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Abstract 

 
As technology advances we encounter more 

available data on moving objects, which can be mined 
to our benefit. In order to efficiently mine this large 
amount of data we propose an enhanced segmentation 
algorithm for representing a periodic spatio-temporal 
trajectory, as a compact set of minimal bounding boxes 
(MBBs).  We also introduce a new, "data-amount-
based" similarity measure between mobile trajectories 
which is compared empirically to an existing similarity 
measure by clustering spatio-temporal data and 
evaluating the quality of clusters and the execution 
times. Finally, we evaluate the values of segmentation 
thresholds used by the proposed segmentation 
algorithm through studying the tradeoff between 
running times and clustering validity as the 
segmentation resolution increases. 
 
1. Introduction 
 

With technological progress, more data is available 
on the location of moving objects at different times, 
either via GPS technologies, mobile computer logs, or 
wireless communication devices. This creates an 
appropriate basis for developing efficient new methods 
for mining moving objects. 

Spatio-temporal data can be used for many different 
purposes. The discovery of patterns in spatio-temporal 
data, for example, can greatly influence such fields as 
animal migration analysis, weather forecasting, and 
mobile marketing. Clustering spatio-temporal data can 
also help in social network analysis, which is used in 
tasks like shared data allocation, targeted advertising, 
and personalization of contents and services.  

In this work we build a compact representation of a 
trajectory by pre-processing a spatio-temporal data 
stream. Then we define a new data-amount-based 
similarity measure between trajectories for discovering 
similar trajectories according to proximity in time and 
space. This measure will allow the discovery of groups 
that have similar spatio-temporal behavior. Finally we 

evaluate the proposed algorithm by conducting 
experiments on a synthetic data stream. We cluster 
trajectories built by the proposed algorithm, using our 
suggested data-amount-based similarity measure 
compared to minimal distances similarity measure. We 
also examine different segmentation thresholds and 
analyze the tradeoff between running times and 
clustering validity obtained with different segmentation 
resolutions. 
 
2. Related Work 
 

Representing spatio-temporal data in a concise 
manner can be done by converting it into a trajectory 
form. In Hwang et al. [4] a trajectory is a function that 
maps time to locations. To represent object movement, 
a trajectory is decomposed into a set of linear 
functions, one for each disjoint time interval. The 
derivative of each linear function yields the direction 
and the speed in the associated time interval. A 
trajectory is a disjunction of all its linear pieces. For 
example, a trajectory of the user moving on a 2-D 
space may consist of the following two linear pieces: 
[(x=t-3)Λ(y=t+3) Λ(0<t<2)]U[(x=6) Λ(y=-t)Λ(3<t<5)]  

In Pfoser [6], a linear interpolation is used. The 
sampled positions then become the endpoints of line 
segments of polylines and the movement of an object 
is represented by an entire polyline in 3D space. A 
trajectory T is a sequence 
<(x1,y1,t1),(x2,y2,t2),…,(xk,yk,tk)>. Objects are assumed 
to move straight between the observed points with a 
constant speed. The linear interpolation seems to yield 
a good tradeoff between flexibility and simplicity.  

Anagnostopoulos et al. [1] summarize spatio-
temporal data. They propose a distance-based 
segmentation criterion in an attempt to create minimal 
bounding rectangles (MBRs) that bound close data 
points into rectangular intervals in such a way that the 
original pairwise distances between all trajectories are 
preserved as much as possible. A variance-based 
hybrid variation is presented as a compromise between 
running time and approximation quality.  
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Several similarity measures are used in the 
literature. Anagnostopoulos et al. [1] define the 
distance between two trajectory segmentations at time t 
as the distance between the rectangles at time t, and the 
distance between two segmentations is the sum of the 
distances between them at every time instant. The 
distance between the trajectory MBRs is a lower bound 
of the original distance between the raw data, which is 
an essential property for guaranteeing correctness of 
results for most mining tasks. 

In D'Auria, et al. [2] the similarity of trajectories 
along time is computed by analyzing the way the 
distance between the trajectories varies. More 
precisely, for each time instant they compare the 
positions of moving objects at that moment, thus 
aggregating the set of distance values. The distance 
between trajectories is computed as the average 
distance between moving objects. 

