segmentations is then
calculated as the sum of the distances between them at
every time instant:

∑
−

=
=

1

0
)),(),(())(),((

m

t
jiji tTsTsdTsTsd (6)

The distance between the trajectory MBBs is a
lower bound of the original distance between the raw
data, which is an essential property for guaranteeing
correctness of results for most mining tasks. Therefore,
if we treat each MBB as a segment we can use the
following formula, where tm is the time when the two
MBBs start to overlap and tn is the time when its
overlapping ends:

D(MBB(Ti),MBB(Tj))=
minD(MBB(Ti),MBB(Tj))·|tm – tn| (7)

The minimal distance and the times tm and tn are

described in Figure 3.

Input: a spatio-temporal dataset (D), a threshold of x
and y distances and of time duration of a MBB.
Output: new objects' trajectory (T)
Building an object's trajectory:
item D[1]
T.addMBB(item) --First item updates first MBB
For each item in D --Except for first item
 while(|item.X-T.lastMBB.maxX|<XdistThreshold
 and |item.Y-T.lastMBB.maxY|<YdistThreshold
 and | item.T-T.lastMBB.maxT|<durationThreshold)
 T.lastMBB.addPoint(item)--Insert into current MBB
T.addMBB(item) --Create MBB when out of thresholds

603

Figure 3: A. Times of overlapping between two

MBBs; B. minimal distance between two MBBs

We define the minimal distance between two
MBBs are:

))(),((min))(),((min
))(),((min

jiji

ji

TMBBTMBBDYTMBBTMBBDX
TMBBTMBBD

+
= (8)

where the minimal distance between two MBBs in X
and Y dimensions as follows:

)))).(,).(min()).(,).((max(,0max(
))(),((min

maxmaxminmin XTMBBXTMBBXTMBBXTMBB
TMBBTMBBDX

jiji

ji

−

= (9)

)))).(,).(min()).(,).((max(,0max(
))(),((min

maxmaxminmin YTMBBYTMBBYTMBBYTMBB
TMBBTMBBDY

jiji

ji

−

= (10)

Using the enhanced representation of trajectories
(see section 3.1 above) we can improve the similarity
measure between trajectories as follows. We multiply
the minimal-distances measure (6) by the distance
between the amounts of data points of the two
compared MBBs (data#D). Since each MBB
summarizes some data points, the more data points are
included in both of the compared MBBs, the stronger
support we have for their similarity. Our "data-amount-
based" distance is calculated as:

))(),((data#))(),((min

))(),((

jinmji

ji

TMBBTMBBDttTMBBTMBBD

TMBBTMBBd

⋅−⋅

= (11)

Where the distance between the amounts of data
points that are summarized within two MBBS is:

#).(#).())(),((data# dataTMBBdataTMBBTMBBTMBBD jiji −= (12)

3.4. Representing a cluster's centroid

The centroid of a trajectory cluster should represent
all items that belong to that cluster in some
summarized manner. We represent a cluster centroid as
a summarized trajectory (as described in Formulas 1
and 2), or in other words as a vector of MBBs. Each
MBB is an interval that holds information about the
upper and lower bounds in each one of the d-
dimensions (in our case 2-D) of the location, lower and
upper time bounds, and the amount of data-points that
are summarized within the MBB.

During the clustering phase several similar
trajectories are inserted into each cluster. First the
centroid of the cluster is initialized to the first inserted

trajectory, and after all the trajectories are clustered,
the cluster centroids need to be updated.

Instead of the traditional centroid structure of a
numeric values vector and its common cluster updating
method that calculates a cluster's centroid as a vector
of averages of the items in the cluster, we represent
clusters as bound intervals, which requires using a
bounding technique for updating clusters, since
averaging interval bounds will lead to invalid intervals,
with bounds that are not the interval's real limits.

We first sort all the MBBs that belong to items in a
cluster, where MBBs with larger intervals will appear
first (sorted first by the time dimension) in order for
smaller MBBs to be inserted into it. Then each MBB is
added to the trajectory that represents the cluster's
centroid in the following manner: (1) if the inserted
MBB is contained within another MBB it will only
update the amount of summarized data points in the
existing MBB, (2) if the inserted MBB only exceeds an
existing MBB with an allowed distance(less than the
pre-determined thresholds) it updates the amount of
summarized data points in the existing MBB and it
also updates the exceeded bounds of the existing MBB.
(3) Otherwise, the inserted MBB is added as a new
MBB.