In Li, et al.[5] the similarity of objects within a 
moving micro cluster is measured by distance on 
profiles of objects. Similar objects are expected to have 
similar initial locations and velocities.  

In this work we improve the summarization of 
spatio-temporal data in a manner that will better fit real 
time data streams and will also provide tools for 
improving the efficiency of measuring similarities 
between trajectories. 
 
3. Specific Methods 
 
3.1. Representing trajectories 
 

A spatio-temporal trajectory is a series of data-
points traversed by a given moving object during a 
specific period of time (e.g., one day). Since we 
assume that a moving object behaves according to 
some periodic spatio-temporal pattern, we have to 
determine the duration of the spatio-temporal sequence 
(trajectory). Thus, in the experimental part of this 
paper, we assume that a moving object repeats its 
trajectories on a daily basis, meaning that each 
trajectory describes an object movement during one 
day. In a general case, each object should be examined 
for its periodic behavior in order to determine the 
duration of its single trajectory.  The training data 
window is the period which is used to learn the object's 
periodic behavior based on its recorded trajectories 
(e.g., daily trajectories recorded during one month).  

As a part of our suggested preprocessing technique 
we represent a trajectory as a list of minimal bounding 
boxes. A minimal bounding box (MBB) represents an 
interval bounded by limits of time and location. By 
using this structure we can summarize close data-
points into one MBB, such that instead of recording 

these original data-points, we only need to record the 
following six elements: 
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Where i represents a MBB, m represents a member 
in a box, x and y are spatial coordinates, and t is time. 

We also add other properties to the standard MBB-
based representation that improve our ability to 
perform operations on the summarized data, like 
measuring similarity between trajectories: 

i.p = aggragation(γ mЄi, m.state)(2) 
 

where p stands for the value of a property variable in a 
minimal bounding box i, m represents a member in a 
box,  and state is the data-point's property that is being 
aggregated. In our algorithm, p represents the number 
of data points (data#) that are summarized by a given 
MBB: 

i.data# = count(γ mЄi, 1)(3) 
 

A periodic trajectory of an object is identified by an 
object ID O and a date D and it can be stored as a list 
of MBBs: {O1, D1, [t1,t2,x1,x2,y1,y2,N1], 
[t3,t4,x3,x4,y3,y4,N2].., [tn-1,tn,xn-1,xn,yn-1,yn,Nn]} where t 
represents time, x and y represent coordinates (1 for 
minimal and 2 for maximal), and N represents the 
amount of data points belonging to each MBB. Figure 
1 demonstrates an object's trajectory and its MBB-
based representation for a given period. 

 

 
Figure 1. Object's trajectory 

 
Incoming data-points update the MBBs in the order 

of their arrival times. Therefore, the minimal time 
bound of the first MBB is the time of the earliest data-
point in the dataset and the maximal time bound of this 
MBB is stretched until the time or the space distance 
between the maximal and the minimal locations of this 
MBB reaches some pre-defined segmentation 
thresholds. When one of these thresholds is exceeded, 
a new minimal bounding box is created with the time 
of the subsequent data-point as its minimal time bound. 
The larger the threshold is, the more summarized 
trajectories we get, meaning that we increase the 
efficiency of the next mining stages (shorter running 

Y 

X T(hours) 

602



times for less transactions) but also decrease their 
precision.   

In [3], we have presented an enhanced algorithm for 
representing an object trajectory as a set of MBBs from 
a spatio-temporal dataset D covering object movement 
during a pre-defined period (e.g., 24 hours). This 
algorithm is described below: 

 

 
 
The algorithm processes each data point in the data 

stream and inserts a data point into an existing MBB as 
long as its bounds are within the threshold defined as 
algorithm parameters; otherwise it creates a new MBB.  
The "lastMBB" function returns the MBB with the 
maximal (latest) time bounds in the trajectory, the 
"addMBB" function initializes a new MBB in the 
trajectory with bounds and properties updated by the 
first incoming data-point (in the first arrival, the 
minimum and the maximum are equal to the data-point 
values), and the "addPoint" function updates MBB 
properties (bounds and data amount). 