3.5. Finding movement patterns

A trajectories cluster contains similar trajectories.
Trajectories in the same cluster contain as much
similar MBBs as possible (close in space and time).
The centroid of a trajectories cluster represents a group
of similar trajectories, meaning that this cluster's
centroid can represent a movement pattern.

Since in order to run generic clustering algorithms
on the trajectories data, the algorithm needs to handle
an input that consists of bound intervals (trajectories)
instead of numeric values vectors, we developed in [3]
a spatio-temporal version of the K-Means algorithm for
clustering trajectories using the similarity measures
defined earlier. This version handles interval-bounded
data represented by a variable amount of attributes. It
uses the data-amount-based similarity measure and a
new centroid structure and updating method that were
defined earlier.

Each trajectory is represented by an id and a set of
MBBs (as described below). This algorithm receives as
input a set of trajectories of the form:
{T1, [t1,t2,x1,x2,y1,y2,N1], [t3,t4,x3,x4,y3,y4,N2].. ,[tn-1,tn,xn-

1,xn,yn-1,yn,Nn]} {T2,[t1,t2,x1,x2,y1,y2,N1],
[t3,t4,x3,x4,y3,y4,N2].., [tn-1,tn,xn-1,xn,yn-1,yn,Nn]}.. and it
outputs new object clusters of the form:
{[c1,(T1,T2,T9), trajectory centroid of c1 containing
three trajectories T1,T2,and T9], [c1,(T3,T7,T8), trajectory
centroid of c2]…)}.

1

2

1
2

A

B Minimal
Distance

tm tn

604

3.6. Using incremental clustering approach

We adapt the incremental approach in order to

benefit from the difference between the clustering for
the first training data window (e.g. trajectories during
the first month of data collection), when no previous
data is available, and clustering for the subsequent
windows, where using previous clustering centroids
can help performing a more efficient incremental
clustering process, since less updates are needed
assuming that the movement behavior of the same
object stays relatively stable. With the non-incremental
approach, the clustering algorithm is applied repeatedly
to each new data window (e.g., on a monthly basis)
without utilizing clustering results of earlier data
windows (the centroids are re-calculated for each new
window).

An algorithm for incrementally discovering periodic
movement patterns during a given data window
includes the initialization of cluster centroids according
to the previous cluster results of the same objects,
where early clustering results exist. In our previous
work [3] we performed experiments that showed that
the incremental approach decreases clustering running
times and increases cluster's validity.

4. Experimental Results

4.1. Generation of spatio-temporal data

In the absence of real spatio-temporal datasets,

mainly due to privacy issues, we have generated
synthetic data for our experiments.

This synthetic data was used for the empirical
evaluation of the proposed algorithm for incremental
representation of trajectories with the new "data-
amount-based" similarity measure. We ran 20
simulations each representing a moving object. The
first 10 runs simulated daily movements (trajectories)
of a mobile object during 25 days, and the other 10
runs simulated daily movements (trajectories) of a
mobile object during 45 days. These trajectories
belonged to five movement patterns. Trajectories that
belong to the same movement pattern reached at least
three identical locations at identical times. The location
of each object was sampled at least 35 times during
each day.

4.2. Detailed Results

We preprocessed the data using our suggested

algorithm for building trajectories. In order to evaluate
the proposed similarity measure, we clustered the

trajectories once using the "minimal distances"
similarity measure [1] and once using our proposed
"data-amounts-based" similarity measure.

For each simulation K-Means iterations amount was
set to 20, and the we examined the following amounts
of clusters k: 2, 3, 4, 5, 6, 7. For each value of k, we
examined 6 different options for the segmentation
thresholds (using the following values of b substituted
in equation (4): 1, 1.5, 2, 2.5, 3, 3.5). We compared the
clustering running times. We also compared clusering
Dunn index, which measures the worst-case
compactness and separation of a clustering, with higher
values being better [7]

max
min

D
D

DI = (13)

Dmin is the minimum distance between any two objects
in different clusters (separation) and Dmax is the
maximum distance between any two items in the same
cluster (homogeneity).