 
3.2. Defining the thresholds parameters 

 
We will stretch the MBBs in each dimension by a 

threshold that is set in advance. The larger the 
threshold is, the more summarized trajectories we get, 
meaning that we increase efficiency of the next mining 
stages (shorter running times for less transactions) but 
also decrease its validity. We will therefore analyze the 
tradeoff between efficiency and validity for different 
segmentation thresholds. We set the threshold in each 
dimension according to the standard deviation and the 
range of the data values in that dimension. We do so in 
order to maintain the standard deviation inside the 
MBBs, and also to maintain the relative size of a MBB 
in proportion to the data range. As the data standard 
deviation decreases we need to limit it with stricter 
bounds. The thresholds for each dimension are set to: 

bDDDstdevbound ⋅−⋅= ))min()(max()(  (4) 
where D are the data points of the corresponding 

dimension, stdev retrieves the standard deviation of the 

data-points, max returns the maximal value in that 
dimension, min retrieves the minimal value, and b is a 
user-defined parameter that we try to optimize in the 
experimental section. The data parameters stdev, max, 
and min are calculated from the entire dataset D before 
the start of the segmentation procedure. We will 
evaluate b values between 0.05 and 10 that cover 
different segmentation options within the possible data 
range. 
 
3.3. Defining a similarity measure  
 

We define similarity between two trajectories as the 
sum of the similarities between the trajectories' MBBs, 
divided by the amounts of MBBs in each of the 
compared trajectories, where the two compared 
trajectories are described as shown in Figure 2. 

 

 
Figure 2. Similarity between two trajectories 

 
In this paper, we will empirically compare two 

similarity measures between two MBBs. The first 
similarity measure is called "minimal distances" and it 
was suggested in [1]. It defines the distance between 
two segmentations at time t as the distance between the 
rectangles at time t, the first segmentation is of 
trajectory Ti and the other is of trajectory Tj. Formally:  
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The distance between two segmentations is then 
calculated as the sum of the distances between them at 
every time instant:  
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The distance between the trajectory MBBs is a 
lower bound of the original distance between the raw 
data, which is an essential property for guaranteeing 
correctness of results for most mining tasks. Therefore, 
if we treat each MBB as a segment we can use the 
following formula, where tm is the time when the two 
MBBs start to overlap and tn is the time when its 
overlapping ends: 

D(MBB(Ti),MBB(Tj))= 
minD(MBB(Ti),MBB(Tj))·|tm – tn| (7) 

 
The minimal distance and the times tm and tn are 

described in Figure 3. 

Input: a spatio-temporal dataset (D), a threshold of x 
and y distances and of time duration of a MBB. 
Output: new objects' trajectory (T)  
Building an object's trajectory: 
item  D[1] 
T.addMBB(item) --First item updates first MBB 
For each item in D --Except for first item 
  while(|item.X-T.lastMBB.maxX|<XdistThreshold 
     and |item.Y-T.lastMBB.maxY|<YdistThreshold 
     and | item.T-T.lastMBB.maxT|<durationThreshold) 
     T.lastMBB.addPoint(item)--Insert into current MBB 
T.addMBB(item) --Create MBB when out of thresholds 
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Figure 3:  A. Times of overlapping between two 

MBBs; B. minimal distance between two MBBs 
 

We define the minimal distance between two 
MBBs are: 
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where the minimal distance between two MBBs in X 
and Y dimensions as follows: 
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Using the enhanced representation of trajectories 
(see section 3.1 above) we can improve the similarity 
measure between trajectories as follows. We multiply 
the minimal-distances measure (6) by the distance 
between the amounts of data points of the two 
compared MBBs (data#D). Since each MBB 
summarizes some data points, the more data points are 
included in both of the compared MBBs, the stronger 
support we have for their similarity. Our "data-amount-
based" distance is calculated as: 
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Where the distance between the amounts of data 
points that are summarized within two MBBS is: 

#).(#).())(),((data# dataTMBBdataTMBBTMBBTMBBD jiji −= (12) 

 
3.4. Representing a cluster's centroid 
 

The centroid of a trajectory cluster should represent 
all items that belong to that cluster in some 
summarized manner. We represent a cluster centroid as 
a summarized trajectory (as described in Formulas 1 
and 2), or in other words as a vector of MBBs. Each 
MBB is an interval that holds information about the 
upper and lower bounds in each one of the d-
dimensions (in our case 2-D) of the location, lower and 
upper time bounds, and the amount of data-points that 
are summarized within the MBB. 

During the clustering phase several similar 
trajectories are inserted into each cluster. First the 
centroid of the cluster is initialized to the first inserted 

trajectory, and after all the trajectories are clustered, 
the cluster centroids need to be updated. 

Instead of the traditional centroid structure of a 
numeric values vector and its common cluster updating 
method that calculates a cluster's centroid as a vector 
of averages of the items in the cluster, we represent 
clusters as bound intervals, which requires using a 
bounding technique for updating clusters, since 
averaging interval bounds will lead to invalid intervals, 
with bounds that are not the interval's real limits.  

We first sort all the MBBs that belong to items in a 
cluster, where MBBs with larger intervals will appear 
first (sorted first by the time dimension) in order for 
smaller MBBs to be inserted into it. Then each MBB is 
added to the trajectory that represents the cluster's 
centroid in the following manner: (1) if the inserted 
MBB is contained within another MBB it will only 
update the amount of summarized data points in the 
existing MBB, (2) if the inserted MBB only exceeds an 
existing MBB with an allowed distance(less than  the 
pre-determined thresholds) it updates the amount of 
summarized data points in the existing MBB and it 
also updates the exceeded bounds of the existing MBB. 
(3) Otherwise, the inserted MBB is added as a new 
MBB. 

 
3.5. Finding movement patterns  
 

A trajectories cluster contains similar trajectories. 
Trajectories in the same cluster contain as much 
similar MBBs as possible (close in space and time). 
The centroid of a trajectories cluster represents a group 
of similar trajectories, meaning that this cluster's 
centroid can represent a movement pattern. 

Since in order to run generic clustering algorithms 
on the trajectories data, the algorithm needs to handle 
an input that consists of bound intervals (trajectories) 
instead of numeric values vectors, we developed in [3] 
a spatio-temporal version of the K-Means algorithm for 
clustering trajectories using the similarity measures 
defined earlier. This version handles interval-bounded 
data represented by a variable amount of attributes. It 
uses the data-amount-based similarity measure and a 
new centroid structure and updating method that were 
defined earlier. 

Each trajectory is represented by an id and a set of 
MBBs (as described below). This algorithm receives as 
input a set of trajectories of the form:  
{T1, [t1,t2,x1,x2,y1,y2,N1], [t3,t4,x3,x4,y3,y4,N2].. ,[tn-1,tn,xn-

1,xn,yn-1,yn,Nn]} {T2,[t1,t2,x1,x2,y1,y2,N1], 
[t3,t4,x3,x4,y3,y4,N2].., [tn-1,tn,xn-1,xn,yn-1,yn,Nn]}.. and it 
outputs new object clusters of the form:  
{[c1,(T1,T2,T9), trajectory centroid of c1 containing 
three trajectories T1,T2,and T9], [c1,(T3,T7,T8), trajectory 
centroid of c2]…)}.  

1 

2 

1 
2 

A 

B Minimal  
Distance 

tm tn 
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3.6. Using incremental clustering approach 

 
We adapt the incremental approach in order to 

benefit from the difference between the clustering for 
the first training data window (e.g. trajectories during 
the first month of data collection), when no previous 
data is available, and clustering for the subsequent 
windows, where using previous clustering centroids 
can help performing a more efficient incremental 
clustering process, since less updates are needed 
assuming that the movement behavior of the same 
object stays relatively stable. With the non-incremental 
approach, the clustering algorithm is applied repeatedly 
to each new data window (e.g., on a monthly basis) 
without utilizing clustering results of earlier data 
windows (the centroids are re-calculated for each new 
window). 

An algorithm for incrementally discovering periodic 
movement patterns during a given data window 
includes the initialization of cluster centroids according 
to the previous cluster results of the same objects, 
where early clustering results exist. In our previous 
work [3] we performed experiments that showed that 
the incremental approach decreases clustering running 
times and increases cluster's validity. 

 
4. Experimental Results 

 
4.1. Generation of spatio-temporal data 

 
In the absence of real spatio-temporal datasets, 

mainly due to privacy issues, we have generated 
synthetic data for our experiments.  