After the experiments, we evaluated the results
using a oneway analysis of variance (ANOVA), for the
independent variable: similarity measure type
(minimal-distance or data-amounts-based). Our
dependent variables (tested separately) are Dunn index,
and running time. The ANOVA results show that our
suggested "data-amounts-based" similarity measure
significantly outperforms "minimal distances"
similarity measure when analyzed according to Dunn
index, as can be seen in Figure 4.

Figure 4. Dunn index vs. different cluster amounts

We summarized the trajectories with different

segmentation thresholds calculated by Formula 4, and
ran our clustering algorithm on the summarized
trajectories. As one can see in Figure 5, when b
increases, run durations decrease, but so is the validity
according to the Dunn index. When b=4 we get about
90% of the validity for 3% of the running time. While
b=2 gives a nice increase of accuracy to 98% for about
8% of running time, b=1 gives a less significant
increase of accuracy to 99.9% for about 17% of run
time. b=0.2 gives 100% accuracy for about 44% of
running time.

Clusters
amount 7 6 5432

Dunn

0.92

0.90

0.88

0.86

0.84

0.82

0.80

Data-amounts-based
Minimal distances

Similarity:

605

Figure 5. Running time and Dunn index vs. b

values with summarized trajectories

We then summarized the trajectories with different

thresholds, ran our clustering algorithm on the
summarized trajectories, while the centroids were also
summarized using the same thresholds as a part of their
updating procedure. As one can see in Figure 6, when
b increases, run durations decrease much lower when
summarizing centroids, but so is the validity according
to the Dunn index. Thus, a lower segmentation
resolution is needed (lower b) in order to get more
validity for less computation time. While b=0.8 gives a
nice increase of accuracy to 96% for 2% of running
time when running the clustering without segmentation
of trajectories, b=0.2 gives a less significant increase of
accuracy to 99.9% for 4% of run time. b=0.1 gives
100% accuracy for about 5.7% of running time.

Figure 6. Running time and Dunn index vs. b

values with summarized trajectories and centroids

5. Conclusions

In this paper, we improved our suggested method
for clustering summarized trajectories into movement
patterns. We presented a new way for summarizing
spatio-temporal data, including a new similarity
measure between summarized trajectories that
outperforms existing similarity measures according to
clusters validity index.

Analyzing the validity-efficiency tradeoff for
different segmentation resolutions demonstrates that it
is best to choose b=2 when we are indifferent between
efficiency and validity, since running times stay low
and accuracy is relatively high. It also shows that

adding segmentation of centroids during their updating
stage, significantly decreases running times (6%
running time for 100% validity when b=0.1).

Further work is needed for finding the best
segmentation resolution for applications where
efficiency and validity have different importance
weights. Experimentation with massive streams of
complex spatio-temporal data is another important
research task.

6. Bibliography

[1] A. Anagnostopoulos, M. Vlachos , M. Hadjieleftheriou,

E Keogh., P.s. Yu, "Global Distance-Based
Segmentation of Trajectories". KDD’06, Philadelphia,
Pennsylvania, USA, August 20–23, 2006.

[2] M. D'Auria, M. Nanni D., Pedreschi "Time-focused
density-based clustering of trajectories of moving
objects" To appear in JIIS Special Issue on "Mining
Spatio-Temporal Data", 2006

[3] S. Elnekave, M. Last, O. Maimon "Incremental
Clustering of Mobile Objects",STDM07, IEEE , 2007

[4] S.Y. Hwang, Y.H. Liu, J.K. Chiu, F.P. Lim (2005)
"Mining Mobile Group Patterns: A Trajectory-based
Approach". Lecture Notes in Artificial Intelligence,
PAKDD 2005, v. 3518, , p 713-718

[5] Y. Li, J. Han, J. Yang, "Clustering Moving Objects".
KDD-2004 - Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2004, p 617-622.

[6] D. Pfoser, "Indexing the Trajectories of Moving
Objects". IEEE Data Engineering Bulletin, 2002

[7] A. Schenker, H. Bunke, M. Last, A. Kandel, "Graph-
Theoretic Techniques for Web content Mining", World
Scientific, Series in Machine Perception and Artificial
Intelligence, 2005, Vol. 62

0%
10%

20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8
b

Running Time

70%

75%

80%

85%

90%

95%

100%

105%
Dunn Running Time

Dunn

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 b

Running Times

70%

80%

90%

100%

DunnRunning Time
Dunn

606