This synthetic data was used for the empirical 
evaluation of the proposed algorithm for incremental 
representation of trajectories with the new "data-
amount-based" similarity measure. We ran 20 
simulations each representing a moving object. The 
first 10 runs simulated daily movements (trajectories) 
of a mobile object during 25 days, and the other 10 
runs simulated daily movements (trajectories) of a 
mobile object during 45 days. These trajectories 
belonged to five movement patterns. Trajectories that 
belong to the same movement pattern reached at least 
three identical locations at identical times. The location 
of each object was sampled at least 35 times during 
each day.  

 
4.2. Detailed Results 

 
We preprocessed the data using our suggested 

algorithm for building trajectories. In order to evaluate 
the proposed similarity measure, we clustered the 

trajectories once using the "minimal distances" 
similarity measure [1] and once using our proposed 
"data-amounts-based" similarity measure. 

For each simulation K-Means iterations amount was 
set to 20, and the we examined the following amounts 
of clusters k: 2, 3, 4, 5, 6, 7. For each value of k, we 
examined 6 different options for the segmentation 
thresholds (using the following values of b substituted 
in equation (4): 1, 1.5, 2, 2.5, 3, 3.5). We compared the 
clustering running times. We also compared clusering 
Dunn index, which measures the worst-case 
compactness and separation of a clustering, with higher 
values being better [7] 

max
min

D
D

DI = (13) 

Dmin is the minimum distance between any two objects 
in different clusters (separation) and Dmax is the 
maximum distance between any two items in the same 
cluster (homogeneity). 

After the experiments, we evaluated the results 
using a oneway analysis of variance (ANOVA), for the 
independent variable: similarity measure type 
(minimal-distance or data-amounts-based). Our 
dependent variables (tested separately) are Dunn index, 
and running time. The ANOVA results show that our 
suggested "data-amounts-based" similarity measure 
significantly outperforms "minimal distances" 
similarity measure when analyzed according to Dunn 
index, as can be seen in Figure 4.  

 

 
Figure 4. Dunn index vs. different cluster amounts 

 
We summarized the trajectories with different 

segmentation thresholds calculated by Formula 4, and 
ran our clustering algorithm on the summarized 
trajectories. As one can see in Figure 5, when b 
increases, run durations decrease, but so is the validity 
according to the Dunn index.  When b=4 we get about 
90% of the validity for 3% of the running time. While 
b=2 gives a nice increase of accuracy to 98% for about 
8% of running time, b=1 gives a less significant 
increase of accuracy to 99.9% for about 17% of run 
time. b=0.2 gives 100% accuracy for about 44% of 
running time. 
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Figure 5. Running time and Dunn index vs. b 

values with summarized trajectories  
 
We then summarized the trajectories with different 

thresholds, ran our clustering algorithm on the 
summarized trajectories, while the centroids were also 
summarized using the same thresholds as a part of their 
updating procedure. As one can see in Figure 6, when 
b increases, run durations decrease much lower when 
summarizing centroids, but so is the validity according 
to the Dunn index. Thus, a lower segmentation 
resolution is needed (lower b) in order to get more 
validity for less computation time. While b=0.8 gives a 
nice increase of accuracy to 96% for 2% of running 
time when running the clustering without segmentation 
of trajectories, b=0.2 gives a less significant increase of 
accuracy to 99.9% for 4% of run time. b=0.1 gives 
100% accuracy for about 5.7% of running time.  

 

 
Figure 6. Running time and Dunn index vs. b 

values with summarized trajectories and centroids  
 

5. Conclusions 
 

In this paper, we improved our suggested method 
for clustering summarized trajectories into movement 
patterns. We presented a new way for summarizing 
spatio-temporal data, including a new similarity 
measure between summarized trajectories that 
outperforms existing similarity measures according to 
clusters validity index. 

Analyzing the validity-efficiency tradeoff for 
different segmentation resolutions demonstrates that it 
is best to choose b=2 when we are indifferent between 
efficiency and validity, since running times stay low 
and accuracy is relatively high. It also shows that 

adding segmentation of centroids during their updating 
stage, significantly decreases running times (6% 
running time for 100% validity when b=0.1).  

Further work is needed for finding the best 
segmentation resolution for applications where 
efficiency and validity have different importance 
weights. Experimentation with massive streams of 
complex spatio-temporal data is another important 
research task. 
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